
HAL Id: hal-01274992
https://hal.science/hal-01274992v2

Preprint submitted on 18 Feb 2016 (v2), last revised 6 Dec 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing resources of sweeping and streaming string
transducers *

Félix Baschenis, Olivier Gauwin, Anca Muscholl, Gabriele Puppis

To cite this version:
Félix Baschenis, Olivier Gauwin, Anca Muscholl, Gabriele Puppis. Minimizing resources of sweeping
and streaming string transducers *. 2016. �hal-01274992v2�

https://hal.science/hal-01274992v2
https://hal.archives-ouvertes.fr

Minimizing resources of sweeping and streaming
string transducers∗

Félix Baschenis, Olivier Gauwin, Anca Muscholl†, Gabriele Puppis

Université de Bordeaux, LaBRI, CNRS

Abstract
We consider minimization problems for natural parameters of word transducers: the number
of passes performed by two-way transducers and the number of registers used by streaming
transducers. We show how to compute in ExpSpace the minimum number of passes needed to
implement a transduction given as sweeping transducer, and we provide effective constructions
of transducers of (worst-case optimal) doubly exponential size. We then consider streaming
transducers where concatenations of registers are forbidden in the register updates. Based on a
correspondence between the number of passes of sweeping transducers and the number of registers
of equivalent concatenation-free streaming transducers, we derive a minimization procedure for
the number of registers of concatenation-free streaming transducers.

1 Introduction

Regular word functions extend the robust family of regular languages, preserving many of
its characterizations and algorithmic properties. A word function maps words over a finite
input alphabet to words over a finite output alphabet. Regular word functions have been
studied in the early seventies, in the form of (deterministic) two-way finite state automata
with output [1]. Engelfriet and Hoogeboom [8] later showed that monadic second-order
definable graph transductions, restricted to words, are an equivalent model — this justifies
the notation “regular” word functions, in the spirit of classical results in automata theory
and logic by Büchi, Elgot, Rabin and others. Recently, Alur and Cerný [2] proposed an
enhanced one-way transducer model called streaming transducer, and showed that it is
equivalent to the two previous ones. A streaming transducer processes the input word from
left to right, and stores (partial) output words in finitely many, write-only registers. A
variant of streaming transducers extended with stacks has been introduced in [3] and shown
to capture precisely the monadic-second order definable tree transductions.

Two-way and streaming transducers raise new and challenging questions about storage
requirements. The classical storage notion for automata is state complexity. But state space
minimization of two-way transducers is still poorly understood, even in the simpler setting
of two-way finite automata (cf. related work).

There are other meaningful parameters that can be used in the minimization of strea-
ming transducers and two-way transducers, respectively. For streaming transducers it is the
number of registers, and for two-way transducers it is the number of times the transducer
needs to re-process the input word. These parameters measure the required storage capacity
in an often more realistic way than the number of control states. For example, a two-way
transducer that needs to process a potentially very large input with several passes has much
larger memory requirements in practice than the memory needed for storing the states.
Ideally, the input is processed one-way, hence in one pass only, as in the streaming setting.
But not every transduction can be implemented by a one-way, finite state transducer without
additional memory.

∗ This work was partially supported by the ExStream project (ANR-13-JS02-0010).
† On leave at the Institute for Advanced Studies of the Technical University of Munich, the support of

which is kindly acknowledged.

© Félix Baschenis, Olivier Gauwin, Anca Muscholl, Gabriele Puppis;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Minimizing resources of sweeping and streaming string transducers

The register minimization problem has been considered by Alur and Raghothaman in [4],
for a special family of deterministic streaming transducers: the output alphabet is unary,
and the updates are additions/substractions of registers by constants. This model is known
as cost register automata. For two-way transducers, Filiot et al. showed how to decide
whether a transducer is equivalent to some one-way transducer [10]. The decision procedure
of [10] is non-elementary, and we obtained recently [5] an elementary decision procedure and
construction of equivalent one-way transducers in the special case of sweeping transducers:
head reversals are only allowed at the extremities of the input.

In this paper we extend our results from [5] by showing how to compute in ExpSpace the
minimal number of passes needed by a non-deterministic, functional sweeping transducer. It
turns out that the class of sweeping transducers that we consider here has the same expres-
sive power as the class of bounded-reversal two-way transducers. In addition, we show a tight
connection between sweeping transducers and streaming transducers: the former are equiv-
alent to concatenation-free streaming transducers, i.e., transducers where concatenation of
registers is not allowed in the updates (but may be used in the output). Our transformations
preserve the relationship between the number of passes and the number of registers. This
allows us to reduce the minimization problem for registers of concatenation-free streaming
transducers to the minimization of the number of passes of sweeping transducers. In particu-
lar, our minimization result for registers extends [4] to functional transducers with arbitrary
output alphabets.
Related work. As already mentioned, succinctness questions about two-way automata
are still challenging. A longstanding open problem is whether non-deterministic two-way
automata are exponentially more succint than deterministic two-way automata. It is only
known that this is the case for deterministic sweeping automata [13].

Regular transductions behave also nicely in terms of expressiveness: first-order definable
transductions are known to be equivalent to transductions defined by aperiodic streaming
transducers [11] and by aperiodic two-way transducers [6].

Besides [4], the closest work to ours is [7], that shows how to compute the minimal
number of registers of deterministic streaming transducers with register updates of the form
x := y · v, where v is a word and x, y are registers. Such transducers are as expressive
as one-way transducers. However, the focus of [7] is different from ours, since the outputs
can be formed over any infinitary group. Moreover, the works [4, 7] consider deterministic
transducers, which require in general more registers than non-deterministic functional ones.
The proof techniques are thus based on variants of the twinning property and are quite
different from ours.
Overview. After introducing two-way and streaming transducers in Sections 2 and 3, and
showing some basic properties, we recall in Section 4 the key characterization of one-way
definability from [5]. Section 5 presents the main result on minimization of sweeping trans-
ducers. Finally, Section 6 concludes with a logical characterization for sweeping transducers.

2 Two-way transducers

A two-way transducer is a tuple T = (Q,Σ,∆, I, E, F), where Q is a finite set of states, Σ
(resp. ∆) is a finite input (resp. output) alphabet, I (resp. F) is a subset of Q representing
the initial (resp. final) states, and E ⊆ Q×Σ×∆?×Q×{left, right} is a finite set of transition
rules describing, for each state and input symbol, the possible output string, target state,
and direction of movement. To enable distinguished transitions at the extremities of the
input word, we use two special symbols � and � and assume that the input of a two-way

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 3

transducer is of the form u = a1 . . . an, with n ≥ 2, a1 = �, an = �, and ai 6= �,� for all
i = 2, . . . , n− 1.

Given an input word u, we call positions the places between the symbols of u, where the
head of a transducer can lie. We can identify the positions of u = a1 . . . an with the numbers
1, . . . , n− 1, where each number x is seen as the position between ax and ax+1. Since here
we deal with two-way devices, a position can be visited several times along a run. Formally,
we associate the states of the transducer with locations, namely, with pairs (x, y), where
x is a position and y is a non-negative integer, called level. For convenience, we assume
that, from a location at even level, the transducer can either move to the next position to
the right, without changing the level, or perform a reversal, that is, increment the level by
1 and keep the same position; symmetrically, from a location at odd level, the transducer
can either move leftward, without changing the level, or perform a reversal. Locations are
ordered according to the following order: ` ≤ `′ if ` = (x, y), `′ = (x′, y′) and one of the
following holds: (1) y < y′, or (2) y = y′ even and x ≤ x′, or (3) y = y′ odd and x ≥ x′.

Formally, we define a run on u = a1 . . . an as a sequence of locations, labeled by states
and connected by edges, hereafter called transitions. The state at a location ` = (x, y) of a
run ρ is denoted ρ(`). The transitions must connect pairs of locations ` ≤ `′ that are either
at adjacent positions and on the same level, or at the same position and on adjacent levels.
Each transition is labeled with a pair a/v consisting of an input symbol a and a word v

produced as output. There are four types of transitions:

(x, 2y + 1) (x+ 1, 2y + 1) (x, 2y) (x+ 1, 2y)

(x+ 1, 2y + 1)
(x+ 1, 2y + 2)

(x, 2y)
(x, 2y + 1)

ax+1/vax+1/v

ax+1/vax+1/v

The upper left (resp. upper right) transition can occur in a run ρ of T on u provided that(
ρ(x + 1, 2y + 1), ax+1, v, ρ(x, 2y + 1), left

)
(resp.

(
ρ(x, 2y), ax+1, v, ρ(x + 1, 2y), right

)
) is a

valid transition rule of T and ax+1 is the (x+1)-th symbol of u (assuming that first symbol is
�). Similarly, the lower left (resp. lower right) transition are called reversals, and can occur
in a run ρ if

(
ρ(x+1, 2y+1), ax+1, v, ρ(x+1, 2y+2), right

)
(resp.

(
ρ(x, 2y), ax+1, v, ρ(x, 2y+

1), left
)
) is a valid transition rule of T and ax+1 is the (x+ 1)-th symbol of u.

We say that a run on u = a1 . . . an is successful if it starts with an initial state, either
at location (1, 0) or at location (n− 1, 1), and ends in a final state, at some location of the
form (1, ymax) or (n− 1, ymax). The output produced by a run ρ is the concatenation of the
words produced by its transitions, and it is denoted by out(ρ).
Crossing sequences. An important notion associated with runs of two-way automata is
that of crossing sequence. Intuitively, this is a tuple of states that label those locations of a
run that visit the same position. Formally, given a successful run ρ of a two-way transducer
on input u = a1 . . . an, the crossing sequence of ρ at a position x ∈ {1, . . . , n − 1} is the
tuple ρ|x =

(
ρ(x, y0), . . . , ρ(x, yh)

)
, where y0 < . . . < yh are all and only the levels of the

locations of ρ at position x. The classical transformation of two-way finite state automata
into equivalent one-way automata [12] uses crossing sequences.
Properties of two-way transducers. We say that a two-way transducer is

sweeping if every run performs the reversals only at the extremities of the input word,
i.e. when reading the symbols � or �;
L-sweeping if it is sweeping and all successful runs start at the leftmost location (1, 0);
R-sweeping if it is sweeping and all successful runs start at the rightmost location (n−1, 1);
k-pass if every successful run visits every position of the input at most k times;
k-reversal if every successful run performs at most k reversals;

4 Minimizing resources of sweeping and streaming string transducers

one-way if it is 1-pass, L-sweeping.
A transducer is functional if it produces at most one output on each input. It is called

unambiguous if it admits at most one successful run on each input. These notions will have
the same meaning for streaming transducers, defined later. Clearly, every unambiguous
transducer is functional. The converse is not true in general, but we will see later that we can
transform the functional transducers considered in this paper so as to enforce unambiguity.

