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Abstract 

In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute 

decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces 

blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary 

hypertension. Several studies have shown a role of serotonin in regulating acute and chronic 

hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung 

hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin 

transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear required for 

pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species 

and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient 

who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus 

truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation 

capacity than wildtype receptor. Under low oxygen tension, cells increase the transcription of 

specific genes via stabilization of the transcription factor HIF-1. Factors such as angiotensin II or 

thrombin that can also control HIF-1 pathway, contribute to pulmonary vascular remodeling. The 5-

HT2B receptor via phosphatidylinositol-3 kinase/Akt activates NF-kappaB, which is involved in the 

regulation of HIF-1 expression. A control of HIF-1 by 5-HT2B receptors explains why expression of 

pulmonary vascular remodeling factors, such as endothelin-1 or TGF-beta, which is HIF-1-alpha 

regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed 

mechanisms involved in lung hypoxic responses may provide general insight into pulmonary 

hypertension pathogenesis.  

 

 

Keywords: Arteries; Cell Division; Dexfenfluramine; Hypoxia; Physiopathology; Pulmonary 
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Introduction 

Aerobic evolution has resulted in mammalian cells and tissues metabolism that is oxygen-

dependent. At normal O2 tension, oxidative phosphorylation is the principal energy supply for 

eukaryotic cells but at low O2 tension, metabolic switches turn off mitochondrial electron transport 

and activate anaerobic glycolysis. Maintenance of normal tissue function thus depends on a 

continuous supply of O2, so it is crucial that the body detects and responds rapidly to hypoxia (1). 

The vascular system responds to acute hypoxia in several ways. In the systemic arterial system, 

acute hypoxia causes vasodilatation; in pulmonary arteries, however, it elicits reversible 

vasoconstriction (2). Unlike acute hypoxia, in response to chronic hypoxia, pulmonary vasculature 

remodeling (PVR) takes place upon persistent vasoconstriction, resulting in reduced blood vessel 

lumen diameter, increased resistance. This persistent vasoconstriction, when permanent becomes 

irreversible and causes pulmonary hypertension (PH) (3). PVR results from alterations of the 

balance between the effects of vasodilators and antiproliferative agents produced by the 

endothelium (e.g., prostacyclin and nitric oxide (NO⋅), and vasoconstrictors and mitogenic factors 

(e.g., endothelin-1, endothelium-derived growth factor, and 5-HT) (4-6). Understanding the 

mechanisms underlying irreversible PVR is an important step in defining therapeutic targets, since 

many known pulmonary vasodilators diminish pulmonary remodeling by reducing pulmonary 

pressure (7, 8), and remodeling of the walls of distal pulmonary arteries is common in secondary 

and primary PH (9).  

 Serotonin (5-hydroxytryptamine, 5-HT) mediates myriad functions in the nervous and 

vascular systems. In the central nervous system, 5-HT is synthesized by neurons in the raphe 

nucleus; in the periphery, 5-HT is produced by the enterochromaffin cells of the gut. The actions of 

5-HT are mediated by four receptor classes: ligand-gated cation channels (5-HT3 receptors) and 

three groups of G protein-coupled receptors (5-HT1/5, 5-HT2, 5-HT4/6/7), each of which exhibits 

coupling to different in G proteins (10). The 5-HT1/5 receptor (5-HT1R) subfamily has 7 members 

(5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 5-ht5A, and 5-ht5B) that are negatively coupled to adenylyl 
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cyclase via pertussis toxin-sensitive Gi/o proteins, leading to decreases in intracellular cAMP. The 5-

HT2R subfamily comprises 3 members (5-HT2A, 5-HT2B, and 5-HT2C) that are positively coupled to 

phospholipase C (PLC) via Gq/11 proteins, leading to increases in intracellular inositol 1,4,5-

trisphosphate (IP3), 1,2-diacylglycerol (DAG) and Ca2+. The 5-HT4, 5-HT6, and 5-HT7Rs are 

positively coupled to adenylyl cyclase via cholera toxin-sensitive Gs proteins, leading to increases 

in intracellular cAMP. 

