Romain Jacob
email: rjacob@ens-cachan.fr

J Karl Hedrick
email: khedrick@me.berkeley.edu

directP ath : An Expert Path Planning Framework to Handle Environment Knowledge

The main purpose of this paper is to present a new path planning framework, called directP ath, aimed to handle a priori environment knowledge efficiently. Our algorithm is an expert system designed to specifically exploit that knowledge, and then eventually collaborate with other frameworks in order to improve overall path planning performances.

It performs a forward search with partial heuristic. It is iterative and can return a partial but safe path when terminated early. Moreover, unlike classical search algorithms, its design allows a quick detection of unfeasible problems.

In this paper, we present the framework structure and illustrate its performances and properties by simulations. We will show that directP ath can complete the planning task very quickly, with only minor optimality loss.

I. INTRODUCTION

Since the 1980s, a tremendous amount of work has been done on real-time path planning for autonomous mobile robots. The classic formulation for a path planning problem is the following : Given an initial position and orientation of an agent and a goal position, a path planner will generate a continuous free path starting at the initial position and orientation terminating at the goal position, if such path exists, and report a failure otherwise [1].

Two main approaches are used to deal with this classic path planning problem. There are referred to as global and local approaches.

Global approaches use a mapping of the entire accessible environment to solve the path planning problem. That insures the property of global convergence. The path planning problem will be solved, if feasible. However, building and eventually updating a global map is a heavy computational burden to bear for a robot. That is one of the main challenges for Simultaneous Localization And Mapping (SLAM), which is currently heavily studied [START_REF] Bailey | Simultaneous localization and mapping (slam): Part ii[END_REF]- [START_REF] Mullane | A random-finite-set approach to bayesian slam[END_REF].

Local sensor-based path planning frameworks, on the other hand, use latest sensor data to plan future actions in a reactive/adaptive way. Most commonly used approaches include potential field methods (also known as virtual forces [START_REF] Ge | Dynamic motion planning for mobile robots using potential field method[END_REF] [START_REF] Koren | Potential field methods and their inherent limitations for mobile robot navigation[END_REF]), behavior-based systems [START_REF] Arkin | Motor schema-based mobile robot navigation[END_REF] [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF] and fuzzy logic approaches [9] [10].

Although they are usually much simpler to implement than global ones, local planners may get trapped in a local minimum and subsequently follow a diverging path or a loop, while attempting to escape from it. Thus, it is not realistic to rely only on local planners. As a result, researchers are commonly combining different approaches to improve overall performances [START_REF] Fang | A multi-objective strategy based on frontierbased approach and fisher information matrix for autonomous exploration[END_REF].

Similarly, the directP ath algorithm we present here can be coupled with classical frameworks. Indeed, these aim to be useful in real application cases, where we often have only partial or no prior knowledge of the environment. As a result, it led us toward planning frameworks which do not benefit from such a priori knowledge when there is some, or at least not efficiently.

Our algorithm is an expert system designed to specifically exploit that knowledge, and then eventually collaborate with other frameworks to optimize overall performances. It aims to quickly detect unfeasible problems and to reduce computation time.

II. PROBLEM FORMULATION

We are considering a standard path planning problem in a known environment. In R 2 , given a starting point S, a goal point G, and a set of obstacles O, find the minimum length path P, string of points that connects S and G without intersecting with any obstacle. Obstacles are closed polygons. They can be either convex or non-convex.

To solve this problem, we present a new framework, called directP ath, which efficiently handles a priori environment knowledge. It is able to complete the path planning task on its own, or can be used as a support to other frameworks, in a hybrid manner.

The III. FRAMEWORK DESCRIPTION This paper aims to present a path planning framework which efficiently benefits from environment knowledge and that can quickly detect unfeasible problems.

We will discuss that directP ath can either solve the planning task on its own (Section IV) or be coupled with other path planning frameworks, in a hybrid manner, to improve overall path planning performances (Section V).

