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Abstract

In this paper, we give a uniqueness result to a transport equation fulfilled by
probability measure on a infinite dimensional Hilbert space. Main arguments are
based on projective aspects and a probabilistic representation of the measure-valued
solutions. It extends the work of Maniglia, which concerns the finite dimensional case
and the work of Ammari and Nier, for a wider class of velocity field.
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1 Introduction

Liouville’s equation is a fundamental equation of statistical mechanics which describes
the time evolution of phase-space distribution functions. Consider for instance a Hamil-
tonian system H(p, q) = H(p1, · · · , pn, q1, · · · , qn) of finite degrees of freedom where
(q1, · · · , qn, p1 · · · , pn) are the position-momentum canonical coordinates. Then the time
evolution of a probability density function %(p, q, t) describing the system at time t is
governed by the Liouville equation,

∂%

∂t
+ {%,H} = 0 , (1)

with the Poisson bracket defined as follows,

{%,H} =

n∑
i=1

[
∂H

∂pi

∂%

∂qi
− ∂H

∂qi
∂%

∂pi

]
.

By formally differentiating %(pt, qt, t) with respect to time, where (pt, qt) are solutions of
the Hamiltonian equations, we recover the Liouville’s theorem as stated by Gibbs ”The
distribution function is constant along any trajectory in phase space”, i.e.,

d

dt
%(pt, qt, t) = 0 .

In fact the characteristics method says that if the Hamiltonian is sufficiently smooth and
generates a unique Hamiltonian flow Φt on the phase-space, then the density function
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%(p, q, t) is uniquely determined by its initial value %(p, q, 0) and it is given as the propa-
gation along the characteristics, i.e.,

%(p, q, t) = %(Φ−1
t (p, q), 0) .

It is known that Liouville’s theorem holds in more general framework than the Hamiltonian
systems. Consider a differential equation,

d

dt
X = F (X), X(t = 0) = X0 , (2)

with X = (X1, · · · , Xn) ∈ Rn and F = (F1, · · · , Fn) : Rn → Rn is a given smooth vector
field such that a unique flow map Φt : Rn 7→ Rn exists and solves the ODE (2). If the
system (2) is at an initial statistical state described by a probability density function
%(X, 0) at t = 0, then under the flow map Φt, the evolution of this state is described by a
density %(X, t), which is the pull-back of the initial one,

%(X, t) = %(Φ−1
t (X), 0) . (3)

If the vector field F satisfies the Liouville’s property, which is the following divergence-free
condition,

div(F ) =
n∑
j=1

∂Fj
∂Xj

= 0 ,

then the flow map Φt is volume preserving (or measure preserving) on the phase space
and for all times the density %(X, t) verifies the Liouville equation,

∂%

∂t
+ F · ∇X% = 0 . (4)

Again when the vector field is smooth the characteristics theory says that (3) is the unique
solution of the Liouville equation (4) with the initial value %(X, 0). This enlightens the
relationship between individual solutions of the ODE (2) and statistical (probability mea-
sure) solutions of the Liouville equation (4) and suggests that this is a general principle
that could extend to non-smooth vector fields or to dynamical systems with infinite de-
grees of freedom. Actually the non-smooth framework has been carefully studied and
uniqueness of probability measure solutions of Liouville’s equation is established via a
general superposition principle, see [4, 2, 15, 19, 30, 32] and also [13, 18]. The extension
to dynamical systems with infinite degrees of freedom is less studied and the investigations
are not oriented toward the study of classical PDEs, see [3, 27, 38], at the exception of
the work [11, Appendix C] where the ideas of [4] was adapted to a rigged Hilbert space
and applied to the nonlinear Hartree equation with singular potential.

Our aim in this article is to consider the above uniqueness property for Hamiltonian
systems with infinite degrees of freedom related to some interesting nonlinear PDEs like
the wave or Schrödinger equations. Beyond the fact that Liouville’s equation is a natural
ground for a statistical theory of Hamiltonian PDEs, we do have another motivation when
addressing the previous uniqueness problem. In fact, when we study the relationship
between quantum field theories and classical PDEs we encounter the above uniqueness
problem, see [6, 11, 12]. Roughly speaking, the quantum counterpart of Liouville’s equa-
tion is the Von Neumann equation which describes the time evolution of quantum states
of Hamiltonian (linear) systems. If we attempt to carry on the classical limit, i.e. ~ → 0
where ~ is an effective Planck constant which depends on the scaling of the system at
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hand, then quantum states transform in the limit into probability measures satisfying a
Liouville equation related to a nonlinear Hamiltonian PDE, see [8, 9, 10]. Therefore the
uniqueness property for probability measure solutions of Liouville’s equation will be a
crucial step towards a rigourous justification of the classical limit or the so-called Bohr’s
correspondence principle.

It is not so obvious how to generalize the above considerations to Hamiltonian systems
with infinite degrees of freedom [38]. One of the difficulties for instance is the lack of
translation-invariant measures on infinite dimensional normed spaces. Nevertheless, the
approach elaborated in [4] is well suited to a generalization for systems with infinite
degrees of freedom. This was accomplished in [11] with the following Liouville’s equation
considered in a weak sense,

∂tµt +∇T (F.µt) = 0 , (5)

where t 7→ µt are probability measure solutions and F is a non-autonomous vector field
defined on a rigged Hilbert space Z1 ⊂ Z0 ⊂ Z ′1. The result on uniqueness of probability
measure solutions of Liouville’s (5) proved in [11, Appendix C] uses a slightly strong
assumption on the vector field F ,

∀T > 0, ∃C > 0,

∫ T

−T

[ ∫
Z1

||F (t, z)||2Z1
dµt(z)

] 1
2dt ≤ C . (6)

This result was applied in [6, 7, 11, 29] to the mean-field theory and to the classical limit
of quantum field theories. In this article we relax the above condition so that we require
only the uniform estimate,

∀T > 0,∃C > 0,

∫ T

−T

∫
Z1

||F (t, z)||Z0dµt(z)dt ≤ C , (7)

which fits better the energy method communally used to solve PDEs. To illustrate the
difference between (6) and (7), we consider the following example. Let Z0 = L2(R),
Z1 = H1(R) and consider the nonlinear Schrödinger (NLS) equation,{

i∂tzt = −∆zt + |zt|2zt
z|t=0 = z0.