 Several studies have demonstrated a role for 5-HTRs in regulating hypoxic responses. For 

instance, in the pond snail Helisoma trivolvis, a decrease in environmental O2 levels after 

gastrulation stimulates cilia-mediated rotational movements of the embryo; this hypoxia-induced 

response is mediated by two serotonergic sensory-motor neurons that both detect reduced O2 levels 

and activate ciliary movements (11). Also, intermittent hypoxia causes a long-term facilitation 

(LTF) of respiratory motor output; this neural plasticity requires 5-HT1A, 5-HT1B, and 5-HT2Rs (12). 

Furthermore, chronic hypoxia enhances LTF-evoked responses to intermittent hypoxia; this 

metaplasticity is mediated by 5-HT2 and 5-HT6 and/or 5-HT7Rs (13). Different chemosensory 

organs such as the carotid bodies (CB) and pulmonary neuroepithelial bodies (NEB) respond to 

hypoxia in a serotonin-dependent fashion. CB type I cells contain 5-HT and express 5-HT1A, 5-HT3, 

and 5-HT5ARs that affect CB function when arterial pO2 is reduced (14). NEBs release 5-HT in 

response to acute hypoxia by a mechanism involving the 5-HT3R (15). Unlike hypoxic responses in 

the nervous system, which involve many different 5-HTR subtypes, hypoxia-induced 

vasoconstriction in the pulmonary vasculature appears to involve only 5-HT1 and 5-HT2Rs. In 

recent years, several studies have demonstrated that 5-HTRs control hypoxic responses in the 

pulmonary vascular system (16). The exact pathways through which hypoxia causes 

vasoconstriction and pulmonary vascular remodeling (PVR) are just beginning to be identified. 

What is clear, however, is that hypoxia alters molecular (e.g., protein expression) and cellular (e.g., 

proliferation) processes via mechanisms that involve serotonin, its receptors, and its transporter to 

elicit the physiological, pulmonary responses to hypoxia (vasoconstriction and PVR). In this 
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review, we will highlight the current understanding of the serotonin-dependent mechanisms 

underlying pulmonary hypoxic responses. 

 

1. Regulation by 5-HT of hypoxia-induced PVR 

 1.1. Hypoxic conditions modify 5-HT levels 

The function of 5-HTRs in hypoxic responses in the pulmonary vasculature must be 

dependent on the presence of suitable 5-HT levels activating these receptors. In healthy subjects, 

unconjugated plasma 5-HT levels are low (<10 nM); however, in PH patients, plasma 5-HT is 

consistently elevated (17-19). A deficiency in platelet 5-HT storage, as is characteristic of Fawn 

hooded rats, contributes to the development of severe PH under both normoxic (20) and hypoxic 

(high altitude) (21) conditions. These observations suggest an etiological role for 5-HT in the 

development of PH and raise two important questions: 1) what is the source of 5-HT in the 

pulmonary vasculature, and 2) how does reduced O2 lead to an increase in plasma 5-HT levels?  

 In the periphery, 5-HT is synthesized and secreted from neuroendocrine enterochromaffin 

cells in the gut. 5-HT is mainly eliminated by uptake in lung endothelial cells, where it is then 

degraded by MAO (22). Platelets take up 5-HT through the 5-HT transporter (5-HTT) and store—

but only slowly degrade—the monoamine. Former studies have shown that long-term hypoxia 

causes decreased platelet counts and short-term hypoxia increased platelet counts (23). Later, it has 

been established that chronic hypoxia, a stimulator of erythropoiesis, causes thrombocytopenia in 

laboratory animals. The thrombocytopenia is most likely the result of a reduction in the production 

of platelets caused by a decrease in the number of megakaryocytes in the bone marrow. The 

