
HAL Id: hal-01274966
https://hal.science/hal-01274966

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interfacial Instability during Granular Erosion
Gautier Lefebvre, Aymeric Merceron, Pierre Jop

To cite this version:
Gautier Lefebvre, Aymeric Merceron, Pierre Jop. Interfacial Instability during Granular Erosion.
Physical Review Letters, 2016, 116 (6), pp.068002 �10.1103/PhysRevLett.116.068002�. �hal-01274966�

https://hal.science/hal-01274966
https://hal.archives-ouvertes.fr


Interfacial Instability during Granular Erosion

Gautier Lefebvre, Aymeric Merceron, and Pierre Jop∗

Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,
39, quai Lucien Lefranc, F-93303 Aubervilliers, Cedex, France
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The complex interplay between the topography and the erosion and deposition phenomena is a
key feature to model granular flows such as landslides. Here, we investigated the instability that
develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and
the propagation of the generated steps are analyzed in relation to the specific erosion mechanism.
The selected flowing angle of the confined flow on a dry heap appears to play an important role
both in the final state of the experiment, and for the shape of the structures. We show that the
development of the instability is governed by the inertia of the flow through the Froude number. We
model this instability and predict growth rates that are in agreement with the experiment results.

Understanding sediment transport in Nature is essen-
tial to model landscape evolution, such as the transport
processes in rivers and their formation [1, 2]. Patterns
are known to spontaneously develop at the bottom of
the river bed depending on the coupling between the flow
and the bed geometry through the erosion/transport laws
[3, 4]. Granular flows such as landslides can also alter the
underlying ground. However, contrary to the fluid case,
the erosion mechanisms are less clear when the granular
material is dense. Thus recent studies have focused on
the evolution of the interface between an erodible layer
and a granular flow [5–7], especially to model the entrain-
ment rates, the velocities and the runout distances. Un-
derstanding such processes can also give insights on past
and present climates for example [8–10]. Moreover, al-
though the instabilities of riverbeds have been extensively
characterized [11], the studies of instabilities in granular
flows were generally focused on the flowing layer, thus
describing avalanche fronts, roll waves, upward traveling
waves [12–15], providing a better understanding of gran-
ular flows. As a result, little attention has been paid to
the evolution of a granular bed under a solid mechanical
load [16, 17]. Finally, while previous studies on the ero-
sion rate of a cohesive media by a granular flow focused
on the physical properties of the cohesive materials (liq-
uid bridges, tensile strength, elastic modulus) [7, 18, 19],
the coupling between the erosion mechanism and the in-
terface morphology with the granular flow is still an open
question.

In this Letter, we explore the coupling between a flow
of dry granular material and a cohesive granular bed.
Our experiment exhibits an instability, as a train of steps
appears along the initially flat interface. Although this
instability shares similarities with the erosion of a dense
cohesive bed by fluid flow [3], we show that this system
presents unique features linked to the specific properties
of granular matter. Using a granular rheology and an ero-
sion law, we can model the phenomenon. The threshold
and growth rates of the initial instabilities are in good
agreement with the theory, providing insights into the
erosion mechanism itself.

We performed experiments in a quasi-two-dimensional
cell made of parallel vertical glass plates, whose gap
width W was set at 6 and 12 mm. The same polydis-
perse glass beads of diameter 200-400 µm were used for
both the cohesive granular bed and the flow. The cohe-
sive material was obtained by mixing a small quantity of
water with the beads to obtain a low water content of
1% wt, which corresponds to the formation of individ-
ual capillary bridges [20]. This material was introduced
and packed into the cell to form a heap with a planar
free-surface of length ranging from 30 to 35 cm. We in-
jected the dry granular material at the top left of the cell
so a flowing layer would from above the wet heap (Fig.
1a). The two remaining parameters are the initial incli-
nation of the heap θi and the constant injected flow rate
Q. Both parameters influence the flow properties, mainly
the stresses at the interface τb and the mean velocity u.

As shown by the time evolution of the heap in figure 1a,
erosion occurs at the interface between the cohesive pile
and the granular flow, without deposition. Wet beads are
slowly extracted by the action of the dry flow. Thus, the
volume of the cohesive heap is gradually reduced during
the experiment until it reaches a steady state in which the
interface is flat and the dry granular material flows with-
out eroding the wet bed. During this erosion process, two
different interface morphologies can be observed. Either
the eroded interface remains initially flat and parallel to
the initial slope, or we observe the creation of step-shaped
structures for rather high inclinations and high flow rates.
These steps grow and propagate upstream, as shown in
figures 1a,b, then disappear one after the other at the
top of the channel. Once they all have disappeared, the
erosion stops. In both cases, the final interface is flat and
forms an angle θf with the horizontal with θf < θi.

