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Abstract In the classical framework, a random walk on a group is a Markov chain with independent and

identically distributed increments. In some sense, random walks are time and space homogeneous. This

paper is devoted to a class of inhomogeneous random walks on Zd termed Markov Additive processes

(also known as Markov Random Walks, Random Walks with Internal Degree of Freedom or semi-Markov

Processes). In this model, the increments of the walk are still independent but their distributions are

dictated by a Markov chain termed the internal Markov chain. Whereas this model is largely studied in

the literature, most of the results involve internal Markov chains whose operator is quasi-compact. This

paper extends two results for more general internal operators: a Local Limit Theorem and a sufficient

criterion for their transience. These results are thereafter applied to a new family of models of drifted

random walks on the lattice Zd.
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Introduction

In the classical framework, a random walk on a group G is a discrete time stochastic process
(Zn)n≥0 defined as the product of independent and identically distributed (i.i.d.) random
variables (ξn)n≥1. Random walks on groups are Markov chains that are adapted to the group
structure in the sense that the underlying Markov operator is invariant under the group action of
G on itself. Thus, this homogeneity naturally gives rise to deep connections between stochastic
properties of the random walk and algebraic properties of the group. Starting with the seminal
paper of Pòlya, [56], many of these connections have been studied (see [64] and references
therein) and this research area has remained in constant progress over the last two decades
(without claiming to be exhaustive, see [59, 41, 55, 11, 4, 42, 6, 34, 49, 29, 3]).

In this paper, we aim at investigating inhomogeneous random walks. It turns out that there
are at least two ways to introduce inhomogeneity. First, we can consider spatial inhomogeneity
by weakening the group structure, replacing it, for instance, by a directed graph as in [12, 32, 33,
53, 23, 9, 10, 7]. Secondly, we can study temporal inhomogeneous random walks by introducing
a notion of memory as in the model of reinforced [52, 63], excited [57, 5], self-interacting [22, 54],
persistent random walks [17, 16, 19, 20, 18] or also Markov additive processes (abbreviated by
MAP) that shall be at the core of this paper. All these models belong to the larger class of
stochastic processes with long range dependency.

Markov additive processes are also known as Random Walk With Internal Degree of Freedom
— see [46] — semi-Markov processes or Markov random walks — see for instance [45, 35, 15, 50,
51, 2, 61, 44]. Roughly speaking, Markov additive processes are discrete time Zd-valued (or Rd)
processes whose increments are still independent but no longer stationary. The distribution of an
increment is then driven by a Markov chain termed the internal Markov chain. Most of results
in the context of standard random walks are generalized to Markov additive processes when
the Markov operator of the internal chain is assumed to be quasi-compact on a suitable Banach
space: among them, a renewal theorem [45, 2, 30, 31], local limit theorem [46, 35, 36, 39, 26, 37],
central limit theorem [39, 26], results on the recurrence set [58, 1, 40], large deviations [50, 51],
asymptotic expansion of the Green function [61, 44], one-dimensional Berry-Essen theorem
[39, 26, 38] with applications to M -estimation, first passage time [27].

However, assuming the internal operator to be quasi-compact is rather strong (see [47]).
Actually, beyond the technical difficulties inherent to the infinite dimension, there is no real
difference in nature with the finite dimension under this assumption. On the other hand, relax
this assumption and the study of Markov Additive processes can be very challenging. Besides,
it is worth noting that many (interesting) Markov Additive processes do not admit a quasi-
compact internal operator as it will be illustrated by the examples considered in this paper.

In the context of Markov additive processes, classical Fourier analysis can be extended by
introducing the Fourier transform operator which is a perturbation of the internal Markov
operator in an appropriate Banach space. As in the classical context, the Fourier transform
operator characterizes the distribution of the additive part of Markov Additive processes. By a
continuous perturbation argument (see for instance [43]), when the internal Markov operator is
quasi-compact, the Fourier transform operator remains quasi-compact for all sufficiently small
perturbations. It allows, under suitable moment conditions on the distribution of increments,
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to derive a Taylor expansion at the second order of the perturbed dominating eigenvalue, say
λ(t), t ∈ [−π, π)d, whose coefficients are given, roughly speaking, by the mean and the variance
operators. Finally, under an assumption on the spectrum of the Fourier transform operator
for large perturbations, it can be concluded that all the needed stochastic information is ac-
tually contained in the nature of the singularity at zero of (1 − λ(t))−1 (note that λ(0) = 1).
For instance, an integral test criterion, similar to the Chung-Fuchs criterion (see [21] or [60]),
involving a singularity of this kind is given in [18].

In this paper, the quasi-compacity condition is dropped and the internal Markov chain is
only assumed to be irreducible recurrent. The condition on the spectrum of Fourier transform
operator for large perturbations remains similar but the nature of the singularity at the origin
is analyzed considering the Taylor expansion of the quenched characteristic exponent (in a wide
sense) defined in Section 1.2. The terms of order 1 and 2 are termed the quenched drift and the
quenched dispersion respectively. These quantities are characteristics of the increments of the
process and naturally appears in the Local Limit in Theorem 2.1 and the transience condition
in Corollary 2.4.

The paper is organized as follows. In Section 1 are gathered the main notions involved in
the statement of Theorems 2.1 and its Corollary 2.4. Section 2 is devoted to the statement
of these two results. In Section 3 is dedicated to the proof of the Theorem 2.1. In Section 4,
Theorems 2.1 and Corollary 2.4 are applied on various families of Markov Additive processes
that extends the models considered in [48, 12, 8]. Those models are simple random walks on
directed graphs built upon Z2. Various phenomena are observed whether the directions are
fixed periodically or not. As it shall be clear for the model periodically directed, it is possible to
factorize a Markov Additive process without changing the distribution of the additive part (see
Section 4). It will be concluded that the simple random walk on the periodically directed graph
is a Markov Additive process with a finite internal Markov chain. As such, the internal Markov
operator is a matrix and is quasi-compact. For more general directions (random directions for
instance), such a reduction is no longer possible.

1 Markov additive processes

1.1 Definitions

Let (Ω,F ,P) be a probability space and X a countable set. The set X is naturally endowed with
the σ-algebra consisting of all subsets of X.