A. Framework structure

The directP ath framework is built on a simple fact. When one wants to go in a direction and encounters an obstacle, there are only two options. It can go around the obstacle clockwise, or counterclockwise. As illustrated in Figure 1, up to two subgoals can be found, from which the obstacle is no longer on the way. Ultimately, the path planning task can be reduced to a succession of choices between subgoal options.

directP ath uses that idea to produce a valid path. First, it tries to go straight to the current goal, g. For any obstacle on its way, subgoal options are generated and a choice is made. The chosen subgoal becomes the new current goal to reach. The previous one is saved and will be retrieved once the subgoal will be reached. The algorithm iterates until the initial goal, G, is reached. ALGORITHM 1 is directP ath pseudo-code.

In the following, we describe in more details the main functions called in directP ath. (s, g, P) ← update(s, g, P, I, sub g) ; 13: end while 2) def ineSubGoals(s, g, I) : This function takes s, g and I as inputs and returns the set of subgoal options :

� 2 �� � 1 �� � � � ���� � ����� � 3 �� O 1 O 2 (a) � � � �� � ��� O 1 O 2 (b) Figure 2. Subgoals definition method : (a) wallF ollow(Istart, O 1 , cw) ; (b) SUBg = { Gcw ; Gccw }. ALGORITHM 1 directPath(S, G, O) 1: s ← S ; g ← G ; P = {S, G} ; // Initialization 2: while s = G do 3: I ← getIntersection(s, g, O) ; 4: if I = ∅ then 5: SUB g ← def ineSubGoals(s, g, I) ; 6: if SUB g = ∅ then 7: return P = ∅ ; // No
SUB g = { G cw ; G ccw }. Details are shown in ALGORITHM 2.
Notice that the function takes I (and not O) as input. It implies that only O ind (the first obstacle on the way) is considered while defining subgoals (e.g., in Figure 2 case, obstacle O 2 is ignored). It means that once one reaches a subgoal, it will be able to go straight from it to g if no other obstacle is on the rest of the way. If there are, the algorithm will iterate to reach g, and ultimately to reach the initial goal, G. Refer to ALGORITHM 1.

In some cases, the wallF ollow() function might fail to find a valid subgoal. For instance, if wallF ollow() takes the agent outside of the environment boundaries, or in a nonaccessible location (e.g., a too narrow corridor). This is how the algorithm detects unfeasible problems. If both clockwise and counterclockwise wall-followings fail, directP ath will return an empty path : the obstacle on the way is unpassable. Refer to lines 5-7 in ALGORITHM 1.

ALGORITHM 2 defineSubGoals(s, g, I)

G ccw is undefined ; 19: end if 20: return SUB g = { G cw ; G ccw }
3) chooseSubGoal(s, g,SUB g) : This function takes s, g and the set SUB g as inputs and returns the next subgoal to go to : sub g . When both G cw and G ccw have been successfully defined, we need to make a choice : Which subgoal should we try to reach before heading again to g ? Depending on the situation, this is performed either by the use of a heuristic or by considering previous choices made. For every obstacle, the first subgoal is always picked by heuristic(). If more than one subgoal is needed to get pass the same obstacle, then history() is used. Both sub-fuctions are described below : a) heuristic(s, g,SUB g) : This function takes s, g and SUB g as inputs and returns a pair of path lengths H = (H cw ; H ccw). These lengths are estimates of the euclidean length of paths {s, G (c)cw , g}, which we want to minimize. They are computed as follows :

H (c)cw = l (c)cw 1 + d (c)cw + l (c)cw 2 Where l (c)cw 1 sG (c)cw and l (c)cw 2 = G (c)cw g. d (c)cw is presented in the next paragraph.
It turns out that l (c)cw 1

is not sufficient to provide a good estimate of the final length of {s, G (c)cw }. As illustrated in Figure 3, it does not take into account that we have to go around the obstacle to reach G (c)cw . d (c)cw is added to the heuristic to solve that problem. It is defined as the maximal distance we get away from -→ sg during the wall-followings performed in def ineSubGoals(). It is an estimate of the penalty for having to go around the obstacle, instead of going straight to G (c)cw . This is illustrated in Figure 3(b).