Figure 1b shows the evolution of the heap free surface
with time in an unstable case. The first minutes of the
development of the instability see the creation of many
structures of small sizes, rapidly merged by a coarsening-
like process. The surviving steps go through a growth
phase lasting roughly 30 minutes, until they reach a sta-
ble shape (height and length): The back of the steps is
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FIG. 1. (a) Successive lateral views of a typical experiment. The shallow flowing granular layer appears brighter above the wet
heap. The first frame is the initial state, and the others are snapshots taken during the erosion. The black arrow follows one
step. The flow rate is 3.3 g/s and the initial inclination 35.8o. The width of one picture corresponds to 27 cm. (b) Successive
profiles of the interface, from dark blue to light red, every 15 minutes in the 6 mm channel, showing the steady propagation of
steps over an initial slope angle of 39.4o.

not eroded, and appears as straight parallel lines while
the front propagates upwards at a constant speed. We
note that, close to the entrance and exit of the channel,
the steps are influenced either by the injection point or
by the accelerating flow. A single experiment may pro-
duce steps with different sizes, even once they are well
established. However all the steps display a similar steep
front, and a flat back with a well defined slope. Figure
2a shows the shapes of four different steps obtained for
the same flow rate and different initial slopes. The front
is well fitted by a parabola, whereas the back forms an
angle θf with the horizontal, which is equal to the fi-
nal erosion angle. This means that the final equilibrium
state is quickly reached locally, i.e. at the back of the
steps. Moreover, the quantitative fitting of the parabola
corresponds to a free fall under the gravity with an initial
velocity of 22 cm.s−1 (solid red lines) which is compara-
ble to the mean velocity u of the flow on the final slope
(11.6 cm.s−1). This collapse of different step profiles also
shows that the shape of the higher fronts are a simple
continuation of the smaller ones (fig 2a). We interpret
this similar shape as a consequence of the take-off of the
granular flow occurring on the front of the steps. As
the grains are almost free-falling after this point, there is
no feedback from the lower part of the chute toward the
upper part of the front of the steps through the dilute
flow. This decoupling explains why the shape is kept,
regardless of its size. It is worth noting that the erosion
mechanism by this dilute flow is also probably different
from the one initially occurring with the dense flow. This
morphology and this propagation share similarities with
the head-cut [21] or step and pool formation in riverbeds
[3].

In the following, we focus on the final slope observed
for both types of erosion morphology in this system. First
let us comment on the stress evolution at the interface.
For experiments driven at constant flow rate as these
ones, one easily shows that the shear stress is increasing
when the slope decreases using granular scaling laws (a
result valid along an inclined plane [22], in presence of
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FIG. 2. (a) Superimposition of steps from a given experiment
(black and blue dashed lines, solid green), and of a bigger step
(dotted black), built from a higher initial slope angle: 43.7o.
The shifted red lines are a fitting curve composed of a straight
line of slope 31o followed by a parabolic curve corresponding
to a free fall. (b) Angle of the heap at the end of the experi-
ment θf , versus the steady angle of flow of the same granular
material down a dry heap θeq. Different flow rates are used
to modify θeq, and the cohesive heap is made of glass beads.

sidewall friction [23, 24] or captured by empirical laws
close to the flow threshold [25]). Moreover, recent ex-
periments have shown that the erosion of a wet granular
surface results from a stochastic phenomenon [7]. These
remarks rule out any intrinsic erosion threshold due to
the wet pile. Therefore we measured the final angle θf
for different flow rates, in channels of different widths,
using stainless steel and glass beads, while keeping the
same erodible heap (wet glass beads). Concurrently to
each experiment, we directly measured the flow slope in
the very same conditions, injecting the same flow rate
in an initially empty cell (without the wet pile). In this
well-known granular-flow geometry on a dry heap (called
heap flow), the flowing layer stabilizes over a static dry
heap at a given angle depending on the flow rate [23, 24].
Figure 2b shows that this heap-flow angle θeq is equal
to the final erosion angle, which proves that the erosion
limit depends only on the flow properties. If the inter-
face angle became smaller than the heap-flow angle, then
a static dry layer would form between the wet grains and
the flow preventing any further erosion process to occur.
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This criterion thus explains the angle of the back of the
steps. One last consequence of the localization of the
erosion on the step fronts is the reduction of the average
erosion rate up to a factor 2 (see Suppl. Mat. [26]).

