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The type problem for a class of inhomogeneous random walks : a
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Abstract In the classical framework, a random walk on a group is a Markov chain with independent

and identically distributed increments. In some sense, random walks are time and space homogeneous.

In this paper, a criterion for the recurrence or transience of Markov additive processes is given. This

criterion is deduced using Fourier analysis and a perturbation argument of a Markov operator. The

latter extends the results of the literature since it does not involve a quasi-compacity condition on the

operator. Finally, this criterion is applied to a new family of model of strongly drifted random walks on

the lattice.
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Introduction

In the classical framework, a random walk on a group G is a discrete time stochastic process
(Zn)n≥0 defined as the product of independent and identically distributed (i.i.d.) random
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variables (ξn)n≥1. More precisely, for any g ∈ G, we set Z0 = g and

Zn = gξ1 · · · ξn.

Random walks on groups are obviously Markov chains that are adapted to the group structure
in the sense that the underlying Markov operator is invariant under the group action of G
on itself. Thus, this homogeneity naturally gives rise to deep connections between stochastic
properties of the random walk and algebraic properties of the group. Starting with the seminal
paper of Pòlya, [37], a large part of the literature is devoted to the study of these connections
in this homogeneous case (for instance [29, 31, 18, 21, 43, 40, 23, 22, 2] and references therein).

In this paper, we aim at investigating “weakly” inhomogeneous random walks. It turns out
that there are at least two ways to introduce inhomogeneity. First, we can consider “spatial”
inhomogeneity by weakening the group structure, replacing it, for instance, by a directed graph
or semigroupoid structure (see [4, 16, 17, 35, 14]). Secondly, we can study “temporal” inhomo-
geneous random walks by introducing a notion of memory as in the model of reinforced [34, 42],
excited [38, 3], self-interacting [11, 36] or also persistent random walks [8, 7, 9]. All these models
belong to the larger class of stochastic processes with long range dependency.

The strategy in the sequel consists of making use of the connection between such stochastic
processes and Random Walk with Random Transition Probabilities — or for short, RWRTP
— the terminology comes from [20]. Roughly speaking, a RWRTP consists of a dynamical
system (Ω, T ), endowed with a quasi-invariant (preimages by T of null measure sets have null
measure) probability measure λ, together with a family {µω}ω∈Ω on a group G. The dynamics
dictate the way the measures of {µω}ω∈Ω can be convoluted1. More precisely, choosing at
random (with respect to the probability measure λ) a trajectory ω ∈ Ω, we are interested in the
asymptotic properties of the sequence of convoluted measures µω ∗µTω ∗µT 2ω ∗ · · · ∗µTnω. As a
matter of facts, along a trajectory of the dynamical system, the resulting stochastic process has
independent but, in general, not stationary increments. If in addition, the dynamical system
admits a stationary probability measure, in mean, the increments are no longer independent,
however, they are in some sense stationary.

As it is noticed in [20], this model is actually a generalization of other well known models
such as Random Walk With Internal Degree of Freedom — see [27] — or also in the modern
formulation Markov additive processes (or semi-Markov processes, Markov random walks), for
short MAP — see [26, 19, 32, 30, 1, 41, 24]. In this context, many results have been proved.
Though, the basic assumptions are generally too much restrictive to encompass the class of very
inhomogeneous random walks.

Generally speaking, in the context of Markov additive processes, we may introduce the
Fourier transform operator, denoted by Ft, t ∈ Rd, which is a continuous perturbation of the
Markov operator P̊ defining the underlying dynamics. The rate of the return probability is
then estimated, under mild conditions, by inverse Fourier transform. In the literature, the
Markov operator P̊ is usually supposed to admit an ergodic invariant probability measure and
to be quasi-compact. In addition, by a perturbation argument the Fourier transform operator
remains quasi-compact for all t in a neighborhood of the origin. It allows, under suitable moment
conditions on the system of probability measures, to derive a Taylor expansion at the second
order of the perturbated dominating eigenvalue γ(t) (whose the coefficients are given roughly
by the mean and the variance operators). Finally, under an assumption on the spectrum of the
Fourier transform operator outside a neighborhood of the origin, it can be concluded that all
the needed stochastic information is actually contained in the nature of the singularity at zero
of (1 − γ(t))−1 (note γ(0) = 1). This has to be compared to the classical context of random

1In this sense, it is comparable to Random Dynamical Systems: instead of randomly composing transforma-
tions, we randomly compose random (continuous) group homomorphisms.
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walks for which there is an integral test criterion involving a singularity of this kind — see for
instance [10] and [39].

In this paper, the quasi-compacity condition of P̊ is dropped. It is only assumed that P̊ is
irreducible, recurrent and aperiodic. The condition on the spectrum of Ft for large perturbations
remains similar but the nature of the singularity at the origin is analyzed via probabilistic
methods (there is also a kind of Chung and Fuchs integral test involving (I−Ft)−1 but, without
a strong knowledge on the spectrum of P̊ , it seems impracticable, see Section 1.4). These
estimates give rise to a criterion for the type problem in terms of the summability of a series.
More precisely, introduce the following quantities for n ≥ 1 and ω ∈ Ω

Σn := Σn(ω) = − 1

n

n−1∑
k=0

[
∇∗∇µ̂Tkω(0)− (∇µ̂Tkω(0))∗(∇µ̂Tkω(0))

]
,

∆n := ∆n(ω) = −i 1√
n

n−1∑
k=0

∇µ̂Tkω(0), (1)

and the (almost surely finite) random variable τ which is the first instant such that the rank
Σn is maximal. The main theorem of this paper states (under the assumptions 1, 2, 3 and 4
given in Section 1) that the Markov additive process is transient or recurrent (see Definition
1.6) accordingly as ∑

n≥1

1

nd/2

∫
Ω

1n≥τ exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dλ

is finite or infinite provided τ has a finite expectation.
Thus, the main term of the series involves the expectation of a functional of two random

variables. The recurrence or transience behavior is interpreted as the result of the competition
of this two random quantities. More precisely, the process is recurrent if locally it is sufficiently
diffusive in order to balance the instantaneous trend. It turns out that ∆∗Σ−1∆ is in some
circumstances a self-normalized martingale (see [13] for instance).

