
HAL Id: hal-01274880
https://hal.science/hal-01274880v1

Preprint submitted on 16 Feb 2016 (v1), last revised 31 Aug 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simploidal Sets
Pascal Lienhardt, Samuel Peltier

To cite this version:

Pascal Lienhardt, Samuel Peltier. Simploidal Sets. 2016. �hal-01274880v1�

https://hal.science/hal-01274880v1
https://hal.archives-ouvertes.fr

Simploidal Sets

Pascal Lienhardta, Samuel Peltiera

aXLIM, UMR CNRS 7252, Université de Poitiers, France

Abstract

Simplicial sets and cubical sets are combinatorial structures studied since a long time in Algebraic Topology, and they
are used for many applications in Computational Topology, Geometric Modeling, CAD, Computer Graphics, etc.

Simploidal sets are defined in this paper in order to homogenize and generalize simplicial and cubical sets. Basic
operations are also defined here, which extend basic simplicial and cubical operations (cone, identification, cartesian
product). In order to associate shapes with structures, structural relations between simploidal sets and Bézier spaces
are provided.

It is then possible to (simultaneously) handle through a single formalism: simplices, cubes, and more generally
cells corresponding to products of simplices, with a very low additional cost, regarding space (data structure), time
(construction or computation operations) or software development.

Keywords: Simplicial Sets, Cubical Sets, Simploidal Sets, Bézier Spaces

1. Introduction

N-dimensional simplicial ”objects” (or triangulations)
are studied since a long time in Algebraic Topology. Com-
binatorial structures, as abstract simplicial complexes or
simplicial sets, describe the adjacency and incidence rela-
tions of abstract simplices, and a geometric realization is
associated with any structure; for instance, the geometric
realization of an abstract simplicial complex (resp. a sim-
plicial set) is a simplicial complex (resp. a CW-complex)
[1, 2] (see also [3, 4]). Such structures (or derived data
structures) are used for different purposes, in Computa-
tional Topology (e.g. computation of topological proper-
ties) [5, 6, 7], Geometric Modeling, CAD and Computer
Graphics (e.g. representation of subdivided geometric ob-
jects, meshes) [8, 9], etc. In particular for these last ap-
plicative fields, structural relations between some simpli-
cial structures and triangular Bézier spaces have been es-
tablished [10].

N-dimensional cubical ”objects” have been studied more
recently [11, 12] for similar purposes in Topology, Geo-
metric Modeling, etc. The question of a ”best” structure,
according to the complexity of the representation, to the
definition of construction operations and to their complex-
ities, to the complexity of the computation of topological
properties, has been discussed, without clear conclusion
[13, 14, 15]. Note that it is always possible to decom-
pose a simplicial (resp. cubical) structure into a cubical
(resp. simplicial) structure, but this operation increases
the number of cells (simplices or cubes). For instance, if a

Email addresses: pascal.lienhardt@univ-poitiers.fr (Pascal
Lienhardt), samuel.peltier@univ-poitiers.fr (Samuel Peltier)

simplicial structure is decomposed into a cubical structure,
which is itself decomposed into a simplicial structure, the
resulting structure contains many more simplices than the
original simplicial structure (cf. Figure 1 (a, b, c)): it is
thus not possible to solve the question of a ”best” struc-
ture by this conversion process. So, different softwares
are developed for similar purposes, based upon simplicial
structures or cubical structures.

(a) (b) (c) (d)

Figure 1: A triangle (a) decomposed into squares (b). The decom-
position of (b) into triangles (c) contains more simplices than the
original object (a). (d) a tetrahedron and a cube connected by a
prism.

A new data structure, simploidal sets, is defined in this
paper, in order to homogenize and to generalize simplicial
and cubical structures. As a cube is the cartesian product
of edges (i.e. 1-dimensional simplices), a simploid is the
cartesian product of (any) simplices. A simplex, or a cube,
is thus simply a particular simploid.

So, simploidal sets make it possible to :

• handle both simplicial sets or cubical sets ; in other
words, simplicial sets or cubical sets can be imple-
mented through simploidal sets ;

• simultaneously handle simplices and cubes, maybe
connected through more complex simploids, e.g.

Preprint submitted to ACM Symposium on Solid and Physical Modelling February 16, 2016

prisms (cf. Figure 1(d)). This can be interesting for
several applications, e.g. related to meshes ;

• handle cellular objects, in which cells are cartesian
products of simplices. So, simploidal sets are intrinsi-
cally interesting for some applications, for instance for
handling assemblies of simploidal Bézier spaces (cf.
[16]). For this purpose, the structural relations be-
tween simploidal sets and simploidal Bézier spaces are
also defined in this paper. They are based upon the
structural relations between simplicial sets and trian-
gular Bézier spaces, which are established in section
3 (as far as we know, these relations have not been
previously published).

In this paper, basic operations for constructing sim-
ploidal sets are also defined, by generalizing basic oper-
ations defined for handling simplicial sets (cone, identi-
fication, ”simplicial” cartesian product) and cubical sets
(extrusion, identification).

Since the definition of simploidal sets is very close to that
of simplicial and cubical sets (cf. Section 4), the additional
cost is very low, regarding space (cost of data structure),
time (cost of operations) or software development.

Simploidal sets homogenize and generalize simplicial
and cubical sets, which are the most general simplicial
and cubical structures. As optimized data structures can
be defined for representing subclasses of simplicial (resp.
cubical) sets (e.g. abstract simplicial complexes, semi-
simplicial sets), it is possible to optimize simploidal sets in
order to handle subclasses: cf. for instance semi-simploidal
sets ([17]) in section 2.3. Note that in [17], ”simploidal
sets” means ”semi-simploidal” sets: so, the results pre-
sented in this paper extend those of [17]: the main in-
terests of simploidal sets as defined here, related to semi-
simploidal sets, are:

• all simplicial and cubical construction operations can
be generalized within the simploidal framework, with
a very low additional cost;

• accordingly, more types of cells can be handled, im-
proving the versatility of the data structure.

More precisely, semi-simplicial sets are sets of abstract
simplices together with face operators, which associate
with an i-dimensional simplex the (i − 1)-simplices of its
boundary. Any semi-simplicial set can be constructed
by two basic operations, the cone and the identification.
Semi-cubical sets can be presented in a similar way, but the
cells are cubes and the basic operations are the extrusion
(i.e. the cartesian product by an edge) and the identifi-
cation. A first work for generalizing these structures has
lead to the definition of semi-simpoidal sets1 [17], and rela-
tions between semi-simploidal sets and products of trian-
gular Bézier spaces have also been established. Simplicial

1They are called simploidal sets in the original paper [17], but
this terminology is modified here in order to be coherent with termi-
nologies related to simplicial and cubical structures.

sets extend semi-simplicial sets by adding degeneracy op-
erators: this makes it possible for instance to define the
cartesian product of simplicial sets. Cubical sets extend
semi-cubical sets in the same way. Simploidal sets defined
in this paper generalize both simplicial and cubical sets
by adding also degeneracy operators to the definition of
semi-simploidal sets. For instance, this makes it possible
to define the cone operation for simpoidal sets, and thus
all basic simplicial and cubical operations can be defined
within the simploidal framework.

