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SUMMABILITY CONDITION AND RIGIDITY FOR FINITE TYPE

MAPS

MATTHIEU ASTORG

Abstract. We extend a series of results due to Makienko, Dominguez and Sienra on
the rigidity of some holomorphic dynamical systems with summable critical values to
the setting of finite type maps. We also recover a shorter proof of a transversality
theorem of Levin. Our methods are based on the deformation theory introduced by
Epstein.

1. Introduction and statement of the main theorems

Finite type maps are a class of analytic maps f : W → X of complex 1-manifolds
introduced and studied by A. Epstein in [Eps93]. More precisely:

Definition 1. An analytic map f : W → X of complex 1-manifolds is of finite type if

• f is nowhere locally constant,
• f has no isolated removable singularities,
• X is a finite union of compact Riemann surfaces, and
• the singular set S(f) is finite.

This class includes notably rational self-maps of P1 and more generally ramified covers
between compact Riemann surfaces, as well as entire functions of the complex plane with
a finite singular set, such as the exponential family fλ(z) = λez. It also contains the so-
called horn maps appearing in the theory of parabolic implosion, as was proved by Buff,
Ecalle and Epstein (see [BÉE13] and also [Eps93]). When W ⊂ X, one can study the
dynamics of the map f , that is the orbits (z, f(z), f2(z) . . .), for as long as fn(z) ∈ W .
If z ∈ W is such that for all n ∈ N, fn(z) ∈ W , then we say that z is non-escaping.
We may define the Fatou set F(f) of f as the set of points z ∈ W such that there
exists a neighborhood U of z in W such that either all points in U escape, or the family
{fn|U : W → X,n ∈ N} is well-defined and normal. The Julia set is J (f) = X −F(f).

Epstein proved several key results about the dynamics of these maps: they do not
possess wandering domains, their Julia set is never empty, and as for rational maps,
we have a classification theorem for periodic Fatou components. He also constructed
so-called deformation spaces DefBA(f), which are defined abstractly through Teichmüller
theory but may be thought of as natural parameter spaces for f . These deformation
spaces are finite-dimensional complex manifolds, and one can describe their cotangent
bundle in terms of quadratic differentials.

Moreover, if f : W → X is a finite type map, one can define the Teichmüller space
of f , denoted by Teich(f). This notion was first introduced by McMullen and Sullivan
([MS98]) in the context of algebraic correspondances, and was specifically described in
the case of rational maps. Epstein studied in [Eps93] the case of the Teichmüller spaces
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of finite type maps. Again, this is a finite-dimensional complex manifold, and it comes
equipped with a natural holomorphic immersion into the deformation space (see [Ast14]
for a detailed construction of Teich(f) from first principles in the case where f is a
rational map, and the proof of the fact that Teich(f) immerses into the moduli space).
Roughly speaking, the Teichmüller space of f represents the topological conjugacy class
of f : the larger its dimension is, the more parameters of topological deformation exist
for f . If Teich(f) is reduced to a point, then f is said to be rigid: this implies that
for every quasiconformal homeomorphism φ : X → X ′ mapping W to W ′, if there is a
holomorphic map g making the following diagram commute:

W
f

//

φ
��

X

φ
��

W ′ g
// X ′

then X must be biholomorphic to X ′ and φ must be the composition of a biholomorphism
X → X ′ and of a quasiconformal homeomorphism X → X commuting with f . Thus g
is a "trivial" deformation of f , as it is in fact biholomorphically conjugate to f . On the
other hand, if Teich(f) has maximal dimension (that is, equal to the dimension of the
moduli space), then every nearby parameter is quasiconformally conjugate to f ; we say
that f is structurally stable.

The question of describing when a rational map f : P1 → P1 is structurally stable
or rigid is equivalent to a central conjecture in holomorphic dynamics, which state that
with the exception of one well-understood family (flexible Lattès maps), no rational map
may have an invariant line field supported on its Julia set.

In the series of papers [Mak01], [Mak05], [DMS05], [MS06] and [Mak10], Makienko,
Dominguez and Sienra proved that some sufficient expansion along at least one critical
orbit was an obstruction to structural stability, and that expansion along all critical
orbits implied in fact rigidity. This was proved first for rational maps (at first under
unnecessary assumptions), then for the exponential family, and at last for some subset of
the class of entire functions with only finitely many singular values. Avila gave a different
proof in [Avi02] of this result in the case of rational maps. In particular, all of these maps
are of finite type. More precisely, this is what we mean by sufficient expansion along a
critical orbit:

Definition 2. Let f : W → X be a finite type map, with W ⊂ X, and let z ∈ W be
a non-escaping point. We say that z is summable if there is a Hermitian metric on X
such that the series

∑

n≥0

‖Dfn(z)‖−1

is convergent.

Note that by compacity of X, the choice of the metric does not matter. This type of
condition was first introduced by Tsujii ([Tsu00]) for real quadratic polynomials. Stronger
expansivity conditions (the so-called Collet-Eckmann condition) had previously been
known to imply rigidity (see [PR99]).

We will also need the following definitions before we can state our main results:
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Definition 3. A compact set K ⊂ X is called a C-compact if it satisfies the following
property: any continuous function on K can be uniformly approximated by restrictions
of functions that are holomorphic on a neighborhood of K.

This condition, though not always satisfied by the Julia sets of rational maps, is rela-
tively mild; it is in particular always satisfied by Julia sets of polynomials (see [Lev14]).

Definition 4. Let f :W → X be a finite type map, with W ⊂ X.

• Let p(f) denote the number of singular values with a periodic or preperiodic orbit
• Let s(f) denote the number of summable singular values with an infinite forward

orbit, whose ω-limit sets are C-compacts.

Definition 5. Let f : W → X be a finite type analytic map. Then we say that f
is exceptional if either f is an automorphism of X, or an endomorphism of a complex
torus, or a flexible Lattès example.

The following is the main result, and generalizes the aforementienned results of Makienko,
Dominguez and Sienra and Avila:

Theorem A. Let f : W → X be a non-exceptional finite type analytic map, with W ⊂ X.
We have:

dimTeich(f) ≤ cardS(f)− p(f)− s(f).