Inspired by models introduced in [4], the main theorem is applied to a new class of examples
in Section 2. In facts, in these examples, depending on the moves of a simple random walk on
Z and an (deterministic or random) environment {εx}x∈Z ∈ {−1, 1}Z, the random walk admits
a strong drift taking values in one of the quarter plane of Z2.

In [4] are studied in particular the simple random walks on graphs represented on the figure
1 below. For the graph (a) of Figure 1, denoted by L, a random walker choose at random one of
the nearest neighbour among North, South or West if the ordinate of its current position is odd,
and the nearest neighbour among North, South and East if it is even. It is shown in [4] that this
random walk is recurrent. For the graph (b) of Figure 1, denoted by H, the possible movements
for a random walker are toward the North, South and West on the upper half-plane and North,
South and East otherwise. The resulting random walk is shown to be transient. Beyong their
own interests in the classical probability theory, it is worth noting the study of these models
was initially motivated by natural questions arising in quantum theory as described in [5].

For modified random walks studied in Section 2, very similar results are proved. In partic-
ular, it is shown that recurrence is rather exceptional whereas transience is typical.

1 The type problem for Markov additive processes

In this section, we shall consider the restricted class of Markov additive processes, for short
MAP, that are stochastic processes whose jumps, taking values in an Abelian group G, are
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plane.

Figure 1: Directed graphs L et H de [4].

independent but with a distribution depending on a Markovian dynamics. We shall be even
more restrictive by setting G = Zd. For a non discrete Abelian group, say G = Rd or G
compact, the Fourier analysis of continuous measure is sensibly different but remains irrelevant
for the scope of this paper.

1.1 Markov additive processes

In the sequel, we refer to [33] for the notion of Markov chain on general spaces. We shall consider
a Markov kernel P̊ relatively to a measurable space (X,X ) for which the σ-algebra is separable.
The space (X,X ) can be endowed with a σ-finite measure m dominating mP̊ . Without loss of
generality, we may assume that the Markov chain induced by P̊ is m-irreducible and aperiodic.
A stronger assumption is to suppose the Markov chain m-recurrent. In this case, the time
shift on XN preserves the possibly infinite, but σ-finite, Markov measure Pm. The probability
measures µω, ω ∈ XN are supposed to depend only on the two first coordinates2 of ω ∈ XN and
shall be alternatively denoted by µx,y, x, y ∈ X.

A Markov additive process with internal Markov chain P̊ together with the system of prob-
ability measures µ is the Markov chain on the space X × Zd whose Markov operator is given,
for f ∈ L∞m (X× Zd), by

Pf(x,u) =

∫
X×Zd

P̊ (x, dy) (δy ⊗ µx,y) (dzdv)f(z,u + v), for (x,u) ∈ X× Zd.

The Markov operator P is invariant by translations of the kind X× Zd 3 (x,u)→ (x,u + v) ∈
X× Zd.

In this context, we may introduce the so called Fourier transform operator, denoted by Ft,
for t ∈ Rd, acting as a contraction on L∞m (X) and defined for f ∈ L∞m (X) by

Ftf(x) =

∫
X
P̊ (x, dy)µ̂x,y(t)f(y), for m− a.e. x ∈ X, (2)

2Actually, we use here the traditional definition, though it is completely equivalent to suppose that the
probabilities µω depends only on the first coordinate providing we consider the 2-order Markov chain induced by
P̊ .
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where µ̂x,y is the standard Fourier transform of the probability measure µx,y defined, for t ∈ Rd,
by

µ̂x,y(t) =
∑
v∈Zd

µx,y(v)ei〈t,v〉,

〈·, ·〉 standing for the standard inner product.

1.2 Basic assumptions

Let σ be a bounded map from X to Zd and define

P σf(x,u) =

∫
X×Zd

P̊ (x, dy) (δy ⊗ µx,y) (dzdv)f(z,u + v− σ(y) + σ(x)), for (x,u) ∈ X×Zd.

Intuitively, it corresponds to a change of origin of each fiber parametrized by X. Such a function
σ is called a change of section. The translated probability shall be denoted µx,yσ = µx,y ∗
δσ(y)−σ(x), or simply µx,y if no ambiguity. Because of the invariance of P under translations

of Zd, the changes of section have no fundamental importance in the study of the recurrent or
transient behavior of the Markov additive process.

To keep notations light and readable, we shall adopt alternatively the ones related to dy-
namical system (such as µω, Pm-a.e.,. . . ) or those ones proper to Markov additive processes
(µx,y, m-a.e.,. . . ).

Definition 1.1 (Adaptation, aperiodicity, irreducibility). A MAP is respectively adapted, ape-
riodic and irreducible if for any change of section σ

1. there is no proper subgroup H ⊂ Zd such that Pm-a.e. µω(H) = 1 ;

2. there is no proper subgroup H ⊂ Zd and no a ∈ Rd such that Pm-a.e. µω(a+H) = 1.

3. there is no half-space H ⊂ Rd such that Pm-a.e. µω(H) = 1.

The properties of adaptation and aperiodicity can be read on the spectrum of the Fourier
transform Ft as shown in Corollary 1.3. Below Wd denotes the set [−π, π)d and W∗

d the set
Wd \ {0}.

Proposition 1.2. A MAP is adapted if and only if µ̂ωσ(t) 6= 1, Pm-a.e. for any change of
section σ : X→ Zd and any t ∈W∗

d. A MAP is aperiodic if and only if µ̂ωσ(t) 6= eiθ, Pm-a.e.,
for any θ ∈ R, any change of section σ and any t ∈W∗

d.