It is easy to see that every unambiguous transducer with n states is 2n-pass. Indeed,
if this were not the case, then there would exist a successful run visiting the same position
twice with the same state and the same direction. By repeating the factor of the run between
the two locations with the same state, one can generate other successful runs on the same
input, thus contradicting unambiguity. It is convenient to assume that the number of passes
performed by the successful runs of a transducer is uniformly bounded by a constant. In
general, this is not possible unless the transducer is unambiguous. However, for functional
transducers we can restrict ourselves to considering only normalized runs, namely, runs that
never visit the same position twice with the same state and the same direction. This is
without loss of generality, since for every successful run of a functional transducer, there is
one that is successful, normalized, and that produces the same output.

Hereafter, we silently assume that all transducers are functional and all successful runs
are normalized. An important consequence of this assumption is that we can bound the
length of the crossing sequences of the successful runs of a transducer by 2n, where n is the
number of states of the transducer.

We now turn to the subclass that we consider throughout the paper, namely sweeping
transducers. Every k-pass R-sweeping transducer can be transformed into an equivalent
(k + 1)-pass L-sweeping transducer: the additional pass is used at the beginning of the run
to move the head from the leftmost position to the rightmost position, without outputting
anything. It is also easy to disambiguate functional sweeping transducers, that is, transform
them into equivalent unambiguous sweeping transducers, without increasing the number of
passes. For this it suffices to fix a total order on the successful runs, e.g. the lexicographic
order, and restrict to runs that are minimal among those over the same input.

The following proposition shows an interesting correspondence between the number of
passes of sweeping transducers and the number of reversals of two-way transducers. As a
matter of fact, this also implies that bounded-reversal transducers have the same expressive-
ness as sweeping transducers.

I Proposition 1. Every k-pass sweeping transducer is also (k − 1)-reversal.
Conversely, every (k − 1)-reversal two-way transducer can be transformed in 2ExpTime
into an equivalent unambiguous k-pass sweeping transducer. The transformation can be
performed in ExpTime if the (k − 1)-reversal transducer is unambiguous.

Proof. The first claim is trivial, so we focus on the remaining ones. We begin by considering
an unambiguous (k − 1)-reversal two-way transducer T , and we show how to transform it
into an equivalent unambiguous k-pass sweeping transducer S. Towards the end of the
proof we will discuss how to modify the constructions in order to transform an arbitrary
(k − 1)-reversal two-way transducer.

Hereafter, we refer to a pass of T as a maximal factor of a run of T with no reversals.
Note that a pass of T might not start or end at the extremities of the input word. The goal
is to simulate each pass of T with a pass of a suitable sweeping transducer S. In particular,
when T performs a reversal, S needs to continue moving towards the extremity of the input
(this will be either the leftmost or the rightmost position, depending on the parity of the

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 5

level), without performing any output. Once the extremity is reached, S is allowed to make
a reversal and move back towards the position where T made the last reversal. So the
transducer S moves from one extremity of the input to the other. The main difficulty is to
correctly guess the reversals when moving away from these extremities. To do so, S will keep
track, not only of the states associated with the current pass of T , but also of the crossing
sequences of the entire successful run of T . If, at any point of the computation, a reversal
position is wrongly guessed, this can be detected by the fact that it will be impossible to
guess the crossing sequences across all the positions, since otherwise one could witness the
existence of different successful runs on the same input. Note that the above idea works
thanks to the fact that T is unambiguous: if this were not the case, then S may be able to
guess different crossing sequences during different passes, and possibly produce a different
output than T .

We will show later how to deal with the case where T is not unambiguous. Below, we
provide more details about the construction that we just described.

For simplicity, we only consider the case where all successful runs of T start at the leftmost
position and end at the rightmost position (the more general scenario can be handled by
a case distinction and similar constructions). As T performs at most k − 1 reversals, the
crossing sequences of its successful runs will have length at most k.

To properly reason with crossing sequences, we need to introduce some additional termi-
nology and notation. Let u = a1 . . . an be an input for T , where a1 = � and an = �, and let
ρ be a successful run of T on u. Recall that the crossing sequences ρ|x are defined only at the
positions x ∈ {1, . . . , n− 1}. However, it is convenient to associate some crossing sequences
also with the dummy positions 0 and n; we do so by letting ρ|0 = ρ|n = ε. Consider a pair
of adjacent positions x, x + 1, with 0 ≤ x, x + 1 < n. Besides the crossing sequences ρ|x
and ρ|x + 1, we can also identify the set of transitions of T that connect the locations at
the positions x and x + 1. We call these transitions the crossing transitions of ρ between
x and x + 1. Note that the crossing transitions between x and x + 1 share the same input
letter ax+1. Moreover, if h1 and h2 are the lengths of the crossing sequences ρ|x and ρ|x+1,
respectively, then we see that there are exactly h1+h2

2 crossing transitions between x and
x + 1, and these can be ordered on the basis of the levels of their locations. We denote by
ρ|x, x+ 1 the tuple of crossing transitions between x and x+ 1, ordered from bottom to top.

Let Q be the state space of T and E the set of its transition rules. For short, we denote
by Q≤k the set of tuples of distinct states in Q having length at most k, and we do similarly
for E≤k. We introduce a relation R ⊆ Q≤k ×E≤k ×Q≤k that represents the possible pairs
of adjacent crossing sequences with the crossing transitions between them. We omit the
tedious details of the definition of R and we refer the interested reader to [12]. What is
important, here, is to know that one can define R so as to satisfy the following properties:

if ρ is a successful run of T on u = a1 . . . an, where a1 = � and an = �, then R contains
the triples (ρ|x, ρ|x, x+ 1, ρ|x+ 1), for all 0 ≤ x < x+ 1 < n,
if u = a1 . . . an, with a1 = � and an = �, and (q0, e1, q1), . . . , (qn−1, en, qn) is a sequence
of triples in R such that, for each 1 ≤ x < n, the transitions in ex have ax as input
symbol, then there is a successful run ρ of T on u such that ρ|x = qx for all 0 ≤ x ≤ n

and ρ|x, x+ 1 = ex for all 1 ≤ x ≤ n.
In particular, since T is unambiguous, for each input u = a1 . . . an, there is at most one
sequence (q0, e1, q1), . . . , (qn−1, en, qn) ∈ R? that satisfies the conditions of the second item.

We are now ready to construct the sweeping transducer S. Let us first define the notion
of crossing index. We say that a location ` = (x, y) of a run ρ of a two-way transducer has
crossing index i if ρ contains exactly i locations at position x and strictly below level y.

6 Minimizing resources of sweeping and streaming string transducers

The state space of S is the set Q≤k × {1, . . . , k} × {follow, escape, reach}. Intuitively, if a
state (q, i, follow) marks a location ` = (x, y) of a successful run of S, then this means that
there is a corresponding successful run ρ of T such that q is the crossing sequence ρ|x, ` is a
location of ρ, and i is its crossing index of ` in ρ — in particular, this means that q[i] is the
state associated with the location ` in the run ρ of T . The states of the form (q, i, escape)
and (q, i, reach) are used for moving, respectively, away and towards the last reversal of T
(so, intuitively, the locations marked with these states are “outside” the run of T).

As for the transition rules of S, below we describe those that are used to simulate a
rightward pass of T (those simulating a leftward pass are just symmetric):

For each triple (q, e, q′) ∈ R and each transition (q[i], a, v, q′[j], right) ∈ e, we add to S
the transition

(
(q, i, follow), a, v, (q′, j, follow), right

)
.

For each triple (q, e, q′) ∈ R and each transition (q[i], a, v, q[j], left) ∈ e (i.e. a reversal),
we add to S either the transition

(
(q, i, follow), a, v, (q′, j, escape), right

)
or the transition(

(q, i, follow),�, v, (q′, j, follow), left
)
, depending on whether a 6= � or a = �.

For each triple (q, e, q′) ∈ R and each even index j ∈ {1, . . . , k}, we add
to S either the transition

(
(q, j, escape), a, ε, (q′, j, escape), right

)
or the transition(

(q, j, escape),�, ε, (q, j, reach), left
)
, depending on whether a 6= � or a = �, where a

is the input symbol of the transitions of e.
For each triple (q, e, q′) ∈ R and each even index j ∈ {1, . . . , k}, we add to S the transition(
(q′, j, reach), a, ε, (q, j, reach), left

)
, where a is the input symbol of the transitions of e.

For each triple (q, e, q′) ∈ R and each transition (q[i], a, v, q[j], left) ∈ e, we add to S the
transition

(
(q′, j, reach), a, ε, (q, j, follow), left

)
.

The initial states of S are the triples (q′, 1, follow), for any q′ that appears in a triple of R of
the form (ε,�, q′). Similarly, the final states of S the triples (q, i, follow), for any even index
i and any q that appears in a triple of R of the form (q,�, ε).

It is clear that the transducer S is k-pass sweeping and can be constructed in exponential
time from T . Moreover, it is routine to verify that S can simulate any successful run of T .
To prove that S is unambiguous, and thus equivalent to T , we consider the passes of S
on some input u. Since each pass spans across all the positions of u, the series of crossing
sequences guessed along the passes of S are always the same, and they represent a successful
run of T on u. From this, using the fact that T is unambiguous, we easily verify that there
exists at most one successful run of S on u. This proves that S is unambiguous and hence
equivalent to T .

