
HAL Id: hal-01274824
https://hal.science/hal-01274824v1

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

LINC: A Compact Yet Powerful Coordination
Environment

Maxime Louvel, François Pacull

To cite this version:
Maxime Louvel, François Pacull. LINC: A Compact Yet Powerful Coordination Environment. Coordi-
nation Models and Languages : 16th IFIP WG 6.1 International Conference, COORDINATION 2014,
Held as Part of the 9th International Federated Conferences on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings, Jun 2014, Berlin, Germany. pp.83-98,
�10.1007/978-3-662-43376-8_6�. �hal-01274824�

https://hal.science/hal-01274824v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

LINC: a compact yet powerful coordination
environment

Maxime Louvel, François Pacull

Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France

17 rue des Martyrs 38000 Grenoble, France.
maxime.louvel@cea.fr ; francois.pacull@cea.fr

Abstract. This paper presents LINC, a coordination programming en-
vironment. It is an evolution of earlier middlewares (the Coordination
Language Facility (CLF) and Stitch). The aim is to provide a more flex-
ible and expressive language correcting several of their limitations and
an improved run-time environment. LINC provides a compact yet pow-
erful coordination language and an optimised run-time which executes
rules. This paper describes the intrinsic properties brought by the LINC
environment and how it helps the coordination aspects in a distributed
system. This paper also emphasises on the reflexivity of LINC and its
usage at system level. Finally, it illustrates through several case studies,
how LINC can manage a wide range of application domains.

Keywords: Coordination, language, tuplespace, distributed systems

1 Introduction

Today’s systems are not only distributed, they are composed of other systems
more or less opaque. They have to interact with real world and thus have to
consider on the one hand very small embedded systems and on the other end
unbounded resources sprayed in the ”cloud”. Some pieces of work consider that
the traditional approaches based on objects and services cannot hold such com-
plexity [18]. In this context, coordination models and languages [25] are essential
to coordinate basic elements as well as systems of systems. The last decades have
seen a lot of work in the coordination area [24], starting with Linda [13]. Linda
firstly introduced the notion of tuple-space as the ground for coordination. In
Linda, components exchange and synchronise through tuples addition and re-
moval in a shared tuple-space. This approach allows the decoupling of processes
both in space and time. Indeed to exchange data between two components, the
first one simply puts a tuple in the shared tuple-space. It does not have to worry
if another component is currently waiting for this information or how this infor-
mation should be exchanged. The data is exchanged when another component
reads the tuple. The read may come before, at the same time or after the put.

Based on Linda, a number of evolutions have been proposed. Starting in the
2000s, researchers have focused on using tuple-spaces for mobile computing [8,12,

22,33]. To support mobile environment, one of the main improvement is the use
of several tuple-spaces instead of a single one shared by all the processes. Then,
from mobile computing, researchers have focused on making applications context
aware by the use of tuple-spaces [5,7,15]. To go a step further with the mobility,
toward autonomous systems, researchers considered more intelligent tuples [21,
30]. They have shown the interest of relying on tuple-spaces in nowadays systems.
However, there is still a gap between what people express and how the developer
will implement it. We believe it is essential to provide means for developers
to focus on the coordination of the systems. It is also tremendously important
to provide them with a simple programming environment powerful enough to
handle the system complexity. The response to the management of complex
system should not be a complex programming environment.

This paper presents the full set of LINC features with a special focus on
how it eases the coordination tasks. It complements partial description in earlier
application domain oriented papers [10,20]. LINC is a compact yet powerful coor-
dination environment which relies on the three basic primitives of Linda to read,
add and remove tuples in a tuple-space. It uses distributed tuple-spaces called
bags. A bag is responsible for storing the tuples and may provide a special imple-
mentation of the three primitives. This is very convenient when communicating
with the physical world (e.g. sensors or actuators) or when integrating legacy
systems. LINC uses production rules to interact on the tuple-space rather than
using imperative code to glue the primitives. Actions on the bags are embedded
into distributed transactions which simplifies a lot the job of the developer that
does not have to worry about writing code to roll back half of the actions done
so far when something goes wrong. Transactions also enforce the consistency be-
tween the actual system and the software view. This, once again aims at helping
developers to focus only on the coordination.