Proof. If a MAP is not aperiodic then there exist a change of section, a proper subgroup H and
a ∈ Rd such that µωσ(a+H) = 1, Pm-a.e.. It is well known that there exist integers n1, . . . , nr,
1 ≤ r ≤ d, such that the subgroup H is generated by a set {n1ei1 , . . . , nreir} for some indices
1 ≤ i1 ≤ . . . ≤ ir ≤ d, where ei is the ith vector of the canonical basis of Zd. Suppose r < d, then
for any t ∈ W∗

d ∩ (span H)⊥ it follows that µ̂ωσ(t) = ei〈t,a〉. If r = d, set t = (π/n1, . . . , π/nd)
then again µ̂ωσ(t) = ei〈t,a〉 and t obviously belongs to W∗

d unless n1 = · · · = nd = 1, i.e. H = Zd.
Conversely, suppose there exists a change of section σ and t ∈ W∗

d such that µ̂ωσ(t) = eiθ,
Pm-a.e., for some θ ∈ R. It means that µωσ(t) is an extremal convex combination and since µωσ
is supported by a subset of Zd, one can choose a ∈ Zd such that θ = 〈t, a〉. Then, for any n ≥ 1

ei〈t,na〉 =

n−1∏
k=0

µ̂Tkωσ (t) =
∑
w∈Zd

µω ∗ · · · ∗ µTn−1ω(w)ei〈t,w〉, Pm − a.e.,
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or equivalently,

1 =
∑
w∈Zd

{µωσ ∗ δ−a} ∗ · · · ∗ {µT
n−1ω

σ ∗ δ−a}(w)ei〈t,w〉, Pm − a.e..

Thus, the convex combination of points on the unit circle on the right hand side is extremal
so that each w ∈ Sωn = supp {µωσ ∗ δ−a} ∗ · · · ∗ {µT

n−1ω
σ ∗ δ−a}, n ≥ 1, satisfies 〈t,w〉 = 0

modulo 2π. Setting N = {ω ∈ XN : µ̂ωσ(t) 6= ei〈t,a〉} and defining H as the smallest subgroups
containing the sets Sωn , for all n ≥ 1 and ω ∈ N{, it follows that, Pm-a.e., (µωσ ∗ δ−a)(H) = 1,
i.e. µωσ(a + H) = 1. If the MAP was aperiodic, the group H should not be a strict subgroup
of Zd so that 〈t, ei〉 = 0 modulo 2π for 1 ≤ i ≤ d. Contradiction with the fact t ∈W∗

d.
The statement involving the adaptation property follows exactly the same lines by setting

a = 0 and θ = 0.

Corollary 1.3. A MAP is adapted if and only if, for any t ∈ W∗
d there exists a closed Ft-

invariant subspace E containing the constants such that one is not an eigenvalue of the operator
Ft acting on E . It is aperiodic if and only if, for all t ∈W∗

d there exists a closed Ft-invariant
subspace E containing the constants such that the operator Ft, acting on E, has no eigenvalue
of modulus one.

Remark 1.1. The proof of this corollary requires that the bounded superharmonic functions
are constant. A natural assumption to ensure this property is the m-recurrence of the Markov
operator P̊ (see for instance [33, Proposition 3.13, p. 44]). In the terminology of [28], one
might suppose P̊ conservative and ergodic.

Proof. Let t ∈W∗
d and suppose there exists f ∈ E, where E is any closed Ft-invariant subspace

containing the constants, such that

Ftf(x) =

∫
X
P̊ (x, dy)µ̂x,yσ (t)f(y) = eiθf(x), for some θ ∈ R.

By Jensen inequality and the fact that |µ̂x,yσ (t)| ≤ 1, it follows that |f | ≤ P̊ |f |. Thus, the
function ‖f‖∞ − |f | is superharmonic and hence constant m-a.e. since P̊ is supposed m-
recurrent. As a consequence,

1 =

∫
X
|µ̂x,yσ (t)|P̊ (x, dy), m− a.e.,

and µ̂x,y(t) is of modulus one, Pm-a.e.. By Proposition 1.2, the MAP can not be aperiodic.
Conversely, if the MAP is periodic, the same proposition implies ei〈t,a〉 is an eigenvalue.

The proof of the statement involving the adaptation property follows exactly the same
lines.

Remark 1.2. Since the probability measures µω are supposed to be supported by Zd, Pm-a.e.,
it follows that the operator valued map t −→ Ft is 2π-periodic along the directions given by the
vectors of the standard basis of Rd. In fact, the aperiodicity means that it can not be periodic
with shorter periods.

Definition 1.4. A MAP is said to satisfy condition (S) if for any t ∈ W∗
d there exists a

closed Ft-invariant subspace E, containing the constants, for which the set of spectral values of
modulus 1 of Ft, operating on E, consists of eigenvalues.
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Remark 1.3. It is worth noting that the invariant space E appearing in the definition of
condition (S) may vary with respect to t ∈ W∗

d. Though, it is not clear if this flexibility
is actually necessary. In a word, may we find an example of pertubations Ft for which the
condition (S) is satisfied but there is no common invariant space E, shared for every t ∈W∗

d,
such that the spectral values of modulus one are eigenvalues ?

Remark 1.4. If the Markov operator P̊ is quasi-compact (as in most of the litterature) then
the Fourier transform operator, as a continuous perturbation, is also quasi-compact for every
t in a neighborhood of the origin. It is known that the set of spectral values of modulus one
consists of isolated eigenvalues. Somehow, the condition (S) extends this property to large
perturbations. Nonetheless, condition (S) can be satisfied without P̊ being quasi-compact which
is the main motivation of this paper. In examples of Section 2, the Markov operator P̊ is that
one of a symmetric nearest neighbor random walk which is not quasi-compact (otherwise, it is
well known, for instance see [28], that P̊ would admit an invariant probability measure).

For any closed subspace E, and any bounded operator Q we denote by ‖Q‖E the subordi-
nated norm restricted to E defined as ‖Q‖E = supf∈E:‖f‖=1 ‖Qf‖. Let t ∈ Wd, we denoted
by Et the intersection of all closed subspaces E such that FtE ⊂ E and 1 ∈ E. Obviously,
the subspace Et is itself closed, invariant and contains the constant. Also, we may define the
pseudo spectral radius r̃(t) of Ft by

r̃(t) = lim
n→∞

‖Fnt ‖1/nEt
.