We explain now how to modify the construction of S when T is functional but not
necessarily unambiguous. Consider an input word u = a1 . . . an. The problem with T being
not unambiguous is that S might guess different series of crossing sequences along different
passes on the same input u, which can lead to producing an output different from that of
T . The solution to this problem is to keep track of the set of possible crossing sequences ρ|x
that can be associated with a position x when ρ ranges over all successful runs of T on u.
We call these crossing sequences the admissible crossing sequences of u on x, and we denote
by Cx the set of all admissible crossing sequences of u on x.

Recall that R is the relation describing pairs of adjacent crossing sequences toghether
with crossing transitions between them. Using R, we can derive the following relationship
between the sets Cx and Cx+1 associated with adjacent positions:

Cx+1 = {q′ : q ∈ Cx, (q, e, q′) ∈ R, ax+1 is the input symbol of the transitions in e}

Cx = {q : q′ ∈ Cx, (q, e, q′) ∈ R, ax+1 is the input symbol of the transitions in e}.

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 7

This relationship can be used by S in order to guess the sets Cx while moving across
the positions of the input. In fact, there is a “warm-up” phase at the beginning of the
computation, where there is no guarantee that S guesses the correct sets Cx. This phase
lasts until the input u is entirely processed. During the warm-up phase, S may indeed guess
over-approximations of the sets Cx, which are compatible with the possible continuations of
the input. This is not problematic, because the only point where having an exact information
about the sets Cx is crucial is when S guesses the position of the last reversal performed by
T , which can only happen after the warm-up phase.

With the information derived from the guessed sets Cx, the transducer S can keep track
of all the successful runs of T on u. It can then exploit non-determinism to guess and
simulate a distinguished successful run, say the least one in some lexicographic order. The
simulation carried out by S may fail in two cases: if the simulated run dies (as before, this
can happen due to some wrong guesses), or if some other run that precedes the simulated
one in the lexicographic order survives until the end (this means that the simulated run was
not the least one). If S succeeds in simulating the distinguished run of T , then it can also
guess the reversals of T along this run. We omit the formal definition of S, which is rather
technical. We only remark that, as we need to consider sets of crossing sequences, here we
incur into a doubly exponential blowup when transforming T into S. J

3 Streaming transducers

Streaming transducers can implement the same transductions as two-way transducers [2, 8],
but they do so using a single left-to-right pass and a fixed set of registers that can store
words over the output alphabet.

Formally, a streaming transducer is a tuple T = (Q,Σ,∆, R, U, I, E, F), where Q is a
finite set of states, Σ (resp. ∆) is a finite input (resp. output) alphabet, R is a finite set
of registers disjoint from ∆, U is a finite set of updates for the registers, namely, functions
from R to (R]∆)?, I is a subset of Q representing the initial states, E ⊆ Q× Σ× U ×Q
is a finite set of transition rules, describing, for each state and input symbol, the possible
updates and target states, and F : Q ⇀ (R]∆)? is a partial output function.

A well-behaved class of streaming transducers [2] is obtained by restricting the allowed
types of updates and partial output functions to be copyless. A streaming transducer T =
(Q,Σ,∆, R, U, I, E, F) is copyless if (1) for every update f ∈ U , every register z ∈ R appears
at most once in f(z1) · . . . · f(zk), where R = {z1, . . . , zk}, and (2) for every state q ∈ Q,
every register z ∈ R appears at most once in F (q). Hereafter we assume that all streaming
transducers are copyless.

To define the semantics of a streaming transducer T = (Q,Σ,∆, R, U, I, E, F), we intro-
duce valuations of registers in R. These are functions of the form g : R → ∆?. Valuations
can be homomorphically extended to words over R] ∆ and to updates, as follows. For
every valuation g : R → ∆? and every word w ∈ (R] ∆)?, we let g(w) be the word over
∆ obtained from w by replacing every occurrence of a register z with its valuation g(z).
Similarly, for every valuation g : R → ∆? and every update f : R → (R]∆)?, we denote
by g ◦ f the valuation that maps each register z to the word g(f(z)).

A configuration of T is a pair state-valuation (q, g). This configuration is said to be
initial if q ∈ I and g(z) = ε for all registers z ∈ R. When reading a symbol a, the transducer
can move from a configuration (q, g) to a configuration (q′, g′) if there exists a transition
rule (q, a, f, q′) ∈ E such that g′ = g ◦ f . We denote this by (q, g) a−−−→

T
(q′, g′).

A run of T on u = a1 . . . an is a sequence of configurations and transitions of the form

8 Minimizing resources of sweeping and streaming string transducers

σ = (q0, g0) a1−−−→
T

(q1, g1) a2−−−→
T

. . . an−−−→
T

(qn, gn).

The run ρ is successful if the partial output function F is defined on the last state qn. In
this case, the output of T on u is gn(F (qn)).
Properties and relationships with sweeping transducers. Functional and unambigu-
ous streaming transducers are defined as in the two-way case. A streaming transducer is
k-register if it uses at most k registers. As we did for two-way transducers, we assume that
all streaming transducers are functional.

It is known that copyless, (functional) streaming transducers capture precisely the trans-
ductions definable by deterministic two-way transducers or, equally, by monadic second-
order logic (so-called MSO transductions) [2, 8]. Moreover, differently from two-way trans-
ducers, non-deterministic streaming transducers can be determinized. This happens at the
cost of increasing the number of registers.

We show below an interesting correspondence between the number of registers in a nat-
ural subclass of streaming transducers and the number of passes performed by sweeping
transducers.

I Definition 2. A streaming transducer T = (Q,Σ,∆, R, U, I, E, F) is concatenation-free if
it is copyless and f(z) ∈ ∆? · (R ∪ {ε}) ·∆?, for all registers z ∈ R and all updates f ∈ U .

Intuitively, a concatenation-free streaming transducer forbids register updates with two or
more registers inside a right-hand side. We note that concatenation-free streaming transduc-
ers can also be determinized effectively. Moreover, it is easy to see that allowing boundedly
many updates with concatenations does not change the expressiveness of the model, as one
can remove any occurrence of an update with concatenations by introducing new registers.

The following proposition shows a tight correspondence between the number of registers
of the concatenation-free streaming transducers and the number of passes of the sweeping
transducers. Note that the proposition considers sweeping transducers that start from the
rightmost position. A slightly weaker correspondence holds for L-sweeping transducers,
since any sweeping transducer can be made L-sweeping (resp. R-sweeping) by increasing the
number of passes by 1. Moreover, thanks to the previous Proposition 1, this correspondence
can be immediately extended to the number of reversals performed by two-way transducers.

I Proposition 3. Every concatenation-free streaming transducer with k registers can be
transformed in ExpTime into an equivalent unambiguous 2k-pass R-sweeping transducer.
The transformation is in P if the streaming transducer is unambiguous.
Conversely, every k-pass R-sweeping transducer can be transformed in 2ExpTime into an
equivalent unambiguous concatenation-free streaming transducer with dk2 e registers. The
transformation is in ExpTime if the sweeping transducer is unambiguous.

Proof. We begin by considering an unambiguous concatenation-free streaming transducer T
with k registers, and we show how to transform it into an equivalent unambiguous 2k-pass
R-sweeping transducer S. After this, we will show how to deal with the case where the
streaming transducer is not unambiguous.

Let u = a1 . . . an be an arbitrary input for T and σ = (q0, g0) a1−−−→
T

(q1, g1) a2−−−→
T

. . . an−−−→
T

(qn, gn) the unique successful run on u. We can write the corresponding output as

T (u) = v0 · gn(z1) · v1 · gn(z2) · . . . · gn(zh) · vh

where h ≤ k and F (qn) = v0 · z1 · v1 · z2 · . . . · zh · vh (note that the latter word, and in
particular the order of the registers z1, . . . , zh, depends on the final state qn). Further let

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 9

f1, . . . , fn be the sequence of register updates induced by the above transitions, and recall
that gx = gx−1 ◦ fx for all x = 1, . . . , n.

The idea for obtaining an equivalent unambiguous 2k-pass sweeping transducer S is
to output each factor vi · gn(zi) during two consecutive passes that start and end at the
rightmost position. For this, we fix an index i ∈ {1, . . . , h} and we consider how the factor
gn(zi) is produced along the run σ. Since T is concatenation-free and unambiguous, there
exist a unique position xi ∈ {0, . . . , n}, a unique sequence of registers zi = zi,n, zi,n−1, . . .,
zi,xi

∈ R, and a unique sequence of words wi,n, w′i,n, . . ., wi,xi
, w′i,xi

∈ ∆? such that

gn(zi,n) = wi,n · gn−1(zi,n−1) · w′i,n

...
gxi+1(zi,xi+1) = wi,xi+1 · gxi

(zi,xi
) · w′i,xi+1

fxi
(zi,xi

) = wi,xi
· w′i,xi

.

This basically means that the factor gn(zi) is obtained from the empty word by repeatedly
prepending and appending finite words wi,x and w′i,x, where x goes from xi to n. Moreover,
each pair of words wi,x and w′i,x is determined by the x-th transition (qx−1, gx−1) ax−−−→

T
(qx, gx)

of T .
The sweeping transducer S that we have to construct will behave as follows. At the

beginning of a right-to-left pass at level 2i − 1, S outputs the word vi that precedes the
factor gn(zn) in T (u). During the same pass, it reads the input in backward direction and,
while guessing the transitions (qx−1, gx−1) ax−−−→

T
(qx, gx), it outputs the corresponding words

wi,x. Once the position xi is reached, S continues to move leftward while simulating the
transitions of T , but this time without producing any output. This is needed to check
that the state of T reached at the leftmost position is initial. Then S performs a reversal.
Similarly, during a left-to-right pass at level 2i, the transducer S guesses the transitions
(qx−1, gx−1) ax−−−→

T
(qx, gx) and, if x ≥ xi, it outputs the corresponding words w′i,x. Once

the rightmost position is reached, it checks that the last guessed state is final and performs
another reversal. The last pass performed by S is the left-to-right pass at level 2h, where
the last piece vh of the output can be produced.

