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Abstract In the classical framework, a random walk on a group is a Markov chain with independent

and identically distributed increments. In some sense, random walks are time and space homogeneous.

In this paper, a class of weakly inhomogeneous random walks termed Random Walk with Random Tran-

sition Probabilities is investigated— c.f. [19] for the terminology. As an application, a criterion for the

recurrence or transience of these processes in the discrete Abelian case is given. This criterion is deduced

using Fourier analysis of Markov additive processes and a perturbation argument of a Markov operator.

The latter extends the results of the literature since it does not involve a quasi-compacity condition on

the operator. Finally, this criterion is applied to some well known examples of random walks on directed

graphs embedded in Z2. Despite the type problem has been already solved for these examples, one claim

this analysis brought a new insight to this problematic.
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Introduction

In the classical framework, a random walk on a group G is a discrete time stochastic process
(Zn)n≥0 defined as the product of independent and identically distributed (i.i.d.) random
variables (ξn)n≥1. More precisely, for any g ∈ G, we set Z0 = g and

Zn = gξ1 · · · ξn.

Random walks on groups are obviously Markov chains that are adapted to the group structure
in the sense that the underlying Markov operator is invariant under the group action of G
on itself. Thus, this homogeneity naturally gives rise to deep connections between stochastic
properties of the random walk and algebraic properties of the group. Starting with the seminal
paper of Pòlya, [33], a large part of the literature is devoted to the study of these connections
in this homogeneous case (for instance [25, 27, 17, 20, 39, 36, 22, 21, 2] and references therein).

In this paper, we aim at investigating “weakly” inhomogeneous random walks. It turns out
that there are at least two ways to introduce inhomogeneity. First, we can consider “spatial”
inhomogeneity by weakening the group structure, replacing it, for instance, by a directed graph
structure (see [5, 15, 16, 31, 13]). Secondly, we can study “temporal” inhomogeneous random
walks by introducing a notion of memory as in the model of reinforced [30, 38], excited [34, 3],
self-interacting [11, 32] or also persistent random walks [9, 8, 10]. All these models belong to
the larger class of stochastic processes with long range dependency.

The strategy in the sequel consists of making use of the connection between such stochastic
processes and Random Walk with Random Transition Probabilities — or for short, RWRTP
— the terminology comes from [19]. Roughly speaking, a RWRTP consists of a dynamical
system (Ω, T ), endowed with a quasi-invariant (preimages by T of null measure sets have null
measure) probability measure λ, together with a family {µω}ω∈Ω on a group G. The dynamics
dictate the way the measures of {µω}ω∈Ω can be convoluted1. More precisely, choosing at
random (with respect to the probability measure λ) a trajectory ω ∈ Ω, we are interested in the
asymptotic properties of the sequence of convoluted measures µω ∗µTω ∗µT 2ω ∗ · · · ∗µTnω. As a
matter of facts, along a trajectory of the dynamical system, the resulting stochastic process have
independent but, in general, not stationary increments. If in addition, the dynamical system
admits a stationary probability measure, in mean, the increments are no longer independent,
however, they are in some sense stationary. We refer to Section 1 for the rigorous definition of
RWRTP. In Proposition 1.2 of Section 1, it is shown that any inhomogeneous Markov chain
taking values in a group G is in particular a RWRTP while Proposition 1.3 is a useful tool to
simplify, in some case, the internal dynamics. At the end of this section, an application of this
two propositions for directed graphs embedded (in some sense) in a finitely generated group, is
given.

As it is noticed in [19], this model is actually a generalization of other well known models
such as Random Walk With Internal Degree of Freedom — see [24] — or also in the modern
formulation Markov additive processes, for short MAP — see [18, 28, 26, 1, 37, 23]. In this
context, many results have been proved. Though, the basic assumptions are generally too much

1In this sense, it is comparable to Random Dynamical Systems: instead of randomly composing transforma-
tions, we randomly compose random (continuous) group homomorphisms.
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restrictive to encompass the class of very inhomogeneous random walks (in particular, the model
of random walk on directed graphs of Figure 1).

Generally speaking, in the context of Markov additive processes, we may introduce the
Fourier transform operator, denoted by Ft, t ∈ Rd, which is a continuous perturbation of the
Markov operator P̊ defining the underlying dynamics. The rate of the return probability is
then estimated, under mild conditions, by inverse Fourier transform. In the literature, the
Markov operator P̊ is usually supposed to admit an ergodic invariant probability measure and
to be quasi-compact. In addition, by a perturbation argument the Fourier transform operator
remains quasi-compact for all t in a neighborhood of the origin. It allows, under suitable moment
conditions on the system of probability measures, to derive a Taylor expansion at the second
order of the perturbated dominating eigenvalue γ(t) (whose the coefficients are given essentially
by the mean and the variance operators). Finally, under an assumption on the spectrum of the
Fourier transform operator outside a neighborhood of the origin, it can be concluded that all
the needed stochastic information is actually contained in the nature of the singularity at zero
of (1− γ(t))−1 (note γ(0) = 1).

In this paper, the quasi-compacity condition of P̊ is dropped. It is only assumed that P̊ is ir-
reducible, recurrent and aperiodic. The condition on the spectrum of Ft for large perturbations
remains similar but the nature of the singularity at the origin is analyzed via probabilistic meth-
ods. These estimates give rise to a criterion for the type problem in terms of the summability
of a series. More precisely, introduce the following quantities for n ≥ 1 and ω ∈ Ω

Σn := Σn(ω) = − 1

n

n−1∑
k=0

∇∗∇φTkω0,1 (0), ∆n := ∆n(ω) = i
1√
n

n−1∑
k=0

∇φTkω0,1 (0), (1)

and the (almost surely finite) random variable τ which is the first instant such that the rank
Σn is maximal. The main theorem of this paper states that, under the assumptions 1, 2, 3 and
4, the Markov additive process is transient or recurrent accordingly as∑

n≥1

1

nd/2

∫
Ω

1n≥τ exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dλ

is finite or infinite provided τ has a finite expectation. The rigorous assumptions and the
statement of the theorem are given in Section 2.

Thus, the main term of the series involves the expectation of a functional of two random
variables. The recurrence or transience behavior is interpreted as the result of the competition
of this two random quantities. More precisely, the process is recurrent if locally it is sufficiently
diffusive in order to balance the instantaneous deviation. It turns out that ∆∗Σ−1∆ is in some
circumstances a self-normalized martingale (see [12] for instance).

In Section 3, applying this criterion to the model of random walks on directed graphs
introduced in [5] and represented on the figure 1 below, we aim at illustrating that this theorem
is effectively more general than those found in the literature and can be useful in practice.

For the graph (a) of Figure 1, denoted by L, a random walker choose at random one of the
nearest neighbour among North, South or West if the ordinate of its current position is odd,
and the nearest neighbour among North, South and East if it is even. It is shown in [5] that this
random walk is recurrent. For the graph (b) of Figure 1, denoted by H, the possible movements
for a random walker are toward the North, South and West on the upper half-plane and North,
South and East otherwise. The resulting random walk is shown to be transient.

Using the theorem of factorization of Section 1, it follows easily that these random walks
are Markov additive processes. The (minimal) internal Markov chains P̊ are random walks on
the group Z/2Z and Z respectively. In the periodic case, the internal Markov chain admits a
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(b) Graph with two directed half-
plane.