The paper is structured as follows. Section 2 presents the coordination lan-
guage of LINC. Then, Section 3 describes its main features. Section 4 sketches
several concrete case studies where LINC has been used. Section 5 positions our
approach with respect to related works. Finally, Section 6 concludes the paper.

2 LINC coordination language

LINC is the natural evolution of the Coordination Language Facility (CLF) [2]
and Stitch [1] middlewares initially developed for deploying distributed appli-
cations. The three of them share the resource oriented approach manipulated
through a high level rule-based language. However, the architecture of LINC has
been completely revisited to adapt to the new landscape defined by the combi-
nation of the Internet-of-things, the cloud and the Cyber-Physical Systems.
The main differences are:

– in LINC, the coordination engine has been improved both in term of CPU us-
age and memory footprint. It is embedded in every object while CLF/Stitch
relied on more complex dedicated objects. This allows to better distribute
the coordination by delegating some parts to more modest CPU;

– the rule language has been extended to improve its expressiveness;
– the environment comes with tools: monitoring, rule analysis (memory, time

and dependencies) and a replay mechanism allowing post-mortem re-execution
preserving causal order to debug the initial run. Tools are not the focus of this
paper, details may be found in the LINC wiki (http://linc.middlewares.info).

2.1 LINC roots

We briefly recall here the basics of LINC to make the paper self contained. LINC,
like CLF or Stitch, is rooted in Linda-like tuple-spaces (Associative Memory),
Production Rules and Distributed Transactions.

Associative Memory: The global tuple-space is composed of several dis-
tributed tuple-spaces called bags. Tuples in bags are accessed with the three
operations: rd(), get() and put(). The rd() verifies the presence of resources
matching some given criteria: resources corresponding to the requested pattern
(partially instantiated tuple) passed as parameter. The get() (in in Linda)
removes a tuple while the put() (out in Linda) inserts a new tuple in a bag.

Production Rules: In LINC, the rd(), get() and put() primitives are
invoked through production rules [9]. This prevents to write a huge amount of
imperative code such as Java, C or Python by the use of a coordination language
to define how the resources are manipulated in the system. A production rule
is decomposed in a precondition and a performance part. The precondition part
uses rd() operations combined with an inference engine in order to evaluate
distributed conditions in the system. Then, the performance part uses:

– rd() to verify that conditions are still valid at performance time;
– get() to consume resources (e.g. manage critical resources, consume events);
– put() to generate resources (e.g update the system, command actuator).

A rule typically uses several bags, physically distributed or not, to access the
necessary information and update the system accordingly. The particularity of
LINC is that the performance part is embedded in Distributed Transactions.

Distributed Transactions: They are used in the performance part to en-
sure the all-or-nothing [6] property. They group in the same set of operations
the verification of some conditions, the consumption of critical resources and the
update of the global state of the system. Thus, the performance part is a list of
transactions that are executed in sequential order.

The combination of these three paradigms enables to build transactional re-
actions to complex events. Complex events in a building automation context
could be the combination of several events such as people in the room and tem-
perature lower than sixteen degrees and HVAC system is OFF. Transactional
reactions consist in put the heating ON, and update the state of the system.

2.2 Bags abstraction

The main interest of splitting the global tuple-space into several bags is that
each bag may define its own semantic associated to the rd, get and put and

the tuples themselves. As a result, bags can encapsulate software or hardware
components.

a database: each table of the database can be associated to a bag; rd() and
put() corresponds to the reads and writes on the database.

a service: This concerns remote services as well as local services directly
embedded in the bag. The partially instantiated tuple composed of the input
parameters is passed to the rd(). The concerned service is invoked from the
bag, using the legacy protocol imposed by the remote service (e.g. SOAP for
a Webservice based approach or a native Remote Procedure Call). The output
parameters obtained as the result of the service is added to the input parameters
defining the fully instantiated tuple returned by the rd().

an event system: Tuples contain the topic, the ID, the timestamp and a
payload; the rd() and put() operations correspond to subscribe and publish

of the event system.
a sensor: Data are collected from the gateway and inserted into different

bags storing the various relevant information. For instance, for a very simple
approach, we can consider the three bags associating the id of the sensor to the
sensed value, the type of sensor and its location. Successive values can be
obtained through the rd(), changing the location of the sensor is as simple as
modifying the resource by consuming it with a get() and inserting the updated
information with a put(). The sampling frequency, the type of bag (e.g. set,
multiset, FIFO, . . .) or the precision can be adapted at this stage. The behaviour
of the rd() may also be adapted to replace a simple tuple matching by a more
complex matching: e.g. interval, fuzzy logic or ontologies.

an actuator: When interacting with the real world, the put operation is
typically used to send actuation commands (e.g to set the speed of a motor, the
direction of the wheels or to power on or off a subsystem). We can act on the
physical actuator through a put() operation with a resource with the id, the
command to be applied and the possible parameters p1, p2 into the associated
bag. This is enough to trigger action to the actual actuator.