Clearly, S can be implemented with approximately 2k copies of the state space of T (one
copy for each pass), and it performs at most 2k passes on any input. We remark that for this
construction it is crucial that the streaming transducer T is unambiguous, as otherwise the
described R-sweeping transducer S may guess different runs along two consecutive passes,
eventually producing an output that differs from T (u).

We know consider the situation where the streaming transducer T is not unambiguous.
This case can be handled by preprocessing T so as to make it unambiguous. After this, one
can apply the previous construction to obtain an equivalent 2k-pass R-sweeping transducer.
The transformation from a k-register streaming transducer T into an equivalent, unam-
biguous k-register streaming transducer T ′ can be performed in exponential time by using
standard techniques. More precisely, one performs a subset construction on the finite state
automaton A underlying T . This allows one to simulate deterministically all successful runs
of A on the input word. Then one exploits non-determinism to canonically guess a single
run among the successful ones — as usual, this can be the least run in some lexicographic
ordering. Finally, one simulates the register updates of T along the guessed successful run.
The resulting transducer T ′ has the same number of registers as T , but exponentially many
more states. In particular, T ′ can be produced in exponential time from T .

10 Minimizing resources of sweeping and streaming string transducers

For the converse translations, we start with a unambiguous k-pass R-sweeping trans-
ducer S and we show how to produce, in exponential time, an equivalent unambiguous
concatenation-free streaming transducer S with dk2 e registers.

Let A be the non-deterministic sweeping automaton underlying S, which recognizes the
language dom(S). By applying the classical construction based on crossing sequences [12], we
transform A into an equivalent unambiguous one-way automaton B. To obtain a streaming
transducer equivalent to S, we equip the automaton B with dk2 e registers, say z1, . . . , zd k

2 e
,

and we extend the transitions with suitable register updates. The idea is that each register
zi stores the output produced along the passes of S at levels 2i − 1 and 2i. Consider an
arbitrary input u = a1 . . . an for S, where a1 = � and an = �, and recall that B admits a
unique run on a2 . . . an−1, say

σ = s1
a2−−−→
B

s2
a3−−−→
B

. . . an−1−−−→
B

sn−1.

Recall that the run σ determines a unique successful run ρ of S on u. In particular, each
state sx determines a crossing sequence ρ|x. If ρ|x = (q1, . . . , qh) and ρ|x+ 1 = (q′1, . . . , qh)
are the crossing sequences of ρ at two adjacent positions x and x+ 1, for some h ≤ k, then
the corresponding update fx+1 for the registers of B must satisfy:

fx+1(zi) = wx+1 · zi · w′x+1

where wx+1 is the output produced by S with the right-to-left transition q2i−1
ax+1←−−−

S
q′2i−1 and

w′x+1 is the output produced by S with the left-to-right transition q2i
ax+1−−−→

S
q′2i. Since fx+1 is

uniquely determined by the control states sx and sx+1 and the input symbol ax+1, the above
equations can be easily turned into a definition of transition rules for a streaming transducer
T having B as underlying automaton. We then specify the partial output function of T ,
which maps any state s of B to the juxtaposition z1 · . . . · zdh

2 e
of the first dh2 e registers,

where h is the length of the crossing sequence determined by s. The resulting transducer T
is unambiguous, uses at most dk2 e registers, and is equivalent to S.

To conclude the proof, we briefly discuss the case where the sweeping transducer S is not
unambiguous. As usual, this case can be deal with by a form of subset construction. The
key observation is that all successful runs of S can be followed simultaneously because they
perform the same reversals at the same positions, namely, at the extremities of the input
word. In other words, one can determinize the underlying sweeping automaton in simple
exponential time. J

Based on the above proposition, the problem of minimizing the number of registers in a
concatenation-free streaming transducer reduces to the problem of minimizing the number
of passes performed by a sweeping transducer. We will thus focus on the latter problem: in
Section 5, we consider the decidability and complexity of the following problem, called k-
pass sweeping definability problem: given a functional sweeping transducer S and a number
k ∈ N, decide whether S has an equivalent k-pass sweeping transducer.

4 One-way definability

In [5] we gave an effective characterization of sweeping transducers that are one-way defin-
able, i.e., equivalent to some one-way transducer. This can be seen as a special case of the
problem that we are considering here, and some of the technical tools developed in [5] will
be used later. We briefly recall some definitions and results related to this characterization.
Hereafter we assume that S is an L-sweeping transducer and ρ a successful run of S.

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 11

Intercepted factors. An interval of positions of the run ρ has the form I = [x1, x2], with
x1 < x2. We say that an interval I = [x1, x2] contains (resp., strongly contains) another
interval I ′ = [x′1, x′2] if x1 ≤ x′1 ≤ x′2 ≤ x2 (resp., x1 < x′1 ≤ x′2 < x2). We say that a factor
of ρ is intercepted by an interval I = [x1, x2] if it is maximal among the factors of ρ that
visit only positions in I and that never make a reversal (recall that reversals in sweeping
transducers can only occur at the extremities of the input word).
Pumping loops. A loop of a run ρ is an interval L = [x1, x2] of positions such that the
crossing sequences ρ|x1 and ρ|x2 are equal. If L is a loop of ρ, we can obtain new runs by
replicating any number of times the factors of ρ intercepted by L and, simultaneously, the
factor of the input word u between positions x1 and x2. This operation is called pumping
and is formally defined as follows. Let L = [x1, x2] be a loop of a run ρ on u. The run
obtained by pumping n times the loop L is the sequence

pumpnL(ρ) = α1 β
n
1 γ1︸ ︷︷ ︸

1st pass

α2 β
n
2 γ2︸ ︷︷ ︸

2nd pass

· · · αk βn
k γh︸ ︷︷ ︸

k-th pass

where k is the number of passes performed by ρ, βi is the factor intercepted by L at the i-th
level, αi is the factor intercepted either by [1, x1] or by [x2+1, |u|] at the i-th level, depending
on whether this level is even or odd, and, symmetrically, γi is the factor intercepted either
by [x2 + 1, |u|] or by [1, x1] at the i-th level, depending on whether this level is even or
odd. We also define pumpnL(u) = u[1, x1] ·

(
u[x1 + 1, x2]

)n · u[x2 + 1, |u|] and we observe
that pumpnL(ρ) is a valid run on pumpnL(u). We remark that the above definition of pumped
run are correct only for sweeping transducers: for arbitrary two-way transducers we would
need to take into account the possible reversals within a loop L and combine the intercepted
factors in a more complex way.

It is convenient to introduce some notation for pumping runs on multiple loops. If the
loops are pairwise non-overlapping this can be done by simply pumping each loop separately,
since the order in which we pump the loops does not really matter. The situation is a bit
more complicated when some loops overlap. In particular, when pumping a loop L of ρ,
several copies of the original locations of ρ are introduced, and with this several copies of
other loops may appear (think, for example, of a loop L′ that is contained in L). We say that
a location ˜̀ in pumpnL(ρ) corresponds to ` in ρ if ˜̀ is one of the copies of ` that is introduced
when pumping ρ on L. We extend this correspondence to sets of locations and loops.
With a slight abuse of notation, we denote by pumpn2

L2
(pumpn1

L1
(ρ)) the run obtained by first

pumping n1 times the loop L1 in ρ, and then pumping n2 times every loop that corresponds
to L2 in pumpn1

L1
(ρ) (note that the copies of L2 in pumpn1

L1
(ρ) are pairwise non-overlapping).

It is routine to check that the two runs pumpn2
L2

(pumpn1
L1

(ρ)) and pumpn1
L1

(pumpn2
L2

(ρ)) are
isomorphic. This allows us to use the shorthand pumpn

L
(ρ) to denote runs obtained from ρ

by pumping the loops L = L1, . . . , Lm with the numbers n = n1, . . . , nm, respectively.
Inversions. The notion of inversion is crucial for characterizing one-way definability [5].
Let L be a loop of ρ. A location `1 is called an entry point of L if it is the first location
of a factor intercepted by L. Similarly, a location `2 is called an exit point of L if it is the
last location of a factor intercepted by L. Note that every entry/exit point of L = [x1, x2]
occurs either at position x1 or at position x2.

I Definition 4. An inversion of a run ρ is a pair of locations `1 and `2 for which there exist
two loops L1 = [x1, x

′
1] and L2 = [x2, x

′
2] such that (also refer to the figure on the right):

`1 is an entry point of L1 and `2 is an exit point of L2,
`1 < `2 and x2 ≤ x′1,

12 Minimizing resources of sweeping and streaming string transducers

for both i = 1 and i = 2, the factor intercepted by Li
and visiting `i has non-empty output, and no other loop
strongly contained in Li has the same property as Li
w.r.t. this factor. L2 L1

`1

`2

We say that the loops L1 and L2 are the witnessing loops of the inversion (`1, `2).

Periodic words. A word w is said to have period p if w ∈ u∗ v for some word u of length
p and some prefix v of u. For example, w = abc abc ab has period p = 3.

We are interested into factors of the outputs of S that are periodic, with uniformly
bounded periods. To do this, we fix the constant eS = cS · |Q|2|Q|, where cS is the maximum
number of symbols output by a single transition of S and Q is the state space of S. A crucial
result from [5] shows that, if S is equivalent to a one-way transducer, then all outputs
out(ρ[`1, `2]) produced between the locations of an inversion of ρ are periodic, and the
periods are uniformly bounded by the constant eS . This result is obtained by considering
the output produced by pumped runs of the form pumpn2

L2
(pumpn1

L1
)(ρ)) and between copies of

the locations `1 and `2. By observing how these outputs are covered by the words produced
by an equivalent one-way transducer T , and by exploiting Fine-Wilf’s Theorem, one derives
the periodicity of the outputs.

I Proposition 5 (Prop. 7 in [5]). If S is a one-way definable L-sweeping transducer and
(`1, `2) is an inversion of a successful run ρ of S, then out(ρ[`1, `2]) has period at most eS.