Figure 1: Directed graphs L et H de [5].

unique stationary probability measure, whereas for the graph with two directed half-plane it is
null recurrent. The fundamental difference between the two random walks imposes to drop the
strong quasi-compacity condition. Besides, beyong their own interests in the classical probability
theory, it is worth noting the study of these models was initially motivated by natural questions
arising in quantum theory as described [6].

1 The model of Random Walk with Random Transition Prob-
abilities

1.1 Definitions and notations

Let (X,X ,m) be a measured space. We denote by L∞(m) the space of real essentially bounded
function on X. A linear operator P : L∞(m)→ L∞(m) is called Markov if P1 = 1 and Pf ≥ 0
whenever f ≥ 0. Let us denote by IMC(X, (Pn)n≥0, θ) the Inhomonogeneous Markov Chain
on X where (Pn)n≥0 is a sequence of Markov operator on L∞(m), θ is absolutely continuous
with respect to m — in symbols θ ≺ m — and stands for the initial probability measure. If the
sequence of Markov operators (Pn)n≥0 is constant and equal to P , we denote by MC(X, P, θ)
the resulting time homogeneous Markov chain.

For a IMC, it is well-known that the paths space XN can be endowed with a unique prob-
ability measure, defined from the sequence of Markov operator (Pn)n≥0 and the probability
measure θ, called the canonical probability measure on the paths space and denoted by Pθ.

Let (Ω, T, λ) be a dynamical system where T is a measurable map from Ω into itself and
λ is a probability measure which, in general, is not assumed to be preserved by the dynamics.
Nonetheless, we will suppose that there exists a σ-finite invariant measure ρ dominating λ.

Let G be a locally compact group and denote by Haar the unique, up to a multiplicative
constant, Haar measure on G. Denote by M1(G) the space of probability measures on G
endowed with the Borel σ-algebra relatively to the weak topology. A system of probability
measures over Ω is a measurable map µ : ω ∈ Ω −→ µω ∈M1(G).

If µ is a system of probability measures, we define the Markov operator P for all f ∈
L∞ρ⊗Haar(Ω×G) as follows

Pf(ω, g) =

∫
G
f(Tω, gh)dµω(h).

4



The system of probability measures µ also defines a sequence of Markov operators Pωn for all
f ∈ L∞Haar(G) by

Pωn f(x) =

∫
G
f(xy)µT

nω(dy), x ∈ G, ω ∈ Ω

that is Pωn is the right convolution operator2. If ν is another system of probability measures, we
denote, for all ω, the canonical probability measure on the paths space of the inhomogeneous
Markov chain IMC(G, (Pωn )n≥0, ν

ω) by Pν,ω or for short Pω if there is no ambiguity on ν —
for instance if νω = δid, i.e. for every ω ∈ Ω the IMC start from the identity of G.

Definition 1.1. The triplet ((Ω, T, λ), µ, ν) is called a Random Walk with Random Transition
Probabilities — on G — and will be denoted in sequel by RWRTP((Ω, T, λ), µ, ν) or if there is
no ambiguity RWRTP(λ, µ).

1.2 Inhomogeneous Markov chains as RWRTPs and factor RWRTPs

The elementary Proposition 1.2 shows that any discrete time inhomogeneous Markov chain
taking values in a group G is a RWRTP. Afterward, factor RWRTP are defined. This latter
notion involves measurable partitions for which the suitable framework is that of Lebesgue spaces
(we refer to [4] for the definition of Lebesgue spaces and measurable equivalence relations). Since
the set Ω shall be the infinite countable product set, we assume that, endowed with a suitable
σ-algebra and probability, it is a Lebesgue space.

Proposition 1.2. Let IMC(G, (Pn)n≥0, θ) be an inhomogeneous Markov chain. Then there
exists a RWRTP((Ω, T, λ), µ, ν) such that∫

Ω
λ(dω)Pν,ω = Pθ.

Proof. Let us set Ω = GN, λ = Pθ, and T is the time-shift on the paths space of the IMC.
Finally, we define µ and ν for all ω ∈ Ω as follows

µω = δω−1
0 ω1

and νω = δω0 .

Therefore, it defines a RWRTP((Ω, T, λ), µ, ν)) for which the equality of the proposition is
trivially satisfied.

This proposition essentially relies on the theorem of Ionescu Tulcea that defines the Marko-
vian dynamical system (Ω, T,Pθ) together with the fact that the considered stochastic process
takes its values in a group G. Obviously, this proposition is purely theoretical and no more infor-
mation is given by the resulting RWRTP. Below, we introduce the notion of factor RWRTP
that allows to take into account the internal symmetries of the process and thus simplify in
general the analysis.

For a RWRTP((Ω, T, λ), µ, ν), consider a measurable equivalence relation denoted by ∼ and
denote by pr and λpr the related projection and conditional measure on Ω/∼. The conditional
system of probability measures µpr over Ω/∼ is then defined as follows

µpr =

∫
Ω
µωdλpr(ω), (2)

If in addition, the maps T can be factorized (in facts, it is ∼-measurable), that is pr Tω =
pr T ω̃ as soon as pr ω = pr ω̃, then we shall define the factor RWRTP((Ω/∼, pr◦T, λpr), µpr, νpr).

2We may define the left convolution operator similarly by the formula Pf(x) =
∫
G
f(yx)µT

nω(dy).

5



Proposition 1.3. Let RWRTP((Ω, T, λ), µ, ν) be any RWRTP, suppose T can be factorized,
and denote by RWRTP((Ω/∼, pr◦T, λpr, µpr, νpr) its factorization under ∼. Then, the following
equality holds ∫

Ω
λ(dω)Pν,ω =

∫
Ω/∼

λpr(dw)Pνpr,w. (3)

Proof. We only need to check the equality of finite dimensional distributions between both
probability of (3). Thus, let α and β be any system of probability measures, then the integrated
product measures verify for any measurable subset A×B ⊂ G×G∫

Ω/∼
λpr(dw)αw

pr ⊗ βwpr(A×B) =

∫
Ω/∼

λpr(dw)αw
pr(A)βwpr(B)

=

∫
Ω
λ(dω)αprω

pr (A)βprωpr (B)

=

∫
Ω
λ(dω)αω(A)βω(B)

=

∫
Ω
λ(dω)αω ⊗ βω(A×B).

Thus the image measures by the maps G×G 3 (x, y)→ xy ∈ G coincide and it follows that∫
Ω
λ(dω)αω ∗ βω =

∫
Ω/∼

λpr(dw)αw
pr ∗ βwpr.

Proceeding by induction, the conclusion of the proposition is proved.

Remark 1.1. It is worth noting that the ergodicity of the probability measure λ, that is λ(A) = 0
or 1 as soon as A is a T -invariant measurable subset of Ω, implies its projection pr∗λ is ergodic.

Remark 1.2. We only need here the ∼-equivalence classes to be invariant under the map
T . However, the conditional probability λpr, and hence, the conditional system of probability
measures µpr and νpr are not in general easily characterized. Actually, it heavily depends on
the simplicity of the model considered and thus, the strategy consists of determining the finest
equivalence relation (in the complete lattice of measurable partitions up to null sets) whereas
λpr remains easily computable. In the next section, such equivalence relations shall be given for
random walks on directed graphs.

1.3 Random walks on constrained directed graphs

In this section, after introducing standard notions related to graphs, we consider random walks
on graphs embedded in a group G. As any discrete time stochastic process, it is isomorphic to
a RWRTP. In the sequel, we give the corresponding RWRTP that is minimal in the sense of
Remark 1.2.

