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Abstract
Simplicial sets and cubical sets are combinatorial structures which have been studied for a long time in Algebraic Topology. These
structures describe sets of regular cells, respectively simplices and cubes, and they allow any kind of assembly of cells. They are
used for many applications in Computational Topology, Geometric Modeling, CAD/CAM, Computer Graphics, etc. For instance,
simplicial and cubical sets are ”naturally” associated with simplicial and cubical Bézier spaces.

In this paper, a new combinatorial structure, namely simploidal sets is defined for representing and handling Bézier simploids.
Simploidal sets describe sets of simploids, which are also regular cells corresponding to cartesian product of simplices. Simplices
and cubes are then particular simploids.

In order to associate shapes with structures, structural relations between simploidal sets and simploidal Bézier spaces are also
stated. In fact, simploidal sets generalize and homogenize simplicial and cubical sets.

Construction operations are also defined, extending all those of simplicial and cubical sets: cone, cartesian product, degeneracy,
and identification. In their basic version, the first three operations allow to create any simploid, and the last one, to create any
assembly of simploids. It is then possible to simultaneously handle through a single formalism any assembly of simplices, cubes, and
other simploids, with a very low additional cost, regarding space (data structure), time (construction or computation operations)
or software development.

1 Introduction
N-dimensional simplicial "objects" or “triangulations” have been studied for a long time in Algebraic Topology. Combinatorial
structures, as abstract simplicial complexes or simplicial sets, describe the adjacency and incidence relations of abstract simplices,
and a geometric realization can be associated with each structure. For instance, the geometric realization of an abstract simplicial
complex is a simplicial complex, whereas the geometric realization of a simplicial set is a CW-complex [1, 17, 18, 16]. Such
structures are used for different purposes, in Computational Topology (e.g. computation of topological properties) [7, 21, 6], Geo-
metric Modeling, CAD/CAM and Computer Graphics (e.g. representation of subdivided geometric objects, meshes) [19, 10], etc.
In particular, structural relations between some simplicial structures and triangular Bézier spaces [9] have been established [14],
leading to the definition of efficient data structures for handling triangular Bézier spaces. N-dimensional cubical "objects" have
been studied [22, 3] for similar purposes in Topology, Geometric Modeling, etc. Simplicial and cubical sets describe sets of regular
cells, respectively simplices and cubes, and they allow of assembly of cells.

In this paper, a new combinatorial structure, namely simploidal sets is defined: cf. Definition 1. Simploidal sets describe sets
of simploids, which are also regular cells corresponding to the cartesian product of simplices. As a cube is the cartesian product
of edges (i.e. 1-dimensional simplices), a simploid is the cartesian product of (any) simplices. Simplices and cubes are then simply
particular simploids. So, simplices, cubes, and more general cells can be handled together. For example, Figure 1 illustrates an
assembly of 3 simploids: a cube and a tetraedron are linked though a prism. This can be interesting for several applications, e.g.
related to meshes.

As simplicial sets (resp. cubical sets) are ”naturally” associated with triangular (resp. cubical) Bézier spaces, simploidal
sets are ”naturally” associated with simploidal Bézier spaces [4]. So simploidal Bézier spaces can be efficiently implemented
using simploidal sets (cf. Section 4.3): control points can be stored without any redundancy, avoiding problems related to space
complexity and possible inconsistencies.

Basic construction operations and topological properties computations can be efficiently implemented, since all the necessary
structural information as adjacency and incidence relations between simploids is explicitly represented.

Regarding implementation issues, since the definition of simploidal sets is very close to that of simplicial and cubical sets, the
additional cost is very low, with respect to space (cost of data structure), time (cost of operations) or software development (cf.
Section 4).

A first work about simploidal ”objects" led to the definition of semi-simpoidal sets [20]1, and to the highlighting of relations
between semi-simploidal sets and simploidal Bézier spaces. Simploidal sets defined in this paper extend semi-simploidal set by
adding a second class of operator, in the same way as simplicial and cubical sets extend semi-simplicial and semi-cubical sets. This
extension makes it possibleto define all basic contruction operations of simplicial and cubical sets, but the structural relations
with the corresponding Bézier spaces has to be stated. We first establish this relation for simplicial sets, and then it is generalized
for simploidal sets.

The main contributions of this paper are:

• The definition of simploidal sets;

• Property 1, which establishes the precise structural relations between simplicial sets and the control points of triangular
Bézier spaces; and property 2, which extends property 1 for simploidal sets;

• a proposition of data structure for representing simploidal Bézier spaces;

• definitions and algorithms for all basic construction operations: cone, cartesian product, identification and degeneracy (cf.
Section 4.4); generalizing the basic construction operations defined for simplicial and cubical sets.

• a comparison with supercomplexes, a “similar” combinatorial structure, proposed by Gugenheim in 1957 for the study of
topological properties [11] (cf. Theorem 4).

1



(0) (1) (2)

(3) (2,1)

(1,1)

(1,1,1)

(a) (b) (c)

Figure 1: (a) Simploids and their types. (b) Counterexamples of simploids: a pentagon and a pyramid (i.e. a cone on a square
face): the main cells are not the cartesian product of simplices. (c) A geometric representation of a simploidal set made of 3
3−dimensional simploids: a tetraedron (type (3)), a cube (type (1, 1, 1)) and a prism (type (2, 1) or (1, 2)).

For clarity purpose, all necessary notions are presented in a progressive way: notions related to structures without degeneracy
operators, namely semi-simplicial, semi-cubical and semi-simploidal sets, are recalled in Section 2. These three structures handle
abstract cells (i.e. simplices, cubes and simploids) equipped with face operators associating with an i-dimensional cell the (i− 1)-
cells of its boundary. Simploids generalize simplices and cubes: as a simplex or a cube is characterized by its dimension, a
simploid is characterized by its type (a1, · · · , an) (cf. Figure 1(a)): intuitively, a simploid can be seen as the cartesian product
of simplices σ1 × · · · × σn, and ai is the dimension of σi. So, n-simplices and n-cubes are particular simploids of types (n) and
(a1 = 1, · · · , an = 1). Note that these structures allow the representation of any assembly of simplices, cubes, or simploids.
Regarding basic construction operations, cartesian product and identification can directly be defined for semi-simploidal sets, but
the cone operation can not (cf. Figure 1(b)).

Section 3 focusses on simplicial and cubical sets, which extend semi-simplicial and semi-cubical sets by adding degeneracy
operators to semi-simplicial sets. The precise relations with Bézier spaces are established.

Simploidal sets are defined in Section 4, by adding degeneracy operators. The relations with simploidal Bézier spaces are
established, and a data structure avoiding any redundancy for Bézier embedding is proposed. All basic simplicial and cubical
construction operations are extended within the simploidal framework : cone, cartesian product, identification, and degeneracy,
and it is shown that the simploidal cone operation can be defined in a simple way thanks to degeneracy operators. So, simploidal
sets generalize and homogenize simplicial and cubical sets.

2 Structures Without Degeneracy
This section is mainly based upon the papers [13, 20], in which algorithms implementing basic operations for handling semi-
simplicial sets and semi-simploidal sets are also described.

2.1 Semi-Simplicial Sets
Combinatorial structure. Most well-known triangulated objects are simplicial complexes [1], which are sets of geometric sim-
plices satisfying some properties, a i-dimensional simplex (or i-simplex) being the convex hull of i+ 1 linearly independent points.
The corresponding combinatorial structure is also well-known: an abstract simplicial complex is a set of abstract simplices, and
an abstract i-simplex is a set of i+ 1 (abstract) vertices.

A n-dimensional semi-simplicial set (or ∆-complex) [8, 12] S = (K, (dj)) is a family of sets K = (Ki)i∈[0..n], such that each
Ki is equipped with face operators: dj : Ki → Ki−1 for 1 ≤ i ≤ n and 0 ≤ j ≤ i; the face operators satisfy “commutation
properties”: for σ ∈ Ki, and 0 ≤ l < j ≤ i, σdjdl = σdldj−1, where σdjdl denotes dl ◦ dj(σ).

Ki is the set of i-dimensional (abstract) simplices (or i-simplices); the i+ 1 face operators defined for a i-simplex σ associate
with σ the (at most) i+ 1 (i− 1)-simplices of its boundary. Intuitively, if σ is assimilated with a sequence (v0, · · · , vj , · · · , vi) of
i+ 1 vertices, σdj corresponds to the sequence (v0, · · · , vj−1, vj+1, · · · , vi). More generally, the “commutation properties” involve
that at most

(i+1
j+1

)
j−simplices belong to the boundary of a i−simplex.