In 1957, Gugenheim defined supercomplexes in order to
generalize also simplicial and cubical sets, for the study of
topological properties [18]. Even if the basic ideas behind
the definitions of simploidal sets and supercomplexes are
very close, they are expressed differently. The definition
of Gugenheim is very simple, but some aspects remain un-
clear, for instance when one intend to define construction
operations (note that this was not a goal for Gugenheim).
The definition of simploidal sets proposed here is more
precise, and can be directly implemented; other notions
studied here, as relations with Bézier spaces and the def-
initions of basic operations, are original. For more pre-
cisions, see the comparison between simploidal sets and
supercomplexes in section 4.5.

In order to understand the definition of simploidal sets,
their relations with simploidal Bézier spaces and the def-
initions of basic operations, all necessary notions are pre-
sented in the paper in a progressive way:

• In section 2, the definitions of semi-simplicial, semi-
cubical and semi-simploidal sets are recalled, together
with the relations with Bézier spaces and the defini-
tions of basic operations;

• In section 3, the definition of simplicial sets are re-
called; the precise relations with triangular Bézier
spaces are established, and we recall the definition of
the cartesian product of simplicial sets, defined in a
very simple way thanks to the degeneracy operators;

• simploidal sets are then defined in section 4; we es-
tablish the relations with simploidal Bézier spaces, we
show in particular that the cone operation can be de-
fined in a simple way thanks to the degeneracy oper-
ators. We propose a data structure, basic operations
and a comparison with Gugenheim’s supercomplexes.

2. Structures Without Degeneracy

This section is mainly based upon the papers [19, 17].
Note that algorithms implementing basic operations for
handling semi-simplicial sets and semi-simploidal sets are
described in these papers.

2.1. Semi-Simplicial Sets

Combinatorial structure Most well-known triangu-
lated objects are simplicial complexes [1], which are sets

2

of geometric simplices satisfying some properties, a i-
dimensional simplex (or i-simplex) being the convex hull
of i + 1 linearly independent points. The corresponding
combinatorial structure is also well-known: an abstract
simplicial complex is a set of abstract simplices, and an
abstract i-simplex is a set of i+ 1 (abstract) vertices.

Semi-simplicial sets, or Delta-sets [20, 21] generalize ab-
stract simplicial complexes. A semi-simplicial set is a set of
(abstract) simplices on which face operators are defined:
more precisely, i + 1 face operators are defined for a i-
simplex σ, associating with σ the (at most) i + 1 (i − 1)-
simplices of its boundary. Intuitively, if σ is assimilated
with a sequence (v0, · · · , vj , · · · , vi) of i + 1 vertices, the
image of σ by the jth face operator corresponds to the se-
quence (v0, · · · , vj−1, vj+1, · · · , vi). Semi-simplicial sets are
more versatile than abstract simplicial complexes, since:

• the definition of a simplex boundary through face op-
erators makes it possible to handle i-simplices which
are incident to less than (i+ 1) vertices (cf. figure 2);

• simplices are not necessarily linearly embedded; the
relations which make it possible to directly associate
them with triangular Bézier simplices are recalled be-
low.

Definition 1. (cf. Figure 2) A n-dimensional semi-
simplicial set S = (K, (dj)) is a family of sets K =
(Ki)i∈[0..n] together with face operators: dj : Ki → Ki−1

for 1 ≤ i ≤ n and 0 ≤ j ≤ i, which satisfy: ∀i, 2 ≤ i ≤
n, ∀j, l, 0 ≤ l < j ≤ i,∀σ ∈ Ki, σdjdl = σdldj−1.

v

w

a

m

n

b c

e

f

g

x

y

(a)

m

a

n

y

b
c

w

e

x

f

v

g

(b)

v1

v2

w1

w3

w2

a1
a2

(c)

Figure 2: a) A semi-simplicial set, and b) a geometric representation.
The semi-simplicial set of a) can be obtained from c) by identifying
the vertices v1 and v2, the vertices w1, w2 and w3, and the edges
a1 and a2.

An element σ of Ki is a i-simplex, and σdj is its jth-
face2. Simplex τ is a face of σ if it can be obtained from σ
by applying a non-empty sequence of face operators. The
boundary of σ is the subset of S restricted to the faces
of σ. The star of σ is the set of simplices from which σ
is a face. σ is a main simplex if its star is empty. The
boundary of a complete i-simplex contains exactly i + 1

2σdj denotes dj(σ).

0-simplices. For example in figure 2(a, b): y and b are
faces of m; the boundary of n is the set {a, g, f, v, w}; the
star of w is the set {f, g, a, c, e, n,m}; m,n and e are the
main simplices; all simplices but n and g are complete.
This terminology can be extended in a straightforward
way for all structures described in this paper.

Bézier Embedding As abstract simplicial complexes
can be associated with simplicial complexes, semi-
simplicial sets can be associated with triangular Bézier
spaces. A triangular Bézier space is a set of Bézier sim-
plices satisfying some conditions. More precisely, the
set of i-dimensional multi-indices Γid of degree d is de-
fined by Γid = {α = (α0, · · · , αi) ∈ Ni+1 | |α| =
α0 + · · · + αi = d}. Multi-index (α0, · · · , αi) will be de-
noted α0 · · ·αi: for instance, Γ1

3 = {03, 12, 21, 30}, and
Γ2

3 = {003, 012, 021, 030, 102, 111, 120, 201, 210, 300}. Mul-
tivariate Bernstein polynomials of degree d are defined by
Bdα(u) =

(
d
α

)
uα0

0 · · ·u
αi
i , with α ∈ Γid,

(
d
α

)
= d!

α0!···αi!
are

multinomial coefficients. {uj} are the barycentric coordi-
nates of u, a point of the standard i-simplex, i.e. {uj}
satisfies: ∀j, 0 ≤ j ≤ i, 0 ≤ uj ≤ 1 et

∑i
j=0 uj = 1.

Definition 2. (cf. Figure 3) A i-dimensional Bézier sim-
plex of degree d is defined by P (u) =

∑
α∈Γi

d
PαB

d
α(u),

where {Pα, α ∈ Γid} is a set of points.

{Pα} is the set of control points of the Bézier simplex.
This set contains Ci+di points, for a i-dimensional simplex
of degree d: it can be stored in an array of control points,
according to the lexicographical order of the multi-indices
[22]. The basic idea is the following. Let α = α0 . . . αi be
the multi-index of a control point. If i = 1 then the point
is stored at index α0, corresponding to the lexicographical
order on 1-dimensional multi-indices. If i > 1, then it is
necessary to store first α0 (i−1)-dimensional sets of control

points of degrees decreasing from
∑i
j=0 αj to 1+

∑i
j=1 αj ,

and then to store the point in the same way than if it would
belong to the set of control points of a (i− 1)-dimensional

Bézier simplex of degree
∑i
j=1 αj : cf. figure 3(c).

It is well known that a Bézier simplex β contains its
boundary, i.e. the boundary of β is a set of lower dimen-
sional Bézier simplices defined by subsets of control points
of β. More precisely, let i be the dimension of β: all control
points Pα of β such that the jth component of α is 0 define
a (i − 1) Bézier simplex. For instance in figure 3(a), the
points numbered 003, 102, 201, 300 define a Bézier curve of
degree 3.