A directed graph (or di-graph for short) G = (G0,G1, r, s) is a quadruple consisting of a
denumerable set G0 of vertices, a denumerable set G1 of directed edges and a pair of range and
source maps, denoted respectively by r and s, i.e. mappings r, s : G1 → G0. In the sequel, we
only consider graphs without loops (i.e. not containing edges α ∈ G1 such that r(α) = s(α))
and without multiple edges (i.e. if α, β ∈ G1 satisfy s(α) = s(β) and r(α) = r(β) then α = β, or
in other words, the compound map (r, s) : G1 → G0 ×G0 is injective). With these restrictions
in force, G1 can be identified with a particular subset of G0×G0 and the maps r and s become
superfluous: s((u,v)) = u and r((u,v)) = v for all (u,v) ∈ G1. The corresponding directed
graph is then termed simple.

6



We also define respectively, for each vertex v ∈ G0, its inwards and outward degree by

deg+(v) = card {α ∈ G1 : r(α) = v} and deg−(v) = card {α ∈ G1 : s(α) = v}.

A simple graph is termed undirected if the set of edges is symmetric in G0 × G0, that is
(u,v) ∈ G1 if and only (v,u) ∈ G1. In this case, the inwards and outwards degree coincide, the
common value is simply denoted by deg and called the degree.

A graph G is said to be connected if for any vertices u,v ∈ G0 there exists a finite sequence
α = (α1, . . . , αk) of edges αi ∈ G1, for i = 1, . . . , k, k ∈ N, with s(α1) = u and r(αk) = v, such
that r(αi) = s(αi+1) ∈ G0, for all i = 1, . . . , k − 1. The above sequence α is called a path of
length k = |α| from u to v. A directed graph is said to be locally finite if for all u ∈ G0, the
inwards and outwards degree are finite.

A random walk on a connected locally finite graph G is a Markov chain whose state space
is given by G0 and the transition probabilities satisfy for each u,v ∈ G0

P (u,v) ∈ (0, 1]⇐⇒ (u,v) ∈ G1,

with the additional property
∑

v∈G0 P (u,v) = 1. A random walk on G is said to be simple if
the transition probabilities are given for all u,v ∈ G0 by

P (u,v) =

{
1

deg−(u)
if (u,v) ∈ G1,

0 otherwise.

Let us denote by S the group of permutations on the set of vertices of G. The set of
automorphisms of a graph G is the subgroup of S denoted by Aut(G) defined as follows

Aut(G) = {f ∈ S : (u,v) ∈ G1 ⇔ (f(u), f(v)) ∈ G1}.

The group of automorphisms of a random walk on a graph G is defined as follows

Aut(G, P ) = {f ∈ S : P (u,v) = P (f(u), f(v)) for all u,v ∈ G0}.

The latter group is a subgroup of the former and they are isomorphic if the random walk is
supposed to be simple. The two groups of automorphisms naturally acts on the graph G,
however, there is no reason for the action of Aut(G, P ) to be transitive. In facts, in the case
of a transitive action, the so-called homogeneous case, the random walk on the graph can be
transported on a random walk in the classical sense on Aut(G, P ) — see [22]. Note that, as soon
as the graph is genuinely directed, the group of automorphisms Aut(G) cannot act transitively.

In order to see random walks on graphs as RWRTP, it is necessary to embed the graph
in a group G. A natural family of such graphs are constrained graphs, i.e. graphs constructed
from the Cayley graph of a finitely generated group by deleting some edges with respect to a
predicate. More precisely, let G be a group generated by a finite set S supposed symmetric.
A predicate is a {0, 1}-valued map p on G × S. Thus, we may construct a constrained graph
G = (G0,G1) where

G0 ⊂ G countable and G1 = {(u,vs) ∈ G0 ×G0, s ∈ S, p(u, s) = 1}.

The resulting graph inherits the simplicity and the local finiteness property of Cayley graphs
of finitely generated groups. Though it can be disconnected unless the predicate p is suitably
chosen which we shall assume in the sequel.

Let T be the unilateral time shift on Ω = (G0)N and for every fixed u0 ∈ G0, the probability
measure λ = Pu0 . Also, the system of probability measures µ and ν are defined respectively by

µω = δω−1
0 ω1

and νω = δω0 , ω ∈
(
G0
)N
.

7



Then, by Proposition 1.2,

Pu0 =

∫
(G0)N

Pν,ωλ(dω).

We shall define an equivalence relation on Ω, denoted in the sequel by ∼ as follows

ω ∼ ω̃ ∈ (G0)N ⇐⇒ ∀n ≥ 0 : ωn = ω̃n mod Aut(G, P ).

As a matter of fact, the time shift T commutes with this equivalence relation. Thus, by Propo-
sition 1.3, the RWRTP above can be factorized. More precisely, the map pr ◦ T is the time

shift on the factor space Ω/∼ =
(
G0/Aut(G, P )

)N
. Also, we denote by λpr the factor prob-

ability measure, with respect to ∼, of the probability measure λ = Pu0 . It turns out that
λpr is nothing but the canonical probability measure of the Markov chain on the state space
G0/Aut(G, P ) whose initial distribution is given by δpr(u0) and Markov operator, denoted by

P̊ , satisfies P̊ (pr u, pr v) = P (u,v) for all u,v ∈ G0. The system of probability measures{
µw0,w1
pr : w0,w1 ∈ G0/Aut(G0, P )

}
defined in (2) rewrites in our context as

µw0,w1
pr =

∑
ω1∈G0 P (ω0, ω1)1{(w0,w1)}(pr ω0, pr ω1)µω∑
ω1∈G0 P (ω0, ω1)1{(w0,w1)}(pr ω0, pr ω1)

, for any ω0 ∈ G0 s.t. pr ω0 = w0.

Also, we define νwpr as the Dirac distribution at the point w0 ∈ G0/Aut(G, P ).

Remark 1.3. Note that any discrete process can be seen as a Markov chain with respect the
filtration containing the whole history. This Markov chain with long memory can be modeled
by a random walk on a directed graph whose corresponding factorization reveals the structure of
the memory.

2 The type problem

In the previous section, it is shown that any discrete time process (taking values in a group G)
is in some sense a RWRTP. In this section, we shall consider the restricted class of Markov
additive processes, for short MAP, that are, roughly speaking, RWRTP for which the group
G is supposed Abelian and the underlying dynamics is Markovian. We shall be even more
restrictive by setting G = Zd. For a non discrete Abelian group, say G = Rd or G compact,
the Fourier analysis of continuous measure is sensibly different but remains irrelevant for the
scope of this paper.

2.1 Markov additive processes

In the sequel, we refer to [29] for the notion of Markov chain on general spaces. We shall consider
a Markov kernel P̊ relatively to a measurable space (X,X ) for which the σ-algebra is separable.
The space (X,X ) can be endowed with a σ-finite measure m dominating mP̊ . Without loss of
generality, we may assume that the Markov chain induced by P̊ is m-irreducible and aperiodic.
A stronger assumption is to suppose the Markov chain m-recurrent. In this case, the time
shift on XN preserves the possibly infinite, but σ-finite, Markov measure Pm. The probability
measures µω, ω ∈ XN are supposed to depend only on the two first coordinates3 of ω ∈ XN and
shall be alternatively denoted by µx,y, x, y ∈ X.

3Actually, we use here the traditional definition, though it is completely equivalent to suppose that the
probabilities µω depends only on the first coordinate providing we consider the 2-order Markov chain induced by
P̊ .