Semi-simplicial sets generalize abstract simplicial complexes, since the definition of a simplex boundary through face operators
permits to handle i-simplices which are incident to less than (i+ 1) vertices (cf. Figure 2); moreover, simplices are not necessarily
linearly embedded (cf. below).

Let σ be a i-simplex; σdj is its jth-face. Simplex τ is a face of σ if it can be obtained from σ by applying a non-empty
sequence of face operators. The boundary of σ is the subset of S restricted to the faces of σ. The star of σ is the set of simplices
of which σ is a face. σ is a main simplex if its star is empty. The boundary of a complete i-simplex contains exactly (i + 1)
0-simplices. For example in Figure 2(a): y and b are faces of m; the boundary of n contains the simplices {a, g, f, v, w}; the star
of w is the set {f, g, a, c, e, n,m}; m,n and e are the main simplices; all simplices but n and g are complete. This terminology can
be extended in a straightforward way for all structures described in this paper.

Triangular Bézier spaces and relation with semi-simplicial sets. As abstract simplicial complexes can be associated
with simplicial complexes, semi-simplicial sets can be associated with triangular Bézier spaces. A triangular Bézier space is a set
of Bézier simplices satisfying some conditions (see [9]).

More precisely, the set Γid of i-dimensional multi-indices of degree d is defined by Γid = {α = (α0, · · · , αi) ∈ Ni+1 | |α| =
α0 + · · · + αi = d}. In the following, multi-index (α0, · · · , αi) is denoted α0 · · ·αi. For instance, Γ1

3 = {03, 12, 21, 30}, and
Γ2

3 = {003, 012, 021, 030, 102, 111, 120, 201, 210, 300}. The cardinality of Γid, denoted | Γ
i
d |, is equal to

(i+d
i

)
.

1Note that in [20], the term "simploidal” meant "semi-simploidal". This terminology is modified here in order to be consistent with
those related to simplicial and cubical structures.
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Figure 2: (a) A semi-simplicial set. Semi-simplicial set (b) is obtained by identifying vertices v1 and v2, vertices w1, w2 and
w3, and edges a1 and a2. (c) A geometric representation of semi-simplicial set (b). The commutation properties satisfied by face
operators guarantee the consistency of the data structure. For example, for any triangle σ: σd2d1 = σd1d1, σd2d0 = σd0d1, and
σd1d0 = σd0d0, so a triangle has at most 3 vertices in its boundary.

Multivariate Bernstein polynomials of degree d are defined by Bdα(u) =
(d
α

)
uα0

0 · · ·u
αi
i , with α ∈ Γid, and

(d
α

)
= d!

α0!···αi!

are multinomial coefficients, and {uj} are the barycentric coordinates of u, a point of the standard i-simplex, i.e. {uj} satisfies:
∀j, 0 ≤ j ≤ i, 0 ≤ uj ≤ 1 and

∑i
j=0 uj = 1.

A Bézier i-simplex of degree d is defined by P (u) =
∑
α∈Γi

d
PαBdα(u), where {Pα, α ∈ Γid} is its set of control points (cf.

Figure 3), which can be stored in a simplicial array, according to the lexicographical order of the multi-indices [5]. The index in
a simplicial array of any control point Pα can be retrieved using algorithm 1. The idea is the following: let α = α0 . . . αi be the
multi-index of a control point. If i = 1 then the point is stored at index α0. If i > 1, then it is necessary to store first α0 sets
of control points corresponding to (i − 1)-dimensional Bézier simplices of degrees decreasing from d to d − α0 + 1, and then to
store the point in the same way as if it would belong to the set of control points of a (i− 1)-dimensional Bézier simplex of degree
d− α0.

Algorithm 1: multiIndex2Index

Input : α = α0 · · ·αi : MultiIndex Γid
Output: pos : Integer

if i == 1 then
return α0

else
offset =

∑d
j=d−α0+1 | Γ

i−1
j |

return offset + multiIndex2Index((α1 · · ·αi))
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Figure 3: (a) An example of Bézier space of degree 3. (b) Main storage: only the control points of the main simplices are stored.
(c) Distributed storage: only the proper control points are stored.

A triangular Bézier space can easily be implemented by a set of simplicial arrays, such that each simplicial array contains the
control points of a main Bézier simplex. Several construction operations as cone and identification (cf. operations below) can be
easily implemented for handling this data structure. But all simplices are not explicitly represented, nor adjacency and incidence
relations. So, such a structure is not well suited for implementing several operations, for instance the computation of topological
properties as homology. Moreover, the control points which are “shared” by adjacent main simplices are duplicated. For example
in figure 3(b), the control points surrounded by dashed lines have to be the same.

More efficient data structures can be defined, based upon the following relation between triangular Bézier spaces and semi-
simplicial sets. It is well known that a Bézier i−simplex β contains its boundary, i.e. the boundary of β is a set of lower dimensional
Bézier simplices defined by subsets of control points of β. More precisely, all control points Pα of β such that the jth component
of α is 0 define a (i− 1) Bézier simplex. For instance in Figure 3(b), the points numbered 003, 102, 201, 300 of each triangle define
a Bézier curve of degree 3. So, the following constraint has to be satisfied in order to represent a triangular Bézier space: let σ
be a i-simplex, 1 ≤ i, and µ = σdj , for 0 ≤ j ≤ i; let P = Pα0···αj ···αi be a control point of σ such that αj = 0; then point
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Pα0···α̂j ···αi
of µ is equal to P , where α̂j means αj is removed.

Consequently, a data structure can be defined, based upon semi-simplicial sets, such that any simplex is associated with its
proper control points, i.e. control points Pα such that no component of α is null (cf. Figure 3(c)). The set of proper control points
of an i−simplex of degree d has the structure of a i−simplex of degree d− (i+ 1), and thus contains

(d−1
i

)
control points. This

set can be stored in a simplicial array as before, by using the lexicographical order of multi-indices.
The set of all control points of a simplex can be retrieved from its proper control points and from the control points of the

simplices of its boundary, by taking into account the face operators indices. For instance, let σ be a triangle of Figure 3(c): the
proper control points numbered 21, 12 of the edge σd0 (resp. σd1 and σd2) correspond to the control points numbered 021, 012
(resp. 201, 102 and 210, 120) of σ, as shown in Figure 3(b).

Data structure. The following data structure is a straightforward implementation of semi-simplicial sets associated with
triangular Bézier spaces of degree degree. The notation *Type denotes an access to a Type data ; [x..y] of Type and [] of Type
denote an array of Type: in the first case, the indices are specified; List<Type> denotes a list of Type data.

type Simplex is record :
dim : integer
faceOps : [0..dim] of *Simplex
ctrlPts : [1..Cset.degree−1

dim ] of CtrPt
set : *SemiSimplicialSet

end record

type SemiSimplicialSet is record :
dim : integer
degree : integer
allSimplices : [0..dim] of List<*Simplex>

end record

In this SemiSimplicialSet data structure, it is assumed that all Bézier simplices of a given Bézier space have the same degree,
allSimplices gives access to the lists of i-simplices, 0 ≤ i ≤ dim, where dim is the dimension of the set.

Regarding the Simplex structure, dim is its dimension, faceOps gives access to the (dim−1)-simplices of its boundary, set gives
access to its semi-simplicial set and ctrlPoints stores its proper control points, ordered by lexicographical order. Algorithm 1 can
be used to deduce which proper multi-index α is stored at index k by computing firstly α′ = index2MultiIndex(i, d− (i+ 1), k),
and then α is obtained by adding 1 to each α′j for each j = 0..i+ 1.

Algorithm 2: index2MultiIndex

Input : i, d, pos : integer
Output: α = α0 · · ·αi: MultiIndex Γid
offset, j : integer

if (i==1) then
α0=pos
α1=d-pos

else
offset =

(i+d−1
i−1

)
j=0
while (offset<pos+1) do

j+=1
pos-=offset
offset=

(i+d−j−1
i−1

)
α0= j
α1 · · ·αi=index2MultiIndex((i-1,d-j,pos))

return α
Data structure variants. Obviously, this structure can be adapted for handling Bézier simplices with different degrees,

using for instance well-known results about degree elevation for controling the continuity [9]. A list of accesses can be added for
any i-simplex, in order to access the (i+ 1)-simplices of its star.

Basic Operations. Any semi-simplicial set S can be constructed by applying two basic operations, namely cone and
identification [13].