(8)

In the interaction representation the NLS equation is equivalent to the PDE,{
∂tz̃t = F (t, z̃t) := −ie−it∆|eit∆z̃t|2(eit∆z̃t)

z|t=0 = z0.
(9)

So, F : H1(R) → L2(R) is interpreted as non-autonomous vector field defined on the
energy space H1(R). Sobolev’s embedding gives the existence of a constant C > 0 such
that

||F (t, z)||L2(R) ≤ C||z||2H1(R)||z||L2(R) .

So, suppose that we have the following a priori information on the measures (µt)t∈R,∫
H1(R)

||z||2H1(R) ||z||L2(R) dµt ≤ C (10)

for some time-independent constant C, then the assumption (7) is satisfied. The require-
ment (10) says in some sense that µt has a finite energy and actually this can proved a
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priori, see [11]. However, if we examine (6) in this case, we see that ||F (t, z)||H1(R) is
bounded by

||F (t, z)||H1(R) ≤ C||z||3H1(R) ,

and hence we need a stronger a priori estimate∫
H1(R)

||z||6H1(R) dµt ≤ C ,

which in contrast is difficult to prove a priori. In conclusion, the improvement provided in
this article allows to show general and stronger results in the mean-field theory of quantum
many-body dynamics, see [7]. The proof of our main Theorem 2.1 is based on the work of
S. Magnilia [30], Z. Ammari and F. Nier [11] and L. Ambrosio, N. Gigli and G. Savaré [4].

2 Mains Results

Let Z0 be a separable Hilbert space. Denote Z1 a dense subset such that we have a rigged
Hilbert space Z1 ⊂ Z0 ⊂ Z ′1. In this sequel, we define the Liouville equation in a separa-
ble infinite dimensional Hilbert space Z0. We denote P(Z0) the set of Borel probability
measures on Z0.
Actually, we consider the equation (5) in a weak sense that we explain below. The exten-
sion of the characteristics theory to systems with infinite degrees of freedom is based on
the integration of the equation (5) after testing by cylindrical test functions. Recall that
a function f : Z0 → C is said cylindrical if there exists a orthogonal projection p with
finite rank and a function g on pZ0 such that f(z) = g(pz) for all z ∈ Z0. The set of
C∞0 -cylindrical functions on Z0 is denoted C∞0,cyl(Z0). So, we can define properly a weak
Liouville equation by integrating against test functions on the space C∞0,cyl(R×Z0). In this
context, the velocity fields are singular and the characteristics theory cannot be applied
directly. Moreover, the lack of compactness on balls of Z0 induces the choice of a topology
on Z0 which is weaker than the strong one. Introduce (en)n∈N a Hilbert basis on Z0 and
define the topology (Z0, dw,Z0) induced by the following distance

dw,Z0(z1, z2) =

√∑
n∈N

|〈z1 − z2, en〉Z |2
1 + n2

, z1, z2 ∈ Z0.

We will consider Borel probability measures, solution of the PDE (12), that are narrowly
continuous for this weak topology. In the sequel, we talk about ’weak narrowly continuous’
solution on Z0 of (12) (refering to the narrow convergence for continuous bounded test
functions on (Z0, dw,Z0)).
Denote Prob(Z0), the set of Borel probability measures µ on Z0 such that

∫
Z0
‖z‖Z0 dµ(z) <

+∞. On Prob(Z0), the Wasserstein distance is defined by

W1(µ1, µ2) := min{
∫
Z0×Z0

‖z1 − z2‖Z0 dµ(z1, z2) ; Πj,∗µ = µj},

where Πj : Z2
0 → Z0 is the natural projection, j = 1, 2. Actually, the narrow convergence

of a sequence (µn)n∈N satisfying the uniform control

∃C > 0, ∀n ∈ N,
∫
Z0

‖z‖ dµn ≤ C,

is equivalent to the W1 convergence on Prob(Z0).
We also denote for T > 0, ΓT (Z0) the space of continuous maps from [0, T ] into Z0
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equipped with the ’sup’ norm. Denote also AC([0, T ],Z0) the space of absolutely contin-
uous curves on Z0 with L1([0, T ];Z0) derivative. We shall consider the Cauchy problem
on Z1

∂tγ(t) = vt(γ(t)), γ(0) = x, (11)

for a suitable Borel velocity field vt : Z1 → Z0 and the following theorem provides the
link between the Liouville equation (5) satisfied by the velocity field vt(.) and the Cauchy
problem (11) on a infinite dimensional separable Hilbert space. We give two theorems that
completes the characteristics theory for singular velocity field in a infinite dimensional
Hilbert spaces:

• Theorem 2.1 holds true when the Cauchy problem (11) admits a unique globally
well-posed solution on Z1 for small initial data by assuming the charge conservation.

• Theorem 2.2 holds true when the Cauchy problem (11) admits a unique globally
well-posed flow on Z1 for every initial data on Z1.

Denote BZ0(0, R), the ball in Z0 of radius R centered at 0.

Theorem 2.1. ODE GWP for small initial data.

Let µt : R 7→ P(Z0) be a weakly narrowly continuous on Z0, solution of the equation:

∂tµt +∇T (vtµt) = 0,

in the weak sense∫
R

∫
Z0

∂tφ(t, z) + Re〈vt(z),∇zφ(t, z)〉Z0 dµt(z) dt = 0, ∀φ ∈ C∞0,cyl(R×Z0), (12)

for a suitable Borel velocity field v(t, z) = vt(z) : Z1 → Z0 such that∫ T

0

∫
Z0

‖vt(z)‖Z0 dµt(z) dt <∞, ∀T > 0. (13)

Furthermore, the Cauchy problem (11) is globally well posed for small initial data on
Z1, i.e.:

i) ∃λ > 0, ∀x ∈ BZ0(0, λ) ∩ Z1, there exists a unique solution

z(t) ∈ C0(R, BZ0(0, λ) ∩ Z1) ∩ C1(R,Z ′1),

ii) and the charge conservation holds true.