Definition 1.1 (Markov additive process). Let d ≥ 1 be an integer. A Markov additive process
(MAP for short) is a Markov chain ((Xn, Zn))n≥0 taking values in X×Zd defined on (Ω,F ,P)
satisfying for all n ≥ 0 and all bounded functions f : X× Zd → R

E[f(Xn+1, Zn+1 − Zn)|((Xk, Zk))0≤k≤n] = E[f(Xn+1, Zn+1 − Zn)|Xn]. (1)

From equality (1), it follows immediately that (Xn)n≥0 is a Markov chain on X. The latter
is termed the internal Markov chain. The corresponding Markov kernel shall be denoted by
P , namely Pf(x) := E[f(X1)|X0 = x] for any bounded function f : X → R (in symbols,
f ∈ `∞(X)). Generally speaking, there exists a σ-finite measure m dominating the family of
probabilities (P (x, ·))x∈X, i.e. m(y) = 0 implies P (x, y) = 0 for all x ∈ X. If the internal Markov
chain is irreducible and recurrent, the invariant measure (unique up to a positive constant) is a
natural choice for m.

The conditional distribution of Zn+1−Zn given (Xn, Xn+1) = (x, y) will be denoted by µx,y

and the Fourier transform of µx,y by µ̂x,y. Then, for any t ∈ Rd, the Fourier transform operator

3



Pt acting on the bounded function f : X→ C is defined as follows:

Ptf(x) := E[f(X1)ei〈t,Z1−Z0〉|X0 = x] =
∑
y∈X

P (x, y)f(y)µ̂x,y(t).

From Markov property, it follows for all n ≥ 1

Pnt f(x) = E[f(Xn)ei〈t,Zn−Z0〉|X0 = x].

Moreover,

Pnt 1(x) =
∑
z∈Zd

ei〈t,z〉P(Zn − Z0 = z|X0 = x). (2)

Consequently, the function Rd 3 t → Pnt 1(x) ∈ C is the Fourier transform of the conditional
distribution of Zn − Z0 given X0 = x.

By periodicity, it is sufficient to consider the operator Pt for t ∈ Td = [−π, π)d. In addition,
Td∗ will stand for Td \ {0}.

1.2 Conditional characteristic exponent, conditional drift and conditional
dispersion

Proposition 1.2. For any MAP, the following identity holds for all n ≥ 0:

P(Zn − Z0 = z|X0 = x) =
1

(2π)d

∫
Td
e−i〈t,z〉Pnt 1(x) dt (3)

and Pnt 1(x) = E[Πn(t)|X0 = x] where

Πn(t) :=
n−1∏
k=0

E
[
ei〈t,Zk+1−Zk〉

∣∣∣∣Xk, Xk+1

]
. (4)

The proof of Proposition 1.2 relies on a result from [25, Equation (8)] whose statement is
recalled below.

Lemma 1.3. For all m ≥ n ≥ p ≥ 0,

E
[
ei〈t,Zn−Zp〉

∣∣∣∣σ(Xj , p ≤ j ≤ n)

]
E
[
ei〈t,Zm−Zn〉

∣∣∣∣σ(Xj , n ≤ j ≤ m)

]
= E

[
ei〈t,Zm−Zp〉

∣∣∣∣σ(Xj , p ≤ j ≤ m)

]
. (5)

Proof of Proposition 1.2. By inverse Fourier transform,

(2π)dP(Zn − Z0 = z|X0 = x) =

∫
Td
Pnt 1(x)e−i〈t,z〉 dt.

Then, by Lemma 1.3, setting Gn = σ(X`, 0 ≤ ` ≤ n), n ≥ 1,

Pnt 1(x) = E

[
E

[
n−1∏
k=0

ei〈t,Zk+1−Zk〉
∣∣∣∣Gn
] ∣∣∣∣X0 = x

]
= E

[
n−1∏
k=0

E
[
ei〈t,Zk+1−Zk〉

∣∣∣∣Xk, Xk+1

] ∣∣∣∣X0 = x

]
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As a matter of fact, Πn is a almost-surely continuous C-valued function of Td satisfying
Πn(0) = 1. Hence, in a neighborhood of the origin, the logarithm of Πn is well defined. We
may call log Πn the quenched characteristic exponent (with a slight abuse of terminology since
log Πn is not defined on Rd in general). Its second order Taylor expansion at t = 0 then exhibits
two important quantities:

Un :=

n−1∑
`=0

E[Z`+1 − Z`|X`, X`+1] and Vn :=
1

n

n−1∑
`=0

Cov(Z`+1 − Z`|X`, X`+1).

The latter are called respectively the quenched drift and the quenched dispersion of the additive
component.

Remark 1.4. The normalization factor for the quenched dispersion is chosen as the approxi-
mate growth rate of the sum. In particular, its eigenvalues remain bounded and away from zero
almost-surely as illustrated in Section 4, Equation (16).

1.3 Spectral condition

Definition 1.5 (Spectral condition). A MAP is said to satisfy the spectral condition if, for any
compact K ⊂ Td with 0 /∈ K there exist constants C > 0 and γ ∈ (0, 1) such that,

∀n ≥ 1, ‖Pnt 1‖`∞(X) ≤ Cγn.

Proposition 1.6. Assume that the family (µx,y)x,y∈X of probability measures is uniformly ape-
riodic i.e, for all t ∈ Td∗, supx,y∈X |µ̂x,y(t)| < 1, then the MAP fulfills the spectral condition.

Proof. For all x ∈ X and all f ∈ `∞(X),

|Ptf(x)| =

∣∣∣∣∣∣
∑
y∈X

P (x, y)µ̂x,y(t)f(y)

∣∣∣∣∣∣ ≤ ‖f‖`∞(X) sup
x,y∈X

|µ̂x,y(t)|.

Therefore,

‖Pnt 1‖`∞(X) ≤

[
sup
x,y∈X

|µ̂x,y(t)|

]n
.

In the literature, it is usually assumed a stronger condition than the spectral condition of
Definition 1.5. It involves the spectral radius of each Pt acting on some Banach subspace of
`∞(X). Such assumptions imply the spectral condition of Definition 1.5 as shown in Proposi-
tion 1.7 just below.

Proposition 1.7. Let (B, ‖ · ‖B) be a Banach subspace of `∞(X) such that

(C1) 1 ∈ B and the canonical injection B ↪→ `∞(X) is continuous;

(C2) for each t ∈ Td, the operator Pt acts continuously on B;

(C3) the map Td 3 t→ Pt ∈ L(B) is continuous for the subordinated operator norm induced
by ‖ · ‖B.
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Suppose that the spectral radius of Pt defined, for all t ∈ Td, by

rB(t) = inf{‖Pnt ‖
1/n
B , n ≥ 1},

satisfies rB(t) < 1 as soon as t ∈ Td \ {0}. Then, the resulting MAP satisfies the spectral
condition of Definition 1.5.