The cone of S consists in adding a 0-simplex v to S, and in creating a new (i + 1)-simplex µ incident to σ and v for any
i-simplex σ of S (cf. Figure 4). The proper control points of µ can be computed for instance by linear interpolation between the
proper control points of σ and the control point associated with v. Note that a complete i-simplex (with its boundary) is a cone
upon a complete (i− 1)-simplex (with its boundary).

(a)

v

(b) (c)

Figure 4: The semi-simplicial set b) can be obtained by a cone operation applied to the semi-simplicial set of a), v is the new
vertex. c) is a geometric representation of semi-simplicial set b).
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The identification operation can be applied to two distinct i-simplices σ and τ , if they share the same boundary. The operation
consists in replacing σ and τ by a new i-simplex µ such that its boundary is equal to the boundary of σ (and τ), and its star
is the union of the stars of σ and τ . More precisely, if νdj = σ or νdj = τ before operation, then νdj = µ after operation. For
instance, the semi-simplicial set of Figure 2(b) can be obtained from the one of Figure 2(a) by identifying 0-simplices v1 and v2,
0-simplices w1, w2 and w3, and 1-simplices a1 and a2. As for the cone operation, the proper control points of new simplices can
be computed for instance by linear interpolation of the proper control points of the identified simplices.

Higher-level construction operations have been defined: for instance, any two i-simplices can be identified, by first identifying
their boundaries by increasing dimensions, then by identifying the i-simplices themselves. See also the identification of subsets of
simplices, split operation, flip operation, etc. [2]. Operations for computing topological properties, as homology, have also been
defined [17].

2.2 Semi-Cubical Sets
A n-dimensional semi-cubical set S = (K, (dij)) is a family of sets K = (Kp)p∈[0..n] together with face operators: dij : Kp → Kp−1

satisfying commutation properties: for 1 ≤ p ≤ n, 1 ≤ i ≤ p and j ∈ {0, 1}, dijdkl = dkl d
i−1
j if k < i.
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Figure 5: The 2-cube in (b) results from the product of the vertical edge by the horizontal edge in (a), so face operators d1
j (resp.

d2
j ) which acts on the 2−cube ”are oriented” vertically (resp. horizontally). A cubical Bézier space corresponding to a cubical set

containing two 3-cubes, one 2−cube and one edge1−cube as main cells.

An element σ of Kp is a p-cube. Intuitively, a p-cube is the cartesian product of p 1-simplices σ1× . . .×σi× . . .×σp, and face
operator dij associates σ with the (p− 1)-cube corresponding to σ1 × . . .× σidj × . . .× σp (cf. Figure 5). Note that the cartesian
product of a p-cube by a vertex is a p-cube.

A Bézier patch is the product of Bézier curves, a cubical Bézier space is a set of Bézier patches satisfying some conditions, and
the correspondence described above between semi-simplicial sets and triangular Bézier spaces is retrieved here for semi-cubical
sets and cubical Bézier spaces (cf. Figure 5). Note that the degrees of the generating edges can be different, and that the control
points of a i-dimensional patch are denoted by i-tuples of 1-dimensional multi-indices. Note that a generating edge of degree d con-
tains d−1 proper control points, so a i−cube obtained from i edges of degrees d1 · · · di contains

∏i
j=1(dj−1) proper control points.

Data structure. The data structure presented for semi-simplicial sets can directly been adapted for semi-cubical sets :

type Cube is record :
dim : integer
degrees : [1..dim] of integer
faceOps : [1..dim] of ([0..1] of *Cube)
ctrlPts : [1..

∏dim
j=1(degrees[j]− 1)] of CtrPt

set : *SemiCubicalSet
end record

type SemiCubicialSet is record :
dim : integer
degree : integer
allCubes : [0..dim] of List<*Cube>

end record

Any semi-cubical set can be constructed by applying two basic operations: extrusion and identification. Extrusion is the
particular case of the cartesian product by a 1-simplex (and its boundary); note that any complete p-cube can be constructed by
the extrusion of a complete (p−1)-cube. Two cubes can be identified if their boundaries are equal, and if their control points have
the same structure. Obvioulsy, higher-level operations have been defined: identification and cartesian product of semi-cubical
subsets, split, homology computation, etc.

2.3 Semi-Simploidal Sets
Combinatorial Structure. A semi-simploidal set is a set of simploids on which act face operators (cf. Figure 6). In fact,
semi-simploidal sets generalize semi-simplicial and semi-cubical sets, according to the intuitive fact that a simploid is the cartesian
product of simplices of any dimensions. So, a simploid σ is characterized by its type (a1, . . . , an). Intuitively, ai is the dimension of
its ith generating simplex, and the face operator dij associates with σ the same product of simplices, except that the ith component
is replaced by its jth face, it disappears if this jth face is a vertex, since the cartesian product by a vertex is the identity. For
example in Figure 6, let σ = µ× τ be the simploid of type (2, 1), µ be the 2−simplex and τ the 1−simplex. Simploids σd1

j (resp.
σd2
j ) are faces of type (1, 1) (resp. (2)) as it corresponds to the simploids µdj × τ (resp. µ× τdj).
The formal definition of semi-simploidal sets is not provided here (cf. [20]), it can be retrieved by keeping only (I)-1 and (II)

from definition 1 of simploidal sets (cf. Section 4). Note that the definitions of semi-simplicial sets and semi-cubical sets can also
be retrieved from definition 1 by keeping only (I)-1 and (II), and by considering i-simplices as simploids of type (i), and i-cubes
as simploids of type (a1 = 1, . . . , ai = 1).
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Bézier Embedding. A simploidal Bézier space is a set S of Bézier simploids such that the intersection of any two simploids
σ and τ of S is either empty or a simploid of S, corresponding to a common face of σ and τ . A Bézier simploid of type (a1, . . . , an)
and degree (d1, . . . , dn) is defined by:
P (u1, . . . , un) =

∑
α1∈Γ

a1
d1

. . .
∑
αn∈Γ

an
dn

P(α1,...,αn)B
d1
α1 (u1)× . . .×Bdnαn (un) where any ui is a point of the standard ai-simplex

and {P(α1,··· ,αn)} is its set of control points.
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Figure 6: a) and b): correspondence between the product of two simplices (and their boundaries) and a simploid of type (2, 1).
For clarity purpose, only a part of its boundary is displayed and some of its control points are displayed in c).

As before, a correspondence exists between the semi-simploidal set structure and the structure of n-tuples of multi-indices:
cf. Figure 6. This correspondence makes it possible to associate its proper control points with any simploid, and to retrieve all
control points (and their tuples of multi-indices) of a simploid from its proper control points and the proper control points of the
simploids of its boundary, using the numbering of the face operators.

Algorithm 3: index2TupleMultiIndex

/* Returns the posth tuple of multiIndex of Γi1d1
× · · · × Γ

ik
dk

according to the lexicographical order. */

Input : type = [(i1, d1), · · · , (ik, dk)] : list of pairs of integers
Input : pos : integer
Output: α = (α1, · · · , αk) : k−tuple of multi-index

if (len(type)==1) then
α = (index2MultiIndex((i1, d1,pos)));

else
card =

∏k
j=2

(ij+dj
ij

)
;

α = (index2MultiIndex((i1, d1,pos/card))) + index2TupleMultiIndex(([(i2, d2), · · · , (ik, dk)], pos%card));

return α;

As before, control points can be stored into a simploidal array, using the lexicographical order of the tuples of multi-indices,
which induces a correspondence between the index of a point in the array and its associated tuple of multi-indices [5] (cf. Algo-
rithm 3). A data structure for implementing semi-simploidal sets embedded as simploidal Bézier spaces can be deduced from the
data structure presented in Section 4.3.

Basic Operations. Any semi-simploidal set can be constructed using the cartesian product and the identification operations.
The cartesian product definition can be deduced from the fact that the cartesian product of two simploids of types (a1, · · · , an)
and (b1, · · · , bm) is a simploid of type (a1, · · · , an, b1, · · · , bm). The control points of the resulting simploid can be computed for
instance by "adding" the control points (i.e. their coordinates) of the initial simploids (Minkowski sum). For instance on Figure
6(b), the control point P111,13 can be defined as the "sum" of the control points P111 and P13 of Figure 6(a). As before, two
simploids can be identified if they share the same boundary, and if their control points have the same structure.

3 Simplicial sets
This section is mainly based upon [17, 14]. Our main contribution here is Property 1, which establishes relations between
degeneracy operators and control points.

Combinatorial Structure. The cartesian product operation is not directly defined for semi-simplicial sets, but it is defined
in a direct way on simplicial sets, thanks to the notion of degenerate simplex : cf. Figure 7.