Assume additionally that

1) the family {µt, t ∈ R} is weakly tight on Z0,

2) the time dependant measure µt is carried on Z1 and is a probability measure on Z1,

3) ∃R ∈ (0, λ), such that µ0(BZ0(0, R)) = 1.

Then the measure µt is the push-forward of the initial measure µ0 by the globally well
defined flow Φ(t, 0) : BZ0(0, λ)∩Z1 → BZ0(0, λ)∩Z1 of the Cauchy problem (11), i.e. for
all t ∈ R

µt = Φ(t, 0)∗µ0. (14)
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In the following Theorem, we assume that the solution of the Cauchy problem (11) is
globally well-posed on Z1 for every initial data on Z1.

Theorem 2.2. ODE GWP for every initial data with finite energy.

Let µt : R 7→ P(Z0) be a weakly narrowly continuous on Z0, solution of the equation:

∂tµt +∇T (vtµt) = 0,

in the weak sense∫
R

∫
Z0

∂tφ(t, z) + Re〈vt(z),∇zφ(t, z)〉Z0 dµt(z) dt = 0, ∀φ ∈ C∞0,cyl(R×Z0), (15)

for a suitable Borel velocity field v(t, z) = vt(z) : Z1 → Z0 such that∫ T

0

∫
Z0

‖vt(z)‖Z0 dµt(z) dt <∞, ∀T > 0. (16)

Furthermore, the Cauchy problem (11) is globally well posed for every initial data on
Z1, i.e.: for every initial data x ∈ Z1, there exists a unique solution

z(t) ∈ C0(R,Z1) ∩ C1(R,Z ′1),

Assume additionally that

1) the family {µt, t ∈ R} is weakly tight on Z0,

2) the time dependant measure µt is carried on Z1 and is a probability measure on Z1,

Then the measure µt is the push-forward of the initial measure µ0 by the well defined flow
Φ(t, 0) : Z1 → Z1 of the Cauchy problem (11), i.e. for all t ∈ R

µt = Φ(t, 0)∗µ0. (17)

Preliminaries and notations.

For the sake of simplicity, we introduce the vocabulary of triple solutions of the equa-
tion (5) in a general infinite dimensional separable Hilbert space Z.

Definition 2.3. We say that a triple (µt, vt,Z) is a solution of the weak Liouville
equation if the equation (12) holds true, where vt(z) : Z → Z is a velocity vector field
associated to (11) and satisfying the estimate (13).

Remarks 1. Let (µt, vt,Z0) be a triple solution of the weak liouville equation. Assume
that the measure µt is carried on the dense subset Z1 ⊂ Z0. Without a loss of generality
we can always assume that vt : Z0 → Z0. In fact for a Borel velocity field vt : Z1 → Z0 we
set v̂t := vt on Z1 and v̂t := 0 on Z0 \ Z1. Therefore since ∀t ∈ R, µt(Z1) = 1, the triple
(µt, v̂t,Z0) is also solution of the weak Liouville equation.

Definition 2.4. We introduce a new condition, called (CP) if a triple (η, vt,Z ×ΓT (Z))
satisfies
(CP): the measure η ∈ P(Z × ΓT (Z)) is concentrated on the set of (x, γ) with γ ∈
AC([0, T ];Z) that are solutions of

∂tγ(t) = vt(γ(t)), γ(0) = x, (18)

with a Borel velocity vector field vt : Z → Z.
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The set ΓT (Z) can be equipped with a weak topology (ΓT (Z), d) induced by the
distance dw, i.e.

d(γ1, γ2) = max
t∈[0,T ]

dw(γ1(t), γ2(t)).

Additionally, denote the time dependent Borel probability measure µηt ∈ P(Z) defined by∫
Z
ϕ dµηt =

∫
Z×ΓT (Z)

ϕ(γ(t)) dη(x, γ), ∀ϕ ∈ C0
b,cyl(Z), t ∈ [0, T ], (19)

where C0
b,cyl(Z) is the space of cylindrical bounded continuous functions on Z. The measure

µηt is the push-forward of η by the evaluation map

et : (x, γ) ∈ Z × ΓT (Z) 7→ γ(t) ∈ Z, for t ∈ [0, T ].

Recall that we set a rigged Hilbert space Z1 ⊂ Z0 ⊂ Z ′1 where Z1 is a dense subset of Z0.

Proof of Theorem 2.1. The plan is to project the equation (12) on a finite dimensional
space to get the existence of a measure, which we denote, in the sequel, by µdt belonging to
P(Rd), and a velocity field vdt : Rd → Rd such that for t ∈ [0, T ] the triple (µdt , v

d
t ,Rd) is

a solution of the weak Liouville equation.

i) Projection onto Rd:
Consider the Hilbert basis (en)n∈N of Z0 and the following diagram

Z0
πd //

π̂d   

Rd

πd,T

��
Z0

with πd(x) = (〈e1, x〉, ..., 〈ed, x〉), πd,T (y1, y2, ..., yd) =
∑d

j=1 yjej and π̂d = πd,T ◦
πd. Hence we define the measure µdt as the push-forward of the measure µt by the
projection πd, i.e.:

µdt := πd∗µt. (20)

Therefore, by the disintegration theorem (see Appendix A.1 or for a more general
presentation Chapter V in [4]), there exists a family of measures {µt,y, y ∈ Rd} such
that we can define two velocity fields vdt and v̂t

d :

vdt (y) =

∫
(πd)−1(y)

πdvt(x)dµt,y(x), y ∈ Rd (21)

v̂dt (y) =

∫
(π̂d)−1(π̂dy)

π̂dvt(x)dµt,πdy(x), y ∈ Z0. (22)

Similarly, we also define the measure

µ̂dt := π̂d∗µt. (23)

Since πd, π̂d are projections with finite rank, the two maps

t ∈ [0, T ] 7→ µdt ∈ P(Rd) ; t ∈ [0, T ] 7→ µ̂dt ∈ P(Z0)

are weakly narrowly continuous. By using Lemma A.3, the triples (µdt , v
d
t ,Rd) and