Lemma 1.5. If a MAP is aperiodic and satisfy condition (S), then the pseudo spectral radius
r̃(t) of Ft is strictly smaller than one for t ∈W∗

d.

Proof. As a matter of fact, the pseudo spectral radius can be defined alternatively as follows

r̃(t) = inf

{
‖Fnt ‖1/nE , n ≥ 1, E closed subspace satisfying FtE ⊂ E and 1 ∈ E

}
.

Moreover, let t0 ∈Wd and E be a closed subspace such that Ft0E ⊂ E and 1 ∈ E. Then, by
reverse triangle inequality,∣∣∣∣‖Fnt0‖E − ‖Fnt ‖E∣∣∣∣ ≤ ‖Fnt −Fnt0‖E ≤ ‖Fnt −Fnt0‖
which can be made arbitrarily small since t → Ft is continuous. It follows that r̃ is the point-
wise infimum of continuous functions, thus r̃ is upper semi-continuous. Furthermore, the pseudo
spectral radius reaches its maximum on compact K ⊂Wd. Aperiodicity together with condition
(S) imply that maxt∈K r̃(t) < 1 excepted when 0 ∈ K.

From now on, we shall assume the following.

Assumptions 1. The MAP is adapted, aperiodic and irreducible.

Assumptions 2. The condition (S) is fulfilled.

Additionally, we make the following assumption on the system of probability measure µ
where | · | stands for the Euclidean norm.

Assumptions 3. Assume that the system of probability measures µ admits a uniform third
order moment, that is ∥∥∥∥ ∑

u∈Zd
|u|3µ(u)

∥∥∥∥
∞
<∞.
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Remark 1.5. Recall that a change of section is a bounded function σ : X −→ Zd, thus Assump-
tion 3 needs not to be stated relatively to any change of section.

For n ≥ 1 and u,v ∈ Zd, denote respectively the n-step transition probability and its Fourier
transform by

Pω0,n(u,v) := µω ∗ · · · ∗ µTn−1ω(v − u) and φω0,n(t) =
n−1∏
k=0

µ̂Tkω(t). (3)

Introduce the quantities

Σn(ω) := − 1

n

n−1∑
k=0

[
∇∗∇µ̂Tkω(0)− (∇µ̂Tkω(0))∗(∇µ̂Tkω(0))

]
and ∆n(ω) := −i 1√

n

n−1∑
k=0

∇µ̂Tkω(0). (4)

Assumptions 4. There exists α > 0 such that for all t ∈ Rd, lim infn→∞ t
∗Σnt ≥ α|t|2,

Pm-a.e..

1.3 The type problem : a series criterion

Let A ⊂ X and K ⊂ Zd be measurable subsets. We are interested in the mean time spent by
the Markov additive process — that is nothing but a Markov chain on X×Zd — in the product
set A×K. In fact, it is well known that this quantity, starting from (x,u) ∈ X×Zd, is actually
given by the Green operator defined by

G1A×K(x,u) =
∑
n≥0

P
n
1A×K(x,u).

In the special case of A = X, using notation of Equation (3), the equation above rewrites

G1X×K(x,u) = 1X×K(x,u) +
∑
v∈Zd

∑
n≥1

∫
XN
P0,n(u, v)1K(v)dPx.

Definition 1.6 (Recurrence and Transience). A Markov additive process is said to be recurrent
( resp. transient) if, for any bounded change of section σ, G1X×{0}(x, 0) = ∞, m-a.e. ( resp.
G1X×{0}(x, 0) <∞, m-a.e.).

Remark 1.6. Since the changes of section are supposed bounded, a MAP is simultaneously
recurrent or transient for every change of section.

A simple computation gives rise to the identities

G1X×{0}(x, 0) = 1 +
∑
n≥1

∫
XN
P0,n(0, 0)dPx = 1 + lim

r↑1

∑
n≥1

rn−1

∫
XN
P0,n(0, 0)dPx

= 1 + lim
r↑1

1

(2π)d

∫
Wd

Re
∑
n≥1

rn−1Fnt 1(x)dt

(5)

where the latter equality is obtained by inverse Fourier transform and Fubini’s theorem.
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Theorem 1.7 (Series criterion). Let d ≥ 2 and suppose that the assumptions 1, 2, 3 and 4 are
satisfied. In addition, let τ be the stopping time defined by τ = inf{n ≥ 1 : rk Σn = d} and
assume Ex(τ) <∞ for m-a.e. x ∈ X. Then, G1X×{0}(x, 0) is finite ( resp. infinite) if and only
if ∑

n≥1

1

nd/2

∫
XN

1n≥τ exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx <∞ ( resp. =∞ ),

and the MAP is transient or recurrent accordingly.

The proof of this theorem is postponed to Section 3. This section is ended with few com-
ments.

1.4 Few comments on the main theorem

In Theorem 1.7, there is a rather technical assumption on the integrability of the stopping time
τ , the first time at which the matrix Σn is invertible so that the quantities I1,2(n) and I1,3(n)
in Section 3 are well-defined. Due to Assumption 1 and Proposition 3.3, this stopping time τ is
Px-a.s. finite for m-a.e. x ∈ X. The integrability of τ is required to deduce estimates in mean
from almost-sure estimates. For instance, for the simple random walk on a comb (a subgraph
of Z2 with two parallel infinite half-lines joined by an edge at the origine), the related MAP
should not enjoy this integrability condition.

The formulation of the criterion may seem non conventional and, inspired by [10], one may
think about a criterion stating a MAP is recurrent or transient depending on

lim
r↑1

1

(2π)d/2
Re

∫
Wd

(I − rFt)−11(x) dt

is finite or infinite (and even without the r-limit adapting the proof of [39] to our context at
the cost of a long and rather technical proof involving potential theory arguments). The main
concern is related to the analysis of the invert of (I − Ft) without strong conditions giving
informations about the spectrum in the neighborhood of the origin.