thrombocytopenia seems to be caused by competition of a precursor cell of the erythrocytic and 

megakaryocytic cell lines (24). Moreover, hypoxia facilitates platelets aggregation (25). Alteration 

of platelet number and/or function under hypoxic conditions could thus concertedly reduce 5-HT 

uptake and would explain hypoxia-induced increases in circulating plasma 5-HT. In this regard, 

platelet activation was found in the pulmonary vessels of patients with PH secondary to chronic 
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obstructive pulmonary disease (26), and platelet survival time is reduced in patients with hypoxemia 

and PH (27). Anti-platelet agents, such as dipyridamole, reduce hypoxemic PH and the thickness of 

pulmonary arteries in response to chronic hypoxia (28). Based on these results, it has been 

postulated that circulating plasma 5-HT may originate from platelets (29).  

 Pulmonary NEB also secrete 5-HT in response to airway hypoxia (15). In this way, cellular 

and molecular hypoxia-regulated mechanisms, which have an effect on circulating plasma 5-HT 

levels, probably involve platelets and pulmonary NEB, as well as reductions in the lungs’ ability to 

uptake and/or remove 5-HT. The 5-HT2ARs have been detected in platelets (30, 31), where they 

enhance platelets aggregation (25). The activation of presynaptic 5-HT1B/1DR decreases 5-HT release 

(32), and in neonatal rabbit pulmonary NEB, 5-HT3Rs are involved in a positive feedback loop 

resulting in hypoxia-induced 5-HT release (15). Together these observations suggest that 5-HT 

receptors control plasma levels of their ligand in response to hypoxia. 

 1.2. Putative role of 5-HTT in the hypoxic PVR 

In recent years, many studies have explored the possible role of 5-HTT in hypoxia-induced 

PVR. Hypoxia causes changes in 5-HTT expression: acute and chronic hypoxia increase 5-HTT 

mRNA levels in rat pulmonary arteries (33). Upon acute hypoxia, specific 5-HT transport is 

increased in porcine pulmonary artery endothelial cells without a concomitant increase in Km; Acute 

hypoxia (i) results in an elevation of the maximal uptake rate (Vmax), implying de novo protein 

synthesis, and (ii) modifies plasma membrane phospholipids and consequently its fluidity (34). 

Conversely, chronic hypoxia reduces 5-HT uptake by pulmonary arteries (35).  

 In rat pulmonary artery SMC, 5-HT induces DNA synthesis, and acute hypoxia potentiates 

this mitogenic effect. The increase in DNA synthesis can be prevented by high concentrations of 5-

HTT inhibitors (36). In mice, increased PVR as a result of exposure to chronic hypoxia is partially 

reduced by the 5-HTT inhibitors citalopram and fluoxetine (37). Nonetheless, in sodium-free 

conditions (i.e., without 5-HT uptake), 5-HTT inhibitors still attenuated 5-HT-induced mitogenesis 

(38). Importantly, some 5-HTT inhibitors (including citalopram and fluoxetine) have µM affinities 
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for 5-HT2R (39). Recent results indicate that there is synergy between the inhibitory effects of 5-

HT1BR antagonists and 5-HTT inhibitors on 5-HT-induced pulmonary vasoconstriction (40) and that 

nordexfenfluramine (NorDF)-induced vasoconstriction is not dependent on 5-HTT-mediated release 

of endogenous 5-HT but rather via direct activation of 5-HTRs (41). These observations suggest 

that 5-HT uptake by 5-HTT cannot fully account for the proliferative action of 5-HT, and support a 

role for 5-HTRs. The proposition that the long 5-HTT promoter polymorphism promotes PVR 

through increased 5-HTT expression does not fully explain why patients who develop PH after 

dexfenfluramine (DF) treatment have the same proportion of this polymorphism as do PH patients 

in general (42) (Launay unpublished). Moreover, the report that PVR after chronic hypoxia is 

reduced—but not completely abolished—in mice deficient for 5-HTT gene (43) demonstrates that 

5-HTT does not solely mediate hypoxia-induced PVR.  