8



A Markov additive process with internal Markov chain P̊ together with the system of prob-
ability measures µ is the Markov chain on the space X × Zd whose Markov operator is given,
for f ∈ L∞m (X× Zd), by

Pf(x,u) =

∫
X×Zd

P̊ (x, dy) (δy ⊗ µx,y) (dzdv)f(z,u + v), for (x,u) ∈ X× Zd.

The Markov operator P is invariant by translations of the kind X× Zd 3 (x,u)→ (x,u + v) ∈
X× Zd.

In this context, we may introduce the so called Fourier transform operator, denoted by Ft,
for t ∈ Rd, acting as a contraction on L∞m (X) and defined for f ∈ L∞m (X) by

Ftf(x) =

∫
X
P̊ (x, dy)µ̂x,y(t)f(y), for m− a.e. x ∈ X, (4)

where µ̂x,y is the standard Fourier transform of the probability measure µx,y defined, for t ∈ Rd
by

µ̂x,y(t) =
∑
v∈Zd

µx,y(v)ei〈t,v〉,

〈·, ·〉 standing for the standard inner product.

2.2 Basic assumptions

Let σ be a bounded map from X to Zd and define

P σf(x,u) =

∫
X×Zd

P̊ (x, dy) (δy ⊗ µx,y) (dzdv)f(z,u + v− σ(y) + σ(x)), for (x,u) ∈ X×Zd.

Intuitively, it corresponds to a change of origin of each fiber parametrized by X. Such a function
σ is called a change of section. The translated probability shall be denoted µx,yσ = µx,y ∗
δσ(y)−σ(x), or simply µx,y if no ambiguity. Because of the invariance of P under translations

of Zd, the changes of section have no fundamental importance in the study of the recurrent or
transient behavior of the Markov additive process.

To keep notations light and readable, we shall adopt alternatively the ones related to dy-
namical system (such as µω, Pm-a.e.,. . . ) or those ones proper to Markov additive processes
(µx,y, m-a.e.,. . . ).

Definition 2.1 (Adaptation, aperiodicity, irreducibility). A MAP is respectively adapted, ape-
riodic and irreducible if for any change of section σ

1. there is no proper subgroup H ⊂ Zd such that Pm-a.e. µω(H) = 1 ;

2. there is no proper subgroup H ⊂ Zd and no a ∈ Rd such that Pm-a.e. µω(a+H) = 1.

3. there is no half-space H ⊂ Rd such that Pm-a.e. µω(H) = 1.

The properties of adaptation and aperiodicity can be read on the spectrum of the Fourier
transform Ft as shown in the corollary below Wd denotes the set [−π, π) and W∗

d the set
Wd \ {0}.

Proposition 2.2. A MAP is adapted if and only if for any change of section σ : X→ Zd and
any t ∈W∗

d it holds that µ̂ω(t) 6= 1, Pm-a.e.. A MAP is aperiodic if and only if for any change
of section σ and any t ∈W∗

d it holds, Pm-a.e., µ̂ω(t) 6= eiθ for all θ ∈ R.

9



Proof. If a MAP is not aperiodic then there exist a change of section, a proper subgroup H and
a ∈ Rd such that µω(a+H) = 1, Pm-a.e.. It is well known that there exist integers n1, . . . , nr,
1 ≤ r ≤ d, such that the subgroup H is generated by a set {n1ei1 , . . . , nreir} for some indices
1 ≤ i1 ≤ . . . ≤ ir ≤ d, where ei is the ith vector of the canonical basis of Zd. Suppose r < d, then
for any t ∈ W∗

d ∩ (span H)⊥ it follows that µ̂ω(t) = ei〈t,a〉. If r = d, set t = (π/n1, . . . , π/nd)
then again µ̂ω(t) = ei〈t,a〉 and t obviously belongs to W∗

d unless n1 = · · · = nd = 1, i.e. H = Zd.
Conversely, suppose there exists a change of section σ and t ∈ W∗

d such that µ̂ω(t) = eiθ,
Pm-a.e., for some θ ∈ R. Since µω is supported by a subset of Zd, one can choose a ∈ Zd such
that θ = 〈t, a〉. Then, it holds for any n ≥ 1

ei〈t,na〉 =

n−1∏
k=0

µ̂Tkω(t) =
∑
w∈Zd

µω ∗ · · · ∗ µTn−1ω(w)ei〈t,w〉, Pm − a.e.,

or equivalently,

1 =
∑
w∈Zd

{µω ∗ δ−a} ∗ · · · ∗ {µT
n−1ω ∗ δ−a}(w)ei〈t,w〉, Pm − a.e..

Thus, the convex combination of points on the unit circle on the right hand side is extremal
so that each w ∈ Sωn = supp {µω ∗ δ−a} ∗ · · · ∗ {µTn−1ω ∗ δ−a}, n ≥ 1, satisfies 〈t,w〉 = 0
modulo 2π. Setting N = {ω ∈ XN : µ̂ω(t) 6= ei〈t,a〉} and defining H as the smallest subgroups
containing the sets Sωn , for all n ≥ 1 and ω ∈ N{, it follows that, Pm-a.e., (µω ∗ δ−a)(H) = 1,
i.e. µω(a + H) = 1. If the MAP was aperiodic, the group H should not be a strict subgroup
of Zd which is in contradiction with 〈t,w〉 = 0 modulo 2π by setting w = ei for 1 ≤ i ≤ d.

The statement involving the adaptation property follows exactly the same lines by setting
a = 0 and θ = 0.

Corollary 2.3. A MAP is adapted if and only if, for any t ∈ W∗
d there exists a closed Ft-

invariant subspace E containing the constants such that one is not an eigenvalue of the operator
Ft acting on E . It is aperiodic if and only if, for all t ∈W∗

d there exists a closed Ft-invariant
subspace E containing the constants such that the operator Ft, acting on E, has no eigenvalue
of modulus one.

Proof. Let t ∈W∗
d and suppose there exists f ∈ E, where E is any closed Ft-invariant subspace

containing the constants, such that

Ftf(x) =

∫
X
P̊ (x, dy)µ̂x,y(t)f(y) = eiθf(x), for some θ ∈ R.

By Jensen inequality and the fact that |µ̂x,y(t)| ≤ 1, it follows that |f | ≤ P̊ |f |. Thus, the
function ‖f‖∞−|f | is superharmonic and hence constant m-a.e. since P̊ is supposed m-recurrent
(see [29, Proposition 3.13, p. 44]). As a consequence,

1 =

∫
X
|µ̂x,y(t)|P̊ (x, dy), m− a.e.,

and µ̂x,y(t) is of modulus one, Pm-a.e.. By Proposition 2.2, the MAP can not be aperiodic.
Conversely, if the MAP is periodic, the same proposition implies that the constants are eigen-
functions for the eigenvalue ei〈t,a〉.

The proof of the statement involving the adaptation property follows exactly the same
lines.
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Remark 2.1. Since the probability measures µω are supposed to be supported by Zd, Pm-a.e.,
it follows that the operator valued map t −→ Ft is 2π-periodic along the directions given by the
vectors of the standard basis of Rd. In fact, the aperiodicity means that it can not be periodic
with shorter periods.

Definition 2.4. A MAP is said to satisfy condition (S) if for any t ∈W∗
d there exists a closed

Ft-invariant subspace E, containing the constants, for which the spectral values of modulus 1 of
Ft, operating on E, consists of eigenvalues.