Finally, in the equality (5), an r-limit is introduced allowing several exchanges of limits,
integrals and summations in the computations. At some point in the proof of Theorem 1.7, the
r-limit can be dropped using monotone convergence so that the final criterion obtained here
is stated without this r-limit. In some circumstances, one may be interested in dropping this
limit inside the computations in order to obtain other estimates that might be relevant for other
problematics beyond the type problem.

2 Applications : Markov additive processes with strong local
drift

In this section, the main result of this paper is applied to some examples inspired by [4]. More
precisely, we consider the simple random walk {Sn}n≥0 with i.i.d. increments whose common
distribution is given by the probability (δ−1 + δ1)/2. As this random walk is null recurrent,
the corresponding Markov operator can not be quasi-compact (see [28]). Let ε = {εx}x∈Z be a
random or deterministic sequence taking value in {−1, 1}.

There is obviously many ways to define a MAP on Z2. Here, we consider simple examples
for which the probability measures µx,y are of the form µx,y = µεx,sgn(y−x), x, y ∈ Z for some
fixed measures {µp,q}p,q∈{−1,1}. In order to exhibit transient behavior, we follow the ideas in
[4] by supposing that µp,q is supported in the quarter plane pN × qN. Thus, on one hand,
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the vertical component of the Markov additive process will merely follow the moves of the
underlying random walk in the sense they go north or south simultaneously. On the other
hand, the horizontal component moves in the direction dictated by ε.

From now on, it is supposed, for all p, q ∈ {−1, 1}, that

1. the mesures µp,q admit a third moment,

2. µp,q are aperiodic in the sense |µ̂p,q(t)| = 1 on Wd if and only if t = 0,

3. The map x→ εx ∈ {−1, 1} is surjective.

These three assumptions implies the related MAP satisfied assumptions 1, 3 and 4. Besides,
remark the random time τ of the theorem is deterministic equal to one. Finally, as it follows
from the proposition below, the condition (S) is satisfied.

Proposition 2.1. The condition (S) is fullfilled.

Proof. The quantity

s(t) = max

{
|µ̂p,q(t)|, (p, q) ∈ {−1, 1}2

}
, t ∈Wd

is continuous and s(t) = 1 if and only if t = 0 in Wd since µp,q, p, q ∈ {−1, 1}, are aperiodic.
Besides, the Fourier transform operator acts as a contraction on `∞(Z), moreover, for all x ∈ Z
and f ∈ `∞ :

Ftf(x) =
1

2
µ̂εx,1(t)f(x+ 1) +

1

2
µ̂εx,−1(t)f(x− 1).

As a matter of fact, ‖Ft‖∞ ≤ s(t) so that r(Ft) ≤ s(t). Thus for t ∈W∗
d, the operator Ft has

no spectral values of modulus 1. In particular, it satisfies condition (S).

Let Tp,q be a random variable with distribution µp,q. For the sake of simplicity, we impose

some symmetries to the problem : assume for all p, q ∈ {−1, 1} that Tp,q
d
= (pTh, qTv) for some

(non necessarily uncorrelated) random variables Th and Tv taking values in N2. Then, the
expectation and the variance matrix of Tp,q are respectively given by

E(Tp,q) =

(
pE(Th)
qE(Tv)

)
and V(Tp,q) =

(
V(Th) pqCov(Th, Tv)

pqCov(Th, Tv) V(Tv)

)
,

where Cov(Th, Tv) denotes the covariance between Th and Tv. If we assume in addition that Th
and Tv are uncorrelated, then the off diagonal coefficients of the variance matrix are null and
the resulting Markov additive process is then recurrent or transient accordingly as

∑
n≥1

1

n

∫
ZN

exp

− E(Th)2

2nV(Th)

(
n−1∑
k=0

εSk

)2
 exp

[
− E(Tv)

2

2nV(Tv)
(Sn − S0)2

]
dPx (6)

is finite or infinite for some (any) x ∈ Z.

Proposition 2.2. Set εx = (−1)x for all x ∈ Z. Then, the resulting Markov additive process
is recurrent.

10



Proof. First, remark that (
n−1∑
k=0

εSk

)2

=
1 + (−1)n−1

2
, n ≥ 1.

Thus,

lim
n→∞

exp

− E(Th)2

2nV(Th)

(
n−1∑
k=0

εSk

)2
 = 1.

Secondly, note that (Sn − S0)2/n converges in distribution to N2 where N is a standard
gaussian random variable. Since x→ exp(−x) is continuous and bounded on R+, it follows that

lim
n→∞

∫
ZN

exp

[
− E(Tv)

2

2nV(Tv)
(Sn − S0)2

]
dPx →

∫
R

exp

[
−E(Tv)

2 y2

2V(Tv)

]
exp−y

2

2

dy

2π
,

and the series in (6) is infinite.

Proposition 2.3. If, for all x ∈ Z, εx = sgn x, then the resulting Markov additive process is
transient.

In the sequel, it is useful to make the follwing transformation

n−1∑
k=0

εSk =
∑
x∈Z

Nn(x)εx (7)

where Nn(x), x ∈ Z and n ≥ 1 is the local time of {Sn}n≥0 up to time n − 1 that is Nn(x) =∑n−1
k=0 1{x}(Sk).

Proof. As a matter of facts, an obvious majoration in (6) implies it suffices to prove that

∑
n≥1

1

n

∫
Z2

exp

− E(Th)2

2nV(Th)

(
n−1∑
k=0

εSk

)2
 dPx (8)

is finite for all x ∈ Z. By Markov property and Z2-invariance on the Markov additive process,
one can suppose without loss of generality x = 0 and forget the exponent in Px.

Using the transformation (7) and remarking that ε = sgn , it follows that

n−1∑
k=0

εx = 2Nn(Z+)− n.