 1.3. Regulation of hypoxia-induced PVR by 5-HTRs 

Different mechanical factors have been shown to induce PVR. Chronic hypoxia can 

stimulate PVR directly and/or by a persistent vasoconstriction process as already suggested (44). 

Despite sustained hypoxia, vasoconstriction persists but subsides somewhat as PVR progresses (7). 

Neurohumoral factors such as 5-HT/5-HTRs may be implicated. 

 The 5-HT1BR-mediated contractile response to 5-HT or 5-carboxamidotryptamine is 

increased in pulmonary arteries isolated from chronic hypoxic wild-type mice. However, the 

activity of 5-HT1BR does not seem to be limiting, as 5-HT1BR knockout mice still respond to 

hypoxia but develop less severe PH and PVR than do wild-type mice (45). Discordantly, Marcos et 

al. report that chronic hypoxia (10% O2 for 2 weeks)-induced pulmonary hypertension and 

increased vessel muscularization were not reduced by the 5-HT1B/1DR antagonist GR127935 (37). 

Thus, the role of 5-HT1BR in hypoxia-induced PH and PVR remains unclear and may be species- 

or strain-sensitive. 

 In ovine common carotid arteries, despite altering the contractile response, acute hypoxia 

had no effect on 5-HT2AR coupling to IP3 second-messenger production (46). Similarly, acute 
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hypoxia reduced 5-HTR density and agonist affinity in adult bovine common carotid arteries (47). 

However, the role of 5-HT2AR in hypoxia-induced PH and PVR is not clear, since the receptor’s 

expression is not modified in the lung vasculature of mice exposed to 10% O2 for 5 weeks (48). 

Furthermore, in mice, the effects of chronic hypoxia on pulmonary artery pressure and vessel 

muscularization are insensitive to the 5-HT2AR antagonist ketanserin (37).  

 Interestingly, mice with pharmacologically or genetically inactive 5-HT2BR do not develop 

PH and PVR following chronic hypoxia, even though the acute hypoxic response (vasoconstriction) 

is intact (48). Therefore, the 5-HT2BR is a key factor in the molecular signaling pathways that 

couple chronic hypoxia to PH and PVR, a pathway independent of acute hypoxia-induced 

vasoconstriction. The 5-HT2BR also functionally interacts with the 5-HT1BR and the 5-HTT, whose 

roles in PH and PVR are rather well established. For instance, 5-HT1BR and 5-HTT activities are 

modulated by 5-HT2BRs (29, 49). Similarly, MacLean proposed a functional interaction between Gi-

coupled (5-HT1BR) and the 5-HT transporter, which would facilitate the development of PH (40). In 

addition, 5-HTT, 5-HT1BR, and 5-HT2BR are colocalized in pulmonary arteries, and 5-HT2BR has 

been reported to regulate 5-HTT activity in the 1C11 serotonergic cell line (50). The emerging 

question, then, is how 5-HTRs control hypoxia-induced PVR. 

 1.4. Possible mechanisms relating vascular injuries to 5-HTRs 

Hypoxia changes levels of reactive oxygen species (ROS) and NO⋅ in the pulmonary 

vascular wall, and these alterations are involved in PVR (51). ROS and NO⋅ levels are sensitive to 

5-HTR activity. For example, 5-HT1BRs and 5-HT2BRs have been shown to increase NO⋅ levels in 

human coronary artery endothelial cells (52), and and to elicit relaxation in porcine pulmonary 

arteries via the release of NO (53). In addition, the 5-HT2AR induces NO⋅ release by regulating 

gastrointestinal transit in mice (54), but can inhibit cytokine-stimulated inducible NO⋅ synthase in 

C6 glioma cells (55). In the cerebral vasculature, NO⋅ release from endothelial cells occurs 

following activation of 5-HT2BRs (56). In several cell lines, 5-HT2BRs have been shown to activate 

both constitutive and inducible NO⋅ synthases via interactions requiring the receptor’s C-terminal 
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PDZ binding domain (57). In this way, 5-HT2BR activity leads to NO· generation both in vitro and 

in vivo. 