In particular, if at least one singular value is summable with an ω-limit set that is a C-
compact, then f is not structurally stable, and if all singular values either are summable
with C-compacts as ω-limit sets, or have finite orbit, then f is rigid and therefore does
not have any invariant line field.

Our second result is a simplified proof of a theorem of Levin ([Lev14]). Before we state
it, let us introduce some notations.

Definition 6. Let Ratd be the space of degree d rational maps, and let ratd be the quotient
of Ratd by the group of Möbius transformation acting by conjugacy. We will call Ratd
the parameter space of degree d rational maps, and ratd the moduli space of degree d
rational maps.

The parameter space Ratd is 2d+1 dimensional complex manifold, and ratd is a 2d−2
complex orbifold.

Denote by Crit(f) the critical set of f , i.e. the set of points z where Df(z) = 0.
Let ∆ ∋ λ 7→ fλ be a holomorphic curve in Ratd passing through f at λ = 0. Denote

by ḟ the section dfλ
dλ λ=0

of the line bundle f∗TP1, and by η the meromorphic vector field

η = Df−1 · (ḟ).

Note that η is holomorphic outside of Crit(f), and that its poles have order at most
the order of the corresponding critical points of f . Denote by T (f) the vector space of
meromorphic vector fields on P1 satisfying this property, i.e. if η ∈ T (f), then all the
poles of η are in Crit(f) and the pole at c ∈ Crit(f) of η has order at most the order of
c as a critical point of f .

Then the map ḟ 7→ η = Df−1 · (ḟ) induces a canonical isomorphism between TfRatd
and T (f) (indeed, this map is clearly injective and dimT (f) = 2d+ 1 = dimRatd).
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Definition 7. Let v be a summable critical value of a rational map f : P1 → P1. For
any η ∈ T (f), denote by:

ξη(v) :=

∞
∑

k=0

(fk)∗η(v) ∈ TvP
1.

Theorem B (see [Lev14]). Let f : P1 → P1 be a rational map with s summable critical
values, that is not a Lattès map. Assume that either f has no invariant line field, or that
the ω-limit set of those s summable critical values are C-compacts. Then the linear map

V : T (f) →
⊕

1≤i≤s

TviP
1

η 7→ (ξη(vi))1≤i≤s

has maximal rank, i.e. equal to s.

Outline. In section 2, we will recall some facts about the Teichmüller space and the
deformation space of a finite type map, as well as a description of their cotangent bundle
and the immersion of the Teichmüller space into the deformation space. In sections 3
and 4, we will prove some technical lemmas on quadratic differentials that will be useful
to the proof of the main theorems. Finally, sections 5 and 6 are devoted to the proofs of
Theorem A and Theorem B respectively.

Acknowledgements. The author is indebted to Adam Esptein for helpful conversa-
tions.

2. Deformation spaces

Recall the following objects from Teichmüller theory:

Definition 8. Let f : W → X be a finite type map, and assume that W ⊂ X. Let us
define:

• QC(f) the group of quasiconformal homeomorphisms φ of X such that φ◦f = f◦φ
wherever this equation is defined

• QC0(f) the subgroup of QC(f) of those elements φ such that there exists a uni-
formly quasiconformal isotopy relatively to the ideal boundary of X φt ∈ QC(f),
0 ≤ t ≤ 1, with φ0 = φ and φ1 is the identity on X

• Bel(f) is the space of Beltrami forms on X that are invariant under f on W ,
and vanish on X −W .

• The Teichmüller space of f , denoted by Teich(f), is defined as the quotient
Bel(f)/QC0(f)

• Bel(X) is the space of all Beltrami forms on X
• bel(f) is the space of Beltrami differentials on X invariant under f (a Beltrami

differential is a Beltrami form for which we only assume that it has finite L∞

norm instead of norm less than one)
• bel(X) is the space of Beltrami differentials on X.

The reader unfamiliar with Teichmüller theory may find some background in [Hub06]
and [GL00]. Notice that the Beltrami form that is identically zero gives a natural base-
point in Teich(f).
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Definition 9. Let W be a complex 1-manifold, and let A ⊂ W be a finite set. We
denote by Q(W ) the space of integrable holomorphic quadratic differentials on W , and by
Q(W,A) the space of integrable meromorphic quadratic differentials on W , with at worst
simple poles, whose poles are in A.

Assume from now on that f : W → X is a finite type map, with W ⊂ X, and that X
is connected.

Theorem 1 ([Eps93], Corollary 9 p. 137). The space Teich(f) is a finite dimensional
complex manifold.

Definition 10. Let us denote by Λf the union of the Julia set of f and of the closure
of the grand orbit of S(f) in X, and Ωf = X − Λf . Also denote by Qf the space of
integrable quadratic differentials on X that are holomorphic on Ωf .

Notice that Ωf ∩W is an open subset of the Fatou set of f ; also note that when Λf

has zero Lebesgue measure, Qf is canonically isomorphic to Q(Ωf ).

Definition 11. Let f : W → X be a finite type map. Let A ⊂ W and B ⊂ X be two
finite sets. We say that (A,B) is admissible for f if:

• A ⊂ B
• f(A) ⊂ B
• S(f) ⊂ B
• if X has genus 0, then cardA ≥ 3, and if X has genus 1, then cardA ≥ 1.

Let f : W → X be a finite type analytic map, with W ⊂ X. If (A,B) is admissible
for f , then A ⊂ B, so we have a natural forgetful map ̟ : Teich(X,B) → Teich(X,A).

Moreover, since f(A) ⊂ B and S(f) ⊂ B, we have a well-defined pullback map
σf : Teich(X,B) → Teich(X,A) obtained by pulling back Beltrami forms from X to W
using f , and then extending them by 0 to the rest of X; this operation on Beltrami forms
descends to a holomorphic map from Teich(X,B) to Teich(X,A).

Definition 12 ([Eps93]). We define DefBA(f) by:

DefBA(f) = {τ ∈ Teich(X,B),̟(τ) = σf (τ)}.