� � � ��� � �� � ����� � ���� � � �� � � �� � � ��� � � ��� (a) � � � �� � ����� � ��� � � �� � � �� � � ��� � � ��� � �� � ��� (b)
Simulations have shown this heuristic to be sufficient to pick the best subgoal. b) history() : This function takes previous choices made as inputs and returns sub g . When several subgoals are needed to get pass the same obstacle, the algorithm makes choices consistent with the previous ones.

For example, consider Figure 3(b) case. If we were to choose G ccw (which is not optimal since H cw < H ccw), we would need to pick another subgoal afterwards to reach it. Then directP ath would keep getting pass the obstacle counterclockwise, to provide consistency to the choosing strategy. This avoids to get trapped in a local minimum, which, in our case, would be a loop, a cyclic choices of the same subgoals.

In a maze, one will ultimately get out by always turning in the same direction. Similarly, our strategy assure to get pass any obstacle, if it can be.

Consequences of this approach in term of completeness and optimality will be further discussed in CONCLUSIONS (Section VI).

4) update(s, g, P, I, sub g) : This function takes s, g, P, I and sub g as inputs. It returns s and g for the next iteration (while loop line 2 of ALGORITHM 1). Eventually, it extends the current path P.

Let us assume the current path is :

P = {S,

B. Overview of framework properties

In the last section, we described the main functions called in directP ath. Here, we highlight the main properties of that framework.

Most importantly, if the planning task is unfeasible, directP ath terminates as soon as the unpassable element (e.g., an absolute barrier or a too narrow corridor) is encountered. If def ineSubGoals() returns an empty set, the algorithm stops and returns an empty path without wasting any more time.

Moreover, the algorithm plans in a forward manner. Once first segments of the path are returned, they will be on the final path. Then, even if the rest of the path is computing, the agent can start tracking the beginning of the path, without any efficiency loss.

Finally, since it is completely built on geometry, directP ath is deterministic. This avoids problems that might occur with biased random methods, in which randomness sometimes produces unexpected long computation times.

In the next section, we present an empirical evaluation of some properties and performances of directP ath.

IV. EMPIRICAL EVALUATION

Simulations have been performed to illustrate and evaluate two key performances of the framework : computation speed and path efficiency. We used a basic scenario, described in the following, to compare directP ath with a standard A framework [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF].

A. Simulation scenario

Given a 2 dimensional squared grid world (later referred to as a field) and set of obstacles O, an agent has to find its way between a starting point S and goal point and G. The field is a room-like environment. The agent cannot go out of the boundaries. Allowed actions are cardinal and diagonal moves.

In this scenario, agent shape is not considered : it is limited to a simple dot, which gives a 2 dimensional problem (X and Y coordinates, the agent orientation can be omitted due to that assumption). This model is sufficient since obstacle boundaries can be arbitrary expended to compensate for an agent of nonzero size [START_REF] Todor | A method for autonomous robot navigation in partly known structured environments[END_REF]. Moreover, the dimensional loss doesn't matter since we mainly want to compare performances of directP ath and A . Among others, we focus on two important parameters : the number of walkable states in the field, N (the size of the state space), and the heuristic value of a scenario, later referred to as h val . It is defined as the ratio of the euclidean distance and the length of the shortest path between S and G :

h val = SG length of the optimal path
Therefore, the smaller the h val , the harder the scenario is to solve. If h val = 1, there is no obstacle between S and G.

Fields were extracted from an open repository of room maps, mazes and random maps [START_REF] Sturtevant | Benchmarks for grid-based pathfinding[END_REF]. From 150 different maps, we kept parts of different size (e.g., 20 by 20, 100 by 100, ...) to get a wide range of N values. S and G were picked randomly. Path lengths are measured with diagonal moves having cost √ 2 and cardinal ones having cost 1. To ease the results analysis, we regrouped data points into buckets. Each bucket represents an interval of N and h val (e.g., 1.10 4 < N < 5.10 5 and 0.4 < h val < 0.5) and contains at least 10 data points.

B. Framework evaluation

We evaluate directP ath performances through two key features : the average computation time to solve the path planning problem, and the efficiency of the returned path, later referred to as η. Simulation results are allocated into N and h val buckets. Figures show mean values over the buckets.