 In renal mesangial cells, 5-HT2AR activation induces ROS (e.g., H2O2 and superoxide) 

production via an NAD(P)H oxidase-like enzyme (58). In the hippocampus of mice lacking the 5-

HTT, increased DNA oxidation has been observed, suggesting that the transporter serves as an anti-

oxidant. However, 5-HTT null mice do not exhibit alterations in glutathione (GSH), oxidized 

glutathione (GSSG), and other anti-oxidant systems (59). Recently it has been reported that 5-

HT2BR activation can also induce ROS production by a NAD(P)H oxidase-dependent mechanism in 

a serotonergic cell line (60). The mitochondrial electron transport chain is a major ROS source, and 

mitochondria are a target of 5-HT2BR anti-apoptotic signaling in cardiomyocytes (61). Thus, 5-

HT2BR signaling leads to changes in both NO· and ROS production.  

 1.5. Mutation in 5-HT2BR gene and PH in human exposed to DF 

Recently, by investigating the 5-HT2BR gene in patients who developed pulmonary 

hypertension after intake of DF, a heterozygous mutation was found in one female patient who 

followed a nine-month anorexigen regimen (62). The polymorphism, R393X, results in a truncation 

of the receptor’s C-terminal tail, thus removing (i) putative palmitoylation and phosphorylation sites 

essential for internalization, and (ii) the PSD-95, Dlg, ZO-1 (PDZ) binding motif involved in the 

coupling to NOS and other scaffold proteins. Functionally, the R393X 5-HT2BR exhibits a loss of 

rapid internalization compared to the wild type receptor, a finding consistent with removal of C-

terminal determinants of receptor trafficking (63). In addition, the R393X 5-HT2BR displays 

diminished coupling to NOS compared with the wild type receptor, as expected from removal of the 

PDZ binding motif. Despite the apparent losses of function due to the R393X polymorphism, the 

truncated 5-HT2BR variant displays striking gain of function vis-à-vis proliferative capacity, an 

effect that appears to result from a switch from wild type dual Gq/G13 coupling to a nearly exclusive 

G13 coupling. Thus, given the role of cell proliferation in PH and PVR, the R393X 5-HT2BR 

polymorphism is clearly relevant for vascular proliferation and remodeling (63). The α subunit of 
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G13 plays a critical role in 5-HT2BR-NOS coupling, (63) and G13 has been reported to activate 

inducible NOS through a mechanism distinct from that other Gα isoforms (64). Src family kinases 

(effectors of 5-HT2BRs) (65) act upstream of the small G-protein Rho in G12/13-induced JNK 

activation (66). RhoA and its effector Rho kinase play a major role in the effects of both acute and 

chronic hypoxia on the pulmonary circulation, possibly by modulating both vasoconstriction and 

vascular remodeling (67). The increased G13 coupling displayed by the R393X 5-HT2BR likely 

renders the polymorphism relevant to pathological vasoconstriction and remodeling in response to 

chronic exposure to DF (Fig. 1). 

 

2. Control of hypoxia-dependent transcription by 5-HT 

Under low oxygen tension, cells increase the transcription of genes involved in 

angiogenesis, erythropoiesis, and glycolysis.  

 2.1 Transcriptional regulation of 5-HT-related molecules 

Hypoxia causes transcriptional regulation of both the 5-HTT and 5-HTRs. For example, 5-

HT1BR and 5-HT2BR mRNA levels are increased in the lung vasculature of mice exposed to chronic 

hypoxia (68), while 5-HT2AR expression is unaffected (48). Rat 5-HTT mRNA expression is 

stimulated in proximal pulmonary arteries and lungs upon chronic hypoxia (33). In humans, DF use 

for periods greater than three months is associated with an increased risk for developing PH (6, 69). 