Remark 2.2. If the Markov operator P̊ is quasi-compact then the Fourier transform operator
is also quasi-compact for every t in a neighborhood of the origin. It is known that the set of
spectral values of modulus one consists of isolated eigenvalues. Thus, the condition (S) extends
this property to large perturbations. Nonetheless, condition (S) can be satisfied without P̊ being
quasi-compact which is the main motivation of this paper.

For any closed subspace E, and any bounded operator Q we denote by ‖Q‖E the subordi-
nated norm restricted to E defined as ‖Q‖E = supf∈E:‖f‖=1 ‖Qf‖. Let t ∈ Wd, we denoted
by Et the intersection of all closed subspaces E such that FtE ⊂ E and 1 ∈ E. Obviously,
the subspace Et is itself closed, invariant and contains the constant. Also, we may define the
pseudo spectral radius r̃(t) of Ft by

r̃(t) = lim
n→∞

‖Fnt ‖1/nEt
.

Lemma 2.5. If a MAP is aperiodic and satisfy condition (S), then the pseudo spectral radius
r̃(t) of Ft is strictly smaller than one for t ∈W∗

d.

Proof. As a matter of fact, the pseudo spectral radius can be defined alternatively as follows

r̃(t) = inf

{
‖Fnt ‖1/nE , n ≥ 1, E closed subspace satisfying FtE ⊂ E and 1 ∈ E

}
.

Moreover, let t0 ∈Wd and E be a closed subspace such that Ft0E ⊂ E and 1 ∈ E. Then, by
reverse triangle inequality,∣∣∣∣‖Fnt0‖E − ‖Fnt ‖E∣∣∣∣ ≤ ‖Fnt −Fnt0‖E ≤ ‖Fnt −Fnt0‖
which can be made arbitrarily small since t → Ft is continuous. It follows that r̃ is the point-
wise infimum of continuous functions, thus r̃ is upper semi-continuous. Furthermore, the pseudo
spectral radius reaches its maximum on compact K ⊂Wd. Aperiodicity together with condition
(S) imply that maxt∈K r̃(t) < 1 excepted when 0 ∈ K.

From now on, we shall assume the following.

Assumptions 1. The MAP is adapted, aperiodic and irreducible.

Assumptions 2. The condition (S) is fulfilled.

Finally, we make the following assumption on the system of probability measure µ where
| · | stands for the Euclidean norm.

Assumptions 3. Assume that the system of probability measures µ admits a uniform third
order moment, that is ∥∥∥∥ ∑

u∈Zd
|u|3µ(u)

∥∥∥∥
∞
<∞.

11



Remark 2.3. Recall that a change of section is a bounded function σ : X −→ Zd, thus Assump-
tion 3 needs not to be stated relatively to any change of section.

For n ≥ 1 and u,v ∈ Zd, denote respectively the n-step transition probability and its Fourier
transform by

Pω0,n(u,v) =
n−1∏
k=0

Pωk,k+1 = µω ∗ · · · ∗ µTn−1ω(v − u) and φω0,n(t) =
n−1∏
k=0

µ̂Tkω(t). (5)

Introduce the quantities

Σn = Σn(ω) = − 1

n

n−1∑
k=0

∇∗∇φTkω0,1 (0) and ∆n = ∆n(ω) = i
1√
n

n−1∑
k=0

∇φTkω0,1 (0). (6)

Assumptions 4. There exists α > 0 such that for all t ∈ Rd, lim infn→∞ t
∗Σnt ≥ α|t|2,

Pm-a.e..

2.3 The type problem : a series criterion

Let A ⊂ X and K ⊂ Zd be measurable subsets. We are interested in the mean time spent by
the Markov additive process — that is nothing but a Markov chain on X×Zd — in the product
set A×K. In facts, it is well known that this quantity, starting from (x,u) ∈ X×Zd, is actually
given by the Green operator defined by

G1A×K(x,u) =
∑
n≥0

P
n
1A×K(x,u).

In the special case of A = X, using notation of Equation (5), the equation above rewrites

G1X×K(x,u) = 1X×K(x,u) +
∑
v∈Zd

∑
n≥1

∫
XN
P0,n(u, v)1K(v)dPx.

Definition 2.6 (Recurrence and Transience). A Markov additive process is said to be recurrent
( resp. transient) if, for any bounded change of section σ, G1X×{0}(x, 0) = ∞, m-a.e. ( resp.
G1X×{0}(x, 0) <∞, m-a.e.).

Remark 2.4. Since the changes of section are supposed bounded, a MAP is simultaneously
recurrent or transient for every change of section.

A simple computation gives rise to the identities

G1X×{0}(x, 0) =
∑
n≥1

∫
XN

Px(dω)Pω0,n(0, 0) = lim
r↑1

∑
n≥1

rn−1

∫
XN

Px(dω)Pω0,n(0, 0)

= lim
r↑1

∫
Wd

Re
∑
n≥1

rn−1Fnt 1(x)dt.

Theorem 2.7 (Series criterion). Let d ≥ 2 and suppose that the assumptions 1, 2, 3 and 4 are
satisfied. In addition, let τ be the stopping time defined by τ = inf{n ≥ 1 : rk Σn = d} and
assume Ex(τ) <∞ for m-a.e. x ∈ X. Then, G1X×{0}(x, 0) is finite ( resp. infinite) if and only
if ∑

n≥1

1

nd/2

∫
XN

1n≥τ exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx <∞ ( resp. =∞ ),

and the MAP is transient or recurrent accordingly.
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3 Applications : random walks on partially directed lattices

Let (εw)w∈Z be any {−1, 1}-valued random or deterministic sequence (c.f. [5, 16, 14, 31, 7]).
Set G0 = Z2, and define the set of edges G1 as follows, for u = (u1,u2),v = (v1,v2) ∈ G0,

(u,v) ∈ G1 ⇐⇒ (|v2 − u2| = 1 and v1 = u1) or (v2 = u2 and v1 = u1 + εu2). (7)

This defines a directed graph, denoted in the sequel by G(ε) = (G0,G1), embedded in Z2. The
simple random walk on such a graph, whose Markov operator is denoted by M , is obviously
irreducible if and only if the range of the (εw)w∈Z contains −1 and 1.

It is straightforward that the automorphism group Aut(G(ε),M) of M , is a subgroup of
Z × {0}. Applying the construction of Section 1.3, it turns out that the simple random walk
on G(ε), starting from any vertex u = (u1,u2) ∈ G0, is equal in distribution to a MAP. The
underlying dynamics is a random walk on Z starting from x = u2 whose Markov operator and
system of probability measure are given for x, y ∈ Z by

P̊ (x, ·) =
1

3
(δx−1 + δx + δx+1) and µx,y =


δ(0,1) if y = x+ 1,

δ−(0,1) if y = x− 1,

δ(1,0) if y = x, εx = 1,

δ−(1,0) if y = x, εy = −1.

The initial system of probability measures ν is naturally defined by ν = δu1,u2 , Pu2-a.s.. Ob-
vously, Assumption 3 is satisfied.

The Markov operator induces an irreducible, aperiodic and null-recurrent Markov chain
(Sn)n≥0 with S0 = u. Setting ξn = Sn − Sn−1 for n ≥ 1, a simple computation gives

Σn =
1

n

(∑n−1
k=0 1ξk=0 0

0
∑n−1
k=0 1ξk 6=0

)
, and ∆n =

1√
n

(∑n−1
k=0 εSk1ξk=0

Sn

)
.