(µ̂dt , v̂
d
t ,Z0) are solutions of the weak Liouville equations .
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ii) Result in finite dimension:
By using [30, Theorem 4.1] to the triple (µdt , v

d
t ,Rd), there exists a triple (ηd, vdt ,Rd×

ΓT (Rd)) satisfying the condition (CP) where the measure ηd belongs to P(Rd ×
ΓT (Rd)). Moreover we can define a measure η̂d ∈ P(Z0 × ΓT (Z0)) by the following
equality η̂d := (πd,T × πd)∗ηd, i.e.∫

Z0×ΓT (Z0)
ϕ(x, γ) dη̂d(x, γ) =

∫
Rd×ΓT (Rd)

f(πd,Tx, πdγ) dηd(x, γ),

for every function ϕ ∈ C0
b,cyl(Z0 × ΓT (Z0)). As a consequence of [30, Theorem 4.1],

we have the equality for any ϕ ∈ C0
b (Rd), t ∈ [0, T ],∫

Z0

ϕ ◦ πd dµ̂dt =

∫
Rd
ϕdµdt =

∫
Rd×ΓT (Rd)

ϕ(γ(t)) dηd =

∫
Z0×ΓT (Z0)

ϕ ◦ πd(γ(t)) dη̂d.

iii) Weak tightness:
Let us show the weak tightness on Z0 × ΓT (Z0) of the family {η̂d}d∈N. We will use
two criterions recalled in Appendix A.2. Choose the maps r1 and r2 defined on
Z0 × ΓT (Z0) as

r1 : (x, γ) 7→ x ∈ Z0

and
r2 : (x, γ) 7→ γ − x ∈ ΓT (Z0),

hence notice that the map r = r1×r2 : Z0×ΓT (Z0) is proper. The family {r1
∗η̂
d}d∈N

is given by the first marginal {µ̂d0}d∈N. Besides, the family {µ̂d0}d∈N is weakly tight
on Z0, since the family {µt}t∈R is weakly tight on Z0. For the family {r2

∗η̂
d}d∈N,

since the functional

g 7→
∫ T

0
|ġ(t)|dt,

defined on {g ∈ ΓT (Z0), g(0) = 0} and set to +∞ if g 6= AC([0, T ],Z0), has compact
sublevel sets in ΓT (Z0) but is not coercive in ΓT (Z0), the proof of the weak tightness
differs from [11, Proposition C.2].
By using Lemma A.2, there exists a convex superlinear function Ψ : R+ → R+ such
that the functional

γ 7→
∫ T

0
Ψ(|γ̇(t)|)dt

is coercive in {g ∈ ΓT (Z0), g(0) = 0}. By using Lemma [30, 3.10], we get the
existence of a regularized triple {(µdt,ε, vdt,ε,Rd)}ε>0 that is a solution of the weak
Liouville equation such that for t ∈ [0, T ]

(a) there exists a unique maximal solution Xε(t, s, π
dx) of d

dtXε(t, s, .) = vdt,ε(Xε(t, s, .))

with Xε(s, s, π
dx) = πdx,

(b) µdt,ε = X(t, 0, .)∗µ
d
0,ε,

(c) there exist two families of measures {ηdε}ε>0, {η̂dε}ε>0 given by the following
equalities

ηdε = (Id(x)×Xε(t, 0, x))∗µ
d
0,ε

η̂dε := (πd,T × πd)∗ηdε ; (24)
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(d) for any T > 0∫ T

0

∫
Rd

Ψ(|vdt,ε(x)|) dµdt,ε(x) dt ≤
∫ T

0

∫
Rd

Ψ(|vdt (x)|) dµdt (x) dt. (25)

(e) For d ∈ N the family {η̂dε}ε>0 is weakly tight.

Therefore, we compute the quantity∫
ΓT (Z0)

∫ T

0
Ψ(|γ̇(t)|)dt d((r2)∗η̂

d
ε )(γ) =

∫
Rd

∫ T

0
Ψ(|Ẋε(t, 0, x)|) dt dµd0,ε(x)

≤
∫ T

0

∫
Rd

Ψ(|vdt,ε(x)|) dµdt,ε(x) dt

≤
∫ T

0

∫
Rd

Ψ(|vdt (x)|) dµdt (x) dt

≤
∫ T

0

∫
Z0

Ψ(‖vt(x)‖Z0) dµt(x) dt <∞,

the last step coming from the estimate (45) in Lemma A.3. Since the family {η̂dε}ε>0

is weakly tight, take the limit in the l.h.s when ε→ 0 to get∫
ΓT (Z0)

∫ T

0
Ψ(|γ̇(t)|)dt d((r2)∗η̂

d)(γ) < +∞. (26)

Then, the family {(r2)∗η̂
d}d∈N is weakly tight.

Let us sketch the rest of the proof by using diagrams for triples introduced in the
previous steps. By Lemma A.3 we deduce the following diagram

(µt, vt,Z0) //

''

(µdt , v
d
t ,Rd)

��
(µ̂dt , v̂t

d,Z0)

where each triple is a solution of the weak Liouville equation. By using the
weak tightness step to the sequence (η̂d)d∈N, it gives rise to a probability measure
η ∈ P(Z0 × ΓT (Z0)). Similarly as in the two previous diagrams we shall complete
the following diagram for triples satisfying the (CP) condition:

(η, vt,Z0 × ΓT (Z0)) oo
jj

(ηd, vdt ,Rd × ΓT (Rd))

��
(η̂d, v̂t

d,Z0 × ΓT (Z0))

Therefore in the following step we shall prove the existence of the triple (η, vt,Z0 ×
ΓT (Z0)) satisfying the (CP) condition.

iv) Existence the measure concentrated on the solutions of the ODE:
We have constructed two triples of probability measures (ηd, vdt ,Rd × ΓT (Rd)) and
(η̂d, v̂t

d,Z0 × ΓT (Z0)) such that the sequence (η̂d)d∈N defined in ii) is weakly tight.
Therefore set η as a weak narrow limit point of η̂d. Assume that the test function
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ϕ in ii) depends only on d′ coordinates with d′ ≤ d. Hence taking the limit when
d→ +∞ gives ∫

Z0

ϕ ◦ πd′dµt =

∫
Z0×ΓT (Z0)