A simplicial set S = (K, (dj), (sj)) is a family K = (Ki)i∈N of simplices together with two families of maps, such that
(K, (dj)) is a semi-simplicial set, and (sj) are degeneracy operators: ∀i ≥ 0, ∀j, 0 ≤ j ≤ i, sj : Ki → Ki+1; the degeneracy
operators satisfy the commutation properties:

• sjsl = slsj+1 if l ≤ j;
• sjdl = dlsj−1 if l < j, sjdl = dl−1sj if l > j + 1, and sjdj = sjdj+1 = Id.

An (i+ 1)-simplex µ is degenerate if µ = σsj for some σ and some j: intuitively, if σ is assimilated with a sequence of i+ 1
vertices (v0, · · · , vj , · · · , vi), µ corresponds to (v0, · · · , vj , vj , · · · , vi). Note that the geometric realization of µ is the one of σ.

From a theoretical point of view, all degererate simplices deduced from a simplex by a sequence of degeneracy operators exist
in a simplicial set: thus any simplicial set contains an infinite number of degenerate simplices. For instance, the existence of
all these degenerate simplices makes it possible to get a very simple definition of the cartesian product (cf. below). But from a
practical point of view, only the explicit representation of non degenerate simplices and their faces (degenerate or not) is required
(cf. Figures 7(c) and 7(d)); the other degenerate simplices, can be implicitly handled. Indeed, any degenerate simplex can be
obtained by applying a sequence of degeneracy operators to a non degenerate simplex. So, the degenerate simplices which appear
only in the boundary of degenerate simplices can be implicitly handled, through the corresponding non degenerate simplex and
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(a) (b) (c) (d) (e) (f)

Figure 7: a) a semi-simplicial set and (b) its associated Bézier triangular space. (c) a simplicial set: the green edge µ is degenerated
to the bottom vertex σ. Otherwise said, µ = σs0. (d) the corresponding triangular Bézier space: the degenerate edge is reduced to
a point, corresponding to its incident vertex. Note that edge µ is the only degenerate simplex which is a face of a non degenerate
one. (e) a simplicial set representing an edge (and its boundary) and all its degenerate simplices up to dimension 2 (in green) and
f) its corresponding Bézier triangular space.

the sequence of indices of the corresponding degeneracy operators. Compared with the implementation of semi-simplicial sets,
the additional cost of the implementation of simplicial set is thus low, and related to the object which has to be represented (for
instance, if there are no degenerate simplices in the boundary of any non degenerate simplex, the additional cost is quite null).
Obviously, this implicit representation of degenerate simplices has to be taken into account when implementing the construction
operations.

Bézier embedding. Let σ be any i-simplex of a simplicial set: a Bézier simplex is associated with σ. The relation between
the proper control points of σ and those of σdj , for any j, is the relation described for semi-simplicial sets. If µ is degenerate
(i.e. µ = σsj), Property 1 has to be satisfied, in order to guarantee that µ has same shape as σ (cf. Figure 8). For example in
Figure 8(a), the upper triangle is degenerated by s1; then all control points P102, P111 and P120 have to be equal to P12.

Property 1. Let σ be a i-simplex, and let Bσ be its corresponding Bézier simplex defined by the set of control points {Pα}. Let
µ = σsj , 0 ≤ j ≤ i, and let Bµ be its corresponding Bézier simplex defined by the set of control points {Pα′}. If all control points
Pα′0···α

′
jα
′
j+1···α

′
i+1

such that :

• α′k = αk, for 0 ≤ k ≤ j − 1,

• α′j + α′j+1 = αj , for 0 ≤ α′j ≤ αj and 0 ≤ α′j+1 ≤ αj ,

• α′k = αk−1, for j + 2 ≤ k ≤ i+ 1

are equal to Pα0···αi , then Bσ = Bµ. �

Proof. The complete proof is not provided here, since it is quite straightforward: for a given Pα, it is sufficient to show that:∑
α′j+α′j+1=αj

( d

α0 · · ·α′jα′j+1 · · ·αi

)
uα0

0 · · ·u
α′j
j u

α′j+1

j+1 · · ·u
αi
i =

(d
α

)
uα0

0 · · · (uj + uj+1)αj · · ·uαi
i

. This is quite direct, since (uj + uj+1)αj =
∑αj

k=0

(αj
k

)
u
αj−k
j ukj+1.

So, a triangular Bézier space can be associated with any simplicial set. From a practical point of view, only the control
points of non degenerate simplices are needed. The control points of any simplex (degenerate or not) can be retrieved from its
proper control points and from the relations corresponding to face and degeneracy operators: in particular, when the simplex is
degenerate, its control points can be deduced from the control points associated with non degenerate simplex of its boundary,
using Property 1. So, the additional cost for embedding simplicial sets, compared with semi-simplicial sets, is null, except the
computing time for accessing the control points of a degenerate simplex: in this case, the access time is lower than the dimension
of the simplex, with an adequate data structure (cf. Section 4.3). Note that, as for the semi-simplicial case, it is assumed that the
degrees of all Bézier simplices are equal, whether they are degenerate or not (and as before, it is possible to avoid this constraint
by applying results about the degree elevation: cf. [9]).

Data structure. The following data structure is a a direct extention of the semi-simplicial set data structure presented in
Section 2. Since only degenerate simplices that are face of non degenerate simplices are represented. So, let σ be a simplex, each
element (i, τ) of σ.degenOps corresponds to σsi = τ . Note that if a simplex is degenerate, then its access ctrlP ts is null.

type Simplex is record :
dim : integer
faceOps : [0..dim] of *Simplex
degenOps : Map<Integer,*Simplex>
ctrlPts : *[1..Cset.degree−1

dim ] of CtrPt
set : *SimplicialSet

end record

type SimplicialSet is record :
dim : integer
degree : integer
allSimplices : [0..dim] of List<*Simplex>

end record

Basic Operations are still cone and identification. The cone definition is a direct extension of the cone of a semi-simplicial
set. The identification of two i-simplices σ and µ having same boundary (cf. Algorithm 5) implies now the identification two
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Figure 8: (a) According to Property 1, if all the control points of the degenerated edge are equal to the vertex, then the Bézier
simplex corresponding to the edge is equal to the Bézier simplex corresponding to the vertex. (b) illustrates an edge and its two
possible degenerated triangles. According to Property 1, if all control points (of a triangle) which are aligned vertically are equal
to the control point on the edge in the same alignment, then the Bézier triangles and the Bézier edge are equal. (c) Cartesian
product of two edges: the useful degenerate simplices are represented up to dimension 2 in green. According to Property 1, all
proper control points of the degenerate edge αs0 (resp. γs0) are equal to control point P4 of vertex α (resp. γ); and proper control
points P211 and P121 (resp. P112) of the degenerate edge βs0 are equal to control point P31 (resp. P22) of β. Similarly, proper
control points P121 and P112 (resp. P211) of degenerate simplex βs1 are equal to control point P13 (resp. P22) of β. (d) the
simplicial set resulting from the cartesian product of the two edges of (c). For clarity purpose, the control points are displayed in
(e), where the shape of a resulting simplex corresponds to the shape of its generating simplices. For example, simplices (βs0, β′s1),
βs0 and β′s1 have the same shape.

by two of all degenerate simplices deduced from σ and µ by the same sequence of degeneracy operators. Algorithm 4 computes
toIdent: the list of all identifications of degenerate simplices induced by the identification of σ and µ. More precisely, the elements
of toIdent are equivalent classes of simplices such that all simplices of an equivalence class have to be identified. Table 1 references
basic functions used in Algorithm 5. The identification consists in computing the set of equivalence classes, and then to merge
each equivalent class into a simplex τ of same dimension, and then update, for each simplex corresponding to τ : the face operators
of its star, and the degeneracy operators of its faces.

Algorithm 4: buildIdentifications

Input : toIdent : List<Set<Simplex>>
Input : σ, µ : Simplex
Output: toIdent
equivalentClass : Set < Simplex >= {};
Ops : Set < Integer >= {};
if σ 6= µ and σ 6= null and µ 6= null then

addToIdentList(toIdent,σ,µ)/* adds {σ, µ} such that equivalent classes of toIdent are updated */
equivalentClass=getEquivalentClass(toIdent,σ)/* µ can be used instead of σ */
for τ in equivalentClass do

for i in τ .degenOps.keys () do
Ops = Ops ∪ {i};

for (σ1, σ2) in equivalentClass do
for i in Ops do

buildIdentification(toIdent,σ1.degenOps.get(i), σ2.degenOps.get(i))

After computing all equivalence classes, a new simplex γ is created for each equivalence class, namely the “representative
simplex”. If a simplex σ of S does not belong to any equivalence class, then its representative simplex is itself.