Note that once again, the zero Beltrami form on X induces a natural basepoint in
DefBA(f). From its definition, DefBA(f) is clearly an analytic set. But we can in fact say
more:

Theorem 2 ([Eps93]). Let f : W → X be a non-exceptional finite type map, and
let (A,B) be admissible for f . Then DefBA(f) is a complex manifold of dimension
card (B −A), whose cotangent space at the basepoint canonically identifies with:

Q(X,B)/∇fQ(X,A).

Let Bel(X) denote the space of Beltrami forms on X. The identity map Bel(X) →
Bel(X) descends to a natural holomorphic map i : Teich(f) → DefBA(f), mapping base-
point to basepoint.

The next theorem has been proved in [Ast14] in the case of rational maps, through a
new construction of the complex structure of Teich(f) that bypasses the use of certain
sophisticated tools from Teichmüller theory. A. Epstein has a different (unpublished)
proof.
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Theorem 3. The cotangent space at the basepoint of Teich(f) canonically identifies with
Qf/∇fQf . Moreover, if f is non-exceptionnal, (A,B) is admissible for f and B ⊂ Λf ,

then the natural map ΨT : Teich(f) → DefBA(f) is an immersion, and the kernel of its
codifferential at the basepoint is given by:

kerDΨT (0)
∗ =

(

Q(X,B) ∩ ∇fQf

)

/∇fQ(X,A).

The proof of the particular case where f is a rational map, available in [Ast14], can
easily be adapted to the general case of a finite type map. For the convenience of the
reader, we will include here a sketch of the proof. Note that just like in [Ast14], this
approach may also lead to another construction of the complex structure on Teich(f).

Proof of Theorem 3. Let (A,B) be admissible for f , with B ⊂ Λf . The only difference
between the proof of Theorem 3 and that of the main theorem of [Ast14] is that we are
going to replace the moduli space ratd of degree d rational maps with the deformation
space DefBA(f).

The natural inclusion Bel(f) → Bel(X) descends to a holomorphic map Ψ : Bel(f) →
DefBA(f).

Lemma 1. The kernel of DΨ(0) is equal to

kerDΨ(0) = {∂ξ, ξ|Λf
= 0}.

Proof of Lemma 1. The differential of this map at the basepoint is the restriction to
bel(f) of the quotient map

bel(X) → T[0]Teich(X,B)

whose kernel is {∂ξ, ξ quasiconformal vector field on X s.t ξ|B = 0} (see for example
[Hub06] for a description of T[0]Teich(X,B)). Since B ⊂ Λf , if µ = ∂ξ with ξ|Λf

= 0,

then µ ∈ kerDΨ(0). Conversely, if for ∂ξ ∈ bel(f) we let η = f∗ξ − ξ on W , then η is a
meromorphic vector field on W (with poles at the critical points of f). Indeed, we have
∂ξ = f∗∂ξ so outside of the critical points of f , ∂ξ = ∂(f∗ξ) so that ∂η = 0 outside of
the critical points of f .

Now we claim that if µ ∈ kerDΨ(0), then µ can be written as ∂ξ, where ξ is a quasi-
conformal vector field invariant under pullback by f on W . Indeed, let Z be any union
of repelling periodic points of f disjoint from B, of cardinal at least 3. Let A′ = A ∪ Z,
and B′ = B ∪ Z; then (A′, B′) is admissible for f . The forgetful map Teich(X,B′) →

Teich(X,B) induces a natural holomorphic map Φ : DefB
′

A′ (f) → DefBA(f); its codifferen-
tial at the basepoint is the natural map

DΦ(0)∗ : Q(B)/∇fQ(A) → Q(B′)/∇fQ(A′)

induced by the inclusion Q(B) → Q(B′). This map is injective: indeed, if q ∈ Q(B) is
of the form q = ∇fφ with φ ∈ Q(A′), then ∇fφ does not have any poles at any repelling
points in Z. So this means that the polar part of φ on Z is invariant, but since Z is a
union of repelling points this implies that φ does not have any pole on Z (see [Eps09]).
So in fact q ∈ ∇fQ(A), which means that DΦ(0)∗ is injective. Since

dimQ(B)/∇fQ(A) = dimQ(B′)/∇fQ(A′) = card (B −A),
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DΦ(0) is also surjective, which implies that DΦ(0) is injective. Now notice that if we
let Ψ′ be the natural map from Bel(f) to DefB

′

A′ (f), then Ψ = Φ ◦ Ψ′, so that DΨ(0) =
DΦ([0]) ◦DΨ′(0). Since DΦ(0) is injective, we have therefore kerDΨ(0) = kerDΨ′(0).
Since this is true for any choice of Z, this means that for any finite union of repelling point
Z, there is a quasiconformal vector field ξZ such that ∂ξZ = µ and ξZ = 0 on Z. For every
choice of Z1, Z2 of cardinal ar least 3, the difference ξZ1

− ξZ2
is a holomorphic vector

field on X vanishing on at least 3 points, so by the Riemann-Roch formula ξZ1
= ξZ2

.
This means that every µ ∈ kerDΨ(0) may be written as µ = ∂ξ with ξ vanishing on
every repelling periodic point, so η = f∗ξ − ξ also vanishes on every repelling periodic
point of f . Since η is meromorphic on W , me must have η = 0 by the isolated zeroes
theorem. So ξ = f∗ξ on W , which implies that ξ|Λf

= 0. �

Once we have this description of the kernel of DΨ(0), and using the classification
of non-escaping Fatou components for finite type maps, the proof of [[Ast14], Th. 4.5]
carries over verbatim, proving that the differential of Ψ has constant rank on Bel(f). The
map Ψ : Bel(f) → DefBA(f) descends to the map ΨT : Teich(f) → DefBA(f). Applying the
constant rank theorem to Ψ, we obtain local coordinates on Bel(f) and DefBA(f), in which
(following Section 5 of [Ast14]) the map ΨT can be written locally as a linear inclusion
between two finite dimensional complex spaces. Therefore, the map ΨT is an immersion.
Let π : Bel(f) → Teich(f) be the quotient map; since DΨT ([0]) ◦Dπ(0) = DΨ(0), and
since DΨT (0) is injective, we must have kerDπ(0) = kerDΨ(0). Therefore, using the
preceding lemma, we have the following canonical identification:

T[0]Teich(f) = bel(f)/ kerDπ(0) = bel(f)/{∂ξ, ξ|Λf
= 0},

and by duality:
T ∗
[0]Teich(f) = Qf/∇fQf .