Based on the above result, it makes sense to define the language LS ⊆ dom(S) of all
input words u that induce a successful run ρ of S such that, for all inversions (`1, `2) of
ρ, out(ρ[`1, `2]) is periodic with period at most eS . We denote by S|LS

the transducer S
restricted to inputs from LS . One-way definability is then characterized as follows:

I Theorem 6 (Th. 1 in [5]). An L-sweeping transducer S is one-way definable if and only
if LS = dom(S). Moreover, given an L-sweeping transducer S, one can construct in doubly
exponential time a one-way transducer T that is equivalent to S|LS

.

In the next section we show how to generalize the above results in order to characterize
k-pass definability.

5 k-pass sweeping definability

We begin by defining the objects that need to be considered for characterizing k-pass defin-
ability, i.e., whether a sweeping transducer is equivalent to some k-pass sweeping transducer.
As usual, let S be an L-sweeping transducer. The idea is to consider factors of runs of S
that can be simulated alternatively from left to right and from right to left. We begin by
introducing a notion of inversion that looks symmetric to that of Definition 4 (specifically,
it is obtained by reversing the order of the witnessing loops):

I Definition 7. A co-inversion of a run ρ is a pair of locations `1 and `2 for which there
exist two loops L1 = [x1, x

′
1] and L2 = [x2, x

′
2] such that:

`1 is an entry point of L1 and `2 is an exit point of L2,
`1 < `2 and x1 ≤ x′

2,
for both i = 1 and i = 2, the factor intercepted by Li and visiting `i has non-empty
output, and no other loop strongly contained in Li has the same property as Li w.r.t. this
factor.

We say that the above loops L1 and L2 are the witnessing loops of the co-inversion (`1, `2).

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 13

We then combine inversions and co-inversions, as follows:

I Definition 8. A k-inversion of ρ is a sequence ` = (`1, `2), . . . , (`2k−1, `2k) such that:
`1 < `2 < . . . < `2k−1 < `2k are distinct locations in ρ,
for all even i ∈ {0, . . . , k − 1}, (`2i+1, `2i+2) is an inversion of ρ,
for all odd i ∈ {0, . . . , k − 1}, (`2i+1, `2i+2) is a co-inversion of ρ.

An example of a 3-inversion is depicted on the right.
We say that ` is safe if out(ρ[`2i+1, ρ2i+2]) has period at
most eS , for some i ∈ {0, . . . , k−1}. We denote by L(k)

S the
language of words u ∈ dom(S) such that all k-inversions of
all successful runs of S on u are safe.

`1

`2 `3
`4

`5

`6

Note that the definition of 1-inversion is the same as Definition 4, and hence L(1)
S = LS .

In particular, by Theorem 6, we know that S is one-way definable iff L
(1)
S = dom(S).

The generalization of this result is Theorem 9 below: k-pass definability is equivalent to k-
inversions being all safe, in the same way as one-way definability is equivalent to all inversions
having periodic output.

I Theorem 9. A sweeping transducer S is k-pass L-sweeping definable iff L
(k)
S = dom(S),

and this can be decided in ExpSpace. Moreover, given a sweeping transducer S, one can con-
struct in 2ExpTime an unambiguous k-pass L-sweeping transducer T equivalent to S|

L
(k)
S

.

An analogous result for deciding k-pass R-sweeping definability can be derived by sym-
metry, by mirroring the input and reversing the computation. We also observe that, for
k = 1, the above theorem improves the previous 2ExpSpace upper bound from [5] for de-
ciding one-way definability of a sweeping transducer S. Concerning the doubly exponential
size of an equivalent k-pass L-sweeping transducer, we observe that this is optimal, as in [5]
we have shown that there are sweeping transducers S such that any equivalent one-way
transducer has size at least doubly exponential in S.

Before turning to the proof of Theorem 9, we list some simple consequences of this
theorem and of Propositions 1 and 3.

I Corollary 10.
One can compute in ExpSpace the minimum number of passes needed to implement a
transduction given as a sweeping transducer.
One can compute in 3ExpSpace the minimum number of reversals needed to imple-
ment a transduction given as a bounded-reversal two-way transducer. The complexity is
2ExpSpace if the given two-way transducer is unambiguous.
One can compute in 2ExpSpace the minimum number of registers needed to implement
a transduction given as a concatenation-free streaming transducer. The complexity is
ExpSpace if the given streaming transducer is unambiguous.

The proof of Theorem 9 is split into two parts. The first part, called “soundness”,
deals with the construction of the k-pass L-sweeping transducer T of the second claim.
Since L(k)

S = dom(S) implies that T is equivalent to S, this construction also proves the
right-to-left direction of the first claim. Moreover, as a side result, we prove that whether
L

(k)
S = dom(S) holds is decidable in ExpSpace. The second part, called “completeness”,

deals with the left-to-right direction of the first claim.

14 Minimizing resources of sweeping and streaming string transducers

Soundness. We show how to construct from S a k-pass L-sweeping transducer T equivalent
to S|

L
(k)
S

. The idea is to consider a successful run ρ of S on a word u ∈ L(k)
S , and divide it

into k factors. We then simulate each factor of the run in a single pass, alternatively from
left to right and from right to left, using [5]. First we need the notion of k-factorizations:

I Definition 11. A k-factorization of a successful run ρ of S is any sequence of locations
` = `0, `1, . . . , `k of ρ such that:

`0 ≤ `1 ≤ . . . ≤ `k, `0 is the first location of ρ, and `k is the last location of ρ,
for all even indexes i, with 0 ≤ i < k, and all inversions (`, `′) of ρ, with `i ≤ ` ≤ `′ ≤ `i+1,
the word out(ρ[`, `′]) has period at most eS ,
for all odd indexes i, with 1 ≤ i < k, and all co-inversions (`, `′) of ρ, with `i ≤ ` ≤ `′ ≤
`i+1, the word out(ρ[`, `′]) has period at most eS .

The following lemma shows that we can equally reason in terms of safe k-inversions
(Definition 8) or k-factorizations.

I Lemma 12. For every word u ∈ dom(S), we have that u ∈ L(k)
S if and only if all successful

runs of S on u admit k-factorizations.

Proof. We prove the left-to-right direction. Let u ∈ L(k)
S and let ρ be a successful run of

S on u. We define the locations `0, `1, . . . , `k forming a k-factorization of ρ by an iterative
process. The location `0 is clearly the first of the run. Let us now assume that we have
defined the locations up to `i, with i < k. We distinguish two cases depending on the parity
of i. If i is odd, then we look at the inversions (`, `′) of ρ such that ` ≥ `i and out(ρ[`, `′])
has period strictly larger than eS . For short, we call such inversions bad inversions after `i.
If there are no bad inversions after `i, then we simply define `i+1 to be the last location of
the run. Otherwise, we take the first bad inversion after `i, following the lexicographic order
on pairs of locations, and we denote it by (˜̀

i, ˜̀′
i). Accordingly, we define the next location

`i+1 to be the one that immediately precedes ˜̀′
i in the run ρ. The case where i is even is

dealt with in a similar way, by considering co-inversions instead of inversions.
We verify that the constructed sequence `0, `1, . . . , `k is indeed a k-factorization. By

definition, for all even (resp. odd) indexes 0 ≤ i < k and all inversions (resp. co-inversions)
(`, `′), with `i ≤ ` ≤ `′ ≤ `i+1, the period of out(ρ[`, `′]) is at most eS . Moreover, `0 was
chosen to be the first location of ρ, and we clearly have `0 ≤ `1 ≤ . . . ≤ `k. It remains to
prove that `k is the last location of ρ. Suppose that this is not the case. Of course, this
can happen only if for each location `i, with i = 1, . . . , k, there exist bad inversions (or co-
inversions, depending on the parity of i) after `i−1. For each i = 1, . . . , k, let (˜̀

i, ˜̀′
i) be the

first bad (co-)inversion after `i−1. The sequence (˜̀1, ˜̀′
1), . . . , (˜̀

k, ˜̀′
k) is clearly a k-inversion.

Moreover, it is unsafe, because the period of every word out(ρ[˜̀i, ˜̀′
i]) exceeds eS . However,

this is against the hypothesis that ρ was a successful run on u ∈ L(k)
S . We thus conclude

that ` = `0, `1, . . . , `k is a k-factorization of ρ.
We now prove the converse direction. Fix a word u such that all successful runs

on it admit k-factorizations. Consider a successful run ρ on u and a k-inversion `
′ =

(`′1, `′2), . . . , (`′2k−1, `
′
2k) of ρ. The goal is to prove that `′ is safe. As ρ is a successful run

on u, it admits a k-factorization, say ` = `0, . . . , `k. As the locations of the k-inversion are
ordered, i.e. `′1 ≤ `′2 ≤ . . . ≤ `′2k−1 ≤ `′2k, there is an index i ∈ {0, . . . , k − 1} such that
`i ≤ `′2i+1 ≤ `′2i+2 ≤ `i+1. By definition of k-factorization, this means that the period of
out(ρ[`′2i+1, `

′
2i+2]) is at most eS , and hence the k-inversion `′ is safe. As we chose ρ and `′

in a general way, we conclude that u ∈ L(k)
S . J

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 15

Now, we show that being a k-factorization is a regular property. To formalize this,
we need to explain how to encode runs and sequences of locations as annotations of the
underlying input. Formally, given a word u ∈ dom(S), a successful run ρ of S on u, and a
tuple of locations ` = `1, . . . , `m in ρ, we denote by 〈u, ρ, `〉 the word obtained by annotating
each position 1 ≤ x < |u| of u with the crossing sequence ρ|x and with the m-tuple y =
(y1(x), . . . , ym(x)), where each yi(x) is either the level of `i or ⊥, depending on whether `i is
at position x or not. Based on this encoding, we can define the language F (k)

S of all words of
the form 〈u, ρ, `〉, where ρ is a successful run of S on u and ` = `0, . . . , `k is a k-factorization
of ρ. Lemma 13 below proves that this language is regular. In fact, in order to better handle
the complexity of our characterization, the lemma shows that both F (k)

S and its complement
F

(k)
S are recognized by automata of doubly exponential size.

I Lemma 13. The language F
(k)
S and its complement F

(k)
S are recognized by non-

deterministic finite state automata of size double exponential w.r.t. S.