Our framework is compared with a basic A algorithm, which uses euclidean distance to the goal as heuristic, no tie-breaking rule and no embedded way of using a priori information about obstacles shape and location.

Simulations were run with an Intel Core i7-3740QM, 2.70GHz CPU and 8GB RAM.

1) Computation time : Computation time results are presented in Figure 5.

The blue lines, associated to the left-hand Y-axis, represent the mean computation time for directP ath to solve the problem. Red bars represent standard deviation over each bucket. The green doted-lines, associated to the right-hand Yaxis, represent the time ratio between directP ath and A . When the ratio is smaller than one, directP ath is faster than A .

From these results, we can say that directP ath completes fairy quickly. For instance, it takes no more than 0.4 second to find a path in fields of 10000 states, even for the most difficult scenario (when h val is very small).

Standard deviation is higher for difficult scenario. This is mainly because we do not consider the optimal path length of a scenario while allocating it in a bucket. In most difficult scenario, path lengths can vary a lot, and so the computation time. Optimal path length would be a pertinent third parameter for further performances evaluation.

Naturally, both algorithms require more time when difficulty increases (when N grows and h val drops). However, time ratio illustrates how the computation time of both algorithms evolves with scenario challenge. It shows that directP ath performs better, compared to A , when N grows (up to 20 times faster when N > 10 5) ; but this benefit diminishes with h val .

2) Path efficiency η : Another key feature of a path planning framework is the optimality of the paths it returnswith respect to a given cost function. In our case, we want to minimize the total length of the path. We define the path efficiency η as : η = length of the optimal path length of returned path

The optimal path length is obtained by using A , which is proven to be optimal [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF]. So η provides a good metrix for optimality.

Simulation results are presented in Figure 6.

As expected, the efficiency of directP ath decreases with the problem challenge. We mentioned in Section III that suboptimality mainly comes from the decision making process. So naturally, the more decisions directP ath makes, the more likely it is to return a suboptimal path.

However, Figure 6 shows a fairly small loss of optimality (most of the time below 5%). The average efficiency of returned paths remains close to 1, which correspond to the optimal path returned by the A algorithm.

We can also note that η seems higher when h val is very small. This is because smaller h val scenario mainly come from mazes, in which there are in general only few options to reach the goal. Ultimately, if there were only one way to get to the goal, directP ath would necessarily return the optimal path, since no suboptimal decisions can lead to the goal.

V. POSSIBLE HYBRID USE OF directP ath

Simulations presented in the last section allow us to say that directP ath can provide valid paths quickly, with only small optimality loss. In this section, we point out some possible benefit for a hybrid use of directP ath with other classical frameworks.

A. Quick detection of unfeasible problems

As presented in Section III, a key property of directP ath design is its ability to quickly detect unfeasible problems.

This can be very useful when the state space size grows. Indeed, for search algorithms like A , time to detect unfeasibility is at least of the order of the number of reachable states from the starting point. Which can be huge.

B. Hybrid use with A

Consider using directP ath to obtain a succession of subgoals from S to G. Then, instead of asking A to produce the complete path, subdivide the planning task, asking for a path to the first subgoal, and iterate until the initial goal G is reached. This is to say that we use a new (inconsistent) heuristic in a A framework. It would be the euclidean distance to next subgoal. It can also be considered as a scale reduction approach.

That would allow to deal with higher dimensional problems. For instance directP ath would return directions for X and Y coordinates of the agent while A would handle its shape and orientation. However, it would inherit the suboptimality of directP ath.

C. Hybrid use with a potential field approach Consider using the original path returned by directP ath as a guide to avoid local minimum in a potential field framework.

That could be very interesting in applications with complex motion constrains (e.g., kinematics plus dynamics) and in dynamic environments, both aspects well-handled by potential field approaches. These claims are no proof for a general benefit of using directP ath in hybrid frameworks. However, it seems fair to say that further studies on this subject are worth being considered.

VI. CONCLUSIONS directP ath aims to efficiently benefit from a priori environment knowledge. Therefore, speed is a key feature of the algorithm. We showed in Section IV that the path planning task is completed fairly quickly. Moreover, directP ath can quickly detect unfeasible problems. The order of directP ath completion time is O(n × l), where n is the number of obstacles and l the order of their perimeter. This has not be discussed here because of space limitation. Eventually, this would make it suitable for on-line planning.