• dim(eqCl : Set < Simplex >) returns the dimension of the simplices of eqCl.

• pickSimplex(eqCl : Set < Simplex >) returns one simplex of the equivalent class eqCl.

• getStar(eqCl : Set < Simplex >) returns the star of the equivalent class eqCl in a Map < Simplex, Integer >
containing all elements (τ, k) such that τdk = σ, for all σ of eqCl.

• getBoundaryDegens(eqCl : List < Simplex >): returns a Map < Simplex, Integer > containing all elements
(ν, k) such that νsk = σ, for all σ of eqCl.

• remove(S, σ): removes simplex σ from simplicial set S.

• buildMapRepClass(List < Set < Simplices >>): creates a new representative simplex γ for each equivalence
class, returns the Map < Simplex, Set < Simplex >> associating each γ with its class.

• buildMapSimplexRep(S,Map < Simplex, Set < Simplex >>): returns a Map < Simplex, Simplex > associ-
ating each simplex of S with its representative.

Table 1: List of functions used in Algorithm 5
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Algorithm 5: identification

Input : S : SimplicialSet
Input : σ, µ : Simplex
Output: S
toIdentify : List<Set<Simplex>>=[];
eqCl :Set<Simplex>;

buildIdentification(toIdentify,σ,µ);
repClass : Map<Simplex,Set<Simplex>> = buildMapRepClass(toIdentify);
simplexRep : Map < Simplex, Simplex >> = buildMapSimplexRep(S, repClass);

/* sets the boundary operators of representative simplices γ */
for γ in repClass.keys () do

α = pickSimplex(repClass.get(γ));
for i in γ.dim do

γ.faceOps[i]=simplexRep.get(α.faceOps[i])

/* updates the boundary operators of the other simplices having a γ in their boundary */
for γ in repClass.keys () do

for (τ, i) in getStar(repClass.get(γ)) do
/* if τ is representative, then its boundary is already set */
if simplexRep.get(τ)==τ then

τ .faceOps[i]=γ;

/* sets degeneracy operators of representative simplices γ */
for γ in repClass.keys () do

for τ in repClass.get (γ) do
for (j, ν) in τ .degenOps do

if j not in γ.degenOps.keys () then
γ.degenOps.add((j,simplexRep.get(ν)));

/* updates degeneracy operators of the other simplices beeing in the boundary of a γ */
for γ in repClass.keys () do

for (τ, i) in getBoundaryDegens(repClass.get(γ)) do
if simplexRep.get(τ)==τ then

τ .degenOps.set(i, γ)

/* removes from S, all simplices belonging to an equivalent class */
for eqCl in repClass.values () do

for τ in eqCl do
remove(S, τ);

The cartesian product of two simplicial sets S and S′ can be easily defined: a i-simplex µ from S × S′ is associated with any
pair (σ, σ′) of i-simplices of S and S′, such that for any j, µdj = (σdj , σ

′dj) and µsj = (σsj , σ
′sj) (cf. Figure 8(d)). The control

points associated with µ can be computed by "adding" the corresponding points of σ and σ′ (Minkowski sum). For instance on
Figure 8(e), point P121 of (βs1, β′s0) corresponds to the sum of P13 of β (and thus P121 of βs1) and P31 of β′ (and thus P121 of
βs0). In practice, only the degenerate simplices having a dimension lower than the sum of the dimensions of S and S′ are needed
for computing the cartesian product of S and S′. At last, note that it is possible to directly deduce the cartesian product of two
semi-simplicial sets by implicitly handling the degenerate simplices (and thus the degeneracy operators): cf. [15].

These results can be extended for cubical sets [22, 3], which can be defined in the following way. A cubical set S = (K, (dij), (s
i))

is a family K = (Kp)p∈N of cubes together with two families of maps, such that (K, (dij)) is a semi-cubical set, and (si) are
degeneracy operators:

∀p ≥ 0, ∀i, 0 ≤ i ≤ p, si : Kp → Kp+1,
which satisfy: sisk = sksi+1 if k ≤ i, sidkj = dkj s

i−1 if k ≤ i, sidkj = dk−1
j si if k > i+ 1 and sidi+1

j = Id.

4 Simploidal
As seen in section 2, semi-simploidal sets contain and generalize semi-simplicial and semi-cubical sets.

Similarly to simplicial and cubical sets, simploidal sets are defined by adding degeneracy operators to semi-simploidal sets. In
particular, it is then possible to define the cone operation (cf. Figure 10) thanks to these operators.

4.1 Combinatorial Structure
Definition 1. A simploidal set S = (K, (dij), (s

k
l )) is a set of simploids equipped with a type operator T : K 7→

⋃∞
i=0 N∗i, face

operators dij and degeneracy operators skl .
Let σ ∈ K; σT is the type of σ. Let σT = (a1, · · · , an): σdij (resp. σskl ) is defined if 1 ≤ i ≤ n, 0 ≤ j ≤ ai (resp. 0 ≤ k ≤ n

and l = −1, or 1 ≤ k ≤ n and 0 ≤ l ≤ ak). Operators satisfy:
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Figure 9: A simploidal Bézier space of dimension 3. Note that σ1 is a prism (i.e. simploid of type (2, 1)) connecting the simplex
σ2 and the cube σ3, σ4 is a square (i.e. simploid of type (1, 1)) such that one of its edge is a self loop, σ6 is a cube (i.e. simploid
of type (1, 1, 1)) with a degenerated edge, and σ5 is a cone over a square face (i.e. a simploid of type (1, 1, 1) with a degenerated
face).

(I) Action on the type

1) σdijT =

{
(a1, ..., ai − 1, ..., an) if ai > 1
(a1, ..., ai−1, ai+1, ..., an) otherwise

2) σsijT =

{
(a1, ..., ai + 1, ..., an) 1 ≤ i ≤ n, 0 ≤ j ≤ ai
(a1, ..., ai, 1, ai+1, ..., an) 0 ≤ i ≤ n, j = −1

(III) Commutation of degeneracy operators

1) si−1s
k
−1 = sk−1s

i+1
−1 k ≤ i

2) if l 6= −1, si−1s
k
l =

{
skl s

i
−1if k ≤ i

sk−1
l si−1if i < k − 1

3) if j, l 6= −1, sijs
k
l =

{
skl s

i
j if i 6= k

skl s
i
j+1if i = k, l ≤ j

(II) Commutation of face operators

1) dijd
i
l = dild

i
j−1 l < j, ai > 1

2) dijd
k
l =

{
dkl d

i
j if ak > 1

dkl d
i−1
j otherwise

k < i

(IV) Commutation of face/degeneracy operators

1) if l 6= −1, sild
i
j =


dijs

i
l−1 if j < l

dij−1s
i
l if j > l + 1

sild
i
j+1 = Id if j = l

2)if l = −1, si−1
l dij = Id

In the other cases:

3) if k ≤ i− 1, skl d
i
j =

{
dijs

k
l if l 6= −1

di−1
j skl otherwise

4) else (i.e. k ≥ i), skl d
i
j =

{
dijs

k
l if ai > 1

dijs
k−1
l otherwise

�

Let σ be a simploid of type (a1, ..., an): n is the length of σ, and its dimension is
∑n
i=1 ai, or 0 if n = 0. Intuitively, and as

explained in section 2.3, a simploid is either a vertex, or the cartesian product of n "generating simplices" of respective dimensions
a1, ..., an, with ai > 0 for any i. No "0" appears in the type of a simploid, since the cartesian product by a vertex is, from a
structural point of view, equal to the identity. This explains the fact that several cases are distinguished in the definition of
simploidal sets, even if these cases are intuitively similar. More generally, definition1 can be retrieved from the previous remark,
the properties of face and degeneracy operators of simplicial sets, and from the fact that the actions of two operators on two
different "generating simplices" are independent.

Equations (I) denotes the action of an operator on the simploid type (equations (I-1) for a face operator, equations (I-2) for a
degeneracy operator). The action of a face (resp. degeneracy) operator on a "generating simplex" decreases (resp. increases) its
dimension; hence, if a zero appears after the application of a face operator (i.e. if ai = 1 and dij is applied), it is removed from the
type. Conversely, the application of degeneracy operator sk−1 intuitively consists in adding a degenerate edge as new "generating
simplex".