Proof. To prove that F (k)
S is recognized by an automaton of doubly exponential size, we

rely again on results from [5]. Recall that LS is the language of words that induce successful
runs such that, for all inversions (`, `′), the period of out(ρ[`, `′]) is at most eS . Theorem 6
shows that LS is the domain of a one-way transducer T that can be constructed from S in
doubly exponential time, so LS is recognized by an automaton of doubly exponential size
w.r.t. S. We can apply this theorem to the transducer Sfactors, and obtain in this way an
automaton that recognizes the language LSfactors . By definition, if ρ is a successful run on u
and `1, `2 are two locations in it, then 〈u, ρ, `1, `2〉 belongs to LSfactors if and only if, for all
inversions (`, `′), with `1 ≤ ` ≤ `′ ≤ `2, the period of out(ρ[`, `′]) is at most eS . A similar
automaton can be constructed for the language RSfactors that contains the words 〈u, ρ, `1, `2〉
such that the outputs produced by all co-inversions between `1 and `2 have period at most
eS . Therefore, to recognize F (k)

S , it is sufficient to construct an automaton that reads a
word 〈u, ρ, `0, . . . , `k〉 and checks that (i) ρ is a successful run of S on u, (ii) `0 ≤ . . . ≤ `k
are locations that delimit factors of ρ, and (iii) for every i ∈ {0, . . . , k − 1}, 〈u, ρ, `i, `i+1〉
belongs to either LSfactors or RSfactors , depending on the parity of i. A close inspection to
the above constructions shows that all the automata can be produced in doubly exponential
time w.r.t. S.

We now show that the complement F (k)
S can also be recognized by an automaton of

doubly exponential size. Indeed, checking that a word 〈u, ρ, `〉 does not belong to F (k)
S boils

down to verifying that one the following conditions holds:
1. ρ is not a successful run on u. This can be checked by looking at the crossing sequences

annotated on the positions of u, using an exponential number of states.
2. The locations in ` do not define a factorization of ρ. This can be easily checked with

polynomially many states.
3. There exist an index i ∈ {0, . . . , k−1} and an inversion (`, `′) (or a co-inversion, depend-

ing on the parity of i), with `i ≤ ` ≤ `′ ≤ `i+1, such that, for all periods 0 ≤ p ≤ eS ,
out(ρ[`, `′])[z] 6= out(ρ[`, `′])[z + p] for some position z — note that this is equivalent to
saying that ` is not a k-factorization. The latter condition can be checked by guessing i,
(`, `′), and a function that maps numbers p ∈ {0, . . . , eS} to positions zp in out(ρ[`, `′]).
This can be done with doubly exponentially many states. J

Using the above encodings, we can also relativize the outputs produced by the transducer
S to factors of successful runs. More precisely, we denote by Sfactors the transducer that
reads words of the form 〈u, ρ, `1, `2〉 and outputs words of the form out(ρ[`1, `2]), provided

16 Minimizing resources of sweeping and streaming string transducers

that ρ is a successful run of S on u and `1, `2 are two locations in it. Note that Sfactors does
not check that the input is well-formed, in particular, that ρ is a successful run of S on u.
Because of this, the number of states of Sfactors is polynomial in the number of states of S,
and a succinct representation of Sfactors can be produced in polynomial time.

Now, it is easy to construct a k-pass L-sweeping transducer T equivalent to S|
L

(k)
S

, as
claimed in Theorem 9. The idea is that, on reading the input u, the transducer T guesses a
successful run ρ on u and a k-factorization ` = `0, . . . , `k of ρ — this can be done using the
encoding 〈u, ρ, `〉 and Lemma 13. While guessing these objects, T performs k passes and
outputs

T0(〈u, ρ, `0, `1〉) · T1(〈u, ρ, `1, `2〉) · . . . · Tk−1(〈u, ρ, `k−1, `k〉)

where each Ti is the 1-pass sweeping transducer obtained by applying Theorem 6 to Sfactor
(as usual, some mirroring is required for dealing with the odd indexes i). The only technical
detail, here, is that different objects ρ, ` may be guessed along the different passes of T . If
this happens, the output produced by T might not be equal to that of S. We can overcome
this problem by exploiting disambiguation, namely, by guessing canonical encodings 〈u, ρ, `〉
in the language F (k)

S . For example, we can fix a lexicographic ordering on these encodings
and commit to always guessing the least encoding among those that agree on the input
word u. This requires reasoning with both the language F (k)

S and its complement F (k)
S . By

Lemma 13, the two languages are recognized by automata of doubly exponential size in S,
and hence T can be constructed in doubly exponential time from S. As a matter of fact,
the transducer T that we just constructed is also unambiguous.

We conclude this part by showing how to decide in exponential space if L(k)
S = dom(S).

In fact, as we already know that L(k)
S ⊆ dom(S), it suffices to decide only the contain-

ment L(k)
S ⊇ dom(S). We know from Lemma 12 that the language L(k)

S coincides with the
projection of F (k)

S on the underlying words u. Thus, we have

L
(k)
S ⊇ dom(S) if and only if F

(k)
S ∩D = ∅

whereD = {〈u, ρ, `〉 : u ∈ dom(S)}. A close inspection of the construction of the automaton
for F (k)

S shows that the emptiness of F (k)
S ∩D can be decided in ExpSpace.

Completeness. Here we prove the left-to-right direction of the first claim of Theorem 9.
We suppose that S is an L-sweeping transducer and T is an equivalent k-pass L-sweeping
transducer. We fix, once and for all, a successful run ρ of S on u and a k-inversion ` =
(`1, `2), . . . , (`2k−1, `2k) of ρ.

The goal is to prove that ` is safe, namely, that the factor of the output produced between
the locations of some (co-)inversion (`2i+1, `2i+2) of ` is periodic, with uniformly bounded
period. The main idea is to try to find a factor out(ρ[`2i+1, `2i+2]) that is entirely covered
by the output produced along a single pass of the equivalent transducer T , and apply a
suitable generalization of Proposition 5. Informally, this works by pumping the output
out(ρ[`2i+1, `2i+2]) through repeating the witnessing loops of (`2i+1, `2i+2). In a similar way,
we pump the output produced along a single pass of T . Then, by analyzing how the former
outputs are covered by the latter outputs, we deduce the periodicity of out(ρ[`2i+1, `2i+2]).

The main difficulty in formalizing the above idea lies in the fact that the k passes of the
supposed transducer T cannot be identified directly on the run ρ of S. Therefore we need
to reason in a proper way about families of factors associated with (co-)inversions inside
pumped runs. Below, we introduce some terminology and notation to ease this task.

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 17

Recall that ` = (`1, `2), . . . , (`2k−1, `2k) is a k-inversion of the run ρ. For all i = 0, . . . , k−
1, let L2i+1 and L2i+2 be the witnessing loops of (`2i+1, `2i+2). For a given tuple of numbers
n = (n1, . . . , n2k) ∈ N2k, we define

ρn = pumpn
L

(ρ)

where L = L1, . . . , L2k and n = n1, . . . , n2k (recall that this is the run obtained by pumping
the loops L1, . . . , L2k respectively n1, . . . , n2k times, as described in Section 4). Similarly,
we denote by un the word parsed by the pumped run ρn.

We would like to map the inversions and co-inversions of ` on the pumped runs ρn.
Consider an inversion (`2i+1, `2i+2), for some i ∈ {1, . . . , 2k} (the case of a co-inversion is
similar). Recall that when pumping loops in ρ, several copies of the original locations may
be introduced. In particular, among the copies of the inversion (`2i+1, `2i+2) that appear
in the pumped run ρn, we will consider the maximal one, which is identified by taking the
first copy ˜̀2i+1 of `2i+1 and the last copy ˜̀2i+2 of `2i+2. For the sake of brevity, we say that
(˜̀2i+1, ˜̀2i+2) is the inversion of ρn that corresponds to (`2i+1, `2i+2).

We can now define the key objects for our reasoning, that is, the factors of the output
of a pumped run ρn that correspond in the original run ρ to the factors produced between
the locations of the (co-)inversions of `. Formally, for every 2k-tuple n of natural numbers
and every index i = 0, . . . , k − 1, we define

vn
`

(i) = out
(
ρn[˜̀2i+1, ˜̀2i+2]

)
where (˜̀2i+1, ˜̀2i+2) is the (co-)inversion of ρn that corresponds to (`2i+1, `2i+2). Note that
the above factors depend on the k-inversion ` and on the tuple n, which represents the
number of times we pump each witnessing loop of `. For simplicity, since ` is understood
from the context, we will often drop the subscript from the notation, thus writing vn(i).
Below we highlight the relevant factors inside the output produced by S on un:

S(un) = out
(
ρn[˜̀0, ˜̀1]

)
·vn(0)·out

(
ρn[˜̀2, ˜̀3]

)
·vn(1)·. . .·vn(k − 1)·out

(
ρn[˜̀2k, ˜̀2k+1]

)
(1)

where ˜̀0 is the first location of ρn, ˜̀2k+1 is the last location of ρn.
In a similar way, we can factorize the output produced by the k-pass L-sweeping trans-

ducer T when reading the input un. However, the focus here is on the factors of the output
produced along each pass. Formally, given n ∈ N2k, we let σn be some successful run of T
on un. For every j = 0, . . . , k− 1, we let `′j be the first location of σn at level j. We further
let `′k be the last location of σn, which is at level k − 1. We then define

wn(j) = out
(
σn[`′j , `′j+1]

)
and factorize the output of T on un as follows:

T (un) = wn(0) ·wn(1) · . . . ·wn(k − 1). (2)

The next step is to exploit the hypothesis that S and T are equivalent. This means that
Equations (1) and (2) represent the same word. From this we derive that, for any given
n ∈ N2k, at least one of the words vn(i) highlighted in Equation (1) is a factor of the word
wn(i) highlighted in Equation (2). However, what is the index i for which this coverability
relation holds depends on the parameter n. In order to enable a reasoning similar to that of
Proposition 5, we need to find a single index i such that, for “sufficiently many” parameters
n, vn(i) is a factor of wn(i). The definition below, formalizes what we mean precisely by
“sufficiently many” n— intuitively, we require that specific coordinates of n are unbounded,
as well the differences between these coordinates.