Then, it is not difficult to see that Σn converges, Px-a.s., for all x ∈ Z, by the Strong Law of

Large Number, to Σ =

(
1/3 0
0 2/3

)
so that Assumption 4 is fulfilled.

It is worth noting that even though the MAP is adapted and irreducible, the aperiodicity
condition fails (consider the change of section σ : Z → Z2 equal to (0, 0) on even point and to
(1, 0) on odd ones and choose the subgroup H = Z×{0}). However, without loss of generality,

we can consider the “2-fold” MAP, i.e. we consider P
2

in place of P .
Thus, at this level, we may prove the condition (S), i.e. Assumption 2, is fulfilled.

Proposition 3.1. The condition (S) is fulfilled.

Proof. Let t ∈Wd and compute for f ∈ `∞(Z) and x ∈ Z

F2
t f(x) =

(
2

9
+

1

9
e2it1ε(x)

)
f(x) +

1

9
e2it2f(x+ 2) +

1

9
e−2it2f(x− 2)

+
1

9
eit2f(x+ 1)

(
eit1ε(x) + eit1ε(x+1)

)
+

1

9
e−it2f(x− 1)

(
eit1ε(x) + eit1ε(x−1)

)
First, suppose that t1 6= 0, then it follows that

‖F2
t ‖ ≤

2

3
+ sup

x∈Z

∣∣∣∣29 +
1

9
e2it1ε(x)

∣∣∣∣ ≤ 2

3
+

1

9

√
5 + 4 cos(2t1) < 1.
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Secondly, if t1 = 0, then the expression of F2
t simplifies as follows

F2
t f(x) =

1

3
f(x) +

2

9
eit2f(x+ 1) +

1

9
e−it2f(x− 1) +

1

9
e2it2f(x+ 2) +

1

9
e−2it2f(x− 2).

As a matter of facts, the space of C-valued constant functions is closed and invariant under F2
t .

Moreover,

‖F2
t ‖E ≤

(
1

3
+

4

9
cos(t2) +

2

9
cos(2t2)

)
.

Summarizing, as soon as t ∈W∗
d, the pseudo spectral radius r̃(t) is strictly smaller than 1 and

the condition (S) is satisfied.

Remark 3.1. In the context of periodic environment ε the proposition above is straightforward
since the Fourier transform operator F2

t , t ∈ Wd, acts on the finite dimensional space E of
periodic functions (the dimension of this space is equal to the period of the sequence ε). In
facts, in this specific case, using the standard machinery of the literature, the recurrence of the
random walk would follow from [18] for instance. Besides, we may obtain a renewal theorem
from [1], a large deviation theorem from [28, 26] and sharp estimates of the asymptotics of the
Green function (and in turn a determination of the Martin boundary) from [37, 23]. Obviously,
these technics can no longer be applied for a generic environment.

Remark 3.2. When t1 = 0, the closed subspace of 2-periodic functions contains the constants
and is invariant by F2

t . Still, the function x → (−1)x is an eigenfunction associated with the
eigenvalue 1. Thus, it is crucial that the condition (S) allows to consider different invariant
subspaces for different points t ∈Wd.

Theorem 3.2. The simple random walk M is recurrent ( resp. transient) if and only if for
some (any) x ∈ Z

∑
n≥1

1

n

∫
ZN

1n≥τ exp

[
− 1

2

(∑n−1
k=0 εSk1ξk=0

)2

∑n−1
k=0 1ξk=0

]
exp

[
− 1

2

S2
n∑n−1

k=0 1ξk 6=0

]
dPx (8)

is infinite ( resp. finite).

Remark 3.3. Similarly to the classical context of random walks on Z2, the harmonic factor
term in the sum reveals the dimension 2 is critical. The exponential factor may improve the
convergence rate of the sumand in order to make the summation finite. Each of them corresponds
to one of the direction given by the axis. More precisely, the first one describes the contribution
of the horizontal component, whereas the second one describes that of the vertical one. Note
that the Law of Iterated Logarithm implies the second exponential factor is almost surely bounded
from below by (log n)−1.

In order to prove the recurrence of the simple random walk in the periodic case, one may
apply the Law of Iterated Logarithm shown in [12] to the self-normalized martingale ∆∗Σ−1∆.
Alternatively, one can remark that the group of automorphisms of the corresponding directed
graph is Z×pZ, where p is period of ε. We obtain, by factorisation, a MAP with a finite state set
Markov chain so that the usual machinery of Markov additive processes under quasi-compacity
condition holds (recurrence criterion, renewal theorem . . . ).

If the sequence (εy)y∈Z is supposed to be the sign function sgn, we shall derive the following
result from a well known proposition proved in [35].
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Proposition 3.3. The following convergence in distribution holds

1

n

n−1∑
k=0

sgn(Sk)1ξk=0
d−→ Γ,

where Γ is a symmetric arcsinus random variable on [−1, 1]. Therefore, the series (8) of The-
orem 3.2 is convergent, Px-a.s., and the resulting MAP and the simple random walk on G(ε)
are transient.

4 Proof of the main theorem

This section is devoted to the proof of Theorem 2.7. We shall be interested in the asymptotics
as n goes to infinity of

〈Px, P0,n(u,v)〉 =

∫
XN

Px(dω)Pω0,n(u,v).

By inverse Fourier transform, it follows, using Fubini’s theorem

〈Px, P0,n(u,v)〉 =
1

(2π)d

∫
Wd

Fnt 1(x)e−i〈t,v−u〉dt.

Similarly to the context of classical random walks, we can split the integrals into two parts,
namely, let δ > 0 and set

(2π)d〈Px, P0,n(u,v)〉 =

∫
(−δ,δ)d

Fnt 1(x)e−i〈t,v−u〉dt︸ ︷︷ ︸
I1(n)

+

∫
Wd\(−δ,δ)d

Fnt 1(x)e−i〈t,v−u〉dt︸ ︷︷ ︸
I2(n)

. (9)

4.1 Estimates far from the origin

Proposition 4.1. Under Assumptions 1 and 2, there exist constants κ ∈ (0, 1) and C > 0 such
that for all v,u ∈ Zd and all δ > 0 sufficiently small∥∥∥∥∥

∫
Wd\(−δ,δ)d

Fnt 1(·)e−i〈t,v−u〉dt
∥∥∥∥∥
∞

≤ Cκn.

Proof. By Lemma 2.5, under Assumptions 1 and 2, setting K := W∗
d \ (−δ, δ)d, it follows that

M := max{r̃(t) : t ∈ K} < 1. Set κ := (M + 1)/2. It is a matter of fact that κ−n‖Fnt ‖Et
vanishes as n goes to infinity so it is for κ−n‖Fnt 1‖∞ and the result follows.

Remark 4.1. In the literature, it is usually considered that the whole family {Ft}t∈K shares
the same invariant space E. Allowing different spaces for different points t ∈ K improves the
estimate of Proposition 4.1 while the pseudo spectral radius r̃ still statisfies the nice property of
upper semi-continuity for continuous perturbations of operators.