Consequently, a data structure can be defined, based
upon semi-simplicial sets, such that any simplex is associ-
ated with its proper control points, i.e. control points Pα
such that no component of α is null (cf. figure 3(b)). This
set containts Cd−1

i points for a i-dimensional simplex of
degree d; in fact, the structure of this set corresponds to
the structure of a set of control points of a lower dimen-
sional Bézier simplex, and it can be stored in an array as
before, by using the lexicographical order of multi-indices.

3

The set of all control points of a simplex can be retrieved
from its proper control points and from the control points
of the simplices of its boundary, by taking into account
the face operators indices. For instance, the proper points
numbered (21, 12) of the edge on the left (resp. right,
bottom) of figure 3(b) correspond to the points numbered
(201, 102)) (resp. (210, 120), (021, 012)) in figure 3(a),
since the edge on the left correspond to face operator d1

(resp. d2, d0).

300

030003

102

201 210

120

021012

111

(a)

111

2112

12

21

12

21

3

3

3

(b)

300201 210102 120111030003 021012

(c)

Figure 3: a) The control points of a Bézier triangle of degree 3. b)
Each simplex is associated with its proper control points. c) Struc-
ture of the control points storage.

Data structure The following data structure is a
straightforward implementation of semi-simplicial sets
associated with triangular Bézier spaces of degree degree.
The notation *Type denotes an access to a Type data ;
[x..y] of Type denotes an array of Type which indices
begins at x and ends at y ; <Type> denotes a list of Type

data.

type Simplex is record :

dim : integer

faceOps : [0..dim] of *Simplex

ctrlPts : [1..Cset.degree−1
dim] of Point

set : *SemiSimplicialSet

end record

type SemiSimplicialSet is record :

dim : integer

degree : integer

allSimplices : [0..dim] of <*Simplex>

end record

Regarding the SemiSimplicialSet structure, it is
assumed that all Bézier simplices of a given Bézier space
have the same degree, allSimplices gives access to the
lists of i-simplices, 0 ≤ i ≤ dim. Regarding the Simplex

structure, faceOps gives access to the (dim− 1)-simplices
of its boundary, set gives access to its semi-simplicial set
and ctrlPoints stores its proper control points, ordered
by lexicographical order. Note that the multi-index of
a point can be retrieved from its index in the array.

Obviously, this structure can be adapted. A list of
accesses can be added for any i-simplex, in order to access
the (i + 1)-simplices of its star. The structure can be
optimized for different subclasses of semi-simplicial sets,
for instance by keeping only n-simplices and by replacing
face operators by adjacency relations when n-dimensional
triangular manifolds are to be represented [8], etc.

Basic Operations Any semi-simplicial set S can be
constructed by applying two basic operations: cone and
identification [19].

The cone of S consists in adding a 0-simplex v to S,
and in creating a new (i+ 1)-simplex µ incident to σ and
v for any i-simplex σ of S (cf. Figure 4). Proper control
points of µ can be computed for instance by linear inter-
polation between the proper control points of σ and the
point associated with v. Note that a complete i-simplex
(together with its boundary) is a cone upon a complete
(i− 1)-simplex (together with its boundary).

(a)

v

(b)

Figure 4: The semi-simplicial set b) can be obtained by a cone oper-
ation applied to the semi-simplicial set of a). v is the new vertex.

Two i-simplices σ and τ can be identified if they share
the same boundary. This operation consists in replacing
σ and τ by a new i-simplex µ such that its boundary is
equal to the boundary of σ (and τ), and its star is the
union of the stars of σ and τ (more precisely, if νdj = σ or
νdj = τ before operation, then νdj = µ after operation).
For instance, the semi-simplicial set of Figure 2(a) can
be deduced from the semi-simplicial set of Figure 2(c) by
identifying 0-simplices v1 and v2, 0-simplices w1, w2 and
w3, and 1-simplices a1 and a2. As for the cone operation,
the proper control points of new simplices can be computed
by linear interpolation of the proper control points of the
identified simplices (remember that it is assumed, for a
triangular Bézier space, that the degrees of all its Bézier
simplices are equal).

Higher-level operations have been defined: for instance,
any two i-simplices can be identified, by first identifying
their boundaries by increasing dimensions, then by identi-
fying the i-simplices themselves. See also the identification
of subsets of simplices, split operation, flip operation, etc.
[14].

2.2. Semi-Cubical Sets

Definition 3. A n-dimensional semi-cubical set S =
(K, (dij)) is a family of sets K = (Kp)p∈[0..n] together

4

with face operators: dij : Kp → Kp−1 for 1 ≤ p ≤ n,

1 ≤ i ≤ p and j ∈ {0, 1}, which satisfy: σdijd
k
l =

σdkl d
i−1
j ,∀i, k such that k < i and ∀j, l, 0 ≤ j, l ≤ 1

An element σ of Kp is a p-cube. Intuitively, a p-cube is
the cartesian product of p 1-simplices σ1×. . .×σi×. . .×σp,
and the face operator dij associates σ with the (p−1)-cube3

corresponding to σ1×. . .×σidj×. . .×σp (cf. figure 5(a, b)).

X

1

2

(a) (b)

X

11

2

2
3 321 12

(c)

2,3

11,3

2,3

2,3

11,3

2,3

2,21 2,12

2,21 2,12

11,21 11,12

(d)

Figure 5: a) and b): intuitive correspondence between the product of
two 1-simplices (and their boundaries) and a 2-cube (and its bound-
ary). c) and d) correspondence between control points. For clarity
purpose, the face operators are not represented on c), d), since they
are the same as in a) and b).

A Bézier patch is the product of Bézier curves, a cu-
bical Bézier space is a set of Bézier patches satisfying
some conditions, and the correspondence described above
between semi-simplicial sets and triangular Bézier spaces
is retrieved here for semi-cubical sets and cubical Bézier
spaces: cf. Figure 5(c, d). Note that the degrees of the
”curves generating a patch” can be different, and that the
control points of a p-dimensional patch are denoted by p-
tuples of 1-dimensional multi-indices.

Semi-cubical sets can be easily implemented in a way
similar to that described for semi-simplicial sets.

Any semi-cubical set can be constructed by applying
two basic operations: extrusion and identification. Extru-
sion is the particular case of the cartesian product by a 1-
simplex (and its boundary); note that any complete p-cube
can be constructed by the extrusion of a complete (p− 1)-
cube. Two cubes can be identified if their boundaries are
equal, and if their control points have the same structure.
Obvioulsy, higher-level operations have been defined: iden-
tification and cartesian product of semi-cubical subsets,
split, etc.

3Note that the cartesian product of a p-cube by a vertex is a
p-cube.

2.3. Semi-Simploidal Sets

Combinatorial Structure Semi-simploidal sets gener-
alize semi-simplicial sets and semi-cubical sets, according
to the intuitive fact that a simploid is the cartesian prod-
uct of simplices of any dimensions. A semi-simploidal set
is a set of simploids on which act face operators: cf. Fig-
ure 6(a, b). As a cube is characterized by its dimension,
a simploid σ is characterized by its type (a1, . . . , an). In-
tuitively, ai is the dimension of its ith generating simplex,
and the face operator dij associates with σ the same prod-

uct of simplices, except that the ith component is replaced
by its jth face.