Finally, it just remains to prove that the kernel ofDΨT (0)
∗ is
(

Q(X,B) ∩∇fQf

)

/∇fQ(X,A).
But since the differential DΨT (0) is the natural map

bel(f)/{∂ξ, ξ|Λf
= 0} → bel(X)/{∂ξ, ξ|B = 0},

the codifferential DΨT (0)
∗ is the natural map

Q(X,B)/∇fQ(X,A) → Qf/∇fQf ,

whose kernel is clearly
(

Q(X,B) ∩∇fQf

)

/∇fQ(X,A). �

3. Action of quadratic differentials on vector fields

In this section, X will denote a compact Riemann surface of genus g. If we chose an
arbitrary Hermitian metric on X, we get a topology on the space Γ(TX) of continuous
vector fields on X, induced by the norm

‖ξ‖∞ = sup
s∈X

‖ξ(s)‖.

This norm depends on the particular choice of the Hermitian metric, but not the topology
it induces (by compacity of X). We will refer to it as the uniform topology for continuous
vector fields on X.
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Definition 13. Denote by Γ(TX)∗ the (topological) dual of the topological vector space
of continuous vector fields on X, equipped the topology dual to the uniform topology.

Again, the choice of a Hermitian metric on X gives by duality a norm generating the
topology on Γ(TX)∗, but that topology is independant from the choice of the norm.
Depending on the genus g of X, it will be convenient to use different choices of metrics
in the following proofs.

Definition 14. Let q be an integrable quadratic differential on X. Then q induces a
linear form on the space of smooth vector fields in the following way:

ξ 7→

∫

X

q · ∂ξ.

If that linear form extends continuously to an element of Γ(TX)∗, we denote that exten-
sion by ∂q and we say that q is regular.

Note that if q is written in local coordinates as q = h(z)dz2, then q is regular if and
only if ∂h

∂z
(in the sense of distributions) is a complex Radon measure. It is in particular

the case when q is meromorphic with at worst simple poles, in which case ∂q has finite
support.

An immediate consequence of Weyl’s lemma is that if q is a regular quadratic dif-
ferential such that ∂q is supported in a compact K, then q is holomorphic outside of
K.

Proposition 1. Let M be the space of Radon measures on X, and A = C0(X,C). Let
Ω1,0(X) denote the space of complex-valued continuous forms of bidegree (1, 0) on X.
The map

M⊗A Ω1,0(X) → Γ(TX)∗

µ⊗ α 7→

(

ξ 7→

∫

X

α(ξ)dµ

)

is an isomorphism of A-modules (and therefore of C-vector spaces).

Remark 1. Since Ω1,0(X) is an A-module of rank 1, every element of Ω1,0(X) ⊗A M
can be written as α⊗A µ, where α ∈ Ω1,0(X) and µ ∈ M.

Proof. The considered map is clearly an injective morphism of A-modules. It is therefore
enough to prove that it is surjective. Let u ∈ Γ(TX)∗. If the support of u in included
in a local coordinate domain (U, z), then it is a consequence of Riesz’s representation
theorem that u can be written as u = dz ⊗A µ, where µ is a Radon measure of support
included in U . We conclude easily using a partition of unity. �

We will therefore identify from now on Γ(TX)∗ with Ω1,0(P1)⊗A M.

Definition 15. Let f :W → X be an open holomorphic map and let u = α⊗µ ∈ Γ(TX)∗

be such that ‖α‖
‖Df‖ ∈ L1(|µ|) (for any continuous Hermitian metric on X). We define the

pushforward of u, denoted by f∗u, by :

〈f∗u, ξ〉 := 〈u, f∗ξ〉 =

∫

P1

α(f∗ξ)dµ.
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Note that f∗u ∈ Γ(TX)∗. In particular, if u ∈ Γ(TX)∗ has support K that does not
meet S(f), then f∗u is well-defined and has a support included in f(K).

Lemma 2. Let Z ⊂ X be a subset of cardinal |3g − 3|. Let u ∈ Γ(TX)∗ be supported
in {y}, where y ∈ X. Then there is a unique meromorphic quadratic differential q on X
with at worst simple poles such that:

• if g = 0, then ∂q − u is supported in Z
• if g ≥ 1, ∂q = u and for all z ∈ Z, q(z) = 0.

Moreover, for any choice of Hermitian metric on X, there is a constant C > 0 depending
only on that metric and on Z such that ‖q‖L1 ≤ C‖u‖∞.

Proof. We will treat separately the three following cases: g = 0, g = 1 and g ≥ 2.

The case of genus 0. If X has genus 0, then X is isomorphic to the Riemann sphere P1.
Note that a meromorphic quadratic differential q with at worst simple poles on X will
satisfy the property that ∂q − u if and only if q has at worst four simple poles, located
in Z ∪ {y}, and for all smooth vector fields ξ vanishing on Z,

∫

X

q · ∂ξ = 〈u, ξ〉.

If we work in affine coordinates in which Z = {0, 1,∞}, then q has the form:

q(z) = α
y(y − 1)

z(z − 1)(z − y)
dz2

where α is such that u = δy ⊗ (αdz), δy being the Dirac mass at y. Up to permuting the
order of points in Z, we may assume that |y| < 1. Then it is easy to see that ‖q‖ ≤ C|α|
for some constant C > 0 (depending on the coordinates z and therefore on Z) and that
‖u‖ = |α| sup|y|<1 ‖dz‖. Therefore there is a constant C2 > 0 depending only on the
metric and on Z such that ‖q‖L1 ≤ C2‖u‖. This concludes the case of genus 0.