Proof. Since Td 3 t → Pt ∈ L(B) is continuous, the spectral radius t → rB(t) is upper semi-
continuous as the infimum of continuous functions. Consequently, if K ⊂ Td with 0 /∈ K then
there exists tK ∈ K such that 1 > rB(tK) = supt∈K rB(t).

Choose γ ∈ (rB(tK), 1) and denote by Γ ⊂ C the circle of the complex plan centered at 0 of
radius γ. As a matter of fact, for any (λ, t) ∈ Γ×K the operator λ− Pt is invertible. By [24,
Theorem 10, p. 560], it follows

‖Pnt ‖B =
γn

2π

∮
Γ
‖(λ− Pt)−1‖B dλ.

Now, the map Γ × K 3 (λ, t) → λ − Pt ∈ L(B) is continuous. Besides, by [24, Lemma 1,
p. 584], the map A → A−1 is a homeomorphism of the open subset of invertible operators in
L(B). Consequently, the map Γ×K 3 (λ, t)→ (λ−Pt)−1 ∈ L(B) is continuous on the compact
Γ×K hence

sup
(λ,t)∈Γ×K

‖(λ− Pt)−1‖B <∞.

The spectral condition of Definition 1.5 follows immediately from the continuity of the canonical
injection of B in `∞(X).

The uniform aperiodicity condition introduced in Proposition 1.6 is far from being necessary.
Below, we introduce the usual notion of aperiodic MAP (we refer to [61] for instance).

Definition 1.8 (Aperiodic Markov Additive process). A MAP is said to be aperiodic if there
exists no proper subgroup H of the additive group Zd such that, for every positive integer n and
every x, y ∈ X with m(x)Pn(x, y) > 0, there exists a = an(x, y) ∈ Zd satisfying

P[Zn − Z0 ∈ a+H|X0 = x,Xn = y] = 1.

Proposition 1.9. Let (X,Z) be an aperiodic MAP for which the internal Markov chain X
is irreducible and recurrent. Let (B, ‖ · ‖B) be a Banach subspace of `∞(X) satisfying the as-
sumptions (C1), (C2) and (C3) of Proposition 1.7. Then, for any t ∈ Td \ {0}, the operator
Pt ∈ L(B) has no eigenvalues of modulus one.

Proof. Suppose on the contrary that there exists t0 ∈ Td \ {0}, f ∈ B \ {0} and θ ∈ R such that

Pt0f(x) =
∑
y∈X

P (x, y)µ̂x,y(t0)f(y) = eiθf(x), x ∈ X. (6)

By Jensen’s inequality and the fact that |µ̂x,y(t0)| ≤ 1, it follows that |f | ≤ P |f |. Consequently,
‖f‖`∞(X) − |f | is a non-negative superharmonic function. Since P is irreducible and recurrent,
the function |f | is constant (see [64, Theorem 1.16, p.5] for instance). Hence, for all x ∈ X such
that m(x) > 0,

1 =

∣∣∣∣∣∣
∑
y∈X

P (x, y)µ̂x,y(t0)

∣∣∣∣∣∣ ≤
∑
y∈X

P (x, y)|µ̂x,y(t0)| ≤ 1, x ∈ X.
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This means that, for all x, y ∈ X with m(x)P (x, y) > 0, |µ̂x,y(t0)| = 1. Since |f | is constant and
f 6= 0, Equation (6) can be rewritten as follows∑

y∈X
P (x, y)µ̂x,y(t0)

f(y)

f(x)
= eiθ, x ∈ X.

This convex combination is again extremal so that, for all x, y ∈ X, µ̂x,y(t0) f(y)
f(x) = eiθ. More

generally,

∀n ≥ 1, ∀(x0, . . . , xn),
n−1∏
k=0

̂µxk,xk+1(t0) = einθ
f(x0)

f(xn)
. (7)

Now, fix n ≥ 1 and x, y ∈ X and choose once for all an(x, y) ∈ Rd such that einθ f(x)
f(y) =

ei〈t0,an(x,y)〉. In fact, an(x, y) ∈ Zd since left handside of Equation (7) is nothing but the Fourier
transform of a measure supported by Zd. Thereafter, denote by Sn(x, y) the support of the
distribution of Zn − Z0 − an(x, y) conditionally on the event {X0 = x} ∩ {Xn = y} and set H
the group generated by the family of sets Sn(x, y), n ≥ 1 and x, y ∈ X. By construction of H,
one has that

∀n ≥ 1, ∀x, y ∈ X, ∃an(x, y) ∈ Zd : P[Zn − Z0 ∈ an(x, y) +H|X0 = x,Xn = y] = 1.

By aperiodicity, H = Zd.
Finally, take the expectation on both sides of Equation (7) so that

ei〈t0,an(x,y)〉 = E
[
ei〈t0,Zn−Z0〉|X0 = x,Xn = y

]
.

Then, the extremality in the convex combination yields that for all w ∈ Sn(x, y), 〈t0, w〉 = 0
modulo 2π. By linearity, this identity extends to the whole group H = Zd. Taking w =
ei, i = 1, . . . , d, the vectors of the standard basis of Zd, it follows that t0 = 0 leading to a
contradiction.

Let us point out that an arithmetic condition such as the aperiodicity fails to give informa-
tion on spectral values that are not eigenvalues. Nonetheless, if in addition, it is known that
the peripheral spectrum consists of eigenvalues then the spectral condition of Definition 1.5 is
clearly fulfilled. Such an assumption on the peripheral spectrum which is rather technical can
nonetheless be difficult to verify in practice. That is why, it can be often preferable to check
directly the spectral condition of Definition 1.5.

2 Main results

Let us first summarize the assumptions involved in the statement of the Local Limit Theorem
and the transience sufficient criterion.

Assumptions 1. The internal Markov chain P is irreducible and recurrent.

Assumptions 2. The family of probability measures (µx,y)x,y∈X admits a uniform third order
moment:

sup
x,y∈X

∑
z∈Zd
‖z‖3µx,y(z) <∞

Assumptions 3. The quenched dispersion is uniformly elliptic: there exists a (deterministic)
constant α > 0 such that

∀t ∈ Rd, ∀n ≥ 1, 〈t, Vnt〉 ≥ α‖t‖2, a.s..