18 Minimizing resources of sweeping and streaming string transducers

I Definition 14. Let P(n) denote an arbitrary property of tuples n ∈ N2k. Further let
h, h′ be two distinct coordinates in {1, . . . , 2k}. We say that P(n) holds unboundedly on the
coordinates h, h′ of n if, for all numbers n0 ∈ N, there exist n1, n2 ∈ N2k such that:
P(n1) and P(n2) hold,
n1[h] ≥ n0 and n1[h′]− n1[h] ≥ n0,
n2[h′] ≥ n0 and n2[h]− n2[h′] ≥ n0.

We recall that each factor vn(i) is associated with the (co-)inversion (`2i+1, `2i+2), and
that the corresponding components n[2i + 1] and n[2i + 2] of the parameter n denote the
number of times the witnessing loops L2i+1 and L2i+2 are pumped in ρn. The specific
properties we are interested in are the following ones, for i = 0, . . . , k − 1:

Pi(n) = “ vn(i) is a factor of wn(i)” .

It is not difficult to see that for every tuple n ∈ N2k, Pi(n) holds for some i ∈ {0, . . . , k−1}.
From this, using a suitable counting argument, we can prove the crucial lemma below.

I Lemma 15. There is an index i ∈ {0, . . . , k − 1} such that the property Pi(n) =
“ vn(i) is a factor of wn(i)” holds unboundedly on the coordinates 2i+ 1 and 2i+ 2 of n.

Proof. The proof is rather technical, and we need to reason on coverability between pairs
of factors vn(i) and wn(j), for possibly distinct indexes i, j ∈ {0, . . . , k − 1}. For the
sake of brevity, we denote by Ci,j the set of tuples n ∈ N2k such that vn(i) is a factor
of wn(j). Similarly, we denote by Di,j the set of tuples n ∈ N2k such that the suffix
out
(
ρn[˜̀2i+1, ˜̀2k+1]

)
of S(un) — i.e. the one that starts with vn(i) — is a factor of the suffix

out
(
σn[`′j , `′k]

)
of T (un) — i.e. the one that starts with wn(j). Note that D0,0 = N2k since

S(un) = T (un). For convenience, we also let Ci,j = Di,j = ∅ whenever i = k or j = k.

I Claim. For all i, j ∈ {0, . . . , k − 1}, we have Di,j ⊆ Ci,j ∪Di+1,j+1.

Proof. Consider a tuple n in Di,j . By definition, we know that the suffix of S(un) that starts
with vn(i) is a factor of the suffix of T (un) that starts with wn(j). We distinguish some
cases depending on whether j = k−1 or j < k−1, and whether n ∈ Ci,j or not. If j = k−1,
we prove the claim by observing that n must belong to Ci,j : indeed, if this is not the case,
then the last factor wn(k− 1) of T (un) would end strictly before the end of the factor vn(i),
thus contradicting the hypothesis that S(un) = T (un). If j < k − 1 and n ∈ Ci,j , then the
claim holds trivially. Finally, suppose that j < k− 1 and n 6∈ Ci,j . Since n ∈ Di,j , we know
that the factor vn(i) begins after the beginning of wn(j). However, because vn(i) is not a
factor of wn(j), we also know that vn(i) ends after the ending of wn(j). This implies that
vn(i+ 1) begins after the beginning of wn(j + 1), whence n ∈ Di+1,j+1. J

Using the above claim we can derive the first important equation:

N2k = D0,0 ⊆ C0,0 ∪D1,1 ⊆ . . . ⊆
⋃

i
Ci,i ∪ Dk,k =

⋃
i
Ci,i. (3)

This basically means that it is sufficient to consider only the coverability between pairs of
factors vn(i) and wn(i), having the same index i.

Now, recall that Pi(n) denotes the property “ vn(i) is a factor of wn(i) ”. The latter
property can be equally stated as n ∈ Ci,i, and thus can be seen as a special case of a more
general property, parametrized by subsets of N2k. Formally, for every set N ⊆ N2k, we
define the property

RN (n) = “ n ∈ N ”.

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 19

Clearly, the statement of Lemma 15 is equivalent to saying that there exist an index i ∈
{0, . . . , k−1} and a set N ⊆ N2k such thatRN∩Ci,i

(n) holds unboundedly on the coordinates
2i+1 and 2i+2. Based on this, we can prove Lemma 15 by way of contradiction, namely, by
assuming that for all i = 0, . . . , k− 1 and all N ⊆ N2k, RN∩Ci,i does not hold unboundedly
on the coordinates 2i+ 1 and 2i+ 2. More precisely, we will use the latter assumption and
exploit an induction on i = 0, . . . , k to construct some sets Ni ⊆ N2k satisfying the following
conditions:
1. Ni is a Cartesian product of the form {mi} × N2k−2i, for some tuple mi ∈ N2i,
2. if i > 0, then Ni ⊆ Ni−1,
3. Ni ⊆

⋃
j≥i Cj,j .

We will reach a contradiction when i = k, since the first condition implies that Nk is a
singleton, while the last condition requires Nk to be empty (indeed,

⋃
j≥k Cj,j is the empty

union).
For the base case i = 0, we simply let N0 = N2k and observe that conditions 1.–3. hold

trivially (in particular, the third condition follows from Equation (3)).
As for the inductive step, we assume that i < k and that Ni satisfies conditions 1.–3,

and we show how to construct Ni+1 satisfying analogous properties. The idea is to fix the
components 2i + 1 and 2i + 2 in Ni in such a way that the resulting set is contained in
Ni \ Ci,i. Recall that we assumed, towards a contradiction, that RNi∩Ci,i(n) does not hold
unboundedly on the coordinates 2i+ 1 and 2i+ 2. By Definition 14, this means that there
exists a number n0 ∈ N that satisfies one of the two cases below:
a) for all n ∈ Ni ∩ Ci,i, n[2i+ 1] < n0 or n[2i+ 2]− n[2i+ 1] < n0,
b) for all n ∈ Ni ∩ Ci,i, n[2i+ 2] < n0 or n[2i+ 1]− n[2i+ 2] < n0.
We define Ni+1 on the basis of n0 and of which case holds:

Ni+1 =

{n ∈ Ni : n[2i+ 1] = n0, n[2i+ 2] = 2n0} if case a) holds

{n ∈ Ni : n[2i+ 2] = n0, n[2i+ 1] = 2n0} if case b) holds.

We now verify that Ni+1 satisfies the conditions 1.–3. for the index i+1. The first condition
holds by construction and thanks to the inductive hypothesis: indeed, Ni projected on
the components h ≤ 2i is a singleton, and Ni projected on the components h ≥ 2i + 1 is
N2k−2i. The second condition Ni+1 ⊆ Ni holds trivially by construction. As for the third
condition, we first claim that Ni+1 ∩ Ci,i is empty. Indeed, if Ni+1 was defined from case
a), then all the tuples n in it satisfy n[2i + 1] = n[2i + 2] − n[2i + 1] = n0. If any of these
tuples belonged also to Ci,i, we would get a contradiction with case a). The argument for
case b) is just symmetric. Now that we know that Ni+1 ∩ Ci,i = ∅, we can easily derive
Ni+1 ⊆ Ni \ Ci,i ⊆

⋃
j≥i+1 Cj,j .

Summing up, we assumed, by way of contradiction, that for all i = 0, . . . , k − 1 and all
N ⊆ N2k, RN∩Ci,i(n) does not hold unboundedly on the coordinates 2i+1 and 2i+2. Using
this assumption, we defined inductively some sets N0, N1, . . . , Nk satisfying conditions 1.–3.
We also observed that, for i = k, the conditions 1. and 3. contradict each other. From this
we must conclude that, for some index i and some N ⊆ N2k, the property RN∩Ci,i

(n) (and
hence Pi(n) as well) holds unboundedly on the coordinates 2i+ 1 and 2i+ 2. J

The last piece of the puzzle consists of generalizing the statement of Proposition 5.
The idea is that we can replace the hypothesis that S is one-way definable by the weaker
assumption of Lemma 15. That is, if Pi(n) holds unboundedly on the coordinates 2i + 1
and 2i + 2 of n, we can still use the same arguments based on pumping and Fine-Wilf’s

20 Minimizing resources of sweeping and streaming string transducers

Theorem as in Proposition 5, in order to deduce that the output out(ρ[`2i+1, `2i+2]) between
the locations of the (co-)inversion is periodic:

I Proposition 16. If the property Pi(n) = “ vn(i) is a factor of wn(i) ” holds unboundedly
on the coordinates 2i+1 and 2i+2 of n, then the output out(ρ[`2i+1, `2i+2]) produced between
the locations of the (co-)inversion (`2i+1, `2i+2) is periodic, with period eS. In particular,
the k-inversion ` = (`1, `2), . . . , (`2k−1, `2k) is safe.

Proof. We begin by distinguishing two cases, depending on whether i is even or odd. If i is
even, then (`2i+1, `2i+2) is an inversion and the factor wn(i) is produced along a left-to-right
pass of T , therefore like in a one-way transduction. Otherwise, if i is odd, then (`2i+1, `2i+2)
is a co-inversion and the factor wn(i) is produced along a right-to-left pass of T . As the two
cases are symmetric, we can focus only on one of the two, say the case where i is even. The
proof that out(ρ[`2i+1, `2i+2]) is periodic is exactly the same as that of Proposition 5. We
briefly recall the crucial arguments below.

In that proof we considered an inversion (`1, `2) and the outputs produced by runs of
the form pumpn2

L2
(pumpn1

L1
(ρ)) between the locations `1 and `2. The latter outputs were then

compared with the outputs produced by an equivalent one-way transducer T . In particular,
we observed that the former outputs are factors of the latter outputs. More precisely, by
letting the parameters n1 and n2 grow independently, it was possible to exploit Fine-Wilf’s
Theorem and derive the periodicity of the former outputs.