The case of genus 1. In this case, Z is empty, so we need to prove that there is a unique
quadratic differential with at worst simple poles such that ∂q = u. Any such quadratic
differential must have at worst one simple pole, located at y. According to the Riemann-
Roch formula, such quadratic differentials form a complex vector space of dimension one.
Moreover, Stokes’ theorem implies that for all smooth vector fields ξ on X,

〈∂q, ξ〉 =

∫

X

q · ∂ξ = 2iπRes(q · ξ, y).

Therefore, there is exactly one choice of polar part at y (and therefore exactly one choice
of q) such that ∂q = u. Let us now prove the inequality. If g = 1, then X is a complex
torus C/Λ, and for any y ∈ X, there is a translation descending to an automorphism
Ty of X mapping the basepoint [0] to y. The pullback map T ∗

y induces an isometry for
the L1 norm of integrable quadratic differentials, as well as for linear forms in Γ(TX)∗

(endowed with the norm induced by the flat Hermitian metric on X). In other words, we
lose no generality in assuming that y = [0]. Then the desired inequality is trivial, since
the map u 7→ q is a complex linear map between finite dimensional normed vector spaces
(in fact one-dimensional), therefore is continuous.
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The case of genus at least 2. The existence and unicity is similar to the previous case:
notice that if ∂q = u and q has at worst simple poles, then q must have at worst a simple
pole at y and must vanish on Z. According to the Riemann-Roch formula, such quadratic
differentials form a vector space of complex dimension one, and once again, the choice of
the right polar part at y uniquely determines q.

Now let us prove the desired inequality. Since g ≥ 2, X is hyperbolic, so we may pick
its hyperbolic metric as a choice of Hermitian metric inducing a norm on Γ(TX)∗. We
will work by duality. According to Theorem A in [Ast14], for any quasiconformal vector
field ξ on X, we have ‖ξ‖ ≤ 4‖∂ξ‖∞ (here ‖ξ‖ is the supremum of the length of ξ is the
hyperbolic metric on X, which is finite since X is compact). Therefore ‖q‖L1 ≤ 4‖u‖. �

Theorem 4. Let Z ⊂ X be a subset of cardinal |3g − 3|. Let u ∈ Γ(TX)∗. Then there
is a unique regular quadratic differential q on X such that:

• if g = 0, then ∂q − u is supported in Z
• if g ≥ 1, ∂q = u and for all z ∈ Z, q(z) = 0.

Moreover, for any choice of Hermitian metric on X, there is a constant C > 0 depending
only on that metric such that ‖q‖L1 ≤ C‖u‖∞.

We will say that the quadratic differential q given by the above theorem is the Z-
normalized quadratic differential corresponding to u.

Proof. According to Proposition 1, we can write u = µ⊗α. For any y ∈ X, let uy = δy⊗α,
where δy is the Dirac mass at y, and qy be the corresponding quadratic differential given
by the preceding lemma. Let ry = ∂qy − uy: by definition, ry is supported in Z. The
second part of that lemma implies that there is a constant C > 0 depending only on
the choice of Hermitian metric and on α such that for all y ∈ X, ‖qy‖L1 ≤ C. Let
q =

∫

X
qy µ(y). Note that q is integrable and ‖q‖L1 ≤ C. We will prove that q satisfies

the desired property. Let ξ be a smooth vector field on X. We have:
∫

X

q · ∂ξ =

∫

X

(
∫

qy µ(y)

)

· ∂ξ

=

∫
(
∫

X

qy · ∂ξ

)

µ(y)

=

∫

〈uy, ∂ξ〉µ(y)

=

∫

αy(ξ)µ(y) +

∫

〈ry, ξ〉µ(y)

= 〈u, ξ〉+ 〈r, ξ〉

where 〈r, ξ〉 :=
∫

〈ry, ξ〉µ(y) is supported in Z if g = 0, and is identically zero otherwise.
Thus the theorem is proved. �

Proposition 2. Let q be a regular quadratic differential, and f : W → X a finite type
analytic map. Assume that f∗∂q and ∂f∗q are well-defined as elements of Γ(TX)∗. Then

supp (∂f∗q − f∗∂q) ⊂ S(f).
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Proof. Let ξ be a quasiconformal vector field vanishing on a neighborhood of S(f). Then
f∗ξ is also quasiconformal (and it vanishes in the neighborhood of Crit(f)), and ∂f∗ξ =
f∗∂ξ. Therefore:

〈∂f∗q, ξ〉 = 〈f∗∂q, ξ〉,

and so 〈f∗∂q − ∂f∗q, ξ〉 = 0. This exactly means that supp (∂f∗q − f∗∂q) ⊂ S(f). �

4. Extended infinitesimal Thurston rigidity

Definition 16. A compact set K ⊂ X is called a C-compact if it satisfies the following
property: any continuous function on K can be uniformly approximated by restrictions
of functions that are holomorphic on a neighborhood of K.

Note that a C-compact must have empty interior. The following proposition gives
sufficient conditions for a compact to be a C-compact. The proof is adapted from [Mak10]
to the case of a general Riemann surface.

Remark 2. In fact, it can be proved (see [BJ04, Th. 2]) that being a C-compact is a
local property, in the sense that K is a C-compact if and only if for every point p ∈ K,
there is a basis of neighborhoods (Un)n∈N such that K ∩ Un is a C-compact. Therefore
we can replace functions by vector fields (or sections of any holomorphic line bundle)
without changing the definition of C-compact.

Proposition 3. Let K be a compact subset of X. Each of the following properties imply
that K is a C-compact :

i) K has zero Lebesgue measure, or
ii) K disconnects X into finitely many connected components.

Proof. Those conditions have been observed to imply that K is a C-compact in [Mak01]
and [Lev14] in the case where X = P1. The following are immediate adaptations to the
general case of a compact Riemann surface X.

i) This follows from the local nature of being a C-compact (remark 2) and Vi-
tushkin’s theorem (see e.g. [Gam05]).

ii) This follows from [Sch78], by taking M to be X with a closed disk removed from
every connected component of X −K.

�

Theorem 5. Let K ⊂ X be a C-compact, and let q be a regular quadratic differential
supported in K. Then q = 0 Lebesgue a.e.