Assumptions 4. The MAP satisfies the spectral condition.
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2.1 A Local Limit Theorem

Theorem 2.1 (Local Limit Theorem). Under Assumptions 1, 2, 3 and 4, for all x ∈ X,

∀ε ∈ (0,
1

2
), sup

z∈Zd

∣∣∣∣∣(2πn)d/2P(Zn − Z0 = z|X0 = x)

− E

[
1√

det(Vn)
exp

{
− 1

2n
〈Un − z, V −1

n (Un − z)〉
} ∣∣∣∣X0 = x

] ∣∣∣∣∣ = O(n−( 1
2
−ε)).

2.2 A sufficient criterion for transience: some potential theory

This section is devoted to a sufficient criterion for the transience of the additive part of Markov
additive processes. The recurrence or transience in this context is defined in [18] as follows.

Definition 2.2 (Recurrence versus Transience). A MAP ((Xn, Zn)n≥0 is said to be recurrent
if for any (x, z) ∈ X× Zd, there exists r > 0 such that

P
[
lim inf
n→∞

‖Zn‖ < r

∣∣∣∣X0 = x, Z0 = z

]
= 1.

It is said to be transient if for any (x, z) ∈ X× Zd

P
[

lim
n→∞

‖Zn‖ =∞
∣∣∣∣X0 = x, Z0 = z

]
= 1.

In [18], it is proved that a MAP is either recurrent or transient under Assumption 1. In
particular, the recurrence or transience of such a MAP does not depend on the initial state
(x, z) ∈ X× Zd.

For any positive function f on X× Zd, recall that the potential of the charge f is given by

Gf(x, z) := E

∑
n≥0

f(Xn, Zn)

∣∣∣∣X0 = x, Z0 = z

 .
By analogy with the classical context of random walks, it is natural to look for a criterion for
the recurrence or transience of a MAP that involves the mean sojourn time of the set X× {z}:

G1X×{z}(x, z) = E

∑
n≥0

1X×{z}(Xn, Zn)

∣∣∣∣X0 = x, Z0 = z

 . (8)

Naturally, if the quantity in (8) is finite, the additive component of the MAP hits z ∈ Zd
only finitely many times almost surely by applying the Markov inequality.

Definition 2.3 (Irreducibility). A MAP is said to be irreducible if for any x ∈ X, for any
z, z′ ∈ Zd, there exists n ≥ 0 such that P[Zn = z′|X0 = x, Z0 = z] > 0.

Therefore, if a MAP is irreducible and if the quantity in Equation (8) is finite for all x ∈ X
and for some (equivalently any) z ∈ Zd then the MAP is transient by the Markov property.
Consequently, we obtain the following criterion as a Corollary of Theorem 2.1.
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Corollary 2.4 (Sufficient criterion for transience). Let d ≥ 2. Suppose that the MAP is irre-
ducible. Then, under Assumptions 1, 2, 3 and 4, if for any x ∈ X

∑
n≥1

1

nd/2
E

[
1√

det(Vn)
exp

{
− 1

2n
〈Un, V −1

n Un〉
} ∣∣∣∣X0 = x

]
<∞ (9)

then, the MAP is transient.

Remark 2.5. Under the assumptions of Corollary 2.4, the quantities in Equations (8) and (9)
are simultaneously finite or infinite. When the internal Markov chain is positive recurrent, the
MAP is recurrent as soon as the quantity in Equation (8) is infinite as shown in Proposition
[18, Proposition 2.2] giving rise to a complete characterization of the transient or recurrent
type. Such a characterization remains an open question in the case of a null recurrent internal
Markov chain since the possibility of a transient MAP for which the quantity in Equation (8)
remains infinite can not be ruled out.

Remark 2.6. Intuitively, Assumption 3 means that the MAP remains genuinely d-dimensional
and is not attracted by a sub-manifold. In addition, it is worth noting that, under Assumption
3, det(Vn) ≥ αd for all n ≥ 1 and, under Assumption 2, supn≥1 ‖Vn‖2 < ∞ so that the factor
det(Vn) does not play any role in the nature of the series (9).

3 Proofs

Proposition 3.1. Under Assumption 2, for any sufficiently small δ ∈ (0, 1) and any t ∈ δTd,
where δTd is the magnification of the hypercube Td by δ, there exist a (deterministic) constant
K and Θn(t) with |Θn(t)| ≤ nK‖t‖3∞ such that

Πn(t) = exp

{
i〈t, Un〉 −

1

2
〈t, nVnt〉+ Θn(t)

}
.

Proof. Fix ` ≥ 0. Under Assumption 2, there exists a (deterministic) constant κ > 0 such that∣∣∣E [ei〈t,Z`+1−Z`〉
∣∣X`, X`+1

]
− 1
∣∣∣ ≤ κ‖t‖∞. (10)

Then, for all δ ∈ (0, 1/2κ) ∩ (0, 1) and all t ∈ δTd, the C-valued function

π` : t −→ logE
[
ei〈t,Z`+1−Z`〉

∣∣X`, X`+1

]
is three times continuously differentiable. Observe that π`(0) = 0. Also, the partial derivative
with respect to the pth coordinate, p ∈ {1, . . . , d}, is given by

∂pπ`(t) = i

E
[
ei〈t,Z`+1−Z`〉(Z

(p)
`+1 − Z

(p)
` )

∣∣∣∣X`, X`+1

]
E
[
ei〈t,Z`+1−Z`〉

∣∣∣∣X`, X`+1

] .

Finally, the partial derivative with respect to the pth and qth coordinates, p, q ∈ {1, . . . , d},

9



writes

∂2
p,qπ`(t) = E

[
ei〈t,Z`+1−Z`〉

∣∣∣∣X`, X`+1

]−2

{
− E

[
ei〈t,Z`+1−Z`〉(Z

(p)
`+1 − Z

(p)
` )(Z

(q)
`+1 − Z

(q)
` )

∣∣∣∣X`, X`+1

]
E
[
ei〈t,Z`+1−Z`〉

∣∣∣∣X`, X`+1

]

+ E
[
ei〈t,Z`+1−Z`〉(Z

(p)
`+1 − Z

(p)
` )

∣∣∣∣X`, X`+1

]
E
[
ei〈t,Z`+1−Z`〉(Z

(q)
`+1 − Z

(q)
` )

∣∣∣∣X`, X`+1

]}
.

Hence, the Taylor expansion at t = 0 yields for all t ∈ δTd

π`(t) = i〈t,E[Z`+1 − Z`|X`, X`+1]〉 − 1

2
〈t,Cov(Z`+1 − Z`|X`, X`+1)t〉+R`(t)

where R` stands for the Lagrange’s reminder in the Taylor expansion. Then, for any t ∈ δTd,
almost surely,

|R`(t)| ≤ ‖t‖3∞ sup
t∈δTd

sup

{
|∂3
p,q,rπ`(t)|, p, q, r ∈ {1, . . . , d}

}
.