Equations (II) (resp. (III), (IV)) corresponds to the commutation relation of face operators (resp. degeneracy operators,
degeneracy and face operators). Several cases correspond to the commutation properties of simplicial sets, i.e. when operators are
applied on the same "generating simplex": cf. equation (II-1), the last case of equation (III-3), equation (IV-1). Equation (IV-2)
corresponds to the removal, by a face operator, of a new 1-dimensional "generating simplex" issued from a degeneracy operator
(i.e. nothing is modified).

The other cases correspond to the independence of the actions of operators applied to distinct "generating simplices":

• equations (II-2) : two cases are distinguished, according to the fact that a 1-dimensional "generating simplex" disappears
when a face operator is applied;

• equations (III-1), (III-2) and the first case of equation (III-3) : these cases are distinguished, according to the number
of new "generating simplices" created by operator s−1; note that there is no commutation property in equation (III-2)
when k = i + 1, since σsk−1

−1 skl T = (a1, . . . , ak−1, 2, . . . , an) (the first degeneracy operator creates a new 1-dimensional
"generating simplex", on which another degeneracy operator is applied);

• equations (IV-3) and (IV-4): these cases are distinguished, according to the creation or removal of 1-dimensional "generating
simplices".
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The following theorem comes directly from the definition of simploidal sets.
Theorem 2. A unique simploidal set can be associated with:
• any simplicial set
• any cubical set.

�

The proof of Theorem 2 is straightforward:
• given a simplicial set S = (K, (dj), (sj)), a simploidal set S′ = (K′, (d′1j ), (s′1j )) can be defined, such that:

1. a simploid of type (n) is associated with any n-simplex;
2. d′1j (resp. s′1j ) corresponds to dj (resp. sj) for any j.

• This is similar for cubical sets: a simploid of type (a1, · · · , an), such that ai = 1 for any i, is associated with any n-cube.

Even if the definition of simploidal sets seems complicated since the face and degeneracy operators have to satisfy many
properties, its implementation is direct, contrary to the simpler definition of supercomplexes proposed by Gugenheim in 1957, for
topological purposes (cf. section 4.5 for a comparison of simploidal sets and supercomplexes).

Simploidal sets are also efficient, since the properties of the definition are not implemented explicitly. These properties have
to be satisfied by the construction operations, but this involves no particular cost. More precisely, and as for simplicial sets,
only non degenerate simploids and theirs faces (degenerate or not) have to be explicitly represented. So, the additional cost of
simploidal sets is low, even compared with semi-simplicial sets; it is related to the representation of the type of any simploid, and
to the "complexity" of the object which has to be represented (cf. section 4.3).

4.2 Bézier embedding
Associating a simploidal set with a simploidal Bézier space can be done by extending the results described for the simplicial case.
From a theoretical point of view, assume a Bézier simploid is associated with any simploid; the following property has to be
satisfied in order to represent a simploidal Bézier space:
Property 2. Let S = (K, (dij), (s

k
l ) be a simploidal set, let σ be a simploid of type (a1, ..., an) of K, let Pσ = {P(α1,...,αn), α

i ∈
Γ
ai
di
, 1 ≤ i ≤ n} be its set of control points, and let Bσ be the Bézier simploid associated with σ.

(1) Let µ = σdij , let P
µ be its set of control points, and let Bµ be the Bézier simploid associated with µ.

If any control point Pσ
(α1,...,αi,...,αn)

is equal to:

• Pµ
(α1,...,αi−1,α′i,αi+1,...,αn)

, where α′i = αi0 · · ·αij−1α
i
j+1 · · ·αiai if ai > 1 and αij = 0,

• Pµ
(α1,...,αi−1,αi+1,...,αn)

, if ai = 1,

then Bσ(u) = Bµ(u′) where:
• u = (u1, · · · , un),
• u′ = (u1, · · · , ui−1, u

′i, ui+1 · · · , un), where u
′i = (ui0, · · · , uij−1, u

i
j+1, · · · , uiai ), if ai > 1 and uij = 0,

• u′ = (u1, · · · , ui−1, ui+1 · · · , un) if ai = 0.
(2) Let µ = σsij , let P

µ be its set of control points, and let Bµ be the Bézier simploid associated with µ. If:

• if j ≥ 0: all control points Pµ
(α1,...,α′i,...,αn)

are equal to the control point Pσ
(α1,...,αi,...,αn)

, where α′ik = αik for

k < j, α′ij + α′ij+1 = αij , α
′i
k = αik−1 for k > j + 1, for any a1, · · · , ai−1, ai+1, · · · , an,

• if j = −1: all control points Pµ
(α1,...,αi,1,α′i+2,...,α′n+1)

of σsi−1 are equal to the control point P(α1,...,αn), where

α′j = αj−1,
then Bσ = Bµ

�

As a consequence of Property 2, it is sufficient in practice to associate its proper control points with any non degenerate
simploid. The set of control points of any simploid σ can be reconstructed according to Property 2 and to the numbering of face
operators:
• if σ is a vertex, a point is associated with it;
• else, if σ is not degenerate, its associated control points can be retrieved from its proper control points, and from the proper

control points of the simploids of its boundary, using the numbering of face operators.
If σ is degenerate, it is necessary to access the control points of its associated non degenerate simploid, using the numbering
of degeneracy operators and the Property 2, which links the control points of simploids σ and σsij .

.
Remember also that the computation of all Bézier simploids of a simploidal set can be useless, depending on the application:

for example, only non degenerate main simploids are required in order to display a simploidal set.
At last, note that control points of non degenerate simploids can be stored into a simploidal array according to the lexico-

graphical order of tuples of multi-indices [5]. For instance, let P = P(α1,...,αn) be a control point of a Bézier simploid of type
(a1, . . . , an) and degree (d1, . . . , dn). If n = 1, then the simploid corresponds to a simplex, and P is stored as described in section
2.1. If n > 1, it is necessary to store all control points of a simploid of type (a2, . . . , an) of degree (d2, . . . , dn) for each multi-index
of Γa1d1

preceding α1; then point P can be stored as if it would be a control point of a Bézier simploid of type (a2, . . . , an) and
degree (d2, . . . , dn), with a tuple of multi-indices equal to (α2, . . . , αn).

4.3 Data Structure
The following data structure is a possible implementation of simploidal sets associated with simploidal Bézier spaces, where each
simploid is associated with its proper control points. In this way, no control point is duplicated. In order to compute the Bézier
space corresponding to a simploidal set, the control points of main Bézier simploids can be retrieved thanks to the boundary
operators. Note that if a Simploid σ is degenerate (i.e. σ = µsij for some i and j), then σ and µ have the same shape, so there is
no need to store its control points of σ (i.e. σ.ctrlP ts is null).
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type Simploid is record :
n : integer
type : [1..n] of integer
faceOps : [1..n] of ([] of *Simploid)
degenOps : Map<((integer,integer),*Simploid)>
ctrlPts : *[1..Cd1−1

a1 × . . .× Cdn−1
an ] of CtrPt

set : *SimploidalSet
end record

type SimploidalSet is record :
dim : integer
degree : integer
allSimploids : [0..dim] of <*Simploid>

end record

Regarding the SimploidalSet structure, dim is the dimension of the simploidal set, allSimploids stores the lists of simploids,
ordered by increasing dimensions; degree is the degree of each "generating simplex". It is thus assumed here that, whatever its
type, the degree of a simploid of length n is (d1 = degree, . . . , dn = degree); this simplifies several operations. Else it could be
necessary to modify some degrees [9], for instance for identifying two simploids having same types but different degrees.

Regarding the Simploid structure, let σ be a simploid of type (a1, ..., an) and degree (d1, . . . , dn), set gives access to its
simploidal set. n is the length of its type, ai corresponds to σ.type[i] and di corresponds to σ.set.degree.

Let d =
∑σ.n
i=1 σ.type[i] be the dimension of σ. faceOps gives access to the boundary simploids of dimension d− 1.

ctrlPts is an access to the array containing the proper control points of σ, ordered by lexicographical order, the access is null
for degenerate simploids. The n-tuple of multi-indices of a point can be retrieved from its index in the array.

Remember that only simploids which are in the boundaries of non degenerate simploids are explicitly represented. So, it is
assumed that there are few degenerated simploids (compared to non degenerated ones). So, in the presented structure, degenOps
stores only useful degeneracy operators: if σsij = τ and τ is a face on a non degenerated simploid, then the element (i, j, τ)
is stored in degenOps. Another solution would be to define degenOps as a reference to an array of references to simploids. At
each index of the array, a reference is either null, either corresponds to a degenerated simploid. The respective interests of these
solutions depend on the objects which are represented.