4.2 Estimates in the neighborhood of the origin

At this level, it only remains to estimate the first integral term of Equation 9. Setting t = u√
n

,

it is given by

I1(n) =
1

nd/2

∫
(−δ
√
n,δ
√
n)d
Fnu√

n
1(x)e−i〈u/

√
n,v−u〉du.
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The expected estimate shall be obtained by integrating an almost-sure estimate exploiting the
following expression

I1(n) =

∫
XN
n−d/2

∫
|u|≤δ

√
n
φω0,n(u/

√
n)e−i〈u/

√
n,v−u〉du︸ ︷︷ ︸

Iω1 (n)

Px(dω). (10)

Proposition 4.2. Under Assumption 3, there exist a deterministic δ > 0 such that for |t| ≤ δ,
the quantity log φω0,1(t) is well defined. In addition, the following approximation formula holds
Pm-a.e.

log φ0,1(t) = ∇φ0,1(0)t+
1

2
t∗∇∗∇φ0,1(0)t+R(t), (11)

where the remaining term R satisfies for |t| ≤ δ and for any ε ∈ (0, 1) :

‖R(t)‖∞ ≤ δ1−εK|t|2+ε with K ≥ 0.

Proof. Under Assumption 3, the function φω0,1 is Pm-a.e. three times continuously differentiable.
Therefore, the following majoration holds Pm-a.e.

|φ0,1(t)− 1| ≤ |t|‖∇φ0,1(0)‖∞.

Thus, there exists a deterministic δ > 0 such that for all |t| ≤ δ the function t → log φω0,1(t) is
well defined. In addition, for |t| ≤ δ, the Taylor formula yields Pm-a.e.

log φ0,1(t) = ∇φ0,1(0)t+
1

2
t∗∇∗∇φ0,1(0)t+R(t),

where the remaining term R satisfies for |t| ≤ δ and any ε ∈ (0, 1)

‖R(t)‖∞ ≤ δ1−εK‖t‖2+ε, with K =

∥∥∥∥ ∑
u∈Zd

‖u‖3µ(u)

∥∥∥∥
∞
.

This proposition implies that for δ > 0 sufficiently small and |u| ≤ δ√n

φ0,n(t) = exp

{
−i〈∆n, u〉 −

1

2
u∗Σnu+Rn(u)

}
,

with the notation

Rn(u) = Rωn(u) =
n−1∑
k=0

RT
kω(u/

√
n).

Proposition 4.3. Under Assumption 3 the following properties hold

1. for all n ≥ 1, the matrix Σn is real positive symmetric Pm-a.e.,

2. the sequence (Σn)n≥0 remains bounded in the following sense

sup
n≥0
‖ ‖Σn‖ ‖∞ <∞,

3. Pm-a.e., the rank rk Σn is non decreasing with n ≥ 1,

4. in addition, under Assumption 1, limn→∞ rk Σn = d, Pm-a.e..
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Proof. 1. Under Assumption 3, the quantity −∇∗∇φω0,1(0) is real symmetric. In addition, it

is non negative since t→ Re µ̂ω(t) admits a local maximum at t = 0.

2. As a matter of facts, the sequence of matrices Σn satisfies

ess sup
ω∈Ω

‖Σn‖ ≤ ess sup
ω∈Ω

‖∇∗∇φ0,1(0)‖ <∞.

3. Because −∇∗∇φω0,1(0) is non negative, the kernel of Σn is given by

ker Σn =

n−1⋂
k=0

ker ∇∗∇φTkω0,1 (0),

and the result follows.

4. Since rk Σn is a non decreasing discrete bounded sequence Pm-a.e., it suffices to show
that

Px(lim inf{rk Σn = d}) = Px(
⋃
n≥1

{rk Σn = d}) = 1, for m− a.e. x ∈ X. (12)

Moreover, the operator P is supposed aperiodic and recurrent so that we only need the
asymptotic event in (12) holds with positive probability. Thus suppose on the contrary

Px(N) = 1 with N =
⋂
n≥1

{rk Σn ≤ d− 1}.

Then the subgroup H of Zd generated by the supports supp µω ∗ · · · ∗ µTn−1ω, n ≥ 1,
ω ∈ N , is Px-a.s. independent of ω ∈ XN and satisfies µω(H) = 1, Pm-a.e.. Assumption
1 yields H = Zd which contradicts the non maximality of the asymptotic rank.

Recall τ = inf{n ≥ 1 : rk Σn = d} and remark it is finite Pm-a.e. by Proposition 4.3.
Rewrite Iω1 (n) as the sum of three terms I11, I12 and I13 defined by

Iω11(n) = n−d/2
∫
|t|≤δ

√
n
e−

1
2
t∗Σntei〈t,∆n〉−i〈t,(v−u)/

√
n〉
(
eRn(t/

√
n) − 1

)
dt,

for n ≥ τ, Iω12(n) = n−d/2
∫
Rd
e−

1
2
t∗Σntei〈t,∆n〉−i〈t,(v−u)/

√
n〉dt,

and,

for n ≥ τ, Iω13(n) = −n−d/2
∫
|t|>δ

√
n
e−

1
2
t∗Σntei〈t,∆n〉−i〈t,(v−u)/

√
n〉dt.

Proposition 4.4. Under Assumptions 1 and 3, for all n ≥ τ the following holds Pm-a.e. for
u,v ∈ Zd:

1. I12(n) = n−d/2det (Σn)−1/2(2π)d/2 exp

{(
−1

2 [∆n − (v − u)/
√
n]∗Σ−1

n [∆n − (v − u)/
√
n]
)}

.

2. |I13(n)| ≤ n−d/2(2π)d/2 exp
(
−1

2δ
√
n tr (Σn)

)
,

3. if additionally Assumption 4 is fulfilled, then there exists a deterministic δ > 0 such that

|I11(n)| = O
(
n−

d+ε
2

)
uniformly in ω ∈ Ω.
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Proof. Setting ∆̃n = ∆n − (v − u)/
√
n, it is only needed to prove the results for v − u = 0.

1. Under Assumptions 1 and 3, Proposition 4.3 implies τ <∞ Pm-a.e. and for n ≥ τ , there
exist orthogonal matrices Pn and diagonal matrices Dn such that

Σn = PnDnP
−1
n and Dn = diag(α2

1(n), . . . , α2
d(n))

with α2
i (n) > 0 for all i = 1, . . . , d and n ≥ τ . Setting t = Pnu, we obtain

nd/2I12(n) =

∫
Rd
e−

1
2
u∗Dnuei〈u,P

∗
n∆n〉du

= det (Σn)−1/2(2π)d/2e−
1
2

∆∗nΣ−1
n ∆n .

2. For the term I13(n) we can proceed analogously, and we get the following upper bound
for n ≥ τ :

nd/2|I13(n)| ≤
∫
|u|>δ

√
n
e−

1
2
u∗Dnudu

≤ (2π)d/2det (Σn)−1 exp{−1

2
δ
√
n tr (Σn)}.

3. Because of the point (2) of Proposition 4.3, the eigenvalues of Σn remain bounded uni-
formly for n ≥ 0. Thus, with Assumption 4, we deduce the following bound for I11(n)

nd/2|I11(n)| ≤
∫
|t|≤δ

√
n
e−

1
2
t∗Σnt

∣∣∣exp{Rn(tn−1/2)} − 1
∣∣∣ dt

≤
∫
|t|≤δ

√
n
e−

1
2
t∗Σnt

∣∣∣Rn(tn−1/2)
∣∣∣ exp{|Rn(tn−1/2)|}dt

≤ Kδ1−ε

nε/2

∫
|t|≤δ

√
n
e−

1
2
t∗Σnt|t|2+εe|t|

2δKdt.

The last estimates comes from Proposition 4.2 and holds for any ε ∈ (0, 1). We conclude
by choosing δ > 0 such that δK ≤ α/4 (where α is given by Assumption 4). Consequently
the integral is convergent and the whole term goes to zero at rate, up to a constant, n−ε/2.