In fact, Equation (10) implies that

∀δ ∈ (0, 1/2k) ∩ (0, 1), ∀t ∈ δTd,

∣∣∣∣∣E
[
ei〈t,Z`+1−Z`〉

∣∣∣∣∣X`, X`+1

]∣∣∣∣∣ ≥ 1

2
.

Thus, computing explicitly the third order derivatives of π`, it follows, for any p, q, r ∈ {1, . . . , d}
and any t ∈ δTd, that

|∂3
p,q,rπ`(t)| ≤ 24

{
E
[
‖Z`+1 − Z`‖31

∣∣∣∣X`, X`+1

]
+ 2E

[
‖Z`+1 − Z`‖1

∣∣∣∣X`, X`+1

]3

+ 5E
[
‖Z`+1 − Z`‖21

∣∣∣∣X`, X`+1

]
E
[
‖Z`+1 − Z`‖1

∣∣∣∣X`, X`+1

]}

≤ 27E
[
‖Z`+1 − Z`‖31

∣∣∣∣X`, X`+1

]
.

The existence of the deterministic constant K follows immediately from Assumption 2. Now,

Πn(t) =
n−1∏
`=0

π`(t) = exp

{
i〈t, Un〉 −

1

2
〈t, nVnt〉+ Θn(t)

}
,

where

Θn(t) =
n−1∑
`=0

R`(t) and |Θn(t)| ≤ nK‖t‖3∞.

Proof of Theorem 2.1. Let δ ∈ (0, 1) be such that Proposition 3.1 holds. Then, by Proposi-
tion 1.2,

(2π)dP(Zn − Z0 = z|X0 = x) =

∫
Td
Pnt 1(x)e−i〈t,z〉 dt

=

∫
Td\δTd

Pnt 1(x)e−i〈t,z〉 dt+

∫
δTd

Pnt 1(x)e−i〈t,z〉 dt.
(11)
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The change of variables u = t/
√
n in the second term yields∫

δTd
Pnt 1(x)e−i〈t,z〉 dt = E

[∫
δTd

e−i〈t,z〉Πn(t)dt

∣∣∣∣X0 = x

]
= n−d/2E

[∫
δ
√
nTd

e
− i√

n
〈t,z〉

Πn(t/
√
n)dt

∣∣∣∣X0 = x

]
.

(12)

Let a ∈ (0, δ
√
n). The quantity in Equation 12 can be decomposed as follows:

n−d/2E
[∫

Rd
exp

{
i

1√
n
〈t, Un − z〉 −

1

2
〈t, Vnt〉

}
dt

∣∣∣∣X0 = x

]
+ n−d/2E

[∫
δ
√
nTd\aTd

e
− i√

n
〈t,z〉

Πn(t/
√
n)dt

∣∣∣∣X0 = x

]

+ n−d/2E
[∫

aTd
e
−i 1√

n
〈t,z〉

(
Πn(t/

√
n)− exp

{
i

1√
n
〈t, Un − z〉 −

1

2
〈t, Vnt〉

})
dt

∣∣∣∣X0 = x

]
− n−d/2E

[∫
Rd\aTd

exp

{
i

1√
n
〈t, Un − z〉 −

1

2
〈t, Vnt〉

}
dt

∣∣∣∣X0 = x

]
Finally, remarking that ‖t/

√
n‖∞ ≤ δ as soon as t ∈ aTd so that Proposition 3.1 holds, Equa-

tions (11) and (12) imply

(2π
√
n)dP(Zn − Z0 = z|X0 = x)− E

[∫
Rd

exp

{
i

1√
n
〈t, Un − z〉 −

1

2
〈t, Vnt〉

}
dt

∣∣∣∣X0 = x

]
= A1(z, n, a) +A2(z, n, a) +A3(z, n, a, δ) +A4(z, n, δ)

where

A1(z, n, a) := E
[∫

aTd
exp

{
i

1√
n
〈t, Un − z〉 −

1

2
〈t, Vnt〉

}(
eΘn(t/

√
n) − 1

)
dt

∣∣∣∣X0 = x

]
,

A2(z, n, a) := −E

[∫
Rd\aTd

exp

{
i

1√
n
〈t, Un − z〉 −

1

2
〈t, Vnt〉

}
dt

∣∣∣∣X0 = x

]
,

A3(z, n, a, δ) := E

[∫
δ
√
nTd\aTd

e
− i√

n
〈t,z〉

Πn(t/
√
n)dt

∣∣∣∣X0 = x

]
,

A4(z, n, δ) := nd/2
∫
Td\δTd

Pnt 1(x)e−i〈t,z〉 dt.

Lemma 3.2. Under Assumptions 2 and 3, it holds that

∀n ≥ 1, ∀a ∈
(
0, δ
√
n
)
, sup

z∈Zd
|A1(z, n, a)| = O

(
a3K√
n

exp

(
a3K√
n

))
where K is defined in Proposition 3.1.

Proof. Let t ∈ aTd. By Proposition 3.1 under Assumptions 2 and 3,∣∣∣ei 1√
n
〈t,Un−z〉− 1

2
〈t,Vnt〉

(
eΘn(t/

√
n) − 1

)∣∣∣ ≤ e− 1
2
〈t,Vnt〉

∣∣Θn(t/
√
n)
∣∣ exp

∣∣Θn(t/
√
n)
∣∣

≤ e−
1
2
〈t,Vnt〉a

3nK

n3/2
exp

a3nK

n3/2

≤ e−
α
2
‖t‖22 a

3K√
n

exp
a3K√
n

a.s..

The result follows by integrating with respect to t ∈ aTd.
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Lemma 3.3. Under Assumption 3,

∀n ≥ 1, ∀a > 0, sup
z∈Zd
|A2(z, n, a)| ≤ 2de−αda

2

(αda)d
.

Proof. Assumption 3 implies

sup
z∈Zd
|A2(z, n, a)| ≤

∫
Rd\aTd

exp(−1

2
α‖t‖22) dt ≤

∫
‖t‖2≥a

exp(−1

2
α‖t‖22) dt ≤ 2de−αda

2

(αa)d
.

Lemma 3.4. Under Assumptions 2 and 3, for any δ > 0 sufficiently small and any a ∈ (0, δ
√
n)

sup
z∈Zd
|A3(z, n, a, δ)| ≤ K3 exp

{
−K4a

2
}
.