DF, a known substrate of 5-HTT, is metabolized in vivo by N-de-ethylation in norDF, which is a 

potent and selective 5-HT2BR agonist (70, 71). While DF does not trigger PH in mice after 5 weeks 

under normoxic conditions, administration of the drug does potentiate hypoxia-induced PH, (48) 

suggesting that hypoxia (like norDF) acts directly on 5-HTRs to contribute to their actions in the 

pulmonary vasculature. Together, these observations raise the question whether increased 

expression of 5-HTRs is a prerequisite for PVR, and/or if elevation of 5-HT levels and subsequent 

activation of basal 5-HTRs can induce PVR in absence of a hypoxic stimulus.  
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 2.2 Regulation of cell proliferation by 5-HT molecules 

Hypoxia-induced pulmonary artery vascular cell proliferation triggers PVR, which increases 

pulmonary artery pressure (72). In vitro, phenotypically distinct SMC subpopulations in the media 

of bovine main pulmonary artery display differential proliferative responses under extreme hypoxic 

(3% O2 during 72 hours) conditions: DNA synthesis is increased only in a subset of the medial 

subpopulations (73). In bovine and rat pulmonary artery SMC, 5-HT induced DNA synthesis (74), 

and 24 hours under hypoxic conditions can potentiate 5-HT’s mitogenic effect (33). Serotonin 

causes proliferation of many cell types in culture, including vascular SMC, via not only 5-HTRs but 

also through crosstalk with other signal transduction systems, such as the receptors for the growth 

factors platelet-derived growth factor (PDGF), fibroblast growth factor, and epidermal growth 

factor (75). Hypoxia inhibits the release of anti-mitogenic factors such as prostacyclin in cultured 

pulmonary artery endothelium (76). The absence of hypoxia-induced thymidine incorporation (a 

measure of cell proliferation) and vascular muscularization in the lungs of hypoxic 5-HT2BR-/- mice 

indicates an absolute requirement for 5-HT2BR in chronic hypoxia-induced mitogenesis. Further 

demonstrating the key role of 5-HT2BRs in hypoxia-induced mitosis is the finding that the highly 

selective 5-HT2BR antagonist RS-127445 abrogates proliferation and PVR in wild-type mice 

exposed to hypoxia (48).  

 Activation of MAPK, another mediator of proliferative signals, has also been implicated in 

PVR (44). PDGF causes proliferation in pulmonary arterial SMC (77) and increased expression of 

PDGF has been reported in rat lungs subsequent to hypoxic PH (78). In mouse fibroblast LMTK- 

cells stably expressing murine 5-HT2BRs, 5-HT-induced receptor activation leads to cell cycle 

progression via a complex signaling pathway in which the cytoplasmic tyrosine kinase c-Src 

controls cyclin E expression and, in concert with PDGF receptor transactivation, induces cyclin D1 

expression in a MAPK-dependent fashion (65). 

 In sheep with hypoxia-induced PH, increased mRNA levels of the transforming growth 

factor-β (TGF-β) have been associated with PVR (79). It has been suggested that interleukins (ILs) 
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and tumor necrosis factor (TNF)-α are also involved in the development of PVR: serum 

concentrations of IL-1 and IL-6 are increased in patients with primary PH (80); IL-1 is a mitogenic 

factor in human and rat vascular SMC (81); hypoxia stimulates IL-1 production in human vascular 

SMC (82), and NF-IL6 activates IL-6 gene transcription in hypoxic pulmonary vascular endothelial 

cells (83). Chronic hypoxia (10% O2 for 5 weeks) also causes increased TGF-β levels lung vessel 

culture supernatants via a mechanism that requires 5-HT2BR activity (48). The release of TNF-α, 

IL-1β, and IL-6 in response by isoproterenol-treated cardiac fibroblasts is also 5-HT2BR-dependent 

(84). 