Note that it could be interesting to access all simploids of dimension d+ 1 in the star of σ; these accesses corresponds to the
inverse of the face operators, and can be represented by a list of ∗Simploid associated with each simploid.

If σ is degenerate, it is important to access the corresponding non degenerate simploid τ . In fact, τ is in the boundary of
σ, and can be accessed by using the face operators, thanks to the relations between face and degeneracy operators (for the same
reason, the information σ.degen is redundant, since it can be retrieved by checking if a degeneracy operator of a face of σ gives
access to σ). In order to optimize the access to τ , i.e. to avoid to check all face operators, it can be interesting to associate with
σ a list of numberings, corresponding to the face operators accessing the face from which σ is degenerated.

The structure can be optimized for different subclasses of simploidal sets, for instance for semi-simploidal sets, cubical sets
(only the dimensions of cubes are required, since the type of a d-dimensional cube is the d-tuple (1, . . . , 1)). Other optimizations
can be proposed, for instance for manifolds: all simploids have the same dimension, and face operators are replaced by adjacency
operators.

At last, note that the additional cost, compared with a similar structure implementing simplicial sets, is low, since it corre-
sponds to the types which have to be explicitly associated with all simploids: it is thus at most the dimension of the simploidal
set times the number of simploids.

Remark: similarly to triangular Bézier spaces (cf. section 2.1), another possible data structure for handling Bézier simploidal
spaces is a list of simploidal arrays, where each array contains the control points of a main Bézier simploid. The main drawbacks
are related to:

• the redundancy of the representation, since control points of a non main simploid appear in all simploidal arrays associated
with the main simploids of its star: this may lead to inconsistency and space complexity problems;

• the efficiency of several construction operations and topological properties computations, since all simploids are not repre-
sented nor the adjacency and incidence relations between simploids.

4.4 Basic Operations
From a theoretical point of view, and similarly to the simplicial case, all degenerate simploids associated with any simploid exist
in a simploidal set; so, a simploidal set contains an infinite number of simploids. In practice the non degenerate simploids and
their faces (degenerate or not). For some operations, additional degenerate simploids can be of interest. For example, a simploid
can be simply degenerated using the identification operation with a degenerate simploid.

Cartesian Product (cf. Algorithm 9) As for semi-simploidal sets, the definition of the cartesian product of two simploidal
sets is deduced from the following property: the cartesian product of two simploids σ1 of type (a1, ..., ak), and σ2 of type (b1, ..., bl)
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is a simploid σ of type (a1, ..., ak, b1, ..., bl). Algorithms 6, 7 and 8 are used in Algorithm 9.

Algorithm 6: createSimploid
Input : σ1, σ2 : Simploid
Output: σ : Simploid
P1, P2 : CtrPt;

σ.n = σ1.n + σ2.n;
σ.type = concat(σ1.type, σ2.type);

/* σ is not degenerate iff σ1 and σ2 are not degenerate. In that case, its control points have to be
stored */

if σ1.ctrlPts6=null AND σ2.ctrlPts 6=null then
allocCtrPts (σ);
for j in σ2.ctrPts.indices do

P2 = σ2.ctrPts[j];
for i in σ1.ctrPts.indices do

P1 = σ1.ctrPts[i];
σ.ctrPts[i+ (j − 1) ∗ σ1.ctrPts.length]=add(P1,P2);

Algorithm 7: setFaceOps
/* Set face operators of a simploid σ = σ1 × σ2 */

Input : σ, σ1, σ2 : Simploid
Input : parents : Map<[Simploid, Simploid] , Simploid>
Output: σ
for i in 1..σ1.n do

for j in 0..σ1.type[i] do
σ.faceOps[i][j]=parents.getValue([σ1.faceOps[i][j],σ2]);

for i in 1..σ2.n do
for j in 0..σ2.type[i] do

σ.faceOps[i+σ1.n][j]=parents.getValue([σ1,σ2.faceOps[i][j]));

Algorithm 8: setDegenOps
/* Set degeneracy operators of a simploid σ = σ1 × σ2 */

Input : σ, σ1, σ2 : Simploid
Input : parents : Map<[Simploid, Simploid] , Simploid>
Output: σ : Simploid

for ([i, j], τ) in σ1.degenOps do
σ.degenOps.add([i, j], parents.getValue(τ, σ2));

for ([i, j], τ) in σ2.degenOps do
σ.degenOps.add([i+ σ1.n, j], parents.getValue([σ1, τ ]));

Note that τ ′1 = σ1sσ
1.n
−1 × σ2 and τ ′2 = σ1 × σ2s0−1 correspond to the same simploid, so in algorithm 9, if τ ′1 and τ ′2 exists,

then they are merged.
This operation can be easily extended in order to define the cartesian product of subsets of given simploidal sets. Note that

when these subsets contains only simplices (i.e. simploids of type (k) for some k ∈ N), then the "simplicial " cartesian product
can be applied.
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Algorithm 9: Cartesian Product
Input : S1, S2 : SimploidalSet
Output: S : SimploidalSet
Output: parents : Map<[Simploid, Simploid] , Simploid>
/* Set of pairs (key, value) parents is used to keep track of the structure of each simploid: for each

simploid σ = σ1 × σ2, a pair ([σ1, σ2], σ) is added to the map */

σ, σ1, σ2 : Simploid;

S.dim = S1.dim + S2.dim;
S.degree = S1.degree;
for σ1 in S1.allSimploids do

for σ2 in S2.allSimploids do
σ = createSimploid(σ1, σ2);
σ.set = S;
S.allSimploids[dim(σ)].add(σ);
parents.add((σ1,σ2),σ);

/* Setting face and degeneracy operators */
for key in parents.getKeys() do

σ = parents.getValue(key);
σ1 = key[1];
σ2 = key[2];
setFaceOps(σ,σ1,σ2);
setDegenOps(σ,σ1,σ2);
τ1 =getDegen(σ1, [n1,−1]);
τ2 =getDegen(σ2, [0,−1]);
if τ1 6= null and τ2 6= null then

merge(τ1, τ2);

Identification As for semi-simploidal sets, two simploids σ and µ can be identified under some structural conditions (equality
of type and boundary) and geometrical conditions (equality of degree). The algorithm can directly be deduced from Algorithm 5
defined for simplicial sets. The basic identification operation is also defined for two simploids having same boundary. As for
simplicial sets, the identification of σ and µ induces the identifications of their degenerated simploids.

When σ and µ are not degenerate, the computation of the control points of the simploid resulting from the identification of
σ and µ can be done as in the semi-simploidal framework. If σ or µ is degenerate, then the resulting simploid is degenerated.
This basic operation can be generalized in order to identify simploidal subsets: the identification of two simploids induces then
the identification of their boundaries.

Note that two simploids σ and µ may have similar "shapes" but different types; in these cases, σ and µ can not been directly
identified:
• When the type of σ is a permutation of the type of µ. For instance, a simploid of type (1, 2) is not a simploid of type (2, 1)

(the cartesian product is not commutative). A similar remark can be stated for simplicial sets, since simplicial sets exist,
which are not isomorphic, but their geometric realizations are.

• When a simploid has degenerate faces: for instance, in Figure 10(d), the 4 lateral faces of the pyramid are simploids of
type (1, 1) but look like triangles (type (2)), because one of their edges is degenerate. But the difference of such simploids
with triangles is clear regarding the structure of their control points (cf. Figures 10(e) and 10(f)).

Degeneracy From a theoretical point of view, there is no atomic operation of degeneracy. In fact, degenerating a simploid
µ consists in an identification of µ with a degenerated simploid having same boundary. More precisely, degenerating µ into one
of its faces σ consists in identifying µ with a degenerate simploid of same type, associated with σ by a degeneracy operator.

In practice, µ can be degenerated to σ if its boundary allows it according to the definition od simploidal sets. In that case, it
is just necessary to set the degeneracy operator σsij to µ. Note that if µ is a main simploid, then we can simply remove it from
the simploidal set.

This operation can be generalized in order to degenerate a simploidal set S into a single vertex: this can be achieved by
identifying all vertices of S, and then by iteratively identifying all edges and in degenerating the resulting edge, then in applying
the same process to all 2-dimensional simploids (according to their types), and so on. Note that the resulting simploidal set S”

contains only degenerated simploids. More precisely, S” contains one simploid of each type contained in S. For example, when
a prism is degenerated to a vertex, the resulting simploidal set contains one simploid of each type (0), (1), (2), (1, 1), and (2, 1).
Then all face and degeneracy operators are set according to the simploid types.