X

2

1

(a) (b)

300 030

003

102

201

210 120

021

012

111

04

13
22

31

40
X

(c)

030,04

003,22 111,40

012,04

(d)

Figure 6: a) and b): intuitive correspondence between the product
of two simplices (and their boundaries) and a simploid of type (2, 1)
(and a part of its boundary). c) and d) correspondence between
control points.

The formal definition of semi-simploidal sets is not
provided here (cf. [17]): it can be retrieved from the
definition of simploidal sets (cf. Section 4), by keeping
only face operators. Note that semi-simplicial sets (resp.
semi-cubical sets) can be retrieved by assimilating a
i-simplex (resp. a i-cube) with a simploid of type (i)
(resp. (1, . . . , 1) of length i, where the length of a type is
its number of components).

Bézier Embedding A simploidal Bézier space is a set
S of Bézier simploids such that the intersection of two
simploids σ and τ is a simploid of S which corresponds
(according to the structure and the control point values)
to a common face of σ and τ . A Bézier simploid of type
(a1, . . . , an) and degree (d1, . . . , dn) is defined, using con-
trol points {P(α1,···,αn)}, by P (u1, . . . , un) =∑

α1∈Γ
a1
d1

. . .
∑

αn∈Γan
dn

P(α1,...,αn)B
d1
α1(u1)× . . .×Bdnαn(un)

5

where any ui is a point of the standard ai-simplex.
As before, there is a correspondence between the semi-

simploidal set structure and the structure of n-tuples of
multi-indices: cf. Figure 6(c, d). This correspondence
makes it possible to associate its proper control points
with any simploid, and to retrieve all control points (and
their multi-indices) of a simploid from its proper control
points and the proper control points of the simploids of its
boundary, using the numbering of the face operators.

As before, control points can be stored into an array, us-
ing the lexicographical order of the tuples of multi-indices,
which induces a correspondence between the index of a
point in the array and its associated tuple of multi-indices
[22] (cf. section 4.2). A data structure for implementing
semi-simploidal sets embedded as simploidal Bézier spaces
can be deduced from the data structure presented in
section 4.3.

Basic Operations Basic operations for constructing
any semi-simploidal set are the cartesian product and the
identification. The cartesian product definition can be
deduced from the fact that the cartesian product of two
simploids of types (a1, · · · , an) and (b1, · · · , bm) is a sim-
ploid of type (a1, · · · , an, b1, · · · , bm). The control points
of the resulting simploid can be computed for instance by
”adding” the control points (i.e. their coordinates) of the
initial simploids (Minkowski sum). For instance on Figure
6(d), the point corresponding to (030, 04) can be defined
as the ”sum” of the points (030) and (04) of Figure 6(c).
As before, two simploids can be identified if they share the
same boundary, and if their control points have the same
structure.

3. Simplicial

This section is mainly based upon [2, 10]. Our main
contribution here is the relation between degeneracy
operators and control points.

Combinatorial Structure The cartesian product op-
eration is not directly defined for semi-simplicial sets, but
it is defined in a very simple way on simplicial sets, thanks
to the notion of degenerate simplex. This notion makes it
also possible to get simplex shapes which are slightly more
general than usual: cf. Figure 7(b).

Definition 4. (cf. Figure 7) A simplicial set S =
(K, (dj) , (sj)) is a family K =

(
Ki
)
i∈N of simplices to-

gether with two families of maps:
• face operators: ∀i > 0, ∀j, 0 ≤ j ≤ i, dj : Ki → Ki−1,
• degeneracy operators: ∀i ≥ 0, ∀j, 0 ≤ j ≤ i, sj : Ki →
Ki+1,
satisfying: djdl = dldj−1 if l < j, sjsl = slsj+1 if l ≤ j,
sjdl = dlsj−1 if l < j, sjdl = dl−1sj if l > j + 1 and
sjdj = sjdj+1 = Id.

An (i + 1)-simplex µ is degenerate if µ = σsj for some
σ and some j. Intuitively, if a i-simplex σ is assimilated

(a) (b) (c)

Figure 7: a) a simplicial set; only the degenerate simplex which is
a face of a non degenerate simplex is represented; and b) a geomet-
ric representation c) an edge (and its boundary) and all degenerate
simplices up to dimension 2.

with a sequence of i + 1 vertices (v0, · · · , vj , · · · , vi), σsj
corresponds to (v0, · · · , vj , vj , · · · , vi).

From a theoretical point of view, all denererate sim-
plices deduced from a simplex by a sequence of degeneracy
operators exist in a simplicial set: thus any simplicial set
contains an infinite number of degenerate simplices. For
instance, the existence of all these degenerate simplices
makes it possible to get a very simple definition of the
cartesian product (cf. below). But from a practical
point of view, only the explicit representation of non
degenerate simplices and their faces (degenerate or
not) is required (cf. figure 7(a, b)); the other simplices,
which are degenerate, can be implicitly handled. Indeed,
any degenerate simplex can be obtained by applying a
sequence of degeneracy operators to a non degenerate
simplex. So, the degenerate simplices which appear only
in the boundary of degenerate simplices can be implicitly
handled, through the corresponding non degenerate
simplex and the sequence of indices of the corresponding
degeneracy operators. Compared with the implemen-
tation of semi-simplicial sets, the additional cost of the
implementation of simplicial set is thus low, and related
to the object which has to be represented. Obviously,
this implicit representation of most degenerate simplices
has to be taken into account when implementing the
construction operations.

Bézier embedding Let σ be any i-simplex of a sim-
plicial set. From a theoretical point of view, and as for
semi-simplicial sets, a Bézier simplex is associated with σ.
The relation between the control points associated with σ
and with σdj , for any j, is the relation described for semi-
simplicial sets. We define the following new relation for
degeneracy operators:

Constraint 1. Let σ be a i-simplex and µ = σsj, for any

6

j. Let P = Pα0···αi be a control point of σ; then all points
Pα′

0···α′
i+1

of µ such that :

• α′l = αl, 0 ≤ l ≤ j − 1

• α′j + α′j+1 = αj, 0 ≤ α′j , α′j+1 ≤ αj

• and α′l = αl−1, j + 2 ≤ l ≤ i+ 1

are equal to P .

Constraint 2. Let P = Pα0···αi
be a control point of σ;

then all points Pα′
0···α′

i+1
of µ such that :

• α′l = αl, 1 ≤ l ≤ j − 1

• α′j + α′j+1 = αj, 0 ≤ α′j , α′j+1 ≤ αj

• and α′l = αl−1, j + 2 ≤ l ≤ i+ 1

are equal to P .

For instance on Figure 8(a), all proper control points of
the degenerate edge αs0 (resp. γs0) are equal to control
point P4 of vertex α (resp. γ). Proper control points P211

and P121 (resp. P112) of the degenerate edge βs0 are equal
to control point P31 (resp. P22) of β. Similarly, proper
control points P121 and P112 (resp. P211) of degenerate
simplex βs1 are equal to control point P13 (resp. P22) of
β. So, the shape of a degenerate simplex σsj is the shape
of σ, and a triangular Bézier space can be associated with
any simplicial set.