(ϕ ◦ πd′)(γ(t)) dη(x, γ),

for all ϕ ∈ C0
b (Rd′) and t ∈ [0, T ], where ϕ ◦ πd′ can be replaced by any cylindrical

function or Borel bounded function on Z0.

v) The concentration condition, (CP):
We shall prove the following equality for t ∈ [0, T ]∫

Z0×ΓT (Z0)
‖γ(t)− x−

∫ t

0
vs(γ(s)) ds‖Z0 dη(x, γ) = 0. (27)

In the finite dimensional case, by a regularization process like in Step 5 of Theo-
rem [30, 4.1], there exists a sequence (vdt,n)n∈N of uniformly continuous fonction in

C0
b ([0, T ]×Z0;Z0) such that ‖vdt − vdt,n‖L1(Rd,dµdt ) → 0 and∫

Rd×ΓT (Rd)
|γ(t)− x−

∫ t

0
vds,n(γ(s)) ds| dηd(x, γ) ≤

∫ T

0

∫
Rd
|vds − vds,n| dµds ds. (28)

The equality (27) can be deduced from the finite dimensional case. Indeed set the
function wt belonging to C0

b ([0, T ] × Rd′ ;Rd′) with d′ ≤ d fixed and, by setting ŵt =
πd
′,T ◦ wt ◦ πd

′ ∈ C0
b ([0, T ]×Z0;Z0), we get∫

Z0×ΓT (Z0)
‖γ(t)− x−

∫ t

0
vs(γ(s)) ds‖Z0 dη(x, γ) ≤∫

Z0×ΓT (Z0)
‖γ(t)− x−

∫ t

0
ŵs(γ(s)) ds‖Z0 dη(x, γ)︸ ︷︷ ︸

A(ŵ)

+

∫
Z0×ΓT (Z0)

∫ t

0
‖ŵs(γ(s))− vs(γ(s))‖Z0 ds dη(x, γ)︸ ︷︷ ︸

B(ŵ)

.

The first term on the r.h.s, A(ŵ) can be estimated owing to finite dimensional es-
timate (28). Indeed it follows by the same regularization process used in iii)c, the
next estimate holds true

A(ŵ) ≤ lim sup
d→+∞

∫ T

0

∫
Z0

‖v̂ds − ŵs‖Z0 dµ̂
d
s ds ≤

∫ T

0
‖vs − ŵs‖L1(Z0,dµs) ds,

by using the estimate (44) in Lemma A.3 to the function v̂ds − ŵs. We conclude the
proof by noticing that there exists a sequence of cylindrical, uniformly bounded contin-
uous bounded function (ŵns )n∈N such that for any t ∈ [0, T ] ‖vt−ŵnt ‖L1(Z0,dµt) −→ 0.
Therefore A(ŵn),B(ŵn) −→ 0 and the equality (27) is proved.

vi) End of the proof: The relation µt = µηt defined according to (ii)) extends to any
bounded Borel function ϕ on Z0∫

Z0

ϕ dµt =

∫
Z1

ϕ dµt =

∫
Z1×ΓT (Z1)

ϕ(γ(t)) dη(x, γ), (29)
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since the measure µt is carried on Z1. In particular this relation is true when t = 0,
with a function ϕ ∈ C∞0 (Z0) such that supp(ϕ) ⊂ Z0 \ Z1∫

Z1

ϕ dµ0 = 0 =

∫
(BZ0 (0,λ)∩Z1)×ΓT (Z1)

ϕ(γ(0)) dη(x, γ). (30)

Hence

η({(x, γ) / t ∈ R, ∂tγ(t) = vt(γ(t)), γ(0) = x, x /∈ BZ0(0, λ) ∩ Z1}) = 0,

and by using the Cauchy problem uniqueness

η({(x, γ) / t ∈ R, x ∈ BZ0(0, λ) ∩ Z1, γ(t)(x) = Φ(t, 0)x}) = 1,

where Φ(t, 0) : BZ0(0, λ) ∩ Z1 → BZ0(0, λ) ∩ Z1 is a Borel flow associated to the
ODE (11), we deduce for any t ∈ R∫
Z0

ϕ dµt =

∫
(BZ0 (0,λ)∩Z1)×ΓT (Z1)

[ϕ ◦Φ(t, 0)](γ(0)) dη(x, γ) =

∫
BZ0 (0,λ)∩Z1

[
ϕ ◦Φ(t, 0)

]
dµ0,

which ends the proof.

Proof of Theorem 2.2. Steps i), ii), iii), iv), v) follow similarly as above. It remains to
prove the last step
End of the proof:
The relation µt = µηt gives also rise to assertion (29) and similarly we get for a function
ϕ ∈ C∞0 (Z0) such that supp(ϕ) ⊂ Z0 \ Z1∫

Z1

ϕ dµ0 = 0 =

∫
Z1)×ΓT (Z1)

ϕ(γ(0)) dη(x, γ). (31)

Therefore,

η({(x, γ) / t ∈ R, ∂tγ(t) = vt(γ(t)), γ(0) = x, x /∈ Z1}) = 0,

and by using the Cauchy problem uniqueness

η({(x, γ) / t ∈ R, x ∈ Z1, γ(t)(x) = Φ(t, 0)x}) = 1,

where Φ(t, 0) : Z1 → Z1 is a Borel flow associated to the ODE (11), we deduce for any
t ∈ R ∫

Z0

ϕ dµt =

∫
Z1×ΓT (Z1)

[ϕ ◦ Φ(t, 0)](γ(0)) dη(x, γ) =

∫
Z1

[ϕ ◦ Φ(t, 0)] dµ0,

which ends the proof.

3 Examples

We illustrate our main Theorem 2.1 with few examples. Consider a semi-linear Hamilto-
nian PDEs with a (real-valued) energy functional having the form,

h(z, z̄) = 〈z,Az〉Z0 + hI(z, z̄) ,

11



where Z0 is a complex Hilbert space, A is a non-negative self-adjoint operator, hI(z, z̄) is
a nonlinear functional and (z, z̄) are the complex classical fields of the Hamiltonian theory.
So that the related PDE (or equation of motion) is,

i∂tu = Au+ ∂z̄hI(u, ū) . (32)

By differentiating ũ := eitAu with respect to time, we equivalently express the above
equation in the interaction representation, i.e.,

∂tũ = −ieitA∂z̄hI(e−itAũ, e−itAũ) .