Finally, it is possible to associate bags. For instance, one bag can contain
the number of resources contained in the bag it is associated to. More complex
associations can be considered such as arithmetic functions (e.g. sum, average,
max or min or even a Bayesian filter). The main advantage is to have a direct
access to refined information computed from a set of resources. It has been used
for instance in the application described in 4.2 to filter outliers values coming
from a matrix of Rfid readers.

2.3 Coordination language

Bags are grouped into objects for identification purposes, thus objects are a
logical decomposition of an application. For instance an object may manage
all the sensors communicating with the same protocol or located in the same
space. An object may execute rules to coordinate the system by acting on its
own bags and the other objects’ ones. When an object executes rules, it plays
the role of coordinator. Rules can be executed by any object. This means that

the programmer is free to distribute them among the different objects of an
application.

To illustrate how LINC rules are working Listing 1.1 gives a very simple
rule involving two sensors (presence and temperature) and an actuator (heating
controller) using three different technologies (e.g. different protocols). This rule
adjusts the heating of a room when someone is inside and the temperature is
lower than 16 ◦C. The rule is composed of the precondition (when to trigger the
rule) and the performance (what to do) separated by the symbol ::.

1{∗ , !} [”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) &
{∗ , !} [”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) &

3ASSERT: temp < 16 &
{ 1 , !} [”Techno1” , ”l o c a t i o n ”] . r d (”p r e s 1 ” , l o c a t i o n) &

5{∗ , !} [”Techno3” , ”a c t u a t o r s l i s t ”] . r d (i d a c t , ”h e a t i n g ” , l o c a t i o n)
: :

7{
[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) ;

9[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;
[”Techno3” , ”a c t u a t o r s ”] . put (i d a c t , ”h e a t i n g ” , ”2”) ;

11}
{ . . . # o t h e r g roup o f a c t i o n s } .

Listing 1.1. LINC rule example

Precondition The precondition is composed of tokens processed by an infer-
ence engine with a right propagation. Listing 1.1 contains 8 tokens (1 per line).
The first token invokes a rd() operation into the bag ”sensors” of the object
”Techno1”. This object encapsulates the gateway of the first technology. The to-
ken looks for the resource (”pres 1”, ”True”) where the first field is the sensor id
(generally imposed by the technology) and the second the value ”True” meaning
that a presence is detected. In a similar way, the second token asks for the tem-
perature currently sensed by the sensor whose id is ”temperature a”. When the
rd is done, all the matching tuples are returned one by one. For every returned
tuple, a new branch is created with the value of the instantiated variables temp.
The instantiated variables are right propagated. For instance in the third token
this variable is compared to the threshold (16 degrees) thanks to the ASSERT:

extension1. If the condition is false, the rule will not progress. If it is true, the
next token asks the bag location, of the object "Techno1" (responsible for the
presence sensor), for the location of sensor "pres 1". With this information, the
last token can ask the id of the co-located heating system.

The tokens in the precondition phase are preceded with modifiers embraced in
curly brackets. The first field defines the number of maximum expected replies
awaited by the rd() operation. Normally a rd() is blocked waiting for new
matching resources that could become available. In this example, we use * for
the first 2 tokens since we want to have all the replies. On the contrary, for the
4th we used 1 since a sensor has a single location and it is useless to wait for
another resource. The second field is used to define the amount of time a pending
rd() is waiting for a reply. Both are used to reduce the size of the inference tree
as detailed in Section 3.2.
1 The extensions ASSERT:, COMPUTE: and SLEEP: allows to respectively verify a condi-

tion, execute simple computation or wait for a given time.