From a practical point of view, only non degenerate
simplices are associated with their proper control points.
The control points of any simplex (degenerate or not)
can be retrieved from these control points and from the
relations corresponding to face and degeneracy operators:
in particular, when the simplex is degenerate, constraint
1 makes it possible to retrieve its control points among
the control points associated with its corresponding non
degenerate simplex. So, the additional cost for embedding
simplicial sets, compared with semi-simplicial sets, is
null, except the computing time for accessing the control
points of a degenerate simplex: in this case, the access
time is lower than the dimension of the simplex, with
an adequate data structure (cf. section 4.3). Note that,
as for the semi-simplicial case, it is assumed that the
degrees of all Bézier simplices are equal, whenever they
are degenerate or not.

Basic Operations Basic operations are still cone and
identification. The cone definition is a direct extension of
the cone of a semi-simplicial set. The identification of two
i-simplices σ and µ, such that their boundaries are equal,
implies now the identification two by two of all degenerate
simplices deduced from σ and µ by a sequence of degen-
eracy operators. Note that identifying a non degenerate
simplex with a degenerate simplex produces a degenerate
simplex [10].

X
211 121

112

132231

112121

211

132231 4

4

13

22

31

13

22

31

31 22 13

31

22

13

211 121

112

112

211

121

(a)

31

22

13

31

31

22

22

13

13

31

22

13

211

121

121

112

112

211

31

22

13

(b)

Figure 8: Correspondence between control points.

The cartesian product of two simplicial sets S and S′ can
be easily defined: a i-simplex µ from S × S′ is associated
with any pair (σ, σ′) of i-simplices of S and S′, such that
for any j, µdj = (σdj , σ

′dj) and µsj = (σsj , σ
′sj) (cf.

Figure 9). The control points associated with µ can be
computed by ”adding” the corresponding points of σ and
σ′ (Minkowski sum). For instance on Figure 8(b), point
P121 of (βs1, β

′s0) corresponds to the sum of P13 of β
(and thus P121 of βs1) and P31 of β′ (and thus P121 of
βs0). In practice, only the degenerate simplices having
a dimension lower than the sum of the dimensions of S
and S′ are needed for computing the cartesian product
of S and S′. At last, note that it is possible to directly
deduce the cartesian product of two semi-simplicial sets
by implicitly handling the degenerate simplices (and thus
the degeneracy operators): cf. [23].

X

(a) (b)

Figure 9: b) the non degenerate simplices of the cartesian product of
the two edges of a), represented with the degenerate simplices useful
for their cartesian product.

4. Simploidal

As seen before, semi-simploidal sets contain and gener-
alize semi-simplicial sets and semi-cubical sets, but not the

7

simplicial sets and cubical sets. For instance, the cone op-
eration defined for semi-simplicial sets cannot be defined
for semi-simploidal sets.

Similarly to simplicial and cubical sets4, simploidal
sets are defined by adding degeneracy operators to semi-
simploidal sets: cf. Figure 10(a, b). In particular, this
makes it possible to define the cone operation as an extru-
sion followed by a degeneracy: cf. Figure 10(c).

4.1. Combinatorial Structure

Definition 5. A simploidal set S = (K, (dij), (s
i
j)) is a

set of simploids equipped with a type operator T : K 7→⋃∞
i=0 N∗i, face operators dij and degeneracy operators skl .

Let σ ∈ K; σT is the type of σ. Let σT = (a1, · · · , an):
σdij (resp. σskl) is defined if 1 ≤ i ≤ n, 0 ≤ j ≤ ai (resp.
0 ≤ k ≤ n and l = −1, or 1 ≤ k ≤ n and 0 ≤ l ≤ ak).
Operators satisfy:

(I) Action on the type

1) σdijT =

{
(a1, ..., ai − 1, ..., an) if ai > 1
(a1, ..., ai−1, ai+1, ..., an) otherwise

2) σsijT =

{
(a1, ..., ai + 1, ..., an) 1 ≤ i ≤ n, 0 ≤ j ≤ ai
(a1, ..., ai, 1, ai+1, ..., an) 0 ≤ i ≤ n, j = −1

(II) Commutation of face operators

1) dijd
i
l = dild

i
j−1 l < j, ai > 1

2) dijd
k
l =

{
dkl d

i
j if ak > 1

dkl d
i−1
j otherwise

k < i

(III) Commutation of degeneracy operators

1) si−1s
k
−1 = sk−1s

i+1
−1 k ≤ i

2) if l 6= −1, si−1s
k
l =

{
skl s

i
−1if k ≤ i

sk−1
l si−1if i < k − 1

3) if j, l 6= −1, sijs
k
l =

{
skl s

i
jif i 6= k

skl s
i
j+1if i = k, l ≤ j

(IV) Commutation of face and degeneracy operators

4Cubical sets are not recalled here: see [11, 12]

1) if l 6= −1, sild
i
j =

dijs

i
l−1 if j < l

dij−1s
i
l if j > l + 1

sild
i
j+1 = Id if j = l

2)if l = −1, si−1
l dij = Id

In the other cases:

3) if k ≤ i− 1, skl d
i
j =

{
dijs

k
l if l 6= −1

di−1
j skl otherwise

4) else (i.e. k ≥ i), skl dij =

{
dijs

k
l if ai > 1

dijs
k−1
l otherwise

Let σ be a simploid of type (a1, ..., an): n is the length of
σ, and its dimension is

∑n
i=1 ai, or 0 if n = 0. Intuitively,

a simploid is either a vertex, or the cartesian product of n
”generating simplices” of respective dimensions a1, ..., an,
with ai > 0 for any i. No ”0” appears in the type of a sim-
ploid, since the cartesian product by a vertex is equal to
the identity, from a structural point of view. This explains
the fact that several cases are distinguished in the defini-
tion of simploidal sets, even if these cases are intuitively
similar. More generally, this definition can be retrieved
from the previous remark, the properties of face and de-
generacy operators of simplicial sets, and from the fact
that the actions of two operators on two different ”gener-
ating simplices” are independent.

Equations (I) denotes the action of an operator on the
simploid type (equations (I-1) for a face operator, equa-
tions (I-2) for a degeneracy operator). The action of a
face (resp. degeneracy) operator on a ”generating sim-
plex” decreases (resp. increases) its dimension; hence, if a
zero appears after the application of a face operator (i.e.
if ai = 1 and dij is applied), it is removed from the type.

Conversely, the application of degeneracy operator sk−1 in-
tuitively consists in adding a degenerate edge as new ”gen-
erating simplex”.

Equations (II) (resp. (III), (IV)) corresponds to the
commutation relation of face operators (resp. degeneracy
operators, degeneracy and face operators). Several cases
correspond to the commutation properties of simplicial
sets, i.e. when operators are applied on the same ”generat-
ing simplex”: cf. equation (II-1), the last case of equation
(III-3), equation (IV-1). Equation (IV-2) corresponds to
the removal, by a face operator, of a new 1-dimensional
”generating simplex” issued from a degeneracy operator
(i.e. nothing is modified).

The other cases correspond to the independence of the
actions of operators applied to distinct ”generating sim-
plices”:

• equations (II-2) : two cases are distinguished, accord-
ing to the fact that a 1-dimensional ”generating sim-
plex” disappears when a face operator is applied;

• equations (III-1), (III-2) and the first case of equa-
tion (III-3) : these cases are distinguished, according

8

to the number of new ”generating simplices” created
by operator s−1; note that there is no commutation
property in equation (III-2) when k = i + 1, since
σsk−1
−1 skl T = (a1, . . . , ak−1, 2, . . . , an) (the first degen-

eracy operator creates a new 1-dimensional ”generat-
ing simplex”, on which another degeneracy operator
is applied);

• equations (IV-3) and (IV-4): these cases are distin-
guished, according to the creation or removal of 1-
dimensional ”generating simplices”.