Hence the original PDE (32) can be reformulated as an ODE,

d

dt
u = v(t, u) ,

with a non-autonomous vector field v(t, ·) given by

v(t, z) := −ieitA∂z̄hI(e−itAz, e−itAz) .

The natural energy space is Q(A) := D(A
1
2 ), the form domain of A equipped with the

graph norm,
||z||2Q(A) = 〈z, (A+ 1) z〉Z0 .

In all the examples considered below we have that v(·, ·) : R×Q(A)→ Z0 is a continuous
map satisfying the following estimate (or a similar one),

||v(t, z)||Z0 ≤ C||z||2Q(A) ||z||Z0 ,

for some time-independent constant C > 0. Moreover, we have that the energy h(z, z̄)
makes sense on the space Q(A) and the Cauchy-problem (32) is globally well-posed on
Q(A) in the sense of existence and uniqueness of a global strong solution t 7→ z(t) ∈
C0(R, Q(A))∩C1(R, Q′(A)) for each z0 ∈ Q(A) and continuous dependence on initial data.

Example 1 (The nonlinear Schrödinger equation). The energy functional of the NLS
equation in dimension d = 1 is,

h(z, z̄) = 〈z,−∆x + V (x) z〉L2(Rd) +
λ

2

∫
R
|z(x)|4 dx , (33)

where V is a real-valued potential which splits into a positive and negative part V = V++V−
such that V+ ∈ L1

loc(R) and V− is −∆-form bounded with a relative bound less than one.
So the quadratic form A = −∆ + V defines a self-adjoint operator semi-bounded from
below and its natural domain Q(A) is a Hilbert space when equipped with the graph norm,

||u||2Q(A) = 〈u, (A+ V+ + 1)u〉 .

The vector field in this case is v(t, z) = 2λ|e−itAz|2 e−itAz : Q(A) → L2(R) and satisfies
the following inequalities for all z ∈ Q(A),

‖v(t, z)‖L2(R) ≤ C‖z‖2H1(R)‖z‖L2(R) ≤ C‖z‖2Q(A)‖z‖L2(R) , (34)

since the inclusion Q(A) ⊂ H1(R) ⊂ L∞(R) holds by Sobolev’s embedding and the fact

that Q(A) = {u ∈ L2(R), u′ ∈ L2(R), V
1
2

+ u ∈ L2(R)}. Moreover, it is known that the NLS
equation {

i∂tz = −∆z + V z + λ|z|2z
z|t=0 = z0,

(NLS)
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is globally well-posed on Q(A) with energy and charge conservation. Therefore, Theorem
2.2 applies here. The derivation of such equation from quantum many-body dynamics is
established for instance in [1, 5].

Example 2 (Non-relativistic Hartree equation). The energy functional of the Hartree
equation is

h(z, z̄) = 〈z,−∆x + V (x) z〉L2(Rd) +

∫∫
Rd×Rd

|z(x)z(y)|2W (x− y) dxdy , (35)

where W : Rd → R is an even measurable function and V is a real-valued potential both
satisfying the following assumptions for some p and q,

V ∈ Lp(Rd) + L∞(Rd), p ≥ 1, p >
d

2
,

W ∈ Lq(Rd) + L∞(Rd), q ≥ 1, q ≥ d

2
(and q > 1 if d = 2) .

The vector field v(t, z) := W ∗ |z|2z : Q(A)→ L2(Rd) verifies the estimate,

‖W ∗ |z|2z‖L2(Rd) ≤ ‖(−∆ + 1)−
1
2W (−∆ + 1)−

1
2 ‖ ‖z‖2H1(Rd) ‖z‖L2(Rd) . (36)

The global well-posedness on Q(A), conservation of energy and charge of the Hartree
equation {

i∂tz = −∆z + V z +W ∗ |z|2z
zt=0 = z0,

are proved in [16] Corollary 4.3.3 and Corollary 6.1.2. Therefore, Theorem 2.2 applies
here.
We remark that the assumption on W are satisfied by the Coulomb type potentials λ

|x|α
when α < 2, λ ∈ R and d = 3. The derivation of such equation from quantum many-body
dynamics is extensively investigated, see for instance [11, 14, 21, 22, 23, 24, 25, 26, 37].

Example 3 (Semi-relativistic Hartree equation). The semi-relativistic Hartree equation
has the energy functional

h(z, z̄) = 〈z,
√
−∆x +m2 + V (x) z〉L2(R3) + κ

∫∫
R3×R3

|z(x)z(y)|2

|x− y|
dxdy ,

with −κc < κ, with κ−1
cr := 2 lim

α→∞
|| 1

|x|
(−∆ + α)−

1
2 ||, m ≥ 0 and V is real-valued measur-

able function which splits into a positive and negative part V = V+ + V− satisfying,

V+ ∈ L1
loc(R3) ,

V− is
√
−∆− form bounded with a relative bound less than 1 .

The quadratic form

A[u, u] = 〈u,
√
−∆ +m2 u〉+ 〈u, V u〉 ,

Q(A) = {u ∈ L2(R3), (−∆ +m2)
1
4u ∈ L2(R3), V

1
2

+ u ∈ L2(R3)} ,

is semi-bounded from below and closed. So it defines a unique self-adjoint operator denoted
by A. Thanks to a Hardy type inequality (see for instance [11, Proposition D.3]), we have
the bound,

|| 1

|x|
∗ |z|2 z||L2(R3) ≤ C||z||2H1/2(R3)

||z||L2(R3) .
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The global well-posedness in Q(A), conservation of energy and charge of the semi-relativistic
Hartree equation  i∂tz =

√
−∆ +m2 z + V (x)z +

κ

|x|
∗ |z|2z

z|t=0 = z0.

are proved in [28, Theorem 4] for all κ ≥ 0. Therefore when κ ≥ 0, Theorem 2.2 can
be applied here. In the case −κc < κ < 0, Theorem 2.1 holds true, since the mean field
dynamics is globally well-posed Q(A) for small initial data (see also [28, Theorem 4]) .