Performance The performance part may contain several transactions enclosed
in curly brackets. The first transaction embeds the verification of the conditions
presence and temperature and the operation on the heating system. Indeed, if
the presence detector becomes false, this means the person is out of the room and
nothing is required from the system. If the temperature has changed, it is not
required to react. Indeed another inference will start with the new temperature,
and a more accurate heating command will be computed. Finally, the last action
of the transaction does the required operation on the heating system. Contrary
to the Event-Condition-Action [32] model, events and conditions are managed
in the same way. Moreover, they may be enclosed with actions in a transaction.

The transactions are executed sequentially. If several transactions perform
a get() on a same unique resource, they become exclusive. It is explained in
context with the guards controlled alternatives (Section 3.3) and the graceful
degradation (Section 3.4) mechanisms. The distributed transactions are enforced
through a classical 2 Phase-Commit [6] to provide atomicity property (all-or-
nothing). However, no hypothesis is made on how the bags implement these 2
phases. Thus, it is possible on the one hand to take advantage of the context
and to implement a bag fully compliant with the 2PC on small microcontroller
if required. On the other hand, it allows for a given bag to relax the 2PC.

2.4 Improvement with respect to CLF/Stitch

The explicit usage of the operations rd(), get() and put() in LINC allows to
verify in the performance phase only the useful resources while in CLF/Stitch
all the resources used in the precondition where systematically verified in the
performance phase. The major drawback is that some rd() were verified even if
it was not required. Indeed, among the rd() operations done in the precondition
a significant part are just informative and not subject to change. Verifying them
again in the performance was a waste of time and resources.

Another difference concerns the rd() and get() done in the performance.
The presence of the resources returned in the precondition is verified in CLF /
Stitch via a unique resource identifier. In LINC, it is not based on this identifier
but on the value. This decreases the size of the inference tree and the amount of
useless work when we have to deal with multiple resources with the same value
(e.g. a sensor returning the same value).

Moreover, CLF considers in the performance a transaction for the rd() and
the get() operations and the guaranty that the put() operations are eventually
done by re-trying them until completion. This was motivated by the fact a put()

was not supposed to fail. Indeed, for a tuple space, it is reasonable to consider
that inserting a resource is always possible. However, in LINC we want also to
target physical world, such as actuators that may fail when a put() is tried.
Thus, LINC enforces a transaction for (rd(), get() and put()) operations al-
lowing a richer transactional model in the performance part.

In addition to a stronger model, we do not restrict the performance to a
single transaction but we can have a sequence of transactions. This brings the
possibility of alternative treatments sharing the same precondition part. This

not only decreases the work to be done by the coordination engine but also
offers a better view to the programmer by replacing a set of CLF/Stitch rules by
a single LINC rule. Powerful mechanisms using this capability, such as guards
controlled alternatives and graceful degradation are described in Section 3.

Finally, the usage of modifiers in the precondition offers the programmer to
specify information that helps the inference engine to better optimise the size of
its data structures. This reduces both memory footprint and CPU usage.

All these improvements brought the required scale down in the rule manage-
ment that allows LINC to target smaller computing units such as Raspberry PI,
Pandaboard or even ARM9 custom board.

3 LINC features

This section presents several features offered by the LINC coordination language.

3.1 Control the frequency of a rule

In some circumstances it can be useful to control the pace of a rule. For in-
stance, in Listing 1.1 the rule is triggered each time the temperature changes
and a presence is detected. This is obviously too much for controlling the heating
system. We can modify the rule by adding a new token at the first place of the
precondition and at the first place of the performance part (cf. Listing 1.2).

We use a bag of type set called tick in which a new instance of the same
resource is regularly inserted. The set property guaranties that a resource with
the same value is present only once at a given time even if inserted several times
(e.g. every 10 minutes). The precondition waits for the presence of this resource
to start the evaluation of subsequent rd operations. If, in addition a token doing
a get is added in the performance, it enforces that only one performance of the
rule is performed per tick. Indeed, even if several instances of the rule reach the
performance point, only one transaction will succeed. For the others, the get

action (e.g. in line 5) will fail because the resource is not in the bag anymore.

{∗ , !} [”Con t r o l ” , ”t i c k ”] . r d (t i c k) &
2. . . # tok e n s o f L i s t i n g 1 . 1

: :
4{

[”Con t r o l ” , ”t i c k ”] . ge t (t i c k) ;
6. . . # tok e n s o f L i s t i n g 1 . 1

}

Listing 1.2. LINC rule with tick

3.2 Reduction of the inference tree

When a rule is executed, an inference tree is built. Its size, and the number of
branches waiting for new resources to appear may become a problem, especially
on embedded devices. Hence, it is important to limit the size of this inference tree
to limit the memory used and to decrease the CPU load. For this, LINC relies
on directives exploiting the knowledge of the developer and on an automatic
process (garbage collector pruning useless branches).