Now, estimate the summand in (8)

E

[
exp

{
− E(Th)2

2nV(Th)
(2Nn(Z+)− n)2

}]
≤
∣∣∣∣∣E
[

exp

{
−nE(Th)2

2V(Th)

(
2
Nn(Z+)

n
− 1

)2
}]

−E

[
exp

{
−nE(Th)2

2V(Th)
(2Γ− 1)2

}] ∣∣∣∣∣
+ E

[
exp

{
−nE(Th)2

2V(Th)
(2Γ− 1)2

}]
,

11



where Γ is distributed as an arcsine law supported by [0, 1]. It turns out that for all n ≥ 1, the
function

[0,∞) 3 x→ exp

(
−nE(Th)2

2V (Th)
(2x− 1)2

)
(9)

is kn-Lipschitz with constant kn =
√

nE(Th)2

eV (Th) . Consequently, it follows a majoration of the first

term on the right handside of (9) by kndW(L(Nn(Z+)/n),L(Γ)) where dW denotes the Wasser-
stein metric on probability measure. Namely, for any measure µ and ν on R, the Wasserstein
metric is defined as

dW(µ, ν) = sup
h∈H

∣∣∣∣∫ h dµ−
∫
h dν

∣∣∣∣ ,
where H stands for the set of 1-Lipschitz continuous functions. From [15], we deduce that this
term is a O(n−1/2) for all n ≥ 0 large enough.

Besides, the second term on the right handside vanishes at a sub-exponential rate which
ends the proofs of the proposition.

We finish this series of examples by considering now that ε = {εy}y∈Z is an i.i.d. sequence
of Z-valued centered random variables uniformly bounded. In addition, suppose its common
distribution is not supported by any proper subgroup of Z. In the sequel, we denote by Q the
distribution of {εy}y∈Z.

The notations used in the previous examples extends easily. In fact, µx,y, x, y ∈ Z, is the
distribution of the vector (εxTh, sgn (y − x)Tv) where Th and Tv are N-valued random variable
independent with ε. If we assume in addition that Th and Tv are uncorrelated, one may check
that

Σn = − 1

n

n−1∑
k=0

(
ε2
Sk

V(Th) 0

0 V(Tv)

)
and ∆n = − i√

n

n−1∑
k=0

(
εSkE(Th)

sgn (Sk+1 − Sk)E(Tv)

)
.

Thus, the problem reduces to the study of

∑
n≥1

1

n

∫
ZN

exp

−
E(Th)2

(∑n−1
k=0 εSk

)2

2V(Th)
(∑n−1

k=0 ε
2
Sk

)
 exp

{
− E(Tv)

2

2nV(Tv)
(Sn − S0)2

}
dPx. (10)

Proposition 2.4. Suppose that there exists M > 0 such that for all x ∈ Z, |εx| ≤ M Q-a.s..
For Q-a.e. sequences {εy}y∈Z, the random walk M is transient.

Proof. Using Markov inequality and an obvious upper bound of the second factor in (10), it
suffices to prove that the following series is finite for any x ∈ Z

∑
n≥1

1

n

∫
ZZ×ZN

exp

−
E(Th)2

(∑n−1
k=0 εSk

)2

2V(Th)
(∑n−1

k=0 ε
2
Sk

)
 dQ⊗Px.

The proof follows four steps.
Step 1: As a matter of facts, by assumption, one get

n−1∑
k=0

ε2
Sk
≤ nM2 ≤ n1+δM2,
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for any δ > 0. Thus, it follows that

exp

−
E(Th)2

(∑n−1
k=0 εSk

)2

2V(Th)
(∑n−1

k=0 ε
2
Sk

)
 ≤ exp

−
E(Th)2

(∑n−1
k=0 εSk

)2

2V(Th)M2n1+δ

 (11)

Then, using (7), and setting for n ≥ 1 and x ∈ R

fn(x) = exp

{
−E(Th)2n1/2−δ

2V(Th)M2
x2

}
,

the right handside of (11) rewrites

fn

(
n−3/4

∑
x∈Z

Nn(x)εx

)
.

Step 2: It turns out that for each n ≥ 1, the function is kn-Lipschitz with kn = kM−1n1/4−δ/2

where k is a deterministic constant independent of n.
Now, from [25], it follows that

n−3/4
∑
x∈Z

Nn(x)εx
D

=⇒ ∆1,

where, for t ≥ 0,

∆t =

∫ ∞
−∞

Lt(x)dZ(x).

Here, Lt denotes the local time, up to time t, of a one dimensional Brownian motion independent
of the bilateral one dimensional Brownian motion Z.

Decompose the right handside of (11) as follows

EQ⊗Px

exp

−
E(Th)2

(∑n−1
k=0 εSk

)2

2V(Th)M2n1+δ


 ≤ ∣∣∣∣∣EQ⊗Px

[
fn

(
n−3/4

∑
x∈Z

Nn(x)εx

)]
−E[fn(∆1)]

∣∣∣∣∣
+ E[fn(∆1)].

(12)

Step 3: Now, one may estimate the first term in the upper bound in (12). First remark
that the stochastic process {∆t}t≥0 is self-similar of index 3/4 (see [25]). That implies that for
each n ≥ 1

E[fn(∆1)] = E[fn(n−3/4∆n)].

Using the strong embedding given in [12], it turns there exists a coupling such that for any
η > 0

sup
0≤k≤n

∣∣∣∣∣∑
x∈Z

Nk(x)εx −∆k

∣∣∣∣∣ = o(n5/8+η).

In particular, using this coupling and renormalizing by n3/4, we get the first term of the right
handside (12) is equal to o(knn

−1/8+η). Now, choose δ = 3/8, η = 1/32, it gives the first term
is a o(n−1/32).

Step 4: Since ∆1 is positive almost-surely (see [6] for an expression of the density), applying
the theorem of dominated convergence, the second term vanishes at a higher rate than any
polynomial.