 Matrix metalloproteinases (MMPs) activation and extracellular matrix (ECM) remodeling 

contribute to hypoxia-induced pulmonary vascular proliferation in PVR. Some of the best 

characterized ECM substrates for MMPs are collagens, elastin, and proteoglycans (9). An increase 

in elastase activity leads to the release of latent growth factors (85) and elastase activity is increased 

in mice with chronic hypoxia-induced PH (86), an effect that is absent upon genetic or 

pharmacological ablation of 5-HT2BRs (48). These observations suggest that 5-HT2BR-dependent 

elastase activity leads to latent growth factor release including TGF-β. In addition, collagenolytic 

activity in extracts from pulmonary arteries in rats exposed to hypoxia is increased (87) that may 

include MMP activity contributing to PVR. A possible role for 5-HT2BR in the activation of various 

MMPs in PVR is likely, given that activation of MMP-2 (ECM substrates: various collagens, 

fibronectin, laminin, aggrecan, insoluble elastin) and MMP-9 (ECM substrates: various collagens) 

is regulated by 5-HT2ARs in uterine tissue (88) and by 5-HT2BRs in cardiac fibroblasts (LM 

unpublished). Recently, the 5-HT2BR was shown to stimulate TNF-α converting enzyme in a 

serotonergic cell line (60). Thus, 5-HT2R appears to be crucial for hypoxia-induced PVR via MMP-

regulated growth factor expression in the lung vasculature (Fig. 2).  
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3. Regulation of transcription factors expression by 5-HT molecules 

Hypoxic transcription processes are coordinately regulated by the hypoxia-inducible factor 

HIF-1, which, despite its constitutive expression, is only active in response to reduced O2 levels 

(89). Several line of experimental evidence support the hypothesis that factors controlling HIF-1 

expression also contribute to hypoxia-induced PVR. Indeed, a strong correlation has been found 

between HIF-1α overexpression and immunoreactivity of the cell proliferation index Ki67 (90). 

Though hypoxia is the ubiquitous inducer of HIF-1α, other stimuli, such as insulin, insulin-like 

growth factors 1 and 2, and EGF, also increase HIF-1α protein levels in some cells. These stimuli 

also induce VEGF expression in an HIF-1-dependent manner.  

 3.1 Putative regulation of HIF molecules by 5-HT 

The O2-regulated transcription factor HIF-1 has been proposed to control the expression of 

several agents involved in PVR, such as endothelin-1 and TGF-β (91). HIF-1α hypomorphic mice 

develop less severe medial wall thickening in the pulmonary arterioles than do wild type mice 

maintained for 3 weeks at 10% O2 (92). Other factors, such as angiotensin II (Ang II), thrombin, 

platelet-derived growth factor, can increase HIF-1α in vascular SMC to levels beyond those 

resulting from hypoxic treatment. The non-hypoxic induction of the HIF-1 transcription factor via 

vasoactive hormones (Ang II and thrombin) is triggered by a dual mechanism, i.e., PKC-mediated 

transcriptional activation and ROS-dependent increases in HIF-1α protein expression (93). In 5-

HT2BR-expressing cells, receptor activation increases the activity of the c-Src family tyrosine kinase 

and ROS levels through NAD(P)H oxidase (60, 65), which can thus induce HIF-1α expression.  