However, it returns suboptimal paths. As presented in Section III, this comes from both the subgoal definition method (def ineSubGoals()) and the choosing strategy (chooseSubGoal()). Indeed, when subgoals are defined, in order to have simpler sub-problems to solve, we only consider the first obstacle on the way and focus on getting pass this one. That relative myopia can yield to suboptimal decisions. The other main source of suboptimality is the use of history() to choose a subgoal. However, this provides consistency to the choosing strategy of directP ath. Consistency is commonly used in wall-following based approaches [START_REF] Katsev | Mapping and pursuit-evasion strategies for a simple wall-following robot[END_REF] [START_REF] Yun | A wall-following method for escaping local minima in potential field based motion planning[END_REF] and is known to be a good assurance for completeness (which is the property of solving any feasible problem). It has been proven for similar frameworks [17] [18]. Completeness of directP ath remains to be analytically proven. However, during the heavy benchmarking we performed, it always succeeded in complete the planning task, which makes us confident about directP ath completeness.

Finally, in Section V, we suggested potential benefits of combining directP ath with other frameworks. More generally, it might be worth considering to couple directP ath with any framework specially aimed to produce kinematic constrained paths [START_REF] Song | Distributed relative attitude formation control of multi-agent systems with directed topology[END_REF] [START_REF] Kuroda | Simultaneous adaptive path planning system for the real world application[END_REF].

14 : return P 1)

 141 getIntersection(s, g, O) : This function takes two points s and g, and a set of obstacles O as inputs. It checks whether or not -→ sg intersects with any obstacles of O. It returns a pair I = (I obst , O ind), where I obst is the closest intersection point from s (as illustrated in Figure 2(a)). O ind is the obstacle on the way. If no obstacle lies between s and g, getIntersection() returns I = ∅.

Figure 3 .

 3 Figure 3. Heuristic definition : (a) Definition of l (c)cw 1 and l (c)cw 2 ; (b) Definition of d (c)cw .

Figure 4 .

 4 Figure 4. Example of scenario : N = 250 and h val ≈ 0.35

Figure 5 .

 5 Figure 5. Computation time for different h val and six classes of state space size N

Figure 6 .

 6 Figure 6. Path efficiency η for different h val and six classes of state space size N

1 :

 1 I start ← closestN eigh(I obst , O ind) ;

	2: I cw 0 ← I start ; k ← 0 ;	// cw wall-following
	3: repeat
	4: 5: until (getIntersection(I cw I cw k+1 ← wallF ollow(I cw k , O ind , cw) ; k ← k + 1 ; k , g, O) = ∅ or /isV alid(I cw k)) 6: if isV alid(I cw k) then 7: G cw ← I cw k ;
	8: else	
	9:	G cw is undefined ;
	10: end if
	11: I ccw 0	← I start ; k ← 0 ;	// ccw wall-following
	12: repeat
	13: 14: until (getIntersection(I ccw I ccw k+1 ← wallF ollow(I ccw k , O ind , cw) ; k ← k + 1 ; k , g, O) = ∅ or /isV alid(I ccw k)) 15: if isV alid(I ccw k) then 16: G ccw ← I ccw k ;
	17: else	
	18:		

 {S, wp 1 , . . . wp k , An obstacle is on the way and a subgoal sub g ∈ {G cw ; G ccw } has been returned by chooseSubGoal(). In that case, the current starting point s remains, sub g is set as new current goal point and the path is extended.

	s ←-wp k
	g ←-sub g

wp 1 , . . . s wp k , g wp k+1 , wp k+2 , . . . , G} a) If I = ∅ : No obstacle lies between s and g. We only have to increment current starting point s and goal point g. s ←-wp k+1 g ←-wp k+2 ⇒ P = s wp k+1 , g wp k+2 , . . . , G} b) If I = ∅ : ⇒ P = {S, wp 1 , . . . s wp k , g sub g , wp k+1 , wp k+2 , . . . , G}