Proof. As a matter of fact,∣∣∣∣∣E
[∫

δ
√
nTd\aTd

e
− i√

n
〈t,z〉

Πn(t/
√
n)dt

∣∣∣∣X0 = x

]∣∣∣∣∣ ≤ E

[∫
δ
√
nTd\aTd

∣∣Πn(t/
√
n)
∣∣ dt∣∣∣∣X0 = x

]
. (13)

Under Assumptions 2 and 3, by Proposition 3.1, the integrand in Equation (13) satisfies∣∣Πn(t/
√
n)
∣∣ ≤ exp

{
−1

2
〈t, Vnt〉+ |Θn(t/

√
n)|
}
.

Moreover, since t ∈ δ
√
nTd \ aTd

|Θn(t/
√
n)| ≤ nK‖t/

√
n‖2∞‖t/

√
n‖∞ = K‖t‖2∞‖t/

√
n‖∞ ≤ Kδπ‖t‖2∞ ≤ Kδπd‖t‖22,

and −1
2〈t, Vnt〉 ≤ −

1
2α‖t‖

2
2. Thus, choosing any δ > 0 so small that Kδπd ≤ α/4 (and that

Proposition 3.1 holds true), the integrand in Equation (13) is bounded above by exp(−β‖t‖22) for
some β > 0. Consequently, there exists K3,K4 > 0 such that |A3(z, n, a, δ)| ≤ K3e

−K4a2 .

Lemma 3.5. Under Assumptions 4, for any δ ∈ (0, 1), there exist γ ∈ (0, 1) and a constant
C > 0 such that

sup
z∈Zd
|A4(z, n, δ)| ≤ (2π)dCγn.

Proof. Fix δ ∈ (0, 1). Then, under Assumption 4, there exists γ ∈ (0, 1) and a constant C > 0
such that, for all t ∈ Td \ δTd, ‖Pnt 1‖∞ ≤ Cγn. The result follows immediately.

The four lemmas above imply that

sup
z∈Zd

∣∣∣∣nd/2(2π)dP(Zn − Z0 = z|X0 = x)− E
[∫

Rd
e
i 1√

n
〈t,Un−z〉− 1

2
〈t,Vnt〉dt

∣∣∣∣X0 = x

]∣∣∣∣
= O

(
a3K√
n
e
a3K√
n +

2d

(αa)d
e−αda

2/2 +K3e
−K4a2 + Cγn

)
= O(n−( 1

2
−ε)),

by setting a = δnε/3 for any ε ∈ (0, 1
2).

Finally, noting that Vn is invertible by Assumption 3, the proof of Theorem 2.1 ends with
the help of the Fourier transform∫

Rd
exp

{
i

1√
n
〈t, Un − z〉 −

1

2
〈t, Vnt〉

}
dt =

(2π)d/2√
det(Vn)

exp

{
− 1

2n
〈Un − z, V −1

n (Un − z)〉
}
.

12



4 Application: random walks with local drift

This section is dedicated to the illustration of Theorems 2.1 and its Corollary 2.4. The examples
presented below are largely inspired by those studied in [12], which in turn were previously
introduced in [48]. The discrete time processes considered in [12] are basically simple random
walks on directed graphs built upon Z2. More precisely, whereas the random walker can move
freely toward North or South at each step, he can only move toward East or West depending on
a prescribed environment. As shown in [12], different environments lead to different behaviors
for the simple random walk explaining that a significant part of the literature considers these
models (see for instance [32, 53, 14, 23, 40, 13, 8, 9, 10] or even more recently [7]).

In the model considered below, the random walker can move simultaneously vertically and
horizontally in one of the quarter-plane North West, North East, South East or South West.
Whereas the choice between North or South remains unrestricted, the choice between East
and West is dictated by a prescribed environment. Thus, the case of a periodic environment
considered in Section 4.2 has to be compared to the model L of [12]. The two-directed half
planes of Section 4.3 is expected to be similar to the model H of [12]. Finally, the randomly
directed case of Section 4.4 is reminiscent of the model O.

4.1 The model of random walks with local drift

In this section the internal Markov chain X of the MAP (X,Z) shall be the simple random
walk on X = Z. More precisely, let (ξk)k≥1 be a sequence of i.i.d. random variables where ξ1

is uniformly distributed on {−1, 1}. Let X0 be a Z-valued random variable and, for n ≥ 1,
Xn := X0 + ξ1 + · · ·+ ξn.

Now, let us define the additive part Z of the MAP (X,Z). To this end, introduce a sequence
((Th,k, Tv,k))k≥0 of independent copies of some N2-valued random vector (Th, Tv) and a sequence
ε = (εx)x∈Z of Z-valued random variables. Then, the additive part Z taking values in Z2 is
defined as follows:

∀n ≥ 0, Zn − Z0 :=

(
n−1∑
k=0

εXkTh,k,
n−1∑
k=0

ξk+1Tv,k

)
. (14)

Assumptions 5. 1. The internal Markov chain X, the sequences ((Th,k, Tv,k))k≥0 and ε are
independent,

2. E[Th] = mh ∈ (0,∞) and E[Tv] = mv ∈ (0,∞),

3. V[Th] = σ2
v > 0 and V[Tv] = σ2

h > 0,

4. Th and Tv are independent.

Proposition 4.1. Under Assumptions 5, conditionally on the environment ε, the quenched
drift and quenched dispersion are respectively given by

Un(ε) =

(
mh
∑n−1

k=0 εXk
mv(Xn −X0)

)
and Vn(ε) =

1

n

(
σ2
h

∑n−1
k=0 ε

2
Xk

0

0 nσ2
v

)
.

Proof. Conditionally on the environment ε, the quenched drift and quench dispersion are re-
spectively given by

Un(ε) =

n−1∑
`=0

E[Z`+1 − Z`|X`, X`+1, ε] and Vn(ε) =
1

n

n−1∑
`=0

Cov(Z`+1 − Z`|X`, X`+1, ε).

13



By independence, for all ` ≥ 0,

E[Z`+1 − Z`|X`, X`+1, ε] =

(
εX`E[Th]
ξ`+1E[Tv]

)
and Cov(Z`+1 − Z`|X`, X`+1, ε) =

1

n

(
V(Th)ε2

X`
0

0 V(Tv)ξ
2
`+1

)
.

The result follows immediately.