Proof of Theorem 2.7. Let r ∈ (0, 1), and compute with the notations of the previous section

1

(2π)d

∫
Wd

Re
∑
n≥1

rn−1Fnt 1(x)dt− 1

(2π)d

∑
n≥1

rn−1

∫
XN

1{n≥τ}I12(n)dPx

=
1

(2π)d

∑
n≥1

rn−1

∫
XN

1{n≥τ}
[
I11(n) + I13(n)

]
dPx + I2(n)

+
1

(2π)d

∑
n≥1

rn−1

∫
XN

1{n<τ}I1(n)dPx

.
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Taking absolute values on both side, using Proposition 4.1, Proposition 4.4 with a suitable δ > 0
together with Assumption 2, it follows that, for some K ≥ 0, ε > 0, C > 0 and κ ∈ (0, 1),∣∣∣∣∣ 1

(2π)d

∫
Wd

Re
∑
n≥1

rn−1Fnt 1(x)dt− 1

(2π)d

∑
n≥1

rn−1

∫
XN

1

det (Σn)nd/2
exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx

∣∣∣∣∣
≤ 1

(2π)d

∑
n≥1

rn−1 K

n(d+ε)/2

+
1

(2π)d

∣∣∣∣∣∑
n≥1

rn−1

∫
XN

exp(−1
2δ
√
n tr Σn)

nd/2
dPx

∣∣∣∣∣
+

C

(2π)d

∑
n≥1

κn−1

+
1

(2π)d

∑
n≥1

rn−1Px(τ > n).

The latter summation follows from the fact |I1(n)| ≤ 1, Pm-a.e.. Then, letting r ↑ 1, the right
handside remains bounded in L∞m (X) since

• d ≥ 2 for the first term,

• under Assumption 4, the trace is bounded from below by a strictly positive constant,

• κ ∈ (0, 1),

• τ is integrable with respect to Px, m-a.e. x ∈ X.

The result follows by letting r ↑ 1 on the left hand-side and remarking that

lim
r↑1

∑
n≥1

rn−1

∫
XN

1n≥τ
1

det (Σn)nd/2
exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx

=
∑
n≥1

∫
XN

1n≥τ

det (Σn)nd/2
exp

(
−1

2
∆∗nΣ−1

n ∆n

)
dPx ∈ [0,∞]

m-a.e. by monotone convergence.
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de marches de Markov. In Théorie du potentiel (Orsay, 1983), volume 1096 of Lecture
Notes in Math., pages 301–332. Springer, Berlin, 1984. URL: http://dx.doi.org/10.
1007/BFb0100117, doi:10.1007/BFb0100117. 2, 14

20

http://dx.doi.org/10.1239/jap/1421763328
http://dx.doi.org/10.1239/jap/1421763328
http://dx.doi.org/10.1239/jap/1421763328
http://dx.doi.org/10.1007/978-3-642-27461-9_1
http://dx.doi.org/10.1007/978-3-642-27461-9_1
http://dx.doi.org/10.1007/978-3-642-27461-9_1
https://hal.archives-ouvertes.fr/hal-01135794
https://hal.archives-ouvertes.fr/hal-01135794
http://dx.doi.org/10.1007/s10955-011-0218-7
http://dx.doi.org/10.1007/s10955-011-0218-7
http://dx.doi.org/10.1007/s10955-011-0218-7
http://dx.doi.org/10.1016/j.spa.2009.10.003
http://dx.doi.org/10.1016/j.spa.2009.10.003
http://dx.doi.org/10.1016/j.spa.2009.10.003
http://dx.doi.org/10.1016/j.crma.2011.12.005
http://dx.doi.org/10.1016/j.crma.2011.12.005
http://dx.doi.org/10.1016/j.crma.2011.12.005
http://dx.doi.org/10.1214/EJP.v18-2459
http://dx.doi.org/10.1214/EJP.v18-2459
http://dx.doi.org/10.1137/S0040585X97983353
http://dx.doi.org/10.1137/S0040585X97983353
http://dx.doi.org/10.1137/S0040585X97983353
http://dx.doi.org/10.1007/BFb0100117
http://dx.doi.org/10.1007/BFb0100117
http://dx.doi.org/10.1007/BFb0100117


[19] V. A. Kaimanovich, Y. Kifer, and B.-Z. Rubshtein. Boundaries and harmonic functions for
random walks with random transition probabilities. J. Theoret. Probab., 17(3):605–646,
2004. 1, 2

[20] V. A. Kaimanovich and A. M. Vershik. Random walks on discrete groups: boundary and
entropy. Ann. Probab., 11(3):457–490, 1983. 2

[21] Vadim A. Kaimanovich. Amenability and the Liouville property. Israel J. Math., 149:45–85,
2005. Probability in mathematics. 2

[22] Vadim A. Kaimanovich and Wolfgang Woess. Boundary and entropy of space homogeneous
Markov chains. Ann. Probab., 30(1):323–363, 2002. 2, 7

[23] Takahiro Kazami and Kohei Uchiyama. Random walks on periodic graphs. Trans.
Amer. Math. Soc., 360(11):6065–6087, 2008. URL: http://dx.doi.org/10.1090/

S0002-9947-08-04451-6, doi:10.1090/S0002-9947-08-04451-6. 2, 14

[24] András Krámli and Domokos Szász. Random walks with internal degrees of freedom.
I. Local limit theorems. Z. Wahrsch. Verw. Gebiete, 63(1):85–95, 1983. URL: http:

//dx.doi.org/10.1007/BF00534179, doi:10.1007/BF00534179. 2

[25] G. A. Margulis. Positive harmonic functions on nilpotent groups. Soviet Math. Dokl.,
7:241–244, 1966. 2

[26] P. Ney and E. Nummelin. Markov additive processes II. Large deviations. Ann. Probab.,
15(2):593–609, 1987. URL: http://links.jstor.org/sici?sici=0091-1798(198704)

15:2<593:MAPILD>2.0.CO;2-0&origin=MSN. 2, 14

[27] P. Ney and F. Spitzer. The Martin boundary for random walk. Trans. Amer. Math. Soc.,
121:116–132, 1966. 2

[28] Peter Ney and Esa Nummelin. Markov additive processes: large deviations for the contin-
uous time case. In Probability theory and mathematical statistics, Vol. II (Vilnius, 1985),
pages 377–389. VNU Sci. Press, Utrecht, 1987. 2, 14

[29] Esa Nummelin. General irreducible Markov chains and nonnegative operators, volume 83 of
Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1984. URL:
http://dx.doi.org/10.1017/CBO9780511526237, doi:10.1017/CBO9780511526237. 8,
10

[30] Robin Pemantle. Vertex-reinforced random walk. Probab. Theory Related Fields, 92(1):117–
136, 1992. URL: http://dx.doi.org/10.1007/BF01205239, doi:10.1007/BF01205239.
2

[31] F. Pène. Transient random walk in with stationary orientations. ESAIM: Probability and
Statistics, 13:417–436, 2009. 2, 13

[32] Yuval Peres, Serguei Popov, and Perla Sousi. On recurrence and transience of self-
interacting random walks. Bull. Braz. Math. Soc. (N.S.), 44(4):841–867, 2013. URL:
http://dx.doi.org/10.1007/s00574-013-0036-4, doi:10.1007/s00574-013-0036-4.
2
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