Proof. Let q be a regular quadratic differential supported in a C-compact K. We shall
prove that ∂q = 0 as an element of Γ(TX)∗. By definition of a C-compact and by Remark
2, any continuous vector field can be uniformly approximated on K by restrictions of
vector fields that are holomorphic in the neighborhood of K, so it is enough to test ∂q
against such vector fields. Let ξ be a smooth vector field on X that is holomorphic on a
neighborhood U of K. Then:

〈∂q, ξ〉 =

∫

X

q · ∂ξ

〈∂q, ξ〉 =

∫

U

q · ∂ξ +

∫

X−U

q · ∂ξ
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Since q is supported in K, we have
∫

X−U
q ·∂ξ = 0. Since ξ is holomorphic on U , we have

∫

U
q ·∂ξ = 0. Therefore 〈∂q, ξ〉 = 0 and so ∂q = 0. So by Weyl’s lemma, q is holomorphic

on X (up to a set of Lebesgue measure zero), and vanishes on the (non-empty) open set
X −K, so q = 0 Lebesgue-a.e. �

Recall the following fundamental fact:

Proposition 4 (see [Eps93], Corollary 8 p. 124). Let f : W → X be a non-exceptional
finite type analytic map, with W ⊂ X. Let A ⊂ X be a finite set. Then if q ∈ Q(X,A)
and q = f∗q, then q = 0.

We will now investigate what happens if we relax the assumption that q is meromor-
phic. The following result will be needed:

Theorem 6 ([Eps93]). Let U be a non-escaping Fatou component for f . Then U is even-
tually mapped to a periodic component which is is either an attracting basin, a parabolic
basin, a Herman ring or a Siegel disk.

Definition 17. A rotation annulus for f is a connected component of Ωf which is an
annulus of finite modulus and on which the dynamics of f is conjugate to an irrational
rotation.

A cycle of rotation annuli for f of period p is a family of components (A, . . . , fp−1(A))
of Ωf which are all rotation annuli for fp.

To each rotation annulus A, we may canonically associate a quadratic differential qA
in the following way: let φ : A → C be a linearizing coordinate for f on A, mapping A
to a straight annulus A(R) = {1 < |z| < R}. Let

(1) qA = φ∗
(

dz2

z2

)

.

One can easily check using Laurent series that dz2

z2
is up to scalar multiplication the only

holomorphic quadratic differential on Q(A(R)) that is rotation-invariant: in particular,
there are no rotation invariant quadratic differential that are integrable near 0. Therefore
qA is the only integrable holomorphic quadratic differential on Q(A) that is forward-
invariant under f . We can extend it by zero outside of A to obtain a forward invariant
quadratic differential in Q(Ωf ), that we still denote by qA.

Similarly, if (A, . . . , fp−1(A)) is a cycle of rotation rings for f , then we get a quadratic
differential q̃A ∈ Q(A) that is invariant under fp. It is then easy to check that qA :=
∑p−1

k=0 f
k
∗ q̃A is forward invariant under f , and it is (up to scalar multiplication) the only

one on Q(A ∪ . . . ∪ fp−1(A)).

Proposition 5. Let f : W → X be a finite type analytic map, with W ⊂ X. Then the
only quadratic differentials on Q(Ωf ) invariant by f∗ are those described above.

Proof. Let q ∈ Q(Ωf ) be an invariant quadratic differential. Then |q| is an invariant
measure on Ωf , that does not charge any escaping Fatou component.

Let U be a component of Ωf with positive mass for |q|, and let V be the non-escaping
Fatou component containing U . According to Theorem 6, V is eventually mapped to an
attracting basin, a parabolic basin, a Siegel disk or a Herman ring. If V is mapped to an
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attracting or parabolic basin, then every point in U converges to the same finite cycle of
points, so the grand orbit of V cannot support an invariant measure absolutely continuous
with respect to the Lebesgue measure. Therefore V must be eventually mapped to either
a (periodic) Siegel disk or Herman ring. Such a Fatou component can never be completely
invariant, since it maps to itself with degree 1. So V must be in fact in the cycle: indeed,
if it were not the case, then the preimages f−n(V ) would form a pairwise disjoint family
of open sets, each having the same mass as V for |q|; but this would contradict the fact
that q is integrable.

Therefore U must be in a periodic rotation domain. But by the preceding discussion,
the only invariant quadratic differentials on such domains are the quadratic differentials
qA associated to rotation annuli. �

5. Proof of Theorem A

Definition 18. Let f :W → X be a finite type map, with W ⊂ X.

• Let p(f) denote the number of singular values with a periodic or preperiodic orbit
• Let s(f) denote the number of summable singular values with an infinite forward

orbit, whose ω-limit sets are C-compacts.

Theorem A. Let f : W → X be a non-exceptional finite type analytic map, with W ⊂ X.
We have:

dimTeich(f) ≤ cardS(f)− p(f)− s(f).

Proof. Since repelling periodic points are dense in the Julia set of f (see [Eps93]), we
may chose a finite union of repelling cycles of f of cardinal at least |3g − 3|, if g 6= 1, or
of cardinal at least one if g = 1. Let Z denote such a set. Let S0(f) denote the set of
singular values of f which are periodic or preperiodic, and let A = {fn(s), n ∈ N and s ∈
S0(f)} ∪ Z. Let B = S(f) ∪A. Then (A,B) are admissible, and therefore DefBA(f) is a
complex manifold of dimension card (B −A) = card (S(f))− p(f).

Let s ∈ S(f)−S0(f) be a summable singular value whose ω-limit set is a C-compact.
Let u ∈ Γ(TX)∗ be a non-zero linear form with support equal to {s}. Let vn =

∑n
k=0 f

k
∗ u.

The pushforwards are well-defined, since by definition of summability, the orbit of s
does not meet critical points. The fact that s is summable readily implies that the
sequence (vn)n∈N converges to some vs ∈ Γ(TX)∗. Let qs be the Z-normalized quadratic
differential on X corresponding to vs (see Theorem 4). From the definition of vs, we
have that vs − f∗vs = u; moreover, vs − ∂qs is supported in Z (if g = 0, or vs = ∂qs if
g > 0). Therefore, in view of Proposition 2, qs − f∗qs is supported in Z ∪ S(f) (and in
fact, if g > 0, it is supported only in S(f)). Let us denote by Ss(f) the set of summable
singular values of f whose ω-limit sets are C-compacts.