Information from the developer: Via the modifiers introduced in Section 2,
the developer can:

Limit the number of matching tuples to consider is typically used when the
developer knows that only a given number of resources is really useful. For
instance in the rule of Listing 1.1, the 4th token asks for the presence sensor
location. As a sensor has a single location, we know that we can close the flow
of reply to the rd() operation right after the first reply. This can be done by
replacing the * in {*,!} with 1, i.e. the number of expected replies.

Limit the time to wait for matching tuples is used to model the expiration of
some tuples. For instance, in the modified rule of Listing 1.2 a tick is generated
every 10 minutes. A new branch is then started at each generation of a new tick
resource. Thus, if no presence is detected during 2 hours, 12 branches will be
waiting for the presence detection. When a presence is detected, the 12 branches
will be activated, creating useless work. If we replace the ! in {*,!} with 600, the
number of seconds to wait, the rd("pres 1","True") operation will be closed
after 10 minutes and thus only one branch is active at a time.

Garbage collector When waiting on rd for matching tuples, it might be-
come a point where branches of the inference tree built so far do not make
sense any more. For instance here, when the presence sensor becomes "False",
the resource (”pres 1”,”True”) disappears from the bag (i.e. it is replaced by
(”pres 1”,”False”)). Then, it is not necessary to continue to maintain the branches
depending on (”pres 1”,”True”). Indeed when the performance will be executed
it will fail because this resource is not available.

A garbage collector periodically browses the inference tree asking the bags if
the tuples are still present. By tuple we do not mean the exact same tuple but one
with the same value. If the tuple is not there, the branch of inference tree starting
from this node can safely be garbaged. Indeed, continuing the precondition will
only lead to failures in the performance phase. If a branch is garbaged and the
same value is added again in the bag, this will trigger a new inference.

3.3 Guards controlled alternatives

1. . .
: :

3{
[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) ; # F i r s t gua rd

5[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;
[”Techno3” , ”a c t u a t o r s ”] . put (i d a c t , ”h e a t i n g ” , ”2”) ;

7} .
{

9[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”F a l s e ”) ; # Second gua rd
[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;

11[”Techno3” , ”a c t u a t o r s ”] . put (i d a c t , ”h e a t i n g ” , ”1”) ;
} .

Listing 1.3. Extension of rule in Listing 1.1 with guards

In the rule of Listing 1.3 we show how to implement a simple guards mecha-
nism in the performance. Here we define how to manage the heating depending
on the occupant’s presence (i.e. putting the set point to ”1” or ”2”). Here, we do
not test the presence in the precondition since we want to act in both case. We
use 2 transactions, one for each case and we place in each of them a rd() respec-
tively on (”pres 1”,”True”) and (”pres 1”,”False”). Depending on the actual
value of the resource, one of them commits and the other aborts.

3.4 Graceful degradation

Graceful Degradation is achieved by adding in the transactions a get() on a
unique resource (created by the first transaction at line 3 in Listing 1.4). As
transactions are tried in sequence, if transaction A succeeds, i.e. the heating
command is successfully done, transaction B fails at line 9. If the heating system
is not reachable, transaction A fails, transaction B succeeds (the temperature
and presence have not changed). The unique is consumed and a SMS is sent
to alert the maintenance. If the temperature has changed (or nobody is in the
room anymore) at performance time, transactions A and B fail. However, as a
new temperature resource is now available it is taken into account by another
instance of the rule. Thus, a single rule can define what to do in the normal case
and what to do in case of partial failures.

. . .
2: :

{ [”Con t r o l ” , ”un i qu e”] . put (un i qu e) ; } # c r e a t e un i qu e
4{ # t r a n s a c t i o n A

[”Con t r o l ” , ”un i qu e”] . ge t (un i qu e) ;
6. . .