The same argument can be applied here with the inversion (`2i+1, `2i+2) and the factors
vn(i) and wn(i), produced respectively by S and T . Indeed, to apply Fine-Wilf’s Theorem,
it is sufficient that the coverability relationship holds for pairs of arbitrarily large numbers
n[2i+ 1] and n[2i+ 2], and that these numbers can vary independently of each other. This
is precisely what it means for the property Pi(n) to hold unboundedly on the coordinates
2i+ 1 and 2i+ 2 of n. J

To conclude, we assumed that the L-sweeping transducer S is equivalent to a k-pass L-
sweeping transducer T . We considered a successful run ρ of S and an arbitrary k-inversion
` of it. By Lemma 15, we know that there is an index i ∈ {0, . . . , k − 1} for which the
property Pi(n) = “ vn(i) is a factor of wn(i) ” holds unboundedly on the coordinates 2i+ 1
and 2i + 2 of n. From this, by applying Proposition 16, we derive that the k-inversion ` is
safe. This proves the left-to-right direction of the first claim of Theorem 9. J

6 Sweeping transducers and MSO

Here, we give a logical characterization of sweeping transducers. For this we will consider
restricted forms of transductions definable in monadic-second order logic (MSO) [8].

MSO transductions are described by specifying the output (seen as a relational struc-
ture) from a fixed number of copies of the input. Formally, an MSO transduction with
m copies consists of an MSO sentence Φdom, some unary MSO formulas Φia(x), one for
each i ∈ {1, . . . ,m} and a ∈ ∆, and some binary MSO formulas Φi,j≤ (x, y), one for each
i, j ∈ {1, . . . ,m}. Intuitively, the sentence Φdom tells whether the transduction is defined on
some input u. The unary formula Φia(x) tells whether the element x of the i-th copy of the
input belongs to the output and is labeled with the letter a. The formula Φi,j≤ (x, y) tells
whether, in the produced output, the element x of the i-th copy of the input precedes the
element y of the j-th copy of the input. Note that the sentence Φdom can easily guarantee
that, whenever the output is defined, it is well-formed, namely, it is a word. For the sake of

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 21

simplicity, we assume that Φia(x) entails Φdom, namely, for all words u and all positions x,
u |= Φia(x) implies u |= Φdom. Similarly, we assume that Φi,j≤ (x, y) entails Φi(x) and Φj(y).

I Definition 17. Let T be an MSO transduction with m copies. We say that T is
order-preserving if each formula Φi,j≤ (x, y) entails x ≤ y;
order-inversing if each formula Φi,j≤ (x, y) entails x ≥ y;
k-phase if there is a partition I0, I1, . . . , Ik−1 of the set of indexes {1, . . . ,m} such that
I0 < I1 < . . . < Ik−1, namely, i < j for all 0 ≤ h < h′ < k, i ∈ Ih, and j ∈ Ih′ , and each
formula Φi,j≤ (x, y) entails x ≤ y if h is even, or x ≥ y otherwise.

We know from [9] that order-preserving MSO transductions capture precisely the one-way
definable transductions. Symmetrically, order-inversing MSO transductions capture the
transductions definable by 1-pass R-sweeping transducers. So it is not surprising that k-
phase MSO transductions correspond to k-pass L-sweeping transducers:

I Theorem 18. k-phase MSO transductions have the same expressive power as functional,
k-pass L-sweeping transducers.

Proof. We first show how to translate a k-pass L-sweeping, functional transducer S into an
equivalent k-phase MSO transduction. The technique is a variant of the classical translation
from two-way transducers to MSO transductions (see for instance [9]).

First, thanks to Proposition 1, we can assume, without loss of generality, that the sweep-
ing transducer S is unambiguous. Recall that S performs at most k passes, and let cS be
the maximal number of characters output by a single transition of S. To logically define
the output of the MSO transduction, we will take k · cS copies of the input. Each copy of
the input is thus indexed by a pair (h, i), where 0 ≤ h < k and 1 ≤ i ≤ cS . Intuitively, the
copy indexed by (h, i) represents the i-th letter of the output produced during the pass at
level h. Using the classical correspondence between automata and MSO, we can build an
MSO sentence Φdom that tells whether a word u belongs to the domain of the transduction.
Similarly, for each index 0 ≤ h < k and each transition rule τ of S, we can build an MSO
formula Φh,τ (x) such that, for all u ∈ dom(S), u |= Φh,τ (x) iff the transition rule τ is applied
at the location ` = (x, h) of the unique successful run of S induced by u. We complete the
definition of the MSO transduction equivalent to S as follows:

For the formulas defining the output elements and their labels, we let Φ(h,i)
a (x) be the

disjunction of the formulas Φh,τ (x), for all 0 ≤ h < k and τ = (p, a, v, q) such that |v| > i

and v(i) = a. Note that, because only one transition rule can be used at each location
of the successful run, for each 1 ≤ x ≤ |u| and each 0 ≤ h < k, there can exist at most
letter a such that u |= Φ(h,i)

a (x).
For the formulas ordering the output elements, we define Φ(h,i),(h′,i′)

≤ (x, y) by a case
distinction:

Φ(h,i),(h′,i′)
≤ (x, y) =

true if h < h′

x ≤ y if h = h′ is even and i ≤ i′

x < y if h = h′ is even and i > i′

x ≥ y if h = h′ is odd and i ≤ i′

x > y if h = h′ is odd and i > i′.
It is easy to see that the formulas Φ(h,i),(h′,i′)

≤ (x, y) define a total order on the output
structure.

It remains to show that the above MSO transduction is k-phase. For this, we order lexico-
graphically the index set

{
(h, i) : 0 ≤ h < k, 1 ≤ i ≤ cS

}
, and partition it into k subsets

22 Minimizing resources of sweeping and streaming string transducers

I0 < I1 < . . . , Ik−1, where Ih =
{

(h, i) : 1 ≤ i ≤ cS
}
for all h = 0, 1, . . . , k−1. We then ob-

serve that the defined partition satisfies Definition 17: indeed, for all pairs (h, i), (h, j) ∈ Ih,
Φ(h,i)(h,j)
≤ (x, y) entails either x ≤ y or x ≥ y, depending on whether h is even or odd.

We now prove the converse translation, from a k-phase MSO transduction to an equiva-
lent k-pass L-sweeping transducer. Let Φdom, Φia(x), and Φi,j≤ (x, y) be the formulas defining
an arbitrary k-phase MSO transduction, where i, j range over some finite set I. Further let
I0 < I1 < . . . , Ik−1 be a partition of I satisfying the third item of Definition 17. Note that,
for a fixed 0 ≤ h < k, the family of formulas Φia(x) and Φi,j≤ (x, y) where i, j range over Ih
define an MSO transduction that is either order-preserving or order-inversing, depending on
whether h is even or odd. For the sake of brevity, we denote by T the original k-pass MSO
transduction, and by T0, T1, . . . , Tk−1 the corresponding order-preserving/order-inversing
MSO transductions.

If each Th maps an input word u to an output vh, then we know that T maps u to the
juxtaposition v0 · v1 · . . . · vk−1. Moreover, we know from [9] that we can translate the order-
preserving transductions T0, T2, . . . to equivalent one-way transducers S0, S2, Similarly,
we can translate the order-inversing transductions T1, T3, . . . to equivalent 1-pass R-sweeping
transducers S1, S3, Thus, we can obtain the desired k-pass L-sweeping transducer S by
simply concatenating the transducers S0, S1, S2, S3, J

7 Conclusions

We gave an effective characterization of transductions definable by sweeping transducers with
k-passes. From the correspondence between the number of passes of a sweeping transducer
and the number of registers required by an equivalent concatenation-free streaming trans-
ducer, we derived a procedure that minimizes the number of registers in a concatenation-free
sweeping transducer. We also showed that sweeping transducers, bounded-reversal trans-
ducers, and concatenation-free streaming transducers define the same class of transductions.
Finally, we provided a logical characterization of the latter class based on a restriction of
MSO-definable transductions.

We believe that similar results can be proven for two-way (non-sweeping) transducers,
using a refined version of the constructions presented here. In this respect, an interesting
open problem is to characterize the two-way transducers that are equivalent to sweeping
transducers, but with an arbitrary (unspecified) number of passes.

References
1 A. V. Aho and J. D. Ullman. A characterization of two-way deterministic classes of lan-

guages. J. Comput. Syst. Sci., 4(6):523–538, 1970.

2 R. Alur and P. Cerný. Expressiveness of streaming string transducers. In FSTTCS, volume 8
of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

3 R. Alur and L. D’Antoni. Streaming tree transducers. In ICALP, volume 7392 of LNCS,
pages 42–53. Springer, 2012.

4 R. Alur and M. Raghothaman. Decision problems for additive regular functions. In ICALP,
volume 7966 of LNCS, pages 37–48. Springer, 2013.

5 F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. One-way definability of sweeping
transducers. In FSTTCS, volume 45 of LIPIcs, pages 178–191. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

F. Baschenis, O. Gauwin, A. Muscholl, G. Puppis 23

6 O. Carton and L. Dartois. Aperiodic two-way transducers and FO-transductions. In CSL,
LIPIcs, pages 160–174. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

7 L. Daviaud, P.-A. Reynier, and J.-M. Talbot. A generalised twinning property for minimi-
sation of cost register automata. Available at hal.archives-ouvertes.fr/hal-01201704,
2015.

8 J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic, 2:216–254, 2001.

9 E. Filiot. Logic-automata connections for transformations. In ICLA, pages 30–57, 2015.

10 E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. From two-way to one-way finite state
transducers. In LICS, pages 468–477. IEEE Computer Society, 2013.

11 E. Filiot, S. N. Krishna, and A. Trivedi. First-order definable string transformations. In
FSTTCS, volume 29 of LIPIcs, pages 147–159. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014.

12 J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198–200, 1959.

13 M. Sipser. Lower bounds on the size of sweeping automata. In STOC, pages 360–364.
ACM, 1979.

hal.archives-ouvertes.fr/hal-01201704

	Introduction
	Two-way transducers
	Streaming transducers
	One-way definability
	k-pass sweeping definability
	Sweeping transducers and MSO
	Conclusions