Lemma 3. The quadratic differentials (∇fqs)s∈Ss(f) are linearly independant.

Proof of Lemma 3. First note that the quadratic differentials (qs)s∈Ss(f) are linearly in-
dependant. Next, we prove that the vector space spanned by their restriction to Ωf is in
direct sum with the kernel of the operator ∇f : Q(Ωf ) → Q(Ωf ). According to Proposi-
tion 5, we just need to prove that no non-trivial element of the vector space spanned by
the qs, s ∈ Ss(f), can be written as λdz2

z2
in linearizing coordinates in a rotation annulus

of f , with λ 6= 0 (we may assume that the rotation annulus if fixed, up to replacing f by
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one of its iterates). So let q =
∑

s∈Ss(f) λsqs, and let qA = dz2

z2
, where z is a linearizing

coordinate for a rotation annulus. Notice that ∂q =
∑

s∈Ss(f) λsvs is of the form µ⊗ α,
where µ is a converging series of Dirac masses at points of the post-singular set of f . In
particular, µ is a measure of dimension 0. On the other hand, let us compute ∂qA. Let
ξ be a smooth vector field on X. Let us denote by A the rotation annulus on which qA
is supported, and let 1

2π logR be its module. Then, by working in the z-coordinates, we
get:

∫

X

qA · ∂ξ =

∫

A

qA · ∂ξ

=

∫

1<|z|<R

dz2

z2
· ∂ξ(z).

Let ǫ > 0. Notice that Stokes’ theorem implies that:
∫

1+ǫ<|z|<R−ǫ

dz2

z2
· ∂ξ(z) =

∫

|z|=R−ǫ

dz2

z2
· ξ(z)−

∫

|z|=1+ǫ

dz2

z2
· ξ(z).

Moreover, since φ · ∂ξ is integrable, Lebesgue’s dominated convergence theorem implies
that

lim
ǫ→0

∫

1+ǫ<|z|<R−ǫ

dz2

z2
· ∂ξ(z) =

∫

1<|z|<R

dz2

z2
· ∂ξ(z),

so that
∫

X

φ · ∂ξ = lim
ǫ→0

(

∫

|z|=R−ǫ

dz2

z2
· ξ(z)−

∫

|z|=1+ǫ

dz2

z2
· ξ(z)

)

.

Since the pullback of the Lebesgue measure on the circles |z| = 1 + ǫ and |z| = R − ǫ
converge to the harmonic measure of the closure A of A when ǫ tends to 0, this means
that qA is regular in the sense of Definition 14, and that ∂qA is of the form ν ⊗ β, where
ν is measure that is absolutely continuous with respect to the harmonic measure of A.
Since the harmonic measure never has dimension 0, ∂q can never be a non-zero multiple
of ∂φ, which concludes the proof that q cannot be a non-zero multiple of φ.

This means that if q is invariant under f , then q must vanish on Ωf . Moreover, q is
holomorphic outside of the union of the closure of the orbit of Ss(f), so in fact q vanishes
outside of the union of the closure of the orbit of Ss(f), which is a C-compact. Therefore,
by Theorem 5, q = 0. This concludes the proof of the lemma. �

Let us now return to the proof of Theorem A. Recall that by construction, for any
s ∈ Ss(f), ∇fqs ∈ Q(X,B). It is a consequence of the previous lemma that the classes
([∇fqs])s∈Ss(f) are linearly independent in Q(X,B)/∇fQ(X,A): indeed, ∇f is injective
on the vector space spanned by the qs, s ∈ Ss(f) and by Q(X,A). Therefore no non-
trivial linear combination of the ∇fqs can be in ∇fQ(X,A), since none of the qs are in
Q(X,A). This means that dim

(

Q(X,B) ∩ ∇fQf

)

/∇fQ(X,A) ≥ s(f). But by Theorem
3:

dimT ∗
[0]Teich(f) = dimT ∗

[0]DefBA(f)− dim
(

Q(X,B) ∩ ∇fQf

)

/∇fQ(X,A)
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so that

dimTeich(f) ≤ card (B −A)− s(f) = cardS(f)− p(f)− s(f),

which is the desired inequality. �

6. Proof of Theorem B

In this section, we will focus on the case where W = X = P1, so that f : W → X is
a rational map. We will recover from the work done in the previous sections a simpler
proof of a result due to Levin (see [Lev14]). First let us introduce some notations.

If λ 7→ fλ is a holomorphic curve in DefBA(f) passing through the basepoint at λ = 0,
then let (φλ, ψλ, fλ) be a corresponding holomorphic family of triples (recall that φλ
and ψλ are quasiconformal homeomorphisms, and that fλ are rational maps of the form
fλ = φλ ◦ f ◦ ψ−1

λ ). Then

(2) η = Df−1 ·

(

d

dλ |λ=0
fλ

)

= f∗φ̇− ψ̇.

Let us also denote:

ηn = Df−n ·
d(fnλ )

dλ |λ=0
.

Thus, η = η1.

Lemma 4. We have, for any n ∈ N∗:

ηn =
n−1
∑

k=0

(fk)∗η0

Proof. Let us proceed by induction. Suppose that for some n ∈ N :

ηn =
n−1
∑

k=0

(fk)∗η.

Then:

ηn+1 = Df−(n+1) ·
d

dλ |λ=0
fn+1
λ

ηn+1 = Df−(n+1) ·
(

ḟ ◦ fn +Df ◦ fn · ( ˙fn)
)

ηn+1 = (fn)∗η +Df−n · ( ˙fn)

ηn+1 = (fn)∗η + ηn.

This concludes the proof. �

As a consequence of the preceding lemma, if v is a summable critical value, then
(ηn(v))n∈N converges.

Recall the following notation:

Definition 19. Let v be a summable critical value and η ∈ T (f). Denote by:

ξη(v) :=

∞
∑

k=0

(fk)∗η(v) = lim
n→∞

ηn(v) ∈ TvP
1.