Proposition 4.2. Under Assumptions 5, conditionally on the environment ε, the Fourier trans-
form operator is given by

∀x ∈ Z, ∀t ∈ T2, Ptf(x) =
∑
y∈Z

P (x, y)µ̂x,yε (t)f(y),

where P is the Markov operator associated with the simple random walk X and

µ̂x,yε (t) = ϕTh(εxt1)ϕTv((y − x)t2), x, y ∈ Z s.t. P (x, y) > 0, t = (t1, t2) ∈ T2,

where ϕTh and ϕTh are the characteristic functions of Th and Tv respectively.

Proof. Let t = (t1, t2) ∈ T2. Then,

Ptf(x) = E[eit1εX0
Th,0eit2(X1−X0)Tv,0f(X1)|X0 = x, ε]

=
∑
y∈Z

P (x, y)E[eit1εX0
Th,0eit2(X1−X0)Tv,0 |X0 = x,X1 = y, ε]f(y)

=
∑
y∈Z

P (x, y)ϕTh(εxt1)ϕTh((y − x)t2)f(y).

In order to apply Theorem 2.1 and Corollary 2.4, it is necessary to make further assumptions.

Assumptions 6.

(UB) There exists B > 0 such that P[supx∈Z |εx| ≥ B] = 0;

(ND) For all x ∈ Z, P[εx = 0] = 0;

(M) E[T 3
h ],E[T 3

v ] are finite;

(AP) the distribution of Th and Tv are aperiodic.

Proposition 4.3. Under Assumptions 5 and 6, conditionally on the environment ε, Assump-
tions 1, 2, 3 and 4 are fulfilled.

Proof. It is well known that the simple random walk X is irreducible recurrent (Assumption 1).
The uniform moment condition involved in Assumption 2 is equivalent to

sup
x∈Z

(
|εx|E[T 3

h ] + E[T 3
v ]
)
<∞.

The latter is straightforward by (UB) and (M) of Assumption 6.
The uniform ellipticity condition of Assumption 3 follows immediately of (ND) of Assump-

tion 6.
Finally, since Th and Tv are aperiodic, for all t ∈ [−π, π)\{0}, |ϕTh(t)| < 1 and |ϕTv(t)| < 1.

Consequently, conditionally on the environment ε, the family of probability measure (µx,yε )x,y∈Z
is uniformly aperiodic. By Proposition 1.6, Assumption 4 follows.
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As a matter of fact, the quantity 1
2n〈(Un(ε) − z), V −1

n (Un − z)〉, n ≥ 1, z = (z1, z2) ∈ Z2,
appearing in Theorem 2.1 is given by

1

2n
〈(Un(ε)− z), V −1

n (Un − z)〉 =
1

2


(
mh
∑n−1

k=0 εXk − z1

)2

σ2
h

∑n−1
k=0 ε

2
Xk

+
(mv(Xn −X0)− z2)2

nσ2
v

 . (15)

Also, it is worth noting that, under Assumptions (UB) and (ND) of Assumption 6,

∀n ≥ 1,
det(Vn)

σ2
hσ

2
v

=
1

n

n−1∑
k=0

ε2
Xk
∈ [1, B2]. (16)

Consequently, this factor will be omitted in the sequel when applying Corollary 2.4.
The end of this section is devoted to the application of Theorem 2.1 or Corollary 2.4 for

three different environments ε. The first two are deterministic whereas the last one is random.

4.2 Periodic environment

In this example, the environment ε is supposed periodic. Namely, it is assumed that, for all
x ∈ Z, εx = (−1)x.

Proposition 4.4. Let z ∈ Z2. Then, under Assumptions 5 and 6, for all x ∈ Z,

P[Zn − Z0 = z|X0 = x] ∼n→∞
1

2πσhσvn

(
1 +

m2
v

σ2
v

)−1/2

.

Proof. First observe that

∀n ≥ 1,
n−1∑
k=0

εXk = (−1)X0
1− (−1)n

2
and det(Vn) = σ2

hσ
2
v .

Then, setting z = (z1, z2),

σhσvE

[
1√

det(Vn)
exp

{
− 1

2n
〈Un − z, V −1

n (Un − z)〉
} ∣∣∣∣X0 = x

]

= exp

{
− 1

2σ2
hn

(
mh(−1)x

1− (−1)n

2
− z1

)2
}
E
[
exp

{
−(mv(Xn −X0)− z2)2

2nσ2
v

} ∣∣∣∣X0 = x

]
.

As a matter of fact, the first exponential factor converges toward 1 as n→∞.
For the second factor, it suffices to remark that n−1/2[mv(Xn − X0) − z2] converges in

distribution to a centered standard Gaussian random variable. Since t→ e−t
2/2σ2

v is continuous,
it follows

lim
n→∞

E

[
exp

{
−(mv(Xn −X0)− z2)2

2nσ2
v

} ∣∣∣∣X0 = x

]
=

∫
R
e
− y

2

2

[
1+

m2
v

σ2v

]
dy√
2π

=

(
1 +

m2
v

σ2
v

)−1/2

.

By Theorem 2.1, the result of the proposition follows immediately.

The estimate of Proposition 4.4 implies that the series in Corollary 2.4 if infinite. However,
since the internal Markov chain is null recurrent, the recurrence of the MAP can not be deduced
directly. Actually, it turns out that, taking advantage of the periodicity of the environment, the
distribution of the additive component can be described with a simpler internal Markov chain.
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Proposition 4.5. Suppose the MAP (X,Z) is irreducible. Then, under Assumptions 5 and 6,
the MAP Z is recurrent.

Proof. The key idea consists in remarking that M = ((εXn , ξn+1))n≥0 is a Markov chain taking
values in the finite space {−1, 1}2. The transition probabilities are given, for all x, x′, y, y′ ∈
{−1, 1}, as follows:

Q((x, y), (x′, y′)) := Q1(x, x′)Q2(y, y′) with Q1 :=

(
0 1
1 0

)
and Q2 :=

(
1
2

1
2

1
2

1
2

)
.

Now, let us set for all n ≥ 1,

Z̃n − Z̃0 =

(
n−1∑
k=0

M
(1)
k Th,k,

n−1∑
k=0

M
(2)
k Tv,k

)
,

whereM (1) andM (2) are respectively the first and second component ofM . From Equation (14),
the following equality in distribution holds

L((Zn − Z0)n≥0|X0 = x) = L((Z̃n − Z̃0)n≥0|M (1)
0 = εx).

From this equality in distribution, the MAP (M, Z̃) inherits irreducibility from the MAP (M,Z).
Moreover, applying [18], the MAP (M, Z̃) is recurrent noting that M is positive recurrent.
Consequently, (X,Z) is recurrent.