The definitions of simplicial sets (resp. cubical sets)
can be retrieved when the types of i-dimensional simploids
contain only one component (resp. only components equal
to 1), for i > 0.

Even if the definition of simploidal sets above contains
many properties, it easy to implement, contrary to the
simpler definition of supercomplexes proposed by Gugen-
heim in 1957, for topological purposes (cf. section 4.5 for
a comparison of simploidal sets and supercomplexes).

Simploidal sets are also efficient, since the properties of
the definition have not to be implemented explicitly. These
properties have to be satisfied by the construction opera-
tions, and this involves no particular cost. More precisely,
and as for simplicial sets, only non degenerate simploids
and theirs faces (degenerate or not) have to be explicitly
represented. So, the additional cost of simploidal sets is
low, even compared with semi-simplicial sets; it is related
to the representation of the type of any simploid, and to
the ”complexity” of the object which has to be represented
(cf. section 4.3).

(2,1)

(2)

(a)

(2,1)

(1,1)

(b)

extrusion

degeneracy

(c)

Figure 10: A simploid of type (2, 1) can be degenerated into a sim-
ploid of type (2) (cf. a)), or (1, 1) (cf. b)). The cone operation
consists in an extrusion followed by a degeneracy. On c), the control
points of a square face are displayed before and after the degeneracy:
all control points of the degenerate edge are equal, but the control
point structure of the resulting face is not that of a triangle.

4.2. Bézier embedding

Associating a simploidal set with a simploidal Bézier
space can be done by extending the results described
for the simplicial case. More precisely, if Pσ =
{P(a1,...,an), a

i ∈ Γaidi , 1 ≤ i ≤ n} is the set of control points
of a simploid σ of type (a1, ..., an), then:

• Any control point P(a1,...,ai,...,an), such that the jth

component of ai is 0, is equal to the control point
P(a1,...,a′i,...,an) of σdij , where a′i equals ai without its

jtheme component ;

• All control points P(a1,...,a′i=a′i0 ...a
′i
j a

′i
j+1...a

′i
ai+1,...,a

n)

of σsij are equal to the control point

P(a1,...,ai=ai0...a
i
j ...a

i
ai
,...,an) of σ, such that a′ik = aik for

k < j, a′ij + a′ij+1 = aij , a
′i
k = aik−1 for k > j + 1.

In practice, it is sufficient to associate its proper control
points with any non degenerate simploid. The set of con-
trol points of any simploid (and so the associated Bézier
simploid) can be reconstructed according to the previous
relations:

• if the simploid is a vertex, a point is associated with
it;

• else, if the simploid is not degenerate, its associated
control points can be retrieved from its proper con-
trol points, and from the proper control points of the
simploids of its boundary, using the numbering of face
operators;

• else, if the simploid is degenerate, it is necessary to
access the control points of its associated non degen-
erate simploid, using the numbering of degeneracy op-
erators and the relation described above, which links
the control points of simploids σ and σsij .

.
Remember also that the computation of all Bézier sim-

ploids of a simploidal set can be useless, depending on the
application: for example, only main simploids are neces-
sary in order to display a simploidal set.

At last, note that control points of non degenerate sim-
ploids can be stored into an array according to the lexi-
cographical order of tuples of multi-indices [22]. For in-
stance, let P = P(a1,...,an) be a control point of a Bézier
simploid of type (a1, . . . , an) and degree (d1, . . . , dn). If
n = 1, then the simploid corresponds to a simplex, and P
is stored in the way described in section 2.1. If n > 1, it is
necessary to store all control points of a simploid of type
(a2, . . . , an) of degree (d2, . . . , dn) for each multi-index pre-
ceding a1 = (α0, . . . , αa1); then point P can be stored as
if it would be a control point of a Bézier simploid of type
(a2, . . . , an) and degree (d2, . . . , dn), with a tuple of multi-
indices equal to (a2, . . . , an).

4.3. Data Structure

The following data structure is a possible implementa-
tion of simploidal sets associated with simploidal Bézier
spaces.
type Simploid is record :

n : integer

type : [1..n] of integer

degen : boolean

9

faceOps : [0..(
∑n
i=1(ai + 1))− 1] of *Simploid

degenOps : *[0..n+
∑n
i=1(ai + 1)] of *Simploid

ctrlPts : *[1..Cd1−1
a1 × . . .× Cdn−1

an] of CtrPt

set : *SimploidalSet

end record

type SimploidalSet is record :

dim : integer

degree : integer

allSimploids : [0..dim] of <*Simploid>

end record

Regarding the SimploidalSet structure, dim is the
dimension of the simploidal set, allSimploids stores
the lists of simploids, ordered by increasing dimensions;
degree is the degree of each ”generating simplex”. It is
thus assumed here that, whatever its type, the degree of
a simploid of length n is (d1 = degree, . . . , dn = degree).
In this way, the identification of two simploids is simplified,
as they have for sure the same control point structure.

Regarding the Simploid structure, let σ be a sim-
ploid of type (a1, ..., an) and degree (d1, . . . , dn). set

gives access to its simploidal set. n is the length of its
type, ai corresponds to σ.type[i] and di corresponds to
σ.set.degree.

Let d =
∑σ.n
i=1 σ.type[i] be the dimension of σ. faceOps

gives access to the boundary simploids of dimension d−1.
degen is true if σ is degenerate: in this case, ctrlPts

is null; in the other case, ctrlPts gives an access to the
array containing the proper control points of σ, ordered
by lexicographical order. The n-tuple of multi-indices of a
point can be retrieved from its index in the array.

Remember that only simploids which are in the
boundaries of non degenerate simploids are explicitly
represented. So, the degeneracy operators can be not
explicitly defined for some simploids. If it is the case for
σ, then degenOps is null; else, degenOps is an access to
an array such that each entry corresponds to a possible
degeneracy operator; and if this operator is not explicitly
represented, the corresponding entry is null. Another
solution would be to associate a list of accesses with each
simploid, together with the corresponding numberings,
in order to represent only explicit degeneracy operators.
The respective interests of one solution compared with
the other depend on the objects which are represented.

Note that it could be interesting to access all simploids of
dimension d+1 in the star of σ; these accesses corresponds
to the inverse of the face operators, and can be represented
by a list of ∗Simploid associated with each simploid.

If σ is degenerate, it is important to access the cor-
responding non degenerate simploid τ . In fact, τ is in
the boundary of σ, and can be accessed by using the face
operators, since there are relations between face and de-
generacy operators (for the same reason, the information
σ.degen is redundant, since it can be retrieved by checking
if a degeneracy operator of a face of σ gives access to σ).

In order to optimize the access to τ , i.e. to avoid to check
all face operators, it can be interesting to associate with σ
a list of numberings, corresponding to the face operators
accessing the face from which σ is degenerated.

The structure can be optimized for different subclasses
of simploidal sets, for instance for semi-simploidal sets, cu-
bical sets (only the dimensions of cubes are required, since
the type of a d-dimensional cube is the d-tuple (1, . . . , 1)).
Other optimizations can be proposed, for instance for man-
ifolds: all simploids have the same dimension, and face
operators are replaced by adjacency operators.