13



3 Proof of the main theorem

This section is devoted to the proof of Theorem 1.7. We shall be interested in the asymptotics
as n goes to infinity of∫

XN
P0,n(u,v)dPx =

1

(2π)d

∫
Wd

Fnt 1(x)e−i〈t,v−u〉dt

and more specifically when u = v.
Similarly to the context of classical random walks, let δ > 0 and split∫
Wd

Fnt 1(x)e−i〈t,v−u〉dt =

∫
(−δ,δ)d

Fnt 1(x)e−i〈t,v−u〉dt︸ ︷︷ ︸
I1(n)

+

∫
Wd\(−δ,δ)d

Fnt 1(x)e−i〈t,v−u〉dt︸ ︷︷ ︸
I2(n)

. (13)

3.1 Estimates far from the origin

Proposition 3.1. Under Assumptions 1 and 2, there exist constants κ ∈ (0, 1) and C > 0 such
that for all v,u ∈ Zd and all δ > 0 sufficiently small∥∥∥∥∥

∫
Wd\(−δ,δ)d

Fnt 1(·)e−i〈t,v−u〉dt
∥∥∥∥∥
∞

≤ Cκn.

Proof. By Lemma 1.5, under Assumptions 1 and 2, setting K := W∗
d \ (−δ, δ)d, it follows that

M := max{r̃(t) : t ∈ K} < 1. Set κ := (M + 1)/2. It is a matter of fact that κ−n‖Fnt ‖Et
vanishes as n goes to infinity so it is for κ−n‖Fnt 1‖∞ and the result follows.

Remark 3.1. In the literature, it is usually considered that the whole family {Ft}t∈K shares
the same invariant space E. Allowing different spaces for different points t ∈ K improves the
estimate of Proposition 3.1 while the pseudo spectral radius r̃ still statisfies the nice property of
upper semi-continuity for continuous perturbations of operators.

3.2 Estimates in the neighborhood of the origin

At this level, it only remains to estimate the first integral term of Equation (13). Setting t = u√
n

,

it is given by

I1(n) =
1

nd/2

∫
(−δ
√
n,δ
√
n)d
Fnu√

n
1(x)e−i〈u/

√
n,v−u〉du.

The expected estimate shall be obtained by integrating an almost-sure estimate exploiting the
following expression

I1(n) =

∫
XN
n−d/2

∫
|u|≤δ

√
n
φ0,n(u/

√
n)e−i〈u/

√
n,v−u〉du︸ ︷︷ ︸

Iω1 (n)

dPx. (14)

Proposition 3.2. Under Assumption 3, there exists a deterministic δ > 0 such that for |t| ≤ δ,
the quantity log φ0,1(t) is well defined. In addition, the following approximation formula holds
Pm-a.e.

log φ0,1(t) = ∇φ0,1(0)t+
1

2
t∗ [∇∗∇φ0,1(0)−∇φ0,1(0)∗ ∇φ0,1(0)] t+R(t), (15)

where the remaining term R satisfies for |t| ≤ δ and for any ε ∈ [0, 1) :

‖R(t)‖∞ ≤ δ1−εK|t|2+ε with K ≥ 0.
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Proof. Under Assumption 3, the function φ0,1 is Pm-a.e. three times continuously differentiable.
Therefore, the following majoration holds Pm-a.e.

|φ0,1(t)− 1| ≤ |t|‖∇φ0,1(0)‖∞.

Thus, there exists a deterministic δ > 0 such that for all |t| ≤ δ the function t → log φω0,1(t) is
well defined. In addition, for |t| ≤ δ, the Taylor formula yields Pm-a.e.

log φ0,1(t) = ∇φ0,1(0)t+
1

2
t∗ [∇∗∇φ0,1(0)−∇φ0,1(0)∗ ∇φ0,1(0)] t+R(t),

where the remaining term R satisfies for |t| ≤ δ and any ε ∈ [0, 1)

‖R(t)‖∞ ≤ δ1−εK‖t‖2+ε, with K =

∥∥∥∥ ∑
u∈Zd

‖u‖3µ(u)

∥∥∥∥
∞
.

This proposition implies that for δ > 0 sufficiently small and |u| ≤ δ√n

φ0,n(t) = exp

{
i〈∆n, t〉 −

1

2
t∗Σnt+Rn(t)

}
,

with the notation

Rn(t) := Rωn(t) =

n−1∑
k=0

RT
kω(t/

√
n).

Proposition 3.3. Under Assumption 3 the following properties hold

1. for all n ≥ 1, the matrix Σn is real positive symmetric Pm-a.e.,

2. the sequence (Σn)n≥0 remains bounded in the following sense

sup
n≥0
‖ ‖Σn‖ ‖∞ <∞,

3. Pm-a.e., the rank rk Σn is non decreasing with n ≥ 1,

4. in addition, under Assumption 1, limn→∞ rk Σn = d, Pm-a.e..

Proof. 1. Under Assumption 3, nΣn is a sum of covariance matrices so is positive semidefinite
real symmetric.

2. As a matter of facts, the sequence of matrices Σn satisfies

ess sup
ω∈Ω

‖Σn‖ ≤ ess sup
ω∈Ω

‖Σ1‖ <∞.

3. As a sum of positive semidefinite real symmetric matrices, the kernel of Σn is given by

ker Σn =
n−1⋂
k=0

ker
[
∇∗∇φTkω0,1 (0)− (∇φTkω0,1 (0))∗ (∇φTkω0,1 (0))

]
,

and the result follows.
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4. Since rk Σn is a non decreasing discrete bounded sequence Pm-a.e., it suffices to show
that

Px(lim inf{rk Σn = d}) = Px

⋃
n≥1

{rk Σn = d}

 = 1, for m− a.e. x ∈ X. (16)

Moreover, the operator P is supposed aperiodic and recurrent so that we only need the
asymptotic event in (16) holds with positive probability. Thus suppose on the contrary

Px(N) = 1 with N =
⋂
n≥1

{rk Σn ≤ d− 1}.