4.3 Two directed half planes

The reduction made in the proof of Proposition 4.5 is naturally not always possible as illustrated
by the example of this section. This obstruction was the main motivation of the extension to
the null recurrent case.

The two directed half planes presented below corresponds to the environment ε defined, for
all x ∈ Z, by εx = 21Z+(x)− 1 where Z+ stands for the set of non negative integers.

Proposition 4.6. Assume that the MAP (X,Z) is irreducible. Then, under Assumptions 5
and 6, (X,Z) is transient.

Proof. By irreducibility, Equation (15) with z1 = z2 = 0 and the fact that, for all n ≥ 1,
det(Vn) = σ2

hσ
2
v , the transience of (X,Z) follows Corollary 2.4 by proving the series

∑
n≥1

1

n
E

exp

− m2
h

2nσ2
h

(
n−1∑
k=0

εXk

)2

∣∣∣∣∣X0 = x

 . (17)

is finite for all x ∈ Z. Thereafter, a simple computation yields, for all n ≥ 1, that

n−1∑
k=0

εXk = 2Nn(Z+)− n where Nn(Z+) =
n−1∑
k=0

1Z+(Xk).

Then, verifying that the function

[0,∞) 3 t→ exp

(
−
nm2

h

2σ2
h

(2t− 1)2

)
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is kn-Lipschitz with constant kn = e−
1
8

√
nm2

h

σ2
h

, it follows that

E

[
exp

{
−
m2
h

2nσ2
h

(2Nn(Z+)− n)2

} ∣∣∣∣∣X0 = x

]
≤ kndW(L(Nn(Z+)/n),L(Γ))

+ E

[
exp

{
−n

m2
h

2σ2
h

(2Γ− 1)2

} ∣∣∣∣∣X0 = x

]
(18)

where Γ is distributed as an arc-sine law supported by [0, 1] and dW stands for the Kantorovich-
Rubinstein metric on probability measures (see [62, Chapter 6, p.94]).

It is shown in [28, Theorem 1.2] that dW(L(Nn(Z+)/n),L(Γ)) = O(1/n) so that the series
in Equation (17) is finite if and only if, applying Fubini’s Theorem,

∞ > E

∑
n≥1

1

n
exp

{
−n

m2
h

2σ2
h

(2Γ− 1)2

} = −
∫ 1

0
log

[
exp

{
m2
h

2σ2
h

(2y − 1)2

}
− 1

]
dy

π
√

1− y2
.

However, the singularity at y = 1 coming from the density function of the arc-sine distribu-
tion is integrable and so is the singularity at y = 1

2 since y → log y is locally integrable in the
positive neighborhood of 0.

4.4 Randomly directed random walks

The last family of examples involve a random environment. More precisely, it will be assumed
that ε is a sequence of i.i.d. random variables. In the sequel, the common marginal distribution
will be denoted by π.

Proposition 4.7. Additionally to Assumptions 5 and 6, suppose that ε = (εx)x∈Z is a sequence
of i.i.d. random variables such that E[ε0] = 0. Then, for π⊗Z-a.e. sequences ε, if the MAP
(X,Z) in the environment ε is irreducible, then it is transient.

Proof. Applying Markov inequality to the probability measure π⊗Z, it is only needed to prove
that ∑

n≥1

1

n
E

exp

−
m2
h

(∑n−1
k=0 εXk

)2

2σ2
h

(∑n−1
k=0 ε

2
Xk

)

∣∣∣∣∣X0 = x

 . (19)

Without loss of generality, one may suppose that x = 0 since π⊗Z is shift invariant. Remarking
that n ≤

∑n−1
k=0 ε

2
Xk
≤ nB2 by conditions (UB) and (ND) of Assumption 6, then, for any

α ∈ (1
2 ,

3
4),

E

exp

−
m2
h

(∑n−1
k=0 εXk

)2

2σ2
h

(∑n−1
k=0 ε

2
Xk

)

 ≤ P

[∣∣∣∣∣
n−1∑
k=0

εXk

∣∣∣∣∣ ≤ nα
]

+ exp

{
e
− m2

h
σ2
h
B2 n

2α−1
}
. (20)

Now, set Dn =
{
x ∈ R : n3/4x ∈ [−nα, nα] ∩ Z

}
. By [14, Theorem 1], with the very same

function C, the following estimate holds

P

[∣∣∣∣∣
n−1∑
k=0

εXk

∣∣∣∣∣ ≤ nα
]

=
∑
x∈Dn

[
C(x)

n3/4
+ o(n−3/4)

]
where the o(n−3/4) is uniform in x ∈ R. Noting that C is bounded (for instance [14, Lemma
4]), the probability above behaves like O(nα−3/4) which ends the proof of the proposition.
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[15] Erhan Çinlar. Markov additive processes. I, II. Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete, 24:85–93; ibid. 24 (1972), 95–121, 1972. doi:10.1007/BF00532536. 2

[16] P. Cénac, B. Chauvin, S. Herrmann, and P. Vallois. Persistent random walks, variable
length Markov chains and piecewise deterministic Markov processes. Markov Process.
Related Fields, 19(1):1–50, 2013. 2

[17] Peggy Cénac, Brigitte Chauvin, Frédéric Paccaut, and Nicolas Pouyanne. Context trees,
variable length Markov chains and dynamical sources. In Séminaire de Probabilités XLIV,
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[23] Basile de Loynes. Marche aléatoire sur un di-graphe et frontière de Martin. C. R. Math.
Acad. Sci. Paris, 350(1-2):87–90, 2012. doi:10.1016/j.crma.2011.12.005. 2, 13

[24] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part III. Wiley Classics Library.
John Wiley & Sons, Inc., New York, 1988. Spectral operators, With the assistance of
William G. Bade and Robert G. Bartle, Reprint of the 1971 original, A Wiley-Interscience
Publication. 6

[25] Ī. Ī. Ēžov and A. V. Skorohod. Markov processes which are homogeneous in the second
component. I. Teor. Veroyatn. Primen., 14:3–14, 1969. 4
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[37] Löıc Hervé and James Ledoux. A local limit theorem for densities of the additive component
of a finite Markov additive process. Statist. Probab. Lett., 83(9):2119–2128, 2013. doi:

10.1016/j.spl.2013.05.032. 2
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[39] Löıc Hervé and Françoise Pène. The Nagaev-Guivarc’h method via the Keller-Liverani
theorem. Bull. Soc. Math. France, 138(3):415–489, 2010. doi:10.24033/bsmf.2594. 2
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