Cone
Intuitively, the cone operation of a simploidal set S with a vertex v consists in extruding S by an edge incident to v; and then

in degenerating S × v into v (cf. Figures 10(a) 10(c) 10(c) 10(d))) as described above.
In practice, it is not necessary compute the extrusion and then to identify all simploids for degenerating S × v into v. Only

resulting simploids can be created, and face and degeneracy operators can be defined according to Algorithm 10.
Of course, this definition can be optimized: if S contains only simplices, then the simplicial cone can directly be applied.

Finally, as mentionned for the cartesian product, it is possible to define the cone operation for a simploidal subset.
Algorithm 6 is used in Algorithm 10 for constructing each new simploid of type (a1, · · · , an, 1) for each simploid of type

(a1, · · · , an).
Homology computation: Homology of semi-simploidal sets has been studied in [20]. Its computation is based on the notion

of simploid boundary, which can be deduced from the simploidal face operators. This notion can be extended for simploidal sets:
only non degenerate simploids are taken into account; in particular if a degenerate simploid τ is a face of a non degenerate simploid
σ, then τ does not appear in the boundary of σ.
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Figure 10: (a) The cone applied to a square (and its boundary) is a square-based pyramid (d). Thanks to degeneracy operators,
the cone operation can be defined. Intuitively, it consists in an extrusion (a)− (b) followed by the degeneracy of the copy of the
original simploidal set (in orange in (b). In practice, the computation can be improved by creating directly all the degenerated
simploids incident to the new vertex and then setting all the boundary and degeneracy operators (c). (e) the structure of the
control points of a lateral Bézier square face of (c) is different from the structure of the control points of a Bézier triangle (f).

Algorithm 10: Cone
Input : S : SimploidalSet ; v : Vertex
Output: S′ : SimploidalSet

if isSimplicial(S) then
simplicialCone(S);

else
S” = degenerateToPoint(S);
S′=S ∪ S”;
edge = new Simploid([1], S.degree)/* creates a new edge */
simploids : Map<Simploid, Simploid> /* associates each simploid of type (a1, · · · , an) of S with a

new simploid of type (a1, · · · , an, 1) */
for i in 0..S.dim do

for σ in S.allSimploids[i] do
σ′=createSimploid(σ,edge);
σ′.faceOps[σ′.n][1]=σ;
σ′.faceOps[σ′.n][0]=getSimploidOfType(S”, σ)/* S” contains only one simploid of each type

*/

for (σ, σ′) in simploids do
for (i, j) in σ.faceOps.indices do

σ′.faceOps[i][j]=simploids.getValue(σ.faceOps[i][j]);
for ([i, j], τ) in σ.degenOps do

σ′.degenOps.add(([i,j],simploids.getValue(τ)));

Obviously, other construction operations can be defined, based on these basic operations, in order to construct simploidal
sets.

4.5 Discussion about Gugenheim’s definition
Supercomplexes were defined in 1957 (cf. [11] page 37). By mimicking the definition of simploidal sets, (the structure of)
supercomplexes could be defined in the following way:

Definition 3. A supercomplex S = (K, (dij), (s
i
j)) is a set of simploids equipped with a type operator T : K 7→

⋃∞
i=1 Ni, face

operators dij and degeneracy operators skl . Let σT = (a1, · · · , an): σdij (resp. σskl ) is defined if 1 ≤ i ≤ n, ai > 0, 0 ≤ j ≤ ai
(resp. 1 ≤ k ≤ n and 0 ≤ l ≤ ak). Operators satisfy:

• σdijT = (a1, ..., ai − 1, ..., an),
σsijT = (a1, ..., ai + 1, ai+1, ..., an);

• face and degeneracy operators having the same exponent satisfy the commutation properties of face and degeneracy oper-
ators of simplicial sets;

• face and degeneracy operators having different exponents commute.

�

Obviously, this definition of supercomplexes is simpler than the definition of simploidal sets given in 4.1. This is due to the
fact that the type of a simploid may contain components equal to 0. Let σ be a supercomplex of type (2, 1) (i.e a prism), then the
type of σd2

0 is (2, 0) (i.e. a triangle). Conversely, in order to associate a degenerate cube with a square, the type of the square has
to be for instance (1, 1, 0), so the degeneracy operator s20 can be applied. This simple definition of supercomplexes is based on the
fact that, implicitly, an equivalence relation exists between types which differ only by components equal to 0: this corresponds
to the fact that the cartesian product by a vertex is (structurally speaking) equal to the identity. Note that Gugenheim was
not interested in the definition of embedding, construction operations nor implementation, and that this equivalence relation was
never explicitly stated. Let Q be the set of supercomplexes quotiented by this equivalence relation.
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Theorem 4. The set of simploidal sets is equivalent to Q. �

The proof is not provided here because it is rather technical.
The definition of supercomplexes is not well suited for a direct implementation. In particular, the length of the type of a

n-dimensional simploid is not bounded, since it can contain any number of zeros. So, contrary to simploidal sets, it is not possible
to bound the complexity of the space representation nor that of operations as simple as the comparison of two types, which is
necessary for instance for the identification operation.

In order to warrant the unicity of the types, no 0 appears in the type of a simploid. So, our definition of simploidal sets
contains more constraints over boundary and degeneracy operators, since many cases have to be distinguished in the definition;
but, as said above, this does not involve any additional cost, since the properties of the operators don’t involve any requirement in
space nor in computation. The properties described by equations (I) to (IV) are taken into account by the modifications which are
performed during the application of an operation, but they don’t involve a particular computation. Even if it would be necessary,
checking that the properties of a simploidal set are satisfied would not involve additional space or time requirements, compared
with supercomplexes.

So, our definition is more efficient regarding implementation issues, and the definition of relations with simploidal Bézier
spaces as that of construction operations is quite simple, compared with similar operations defined on simplicial and cubical
sets. The counterpart is the fact that the commutation properties of the face and degeneracy operators cannot be expressed as
simply as in the supercomplexes definition. Otherwise said, our definition corresponds to the one of Gugenheim such that for each
equivalence class, we chose the representative simploid with no 0.

5 Conclusion - Future Work
Simploidal sets generalize simplicial sets and cubical sets: they are defined in a similar way, by abstract simploids on which act
face and degeneracy operators. All basic operations defined in the simplicial and cubical frameworks are extended for simploidal
sets. Relations between simploidal sets and simploidal Bézier spaces generalize similar relations between simplicial (resp. cubical)
sets and triangular (resp. cubical) Bézier spaces. The simploidal framework presented in this paper is thus general and coherent,
meaning that it is possible to conceive softwares implementing simploidal sets (e.g. for computing topological properties or for
geometric modeling), which make it possible to handle also simplicial sets or cubical sets as particular cases. Moreover, it is
possible to handle simultaneously simplices and cubes (for instance, a cube and a tetrahedron can be glued with a prism). The
cost of this generalization is not significant, since the definition of simploidal sets is very close to the definitions of simplicial and
cubical sets: the main difference, when implementing simploidal sets, is that the type of a simploid has to be explicitly represented.

Note that a difference exists between semi-simplicial sets and semi-simploidal sets. It is possible to directly adapt the definition
of the cartesian product of simplicial sets for semi-simplicial sets, by implicitly handling degeneracy operators [15]: this comes
from the fact that the cartesian product of any two simplices (and their boundaries) can be described as a semi-simplicial set.
Unfortunately, it is not possible to directly adapt the definition of the cone of simploidal sets for semi-simploidal sets, because
the cone of a simploid is not necessarily a simploid.

The relations between simploidal sets and simploidal Bézier spaces have been stated. Note that simploidal sets can be linearly
embedded, as a particular case: only vertices are associated with points. We intend to study generalizations, consisting in
associating more general splines with simploids.

It has been shown that simploids of different types may have similar shapes when some faces are degenerate. For instance in
Figure 10(d), the pyramid has four "triangle-shaped" faces but none is a "true" triangle, so none can be identified with a triangle.
In fact, these faces are squares with a degenerated edge. To tackle this problem, we are studying equivalence relations between
simploids having "similar shapes", in order to make these gluings possible.

At last, we intend to study other construction operations, since fundamental differences exist between simplicial structures
and simploidal structures: for instance, when an edge is split in a simplicial set, all simplices incident to this edge have to be
split, but this operation acts locally, since only the star of the edge is modified. When an edge is split in a simploidal set, it is
necessary to split the simploids of the star of the edge, but this can induce the split of other edges, and thus of other simploids:
the operation is not local in this case.
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