Then the subgroup H of Zd generated by the supports supp µω ∗ · · · ∗ µTn−1ω, n ≥ 1,
ω ∈ N , is Px-a.s. independent of ω ∈ XN and satisfies µω(H) = 1, Pm-a.e.. Assumption
1 yields H = Zd which contradicts the non maximality of the asymptotic rank.

Recall τ = inf{n ≥ 1 : rk Σn = d} and remark it is finite Pm-a.e. by Proposition 3.3.
Rewrite Iω1 (n) as the sum of three terms I11, I12 and I13 defined by

Iω11(n) = n−d/2
∫
|t|≤δ

√
n
e−

1
2
t∗Σntei〈t,∆n〉−i〈t,(v−u)/

√
n〉
(
eRn(t/

√
n) − 1

)
dt,

for n ≥ τ, Iω12(n) = n−d/2
∫
Rd
e−

1
2
t∗Σntei〈t,∆n〉−i〈t,(v−u)/

√
n〉dt,

and,

for n ≥ τ, Iω13(n) = −n−d/2
∫
|t|>δ

√
n
e−

1
2
t∗Σntei〈t,∆n〉−i〈t,(v−u)/

√
n〉dt.

Proposition 3.4. Under Assumptions 1 and 3 for all n ≥ τ the following holds Pm-a.e. for
u,v ∈ Zd:

1. I12(n) = (2π)d/2

nd/2det (Σn)1/2
exp

{(
−1

2 [∆n − (v − u)/
√
n]∗Σ−1

n [∆n − (v − u)/
√
n]
)}

.

If additionally Assumption 4 is fulfilled, uniformly in ω ∈ Ω,

2. there exists α > 0 such that |I13(n)| ≤ O
(
n−d/2 exp{−1

2αδ
√
n}
)
,

3. then there exists a deterministic δ > 0 such that |I11(n)| = O
(
n−

d+ε
2

)
for any ε ∈ [0, 1).

Proof. First, set v = u.

1. Under Assumptions 1 and 3, Proposition 3.3 implies τ <∞ Pm-a.e. and for n ≥ τ , there
exist orthogonal matrices Pn and diagonal matrices Dn such that

Σn = PnDnP
−1
n and Dn = diag(α2

1(n), . . . , α2
d(n))

with α2
i (n) > 0 for all i = 1, . . . , d and n ≥ τ . Setting t = Pnu, we obtain as the Fourier

transform of Gaussian vectors

nd/2I12(n) =

∫
Rd
e−

1
2
u∗Dnuei〈u,P

∗
n∆n〉du

= det (Σn)−1/2(2π)d/2e−
1
2

∆∗nΣ−1
n ∆n .
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2. For the term I13(n) we can proceed analogously and we get the following (not sharp)
upper bound for n ≥ τ :

nd/2|I13(n)| ≤
∫
|u|>δ

√
n
e−

1
2
u∗Dnudu

= O

(
exp

{
− 1

2
αδ
√
n}
)
,

for α > 0 of Assumption 4.

3. Because of the point (2) of Proposition 3.3, the eigenvalues of Σn remain bounded uni-
formly for n ≥ 0. Thus, with Assumption 4, we deduce the following bound for I11(n)

nd/2|I11(n)| ≤
∫
|t|≤δ

√
n
e−

1
2
t∗Σnt

∣∣∣exp{Rn(tn−1/2)} − 1
∣∣∣ dt

≤
∫
|t|≤δ

√
n
e−

1
2
t∗Σnt

∣∣∣Rn(tn−1/2)
∣∣∣ exp{|Rn(tn−1/2)|}dt

≤ Kδ1−ε

nε/2

∫
|t|≤δ

√
n
e−

1
2
t∗Σnt|t|2+εe|t|

2δKdt.

The last estimates comes from Proposition 3.2 and holds for any ε ∈ [0, 1). We conclude
by choosing δ > 0 such that δK ≤ α/4 (where α is given by Assumption 4). Consequently
the integral is convergent and the whole term goes to zero at rate, up to a constant, n−ε/2.

Setting ∆̃n = ∆n − (v − u)/
√
n, the result follows for the general case.

Proof of Theorem 1.7. Let r ∈ (0, 1), and compute∫
Wd

Re
∑
n≥1

rn−1Fnt 1(x)dt−
∑
n≥1

rn−1

∫
XN

1{n≥τ}I12(n)dPx

=
∑
n≥1

rn−1

∫
XN

1{n≥τ}
[
I11(n) + I13(n)

]
dPx

+
∑
n≥1

rn−1I2(n)

+
∑
n≥1

rn−1

∫
XN

1{n<τ}I1(n)dPx

.

Taking absolute values on both side, under Assumptions 1, 2, 3 and 4, using Proposition 3.1,
Proposition 3.4 with a suitable δ > 0, it follows that, for some K ≥ 0, C > 0, κ ∈ (0, 1) and
any ε ∈ (0, 1),∣∣∣∣∣

∫
Wd

Re
∑
n≥1

rn−1Fnt 1(x)dt−
∑
n≥1

rn−1

∫
XN

1{n≥τ}

det (Σn)nd/2
exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx

∣∣∣∣∣
≤
∑
n≥1

rn−1 K

n(d+ε)/2
+
∑
n≥1

rn−1 K

nd/2
exp

{
− 1

2
αδ
√
n

}
+ C

∑
n≥1

κn−1 + (2π)d
∑
n≥1

rn−1Px(τ > n).
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The latter summation follows from the fact |I1(n)| ≤ (2π)d, Pm-a.e.. Then, letting r ↑ 1, the
right handside remains bounded in L∞m (X) since d ≥ 2 and τ is integrable with respect to Px,
m-a.e. x ∈ X. The result follows by letting r ↑ 1 on the left hand-side and remarking that

lim
r↑1

∑
n≥1

rn−1

∫
XN

1n≥τ
1

det (Σn)nd/2
exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx

=
∑
n≥1

∫
XN

1n≥τ

det (Σn)nd/2
exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx ∈ [0,∞]

m-a.e. by monotone convergence.
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