 3.2 Hypoxia-induced NF-κB expression by 5-HT2BRs 

In cardiomyocytes, 5-HT2BRs, via phosphatidylinositol-3 kinase/Akt, activate NF-κB, an 

event that is required for the receptors’ anti-apoptotic effects (61). Activation of NF-κB is sufficient 

to suppress cell death of ventricular myocytes during hypoxia. Additionally, NF-κB averts cell 

death through a mechanism that prevents perturbations to the mitochondrion during hypoxic injury 

(94). Moreover, the 5-HT2BR has recently been identified in a large-scale screen for human genes 
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that activate NF-κB signaling pathways (95). Furthermore, treatment with LY294002 (a selective 

inhibitor of phosphatidylinositol 3-kinase) significantly inhibits erythropoietin protein and mRNA 

expression in Hep3B cells exposed to hypoxia for 24 hours. Inhibition of NF-κB with a super-

repressor (dominant negative IκBα) also significantly blocks HIF-1 transactivation, as well as 

erythropoietin gene expression 129. We propose that 5-HT2BR expression, which is increased under 

hypoxic conditions, is a trigger of HIF-1α via phosphatidylinositol-3 kinase/Akt/NF-κB pathway. 

 3.3 Hypoxia-induced NF-κB may regulate HIF expression  

Putative control of HIF-1 by 5-HT2BRs would explain why the expression of PVR-inducing 

factors, such as endothelin-1 and TGF-β (both of which are HIF-1-regulated), is not modified in 

hypoxic 5-HT2BR-/- mice. A recent study by Moncada’s group (96) showed that upon hypoxia, 

inhibition of mitochondrial respiration by NO⋅ leads to a redistribution of intracellular O2 toward 

other O2-dependent targets, such as prolyl hydroxylase, which causes the constitutive degradation of 

HIF-1α. Stimulation of the NO/PKG pathway in rats treated with sildenafil increases RhoA protein 

levels, phosphorylation, and association with RhoGDI in the pulmonary artery, effects opposite to 

those induced by chronic inhibition of NO⋅ synthesis or hypoxia. The observed NO⋅ alterations in 

the hypoxic pulmonary vascular wall lead to a plausible explanation for the absence of hypoxia-

induced PVR in 5-HT2BR-/- mice and further strengthen the hypothesis that 5-HT2BR expression 

under hypoxic conditions is not a target but a trigger of HIF-1 (Fig. 3). 

 

Pressing Questions 

Determining of the contribution of 5-HT to hypoxic responses in lung endothelial cells, 

smooth muscle cells, and fibroblasts is of major importance. How and when do these different cell 

types participate in the development and/or progression of PH? Of particular interest is the origin of 

the process. Do normoxic endothelial, fibroblast, and /or smooth muscles cells respond to 5-HT in a 

similar way as hypoxic cells? When does irreversible commitment to hypoxia-induced PVR occur? 

Given that most studies have focused on lung vasoconstrictive factors, how closely does 
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development of the pathology follow that of vasoconstriction? Finally, is the developmental 

program that generates lung vessels in the embryo retained in the lung vasculature of the adult? Is 

this program reactivated in adult lung pathophysiology? The answers to these questions will provide 

general insights into the pathogenesis of PH and may suggest novel therapeutic approaches to 

treating lung diseases in humans. 
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Figure 1. 5-HT in hypoxia-induced PVR. Hypoxia raises 5-HT levels by operating at 

platelets and pulmonary NEB, which acts at 5-HT2BR, 5-HT1BR and 5-HTT. Changes in ROS and 

NO⋅ levels upon hypoxia, result in endothelium and vascular SMC oxidative damage and death. 

ProPVR agents, such as endothelin-1 and TGF-β, have no effect on PVR in the absence of 5-

HT2BRs. Lines with arrows indicate positive actions and with a T negative effects. 
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Figure 2. 5-HT-stimulated transcription pathways in the regulation of hypoxia-induced PVR. 

By controlling 5-HT levels, hypoxia has effects on transcriptional and post-transcriptional control 

of growth factors, via proteinases, which participate in ECM maintenance, leading to PVR. 
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Figure 3. 5-HT2BR-induced transduction pathways relevant to pulmonary hypertension. 

Different experimental evidences support a model in which ROS and NO⋅ can be controlled by 5-

HT2BR that would result in transcriptional activation of cell cycle and hypoxic responses.  

 