Example 4 (The Klein-Gordon equation). The classical energy functional formally asso-
ciated with the quantum field theory P (ϕ)2 is given by

h(z, z̄) := 〈z,Az〉L2(R) +G(z) ,

where A is a multiplication operator by the function ω(k) =
√
m2

0 + k2, m0 > 0, and G is
a polynomial interaction defined as follows, see [35, 36]. Consider a bounded from below
real polynomial

P (x) =

2n∑
j=0

αjx
j , (α2n > 0).

Let ϕ(x) be the scalar-field of mass m0 > 0, i.e.:

ϕ(x) :=

∫
R
e−ikx [z̄(k) + z(−k)]

dk√
ω(k)

,

where (z, z̄) are scalar complex fields. Let g a non-negative function in L1(R) ∩ L2(R)
such that g(x) = g(−x). The nonlinear term G is defined as the following real-valued
polynomial

G(z) :=

∫
R
g(x)P

(
2 Re〈z, e

−ikx√
ω(k)

〉L2(R)

)
dx.

So that we have at hand the nonlinear Klein-Gordon equation with a non-local nonlinearity,

i∂tϕ = ωϕ+ ∂z̄G(ϕ) . (37)

The local Cauchy problem is studied for instance in [33, Theorem 1] and [34, Theorem
X.72]. Actually, one can prove the energy conservation and hence global well-posedness
holds true in this specific case. Moreover, the vector field v(t, z) = −ieitA∂z̄G(e−itAz) :
L2(R)→ L2(R) is continuous and satisfies,

||v(t, z)||L2(R) ≤ C(1 + ||z||2n−1
L2(R)

) .

The derivation of such PDE from P (ϕ)2 quantum field theory is established in [12, 20, 25].

Example 5 (The Schrödinger-Klein-Gordon system). The Schrödinger-Klein-Gordon sys-
tem with Yukawa interaction is defined by: i∂tu = − ∆

2M
u+Au

(� +m2)A = −|u|2
; (S-KG)
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where (u,A) are the unknowns and M,m > 0 are real parameters. If we introduce the
complex field α, defined by

A(x) =
1

(2π)
3
2

∫
R3

1√
2ω(k)

(
ᾱ(k)e−ik·x + α(k)eik·x

)
dk , ω(k) =

√
k2 +m2 , (38)

we can rewrite (S-KG) as the equivalent system:
i∂tu = − ∆

2M
u+Au

i∂tα = ωα+
1√
2ω
F
(
|u|2
) , (S-KGα)

where F denotes the Fourier transform. It is known that the Cauchy problem for the
Schrödinger-Klein-Gordon system (S-KG) is globally well posed on the energy space, see
for instance [17, 31] and references therein. In particular, there is a unique Hamiltonian

flow Φt for (S-KGα) on the energy space H1(R3)⊕FH
1
2 (R3) where FHs(Rd) denotes the

Fourier Sobolev space,

FHs(Rd) =
{
f , F−1f ∈ Hs(Rd)

}
.

Moreover, the vector field v(t, .) : H1(R3) ⊕ FH
1
2 (R3) → L2(R3) ⊕ L2(R3) satisfies by

Gagliardo-Nirenberg’s inequality,

||v(t, u⊕ α)||L2(R3)⊕L2(R3) ≤ C(||u||2H1(R3) + ||α||2
FH

1
2 (R3)

).

The derivation of such equation from quantum field theory is studied in [6].

A Projective tools

Let us begin this section by recalling the disintegration theorem.

A.1 The disintegration theorem

Let E,F be separable metric spaces and let x ∈ E 7→ ηx ∈ P(F ) be a measure-valued
map. We say that η is a Borel map if x ∈ E 7→ ηx(B) is a Borel map for any Borel set
B ⊂ F . Then we get by the monotone class theorem

x 7→
∫
F
f(x, y)dηx(y), (39)

is Borel for every bounded function f : E × F → R. Hence by using (39) the formula

η(f) =

∫
E

∫
F
f(x, y)dηx(y)dν,

defines for any ν ∈ P(E) a unique measure η ∈ P(E×F ), that will be denoted
∫
E ηxdν(x).

Actually the disintegration theorem below implies for any η ∈ P(E × F ) whose first
marginal is ν can be represented in this way.
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Proposition A.1. Let E,F be complete separable metric spaces, η ∈ P(E × F ), let
π : E × F → E be a borel map and let µηπ = π∗η ∈ P(E). Then there exists a µηπ − a.e.
uniquely determined Borel family of probability measures {ηπx}x∈E ⊂ P(F ) such that

η =

∫
E
ηπxdµ

η
π(x), (40)

i.e. ∫
E×F

f(x, y)dη(x, y) =

∫
E

(

∫
F
f(x, y)dηπx(y))dµηπ(x), (41)

for every Borel map f : E × F → [0,+∞].

A.2 Tightness

Denote Z0 a infinite dimensional separable Hilbert space. Recall that we introduce the
space (Z0, dw,Z0) induced by the following distance

dw,Z0(z1, z2) =

√∑
n∈N

|〈z1 − z2, en〉Z0 |2
1 + n2

, z1, z2 ∈ Z0.

One of the main arguments in the proof of Theorems 2.1-2.2 is the weak tightness of a
family of measures (see the weak tightness step in the proof). Therefore we recall below
the definition and the criterions used in this proof. We say that a set K ⊂ P(Z0) is tight
if,

∀λ > 0,∃Kλ compact in (Z0, ‖.‖Z0) such that |µ(Z0 \Kλ)| ≤ λ, (Tightness)

and weakly tight if,

∀λ > 0, ∃Kλ compact in (Z0, dw,Z0) such that |µ(Z0 \Kλ)| ≤ λ (Weak tightness)

A useful characterisation is given here (for more details see Chapter V in [4]). The tightness
(resp. weak tightness) condition for a subspace K is equivalent to an integral condition,
i.e there exists a function ϕ : Z0 → [0,+∞], whose sublevels {x ∈ Z0 / ϕ(x) ≤ c} are
compact in (Z0, ‖.‖Z0) (resp. (Z0, dw,Z0)), such that

sup
µ∈K

∫
Z0

ϕ(x)dµ(x) < +∞.