As already mentioned, the erosion of the cohesive heap
does not always lead to the generation of steps. We ex-
plored under which conditions the interface remains flat.
Due to the analogy with the shape and the propagation
of the structures led by the pool and step instabilities in
riverbeds [3], we expect to observe an inertial destabi-
lization if the physical origin is identical. The underlying
mechanism would be the phase lag between the topogra-
phy and the local erosion rate due to inertia. Such phase
lag exists for anti-dune or step-pool formations between
the transport coefficient or the erosion and the shape of
the interface [3, 4][27]. We expect therefore a stability
criterion based on the Froude number Fr = u/

√
gh cos θi,

which compares the inertia with the gravity effects, where
g cos θi is the projection of the gravity perpendicular to
the slope. We first check the relevance of a critical Froude
number by plotting the different states observed in the
two channels in the Fr−θi diagram. As shown by the gray
strip in the figure 3a, our measurements show a critical
Froude number, around 0.75, above which the instability
develops. The mechanism is thus the delay of the local
erosion rate with respect to the topography induced by
the flow inertia.

Consequently, in the parameter space (θi, flow rate)
plotted in figure 3b, we can now draw the limits of the
stable domain using iso-Fr lines. To compute the coordi-
nates of these lines, we use the now established rheology
for such dense dry granular flows µ(I) [28], which links
the internal friction coefficient to the inertial number.
More precisely, assuming the flat interface to be rigid at
the time scale of the flow, we follow the approach pro-
posed by Jop et al. [24] to compute the vertical velocity
profile: we integrate numerically the velocity profile of a
steady 2D granular flow on a rigid rough plane with a no-
slip boundary condition, and including friction at side-
walls [26]. After adjusting the parameters of the model
on other dry heap experiments, we are able to draw the
limits in the phase diagram (Fig. 3b). The solid line cor-
responds to the equilibrium angle of the flow over a dry
heap. The dashed line is an iso-Froude curve (Fr = 0.87,
see later) which delimit the stable region.

To further understand the mechanism of the instabil-
ity, we model the flow using a Saint-Venant approach in a
long-wave approximation [29](see Suppl. Mat. [26]). In
the following, the influence of sidewalls will only be taken
into account in the shape of the vertical velocity profile
in the basic state. We discard this frictional term in the
equations for sake of simplicity and because h/W < 0.48
in the experiments [24]. The reference framework is the
flat initial interface (the x-z axes in fig. 1a) eroded at
constant rate < dη/dt >= −E0, which represents the
normal velocity of the mean interface. The evolution

of the thickness h, the elevation of the interface η and
the mean velocity u are then described by three equa-
tions: the mass conservation inside the flow of constant
volume fraction and the momentum equation, both inte-
grated over the depth z, and the erosion law. We veri-
fied the scale separation between the characteristic times
of the slow erosion process (few cm/hr) and of the flow
(10 cm/s). This quasistatic evolution allows to neglect
the mass flux into the flow due to erosion and the time
derivative in the momentum equation:

ρ
∂(αhu2)

∂x
= ρgh cos θ

(
tan θ − µb(u, h)− ∂h

∂x

)
, (1)

where α takes into account the vertical velocity profile
(e.g. 5/4 for a Bagnold velocity profile or 4/3 for a lin-
ear velocity profile as in our case). The left term is the
inertia, and in the right hand side, from left to right,
the terms are the weight of the layer, the basal friction
and the derivative of the pressure. The basal friction is
modeled by the µ(I) rheology [12, 28]. Following recent
results on granular erosion [7], the erosion rate ∂η

∂t is pro-

portional to −Fcap

F exp(−Fcap

F ), where Fcap is the capil-
lary force responsible for the cohesion and F is the mean
force acting on grains. We used forces instead of stresses
because the model was developed at the grain scale. In
addition, we focus here only on the physical mechanism
of the instability not on the influence of the cohesion on
erosion [7]. As shown by the Fig. 3a,b, the erosion insta-
bility is linked to the inertia of the flowing grains, so F
must depend on their inertia. A recent numerical study
[19] proposes that the average force of impacting grains
is linked to their kinetic energy. We thus assume that F
is proportional to (ρu2)β/2 with β = 1.2 [19]. The pa-
rameters are made dimensionless using the steady state
erosion rate of the flat interface E0, the thickness h0,
the flow rate per unit width q0, and the mean force F0:
h̃ = h/h0, x̃ = x/h0, η̃ = η/h0, ũ = uh0/q0, t̃ = tE0/h0.
After linearization around the initial steady state on a
flat interface of slope θi we decompose the flow into nor-
mal modes ∝ exp−i(k̃x̃+ ω̃t̃) and find the growth rate:

σ̃ = =(ω̃) = c
k̃2(αFr2 − 1)

(a− b)2 + k̃2(αFr2 − 1)2
, (2)

where a and b are ∂µb/∂u and ∂µb/∂h [12][26], and c =
β(Fcap/F0−1). A critical Froude number is found above
which the interface is unstable: Frc = α−1/2 = 0.87
for α = 4/3. We use this value to plot the iso-Froude
curve in figure 3b showing a good agreement with the
experimental results. Moreover, we can compare the pre-
dicted initial growth rate to the experimental ones, mea-
suring the height of the steps in the early exponential
regime. Figure 3c shows the measured growth rates of
the initial steps rising from the flat interface for differ-
ent experiments. The most unstable mode is obtained



4

0 5 10 15 20 25 30 35
FlowSrateS(g/s)

24

26

28

30

32

34

36

In
iti

al
Sa

ng
le

S(
de

g
)

Unstable
NeutralScases
Stable

drySheapSflow

~

~ ~

(a) (b)

-3

0

3

6

0 1 2 3

G
ro

w
th

Sr
at

e
σ

Fr

0

6

0

σ e
xp

σtheo
6

F
r

InitialSangleS(deg)

Unstable (12mm)
Neutral (12mm)
Stable (12mm)
Unstable (6 mm)
Neutral (6mm)
Stable (6mm)

25 30 35 40 45
(c)

3

2

1

0

FIG. 3. (a) Evolution of the interface with the initial Fr. The symbols depict the evolution of the interface. The borders of the
gray strip are 0.7 and 0.8. (b) (θi-flow rate) phase diagram in the 12 mm-wide channel. The solid line is the heap flow angle
θeq, under which erosion is not possible. The dashed line is the curve Fr = 0.87. (c) Dimensionless growth rates of the most
unstable mode as a function of the Froude number in experiments for glass beads in the 6 mm channels (•) and 12 mm channel
(◦) and steel beads in 12 mm channel (�). The curves correspond to a prediction of the theoretical growth rate (eq. (2)) for

the most unstable mode k̃ =∞ (dashed line) and for a wave number in agreement with the experiment h0k = 0.1 (solid line)

at an inclination of θi = 30o. Inset: Direct comparison of growth rates using the measured wave numbers k̃ as a parameter.

with k̃ = ∞ whose growth rate diverges at the thresh-
old (dashed line). However, the model predictions for
kh0 = 0.1 and θi = 30o are in good agreement with
the experimental data considering the error bars, not-
ing that the experimental k̃ is not strictly constant but
close to 0.1. The inset of Fig. 3c shows the comparison
when using the experimental k̃. We checked that choos-
ing a different shape factor α for the steady-state veloc-
ity profile does not change qualitatively the graph. Our
study indicate that inertia drives this instability. When-
ever the granular flow is supercritical (Fr > Frc), the
interface does not remain flat. This result is important
to model correctly the evolution of the interface: if the
mean erosion-force acting on the interface was linked to
the weight of the layer or to the shear stress, the in-
stability would not be predicted. Our findings strongly
support the role of the impact of individual grains [19] in
granular erosion mechanisms.

In conclusion, we have studied a new erosion instabil-
ity occurring with granular flows over a cohesive granu-
lar bed. Above a critical Froude number, the interface
is unstable and the shape of the steps is governed by
the properties of the granular flows. We model with suc-
cess the mechanisms in the framework of a Saint-Venant
approach, extending the relevance of the depth-averaged
methods to model complex evolutions of granular flows
[29, 30]. However, this model cannot predict any selec-
tion of a finite wavelength, additional longitudinal dissi-
pation term in the momentum equation may be able to
reduce the growth rate of too short wavelengths [29, 30].
We finally identify that the inertia of grains governs the
erosion mechanisms in dense granular flows. Further
work is required to model the dilute erosion mechanisms
in the fully developed state. We believe that our results
could lead to a better understanding of geophysical flows.
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