At last, note that the additional cost, compared with a
similar structure implementing simplicial sets, is low, since
it corresponds to the types which have to be explicitly asso-
ciated with all simploids: it is thus at most the dimension
of the simploidal set times the number of simploids.

4.4. Basic Operations

From a theoretical point of view, and similarly to the
simplicial case, all degenerate simploids associated with
any simploid exist in a simploidal set; so, a simploidal set
contains an infinite number of simploids. In practice, only
the non degenerate simploids and their faces (degenerate
or not) are needed. For some operations, other degenerate
simploids are useful, but they can be implicitly handled.
For instance, identifying a simploid with a degenerate
simploid results in degenerating the first simploid: this
can be done directly by modifying a degeneracy operator.

Cartesian Product As for semi-simploidal sets, the
definition of the cartesian product of simploidal sets is de-
duced from the fact that the type of the cartesian prod-
uct ν of two simploids σ and µ of type (a1, ..., an) and
(b1, ..., bm) is (a1, ..., an, b1, ..., bm). For example, νdij cor-

responds to the product of σdij (resp. σ) and µ (resp.

µdi−nj) if i ≤ n (resp. i > n); similarly, νsij corresponds to

the product of σsij (resp. σ) and µ (resp. µsi−nj) if i ≤ n
(resp. i > n), with the particularity: the product of σsn−1

and µ is identified with the product of σ and µs0
−1, and

corresponds to νsn−1.
This operation can be easily extended in order to define

the cartesian product of subsets of given simploidal sets.
Note also that the ”simplicial ” cartesian product can
be applied when the subsets contain only simplices (i.e.
simploids equivalent to simplices).

Identification As for semi-simploidal sets, two sim-
ploids σ and µ can be identified under some structural
conditions (equality of type and boundary) and geo-
metrical conditions (equality of degree). Regarding face
operators, identification acts in the same way as for
semi-simploidal case. Regarding degeneracy operators,
the identification of σ and µ induces the identifications
of their degenerated simploids (this is similar to the
simplicial case). The computation of the control points
of the simploid resulting from the identification of σ

10

and µ can be done as in the semi-simploidal framework.
This operation can be generalized in order to identify
simploidal subsets: the identification of simploids induces
then the identification of their boundaries and their
degenerate simploids.

Degeneracy Degenerating a simploid σ into a simploid
µ of its boundary simply consists in identifying σ with a
degenerate simploid associated with µ by a sequence of
degeneracy operators. Of course, the boundary of σ has
to satisfy some conditions, which can be deduced from
the definition of simploidal sets. This operation can be
generalized in order to degenerate a simploidal subset S
into a single vertex: this can be achieved by identifying all
vertices of S, and then by iteratively identifying all edges
and in degenerating the resulting edge, then in applying
the same process to all 2-dimensional simploids (according
to their types), and so on.

Note that simploids exist, which have similar ”shapes”
but different types. Two different cases can be dis-
tinguished. The first one comes from the fact that a
sequence can be different from one of its permutations.
For instance, a simploid of type (1, 2) is not a simploid
of type (2, 1) (the cartesian product is not commutative).
A similar remark can be stated for simplicial sets, since
simplicial sets exist, which are not isomorphic, but their
geometric realizations are isomorphic. The second one
comes from particular cases of degeneracy: for instance,
a quadrangle, i.e. a simploid of type (1, 1), looks like a
triangle, i.e. a simploid of type (2), when one of its edge is
degenerate: but the difference is clear when one looks at
the structures of control points, which are not isomorphic:
cf. Figure 10(c).

Cone The extrusion of a simploidal set S is the cartesian
product of S with another simploidal set containing three
non degenerate simploids: an edge and the two vertices
of its boundary. The resulting simploidal set therefore
contains two”copies” of S, corresponding to the product
of S with the two vertices, and a set of simploids which
“links” the two copies of S. From a theoretical point of
view, defining the cone of a simploidal set S consists in
extruding S, and then in degenerating a resulting copy of
S into a vertex (cf. the degeneracy operation above and
Figure 10(c)). Of course, this definition can be optimized.
As for the cartesian product, it is possible to define the
cone operation for a simploidal subset.

Obvously, other operations can be defined, based on
these basic operations, in order to construct simploidal
sets.

4.5. Discussion about Gugenheim’s definition

Supercomplexes were defined in 1957 (cf. [18] page 37).
By mimicking the definition of simploidal sets, (the struc-
ture of) supercomplexes could be defined in the following
way:

Definition 6. A supercomplex S = (K, (dij), (s
i
j)) is a

set of simploids equipped with a type operator T : K 7→⋃∞
i=1 Ni, face operators dij and degeneracy operators skl .

Let σT = (a1, · · · , an): σdij (resp. σskl) is defined if
1 ≤ i ≤ n, ai > 0, 0 ≤ j ≤ ai (resp. 1 ≤ k ≤ n and
0 ≤ l ≤ ak). Operators satisfy:

• σdijT = (a1, ..., ai − 1, ..., an),

σsijT = (a1, ..., ai + 1, ai+1, ..., an);

• face and degeneracy operators having the same expo-
nent satisfy the commutation properties of face and
degeneracy operators of simplicial sets;

• face and degeneracy operators having different expo-
nents commute.

Obviously, this definition of supercomplexes is simpler
than the definition of simploidal sets given in 4.1. This
is due to the fact that the type of a simploid may con-
tain components equal to 0. Let σ be a supercomplex of
type (2, 1) (i.e a prism), then the type of σd2

0 is (2, 0) (i.e.
a triangle). Conversely, in order to associate a degener-
ate cube with a square, the type of the square has to be
for instance (1, 1, 0), so the degeneracy operator s2

0 can be
applied. In fact, the simple definition of supercomplexes
is based on the fact that, implicitly, an equivalence rela-
tion exists between types which differ only by components
equal to 0: this corresponds to the fact that the cartesian
product by a vertex is (structurally speaking) equal to the
identity. Note that Gugenheim was not interested in the
definition of embedding, construction operations nor im-
plementation, and that this equivalence relation was never
explicitly stated. This can have some consequences for
the conception of data structures and/or operations. For
instance, assume a data structure is conceived for imple-
menting supercomplexes. It is necessary to explicitly rep-
resent its type for each simploid, but the types of two
equivalent simploids can differ by components equal to 0.
So, when one intend to identify two equivalent simploids
having the same boundary, it is necessary to check the
correspondence of the types; this is slightly more compli-
cated than checking their equality. It is easy to find more
elaborated examples, showing that the implementation of
supercomplexes is more complex than that of simploidal
sets (i.e. additional computations have to be performed),
due to this implicit equivalence relation between types of
simploids.

In order to warrant the unicity of the types, our def-
inition of simploidal sets contains more constraints over
boundary and degeneracy operators. Since no 0 appears
in the type of a simploid, many cases have to be distin-
guished in the definition; but, as said above, this does
not involve any additional cost, since the properties of the
operators don’t involve any requirement in space nor in
computation. The properties described by equations (I)
to (IV) are taken into account by the modifications which
are performed during the application of an operation, but

11

they don’t involve a particular computation. Even if it
would be necessary, checking that the properties of a sim-
ploidal set are satisfied would not involve additional space
or time requirements, compared with supercomplexes.