16 MATTHIEU ASTORG

We now come to our second result:

Theorem B. Let f be a rational map of degree d ≥ 2, with s summable critical values,
that is not a Lattès map. Assume that either f has no invariant line field, or that the
ω-limit set of those s summable critical values are C-compacts. Then the linear map

V : T (f) →
⊕

1≤i≤s

TviP
1

η 7→ (ξη(vi))1≤i≤s

has maximal rank, i.e. equal to s.

Proof. Let A be a repelling cycle of cardinal at least 3 that does not contain any critical
value, and let Z ⊂ A be a subset of cardinal exactly 3. Let B = A∪S(f): then DefBA(f)

is a complex manifold of dimension cardS(f). Let Φ : DefBA(f) → Ratd be the natural
map from the deformation space to the moduli space, and let ΦZ : DefBA(f) → Ratd
be its lift to the parameter space obtained by chosing quasiconformal homeomorphisms
fixing Z pointwise. Then DΦZ([0]) takes values in TZ(f), the subspace of T (f) of vector
fields vanishing on Z. For each summable critical value vi, let ui be a non-zero element
of Γ(TX)∗ supported in {vi}, and let qi be the quadratic differentials constructed in the
proof of Theorem A (recall that qi is the Z-normalized quadratic differential associated
to
∑∞

n=0 f
n
∗ ui).

Instead of proving that the linear map V has rank s, we will prove the slightly stronger
statement that the linear map:

U : T[0]DefBA(f) → C
s

[µ] 7→ (〈ui, ξ(vi)〉)1≤i≤s

has rank s. This will imply the Theorem, asDΦZ is injective and (ξ(vi))i≤s 7→ (〈ui, ξ(vi)〉)i≤s

is invertible. Let Ui : [µ] 7→ 〈ui, ξ(vi)〉, so that U = (Ui)i≤s. Let [µ] ∈ T[0]DefBA(f) and
η = DΦZ([0]) · [µ] ∈ TZ(f).

For n ∈ N, denote by qi,n the Z-normalized quadratic differential associated to fn∗ ui:
then qi =

∑∞
n=0 qi,n and qi,n is a quadratic differential with exactly four poles, all simple,

which are in Z ∪ {y}.
Note that

2iπ
∑

n∈N

Res(qi,n · η, fn(vi)) = Ui([µ]).

Indeed, by definition:

〈fn∗ ui, η〉 = 2iπRes(qi,n · (fn)∗η, fn(vi))

and ξ(vi) =
∑

n≥0((f
n)∗η)(vi).

If λ 7→ [µλ] is a holomorphic curve in DefBA(f) tangent to [µ] ∈ T[0]DefBA(f) at the
basepoint, we can lift λ 7→ [µλ] to a holomorphic curve of representatives λ 7→ µλ, and
the normalized solutions ψλ of the associated Beltrami equation will satisfy the property
that ∂ψ̇ = ∂ d

dλλ=0
ψλ is a representative of [µ].

The next lemma essentially says that the linear form Ui is represented by ∇fqi in
T ∗
[0]DefBA(f):
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Lemma 5. Let µ = ∂ψ̇ be a representative of [µ] ∈ T0DefBA(f). Then :
∫

P1

∇fqi · µ = 2iπ
∑

n∈N

Res(qi,n · η, fn(vi)).

Proof of lemma 5. For all n ∈ N, the differential form qi,n · η is meromorphic on P1,
therefore the sum of its residues is null. The quadratic differential qi,n has poles at
Z ∪ {fn(vi)}, and the vector field η has poles at Crit(f). So:

Res(qi,n · η, fn(vi)) = −
∑

z∈Z∪Crit(f)

Res(qi,n · η, z).

Therefore:
∑

n∈N

Res(qi,n · η, fn(vi)) = −
∑

n∈N

∑

z∈Z∪Cf

Res(qi,n · η, z)

According to equation (2), we have: η = f∗ψ̇− φ̇, and φ̇ = ψ̇ on Z ⊂ A. Therefore for
all z ∈ A and for all n ∈ N :

Res(qi,n · η, z) = Res(qi,n · (f∗ψ̇ − ψ̇), z) = Res(f∗qi,n · ψ̇, f(z))− Res(qi,n · ψ̇, z).

Therefore:
−
∑

n∈N

∑

z∈A

Res(qi,n · η, z) =
∑

z∈A

Res(∇fqi · ψ̇, z).

Moreover:

−
∑

c∈Crit(f)

Res(qi,n · η, c) = −
∑

c∈Crit(f)

Res(qi,n · (f∗ψ̇ − φ̇), c)

= −
∑

c∈Crit(f)

Res(qi,n · f∗ψ̇, c)

= −
∑

v∈Vf

Res(f∗qi,n · ψ̇, v)

=
∑

v∈Vf

Res(∇fqi,n · ψ̇, v)

and therefore:

−
∑

n∈N

∑

c∈Crit(f)

Res(qi,n · η, c) =
∑

v∈Vf

Res(∇fqi · ψ̇, v).

To sum things up, we have:
∑

n∈N

Res(qi,n · η, fn(vi)) =
∑

z∈B

Res(∇fqi · ψ̇, z).

Finally, by Stokes’ theorem,

2iπ
∑

z∈B

Res(∇fqi · ψ̇, z) =

∫

P1

∇fqi · ∂ψ̇,

which concludes the proof of the lemma. �
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Let us now return to the proof of Theorem B. According to the preceding lemma, we
have:

BZ
i ([µ]) =

∫

P1

∇fqi · [µ]

for all [µ] ∈ DefBA(f). In other words, the class of the quadratic differential ∇fqi in
Q(P1, B)/∇fQ(P1, A) represents the linear form Ui in T ∗

[0]DefBA(f). Moreover, according
to lemma 3, the quadratic differentials (∇fqi)i≤s are linearly independent, and as in the
proof of Theorem A, this implies that the classes ([∇fqi])i≤s are linearly independent
in Q(P1, B)/∇fQ(P1, A). Therefore, the (Ui)i≤s are linearly independent, which proves
that U has rank s. �
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