We also use the following tightness criterion:
Let X,X1, X2 be separable metric spaces and let ri : X → Xi be continuous maps such
that the product map

r := r1 × r2 : X → X1 ×X2

is proper. Let K ⊂ P(X) be such that Ki := ri∗(K) is tight in P(X) for i = 1, 2. Then
also K is tight in P(X).
The following Lemma is a fundamental step in the proof of the main Theorem 2.1

Lemma A.2. Let Z0 be a separable Hilbert space and {µt}t∈R be a family of weakly
narrowly continuous Borel probability measures. Assume that a Borel velocity field vt :
Z0 → Z0 satisfies the following uniform control

∀T > 0,

∫ T

0

∫
Z0

‖vt(z)‖Z0 dµt(z) dt < +∞. (42)
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Then there exists a convex, superlinear and non-decreasing function Ψ : R+ → R+, such
that

∀T > 0,

∫ T

0

∫
Z0

Ψ(‖vt(z)‖Z0) dµt(z) dt < +∞. (43)

Proof. Without loss of generality, we can always assume that

∀T > 0,

∫ T

0

∫
Z0

‖vt(z)‖Z0 = 1.

By setting the measure µ by the following formula: for any α, β ∈ [0, T ], for every Borel
subset E in Z0

µ :=

∫ β

α
µt(E) dt,

we have ∫
‖vt(z)‖Z0 dµ =

∫ +∞

0
µ(‖vt(z)‖Z0 ≥ t) dt.

Moreover, there exists a subsequence (tn)n∈N, such that t0 = 0, satisfying∫ tn+1

tn

µ(‖vt(z)‖Z0 ≥ t) dt =
1

2n+1
.

Then, by setting the superlinear convex function Ψ : R+ → R+

∀t ∈ R, Ψ(t) =

∫ t

0
n11[tn,tn+1](s) ds,

we have for any T > 0∫ T

0
Ψ(‖vt(z)‖Z0) dµt(z)dt =

∫
Ψ(‖vt(z)‖Z0) dµ =

∫ +∞

0
Ψ′(t)µ(‖vt(z)‖Z0 ≥ t) dt =

∑
n≥0

n

2n+1
< +∞.

A.3 Projection onto a finite-dimensional space.

Theorems 2.1-2.2 are obtained in a infinite dimensional separable Hilbert space Z0. The
proof is based on the projection πd, π̂d, πd,T introduced in the diagram i) and definitions
(21)-(22) of the projected velocity vector fields vdt and v̂t

d. Then the following Lemma is
fundamental in our approach.

Lemma A.3. Let t 7→ µt : [0, T ] 7→ P(Z0) be a weakly narrowly continuous map on Z0

such that the triple (µt, vt,Z0) is solution of the weak Liouville equation (see Definition
2.3). Then the following assertions hold true:
i) The triples (µdt , v

d
t ,Z0) and (µ̂dt , v̂

d
t ,Z0) are solutions of the weak Liouville equations.

ii) The velocity field vdt and v̂dt satisfy the following inequality

‖vdt ‖L1(Rd,dµdt ) = ‖v̂td‖L1(Z0,dµ̂dt ) ≤ ‖vt‖L1(Z0,dµt) < +∞. (44)

iii) For every non-decreasing convex function Ψ : R+ → R+ the following estimate holds
true ∫ T

0

∫
Rd

Ψ(|vdt (x)|) dµdt (x) dt ≤
∫ T

0

∫
Z0

Ψ(‖vt(z)‖Z0) dµt(z). (45)
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Proof. In order to prove the estimates (44) we introduce a new norm on Rd given by
‖u‖Rd = ‖πd,Tu‖Z0 and we compute

‖vdt ‖L1(Rd,dµdt ) =

∫
Rd
‖πd,T

∫
(πd)−1(y)

πdvt(x)dµt,y(x)‖Rd dµdt (y)

=

∫
Rd
‖π̂d

∫
(πd)−1(y)

vt(x) dµt,y(x)‖Rd dµdt (y) = ‖v̂td‖L1(Z0,dµ̂dt )

≤
∫
Rd

∫
(πd)−1(y)

‖π̂dvt(x)‖Rd dµt,y(x) dµdt (y)

≤
∫
Z0

‖π̂dvt(x)‖Z0 dµt(x) ≤ ‖vt‖L1(Z0,dµt) < +∞.

The estimate (45) is a generalization of [30, Lemma 3.9] in the infinite dimensional case
by using the disintegration theorem and the Jensen inequality. Consider a regular test
function ϕ = ψ ◦ πd in (12), with ∇ϕ = (πd)∗ ◦ ∇ψ ◦ πd gives

d

dt

∫
Z0

ϕ dµt(x) =

∫
Z0

〈πd(vt),∇ψ ◦ πd〉 dµt(x)

=

∫
Rd

∫
(πd)−1(y)

〈πd(vt),∇ψ ◦ πd〉 dµt,y(x) dµdt (y)

=⇒ d

dt

∫
Rd
ψ dµdt (x) =

∫
Rd
〈vdt (y),∇ψ(y)〉 dµdt (y).

Therefore for t ∈ [0, T ], the triple (µdt , v
d
t ,Rd) is a solution of the weak Liouville equa-

tion. It follows similarly that the triple (µ̂t, v̂t
d,Z0) is also a solution of the weak Liou-

ville equation.
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second edition, 2008.

[5] Z. Ammari and S. Breteaux. Propagation of chaos for many-boson systems in one
dimension with a point pair-interaction. Asymptot. Anal., 76(3-4):123–170, 2012.

[6] Z. Ammari and M. Falconi. Wigner measures approach to the classical limit of the
Nelson model: convergence of dynamics and ground state energy. J. Stat. Phys.,
157(2):330–362, 2014.

[7] Z. Ammari and Q. Liard. On the mean field approximation of many-boson dynamics.
2015.

18



[8] Z. Ammari and F. Nier. Mean field limit for bosons and infinite dimensional phase-
space analysis. Ann. Henri Poincaré, 9(8):1503–1574, 2008.
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