So, our definition seems more efficient regarding imple-
mentation issues, and the definition of relations with sim-
ploidal Bézier spaces as that of construction operations is
quite simple, compared with similar operations defined on
simplicial and cubical sets. The counterpart is the fact
that the commutation properties of the face and degen-
eracy operators cannot be expressed as simply as in the
supercomplexes definition.

5. Conclusion

Simploidal sets generalize simplicial sets and cubical
sets: they are defined in a similar way, by abstract sim-
ploids on which act face and degeneracy operators. All ba-
sic operations defined in the simplicial and cubical frame-
works can be defined for simploidal sets. Relations be-
tween simploidal sets and simploidal Bézier spaces gener-
alize similar relations between simplicial (resp. cubical)
sets and triangular (resp. cubical) Bézier spaces. The
framework presented in this paper is thus general and co-
herent. This means that it is possible to conceive softwares
implementing simploidal sets (e.g. for computing topolog-
ical properties or for geometric modeling) which make it
possible to handle also simplicial sets or cubical sets as
particular cases; moreover, it is possible to handle simul-
taneously simplices and cubes (for instance, a cube and
a tetrahedron can be glued with a prism, which is a sim-
ploid). The cost of this generalization is low, since the
definition of simploidal sets is very close to the definitions
of simplicial and cubical sets: the main difference, when
implementing simploidal sets, corresponds to the fact that
the type of a simploid has to be explicitly represented.

Note that a difference exists between semi-simplicial sets
and semi-simploidal sets. It is possible to directly adapt
the definition of the cartesian product of simplicial sets
for semi-simplicial sets, by implicitly handling degeneracy
operators [23]: this comes from the fact that the cartesian
product of any two simplices (and their boundaries) can be
described as a semi-simplicial set. But it is not possible to
directly adapt the definition of the cone of simploidal sets
for semi-simploidal sets, because the cone of a simploid is
not necessarily a simploid.

The relations between simploidal sets and simploidal
Bézier spaces have been stated. Note that simploidal sets
can be linearly embedded, as a particular case; only ver-
tices are associated with points. We intend to study gener-
alizations, associating more general splines with simploids.

It has been shown that degenerate simploids can have
similar shapes, for instance a square in which an edge is
degenerated into a vertex, and a triangle; but their struc-
tures are different, so it is not possible to glue four tetra-
hedra on the four ”triangle-shaped” faces of a pyramid
represented by a prism in which an edge is degenerate,

since only two faces are ”true” triangles. Similarly, in the
proposed SimploidalSet data structure, a single common
degree is set for each possible generating simplex, but this
structure can be generalized by allowing each generating
simplex to have its own degree. In this case, even if two
simploids have same type, the structure of their control
points may be different. To tackle these two problems,
we are studying equivalence relations between simploids
having ”similar shapes”, in order to make these gluings
possible.

At last, we intend to study other construction oper-
ations, since fundamental differences exist between sim-
plicial structures and simploidal structures: for instance,
when an edge is split in a simplicial set, all simplices in-
cident to this edge have to be split, but this operation
remains a local one, since only the star of the edge is mod-
ified. When an edge is split in a simploidal set, it is neces-
sary to split the simploids of the star of the edge, but this
can induce the split of other edges, and thus of other sim-
ploids: the operation is not a local one in this case. It will
be also interesting to study the computation of topolog-
ical properties: for instance, since simploids correspond
to cartesian products of simplices, classical methods for
computing the homological information can be adapted
for semi-simploidal sets, and thus for simploidal sets [17].

Acknowledgements The authors gratefully acknowl-
edge Sylvie Alayrangues and Laurent Fuchs for their en-
couragement and help.

[1] M. K. Agoston, Algebraic Topology, a first course, Pure and
applied mathematics, Marcel Dekker Ed., 1976.

[2] J. P. May, Simplicial Objects in Algebraic Topology, Van Nos-
trand, 1967.

[3] J. R. Munkres, Elements of algebraic topology, Perseus Books,
1984.

[4] W. S. Massey, A basic course in algebraic topology, Springer-
Verlag, 1991.

[5] H. Edelsbrunner, H. Harer, Computational Topology - an In-
troduction, American Mathematical Society, 2010.

[6] J. Rubio, F. Sergeraert, Constructive homological algebra
and applications, http://arxiv.org/abs/1208.3816 (August, 28
- September, 02 2006).

[7] J.-G. Dumas, F. Heckenbach, B. D. Saunders, V. Welker, Com-
puting simplicial homology based on efficient smith normal form
algorithms., in: Algebra, Geometry, and Software Systems,
2003, pp. 177–206.

[8] A. Paoluzzi, F. Bernardini, C. Cattani, V. Ferrucci, Dimension-
independent modeling with simplicial complexes, ACM Trans.
Graph. 12 (1) (1993) 56–102.

[9] P. Frey, P.-L. George, Mesh Generation: application to finite
elements, Wiley, 2008.

[10] V. Lang, P. Lienhardt, Simplicial sets and triangular patches,
in: Computer Graphics International Conference, CGI 1996,
Pohang, Korea, June 24-28, 1996, 1996, pp. 154–163.

[11] J.-P. Serre, Homologie singulière des espaces fibrés, The Annals
of Mathematics 54 (3) (1951) 425–505.

[12] R. Brown, P. J. Higgins, On the algebra of cubes, Journal of
Pure and Applied Algebra 21 (3) (1981) 233 – 260.

[13] T. Kaczynski, K. Mischaikow, M. Mrozek, Computational Ho-
mology, Applied Mathematical Sciences, Springer, 2004.

[14] B. Bechmann, D. et Péroche, Informatique graphique,
modélisation géométrique et animation, Signal et Image, Traité
IC2, Lavoisier, 2007.

12

[15] F. Ledoux, J. Shepherd, Topological and geometrical properties
of hexahedral meshes, Eng. Comput. (Lond.) 26 (4) (2010) 419–
432.

[16] W. Dahmen, C. A. Micchelli, On the linear independence of
multivariate b-splines I. Triangulation of simploids, SIAM J.
Numer. Anal. 19.

[17] S. Peltier, L. Fuchs, P. Lienhardt, Simploidals sets: Definitions,
operations and comparison with simplicial sets, Discrete App.
Math. 157 (2009) 542–557.

[18] V. K. A. M. Gugenheim, On supercomplexes, Transactions of
the American Mathematical Society 85 (1) (1957) 35–51.

[19] V. Lang, P. Lienhardt, Geometric modeling with simplicial sets,
in: T. K. S.Y. Shin (Ed.), Computer Graphics and Appli-
cations, Pacific Graphics, World Scientific Publishing, Seoul,
Corea, 1995, pp. 475–494.

[20] S. Eilenberg, J. Zilber, Semi-simplicial complexes and singular
homology, Annals of Mathematics 51 (1950) 499–513.

[21] A. Hatcher, Algebraic Topology, Cambridge University Press,
2002.

[22] T. DeRose, R. N. Goldman, H. Hagen, S. Mann, Func-
tional composition algorithms via blossoming, Transactions On
Graphics 12 (2) (1993) 113–135.

[23] P. Lienhardt, X. Skapin, A. Bergey, Cartesian product of sim-
plicial and cellular structures, Int. J. Comput. Geometry Appl.
14 (3) (2004) 115–159.

13