}
8{ # t r a n s a c t i o n B

[”Con t r o l ” , ”un i qu e”] . ge t (un i qu e) ;
10[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) ;

[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;
12[”A l e r t ” , ”SMS”] . put (”512123123” , ”Hea t i ng sy s t em i s b roken”) ;

}
14{ [”Con t r o l ” , ”un i qu e”] . ge t (un i qu e) ; } . # garbage un i qu e

Listing 1.4. Extension of rule in Listing 1.1 with graceful Degradation

3.5 Mutual exclusion

Mutual exclusion is not easy to solve with classic programming schemes such as
semaphores or monitors. In LINC, the transactions greatly simplify the problem.
To illustrate this, we propose our implementation of the classical philosophers
dinner. The problem is solved by the two rules of Listing 1.5.

The bag philosopher contains resources associating the philosopher name
and the id of his left and right forks. The bag fork manages the critical resources:
the forks. When the first rule succeeds, it means a philosopher has gotten its
two forks and moved from thinking to eating. If another rule instance wants to
get a fork already attributed, it will fail because the resource is not in the bag
anymore. The second rule makes the philosophers go from eating to thinking
and put back the fork resources in the bag. This will wake up instances of the
first rule waiting for available forks.

t h i n k i n g −> e a t i n g
2{∗ , !} [”D inne r ” , ”p h i l o s o p h e r ”] . r d (name, f o r k l , f o r k r) &

{∗ , !} [”D inne r ” , ”f o r k ”] . r d (f o r k l) &
4{∗ , !} [”D inne r ” , ”f o r k ”] . r d (f o r k r) &

{∗ , !} [”D inne r ” , ”s t a t e ”] . r d (name, ”t h i n k i n g ”) &
6: :

{
8[”D inne r ” , ”f o r k ”] . ge t (f o r k l) ;

[”D inne r ” , ”f o r k ”] . ge t (f o r k r) ;
10[”D inne r ” , ”s t a t e ”] . ge t (name, ”t h i n k i n g ”) ;

[”D inne r ” , ”s t a t e ”] . put (name, ”e a t i n g ”) ;
12} .

e a t i n g −> t h i n k i n g
14{∗ , !} [”D inne r ” , ”s t a t e ”] . r d (name, ”e a t i n g ”) &

{∗ , !} [”D inne r ” , ”p h i l o s o p h e r ”] . r d (name, f o r k l , f o r k r) &
16SLEEP: 10

: :
18{

[”D inne r ” , ”s t a t e ”] . ge t (name, ”e a t i n g ”) ;
20[”D inne r ” , ”s t a t e ”] . put (name, ”t h i n k i n g ”) ;

[”D inne r ” , ”f o r k ”] . put (f o r k l) ;
22[”D inne r ” , ”f o r k ”] . put (f o r k r) ;

} .

Listing 1.5. Philosophers dinner problem in LINC

3.6 Rules activation / deactivation

One major issue when dealing with rules is how to control them and to ensure
some guaranties when we decide to enable or disable some of them. To control the
rules execution, we rely on the reflexivity of LINC. Indeed, in LINC everything
is a resource in a bag. Naturally, rules are also controlled by resources in a
dedicated bag of coordinator objects. This bag is called RulesId and contains
tuples shaped as ”(rule id, status)”. When the rule is compiled, a rd is added at
the beginning of the precondition and in each transaction as shown in Listing 1.6.
The variable ego, used for object name, refers to the object executing the rule.

1[ego , ”R u l e s I d ”] . r d (”RU0001” , ”ENABLED”) ;

Listing 1.6. Control of rules execution

Adding these rd allows to stop a rule by simply changing the resource (”RU0001”,

”ENABLED”) to (”RU0001”, ”DISABLED”). Indeed the rd on the rule status
will make the transactions fail. To reactivate the rule, the resource status is put
back to ”ENABLED”. Note that the rd on the rule status is the first rd of the
precondition. This has three main interests:

– when disabled, no new inference is started;
– when disabled, the inference tree is completely garbaged because the resource

(rule id, ”ENABLED”) is no longer in the bag;
– if (rule id, ”ENABLED”) is put back, a new inference tree is built.

Note that this generic principle used at system level can be easily used at ap-
plication level to activate and deactivate groups of rules according to application
context. For instance, we can use the same principle with a resource controlling
a set of rules. This can be used, for instance, to put in place a very sophisticated
scenario manager in the building automation domain [10].

3.7 Dynamic rules generation

For some applications, it can be required to dynamically generate rules corre-
sponding to contextual information. To do so, a resource is added in a dedicated
bag, called AddRules. This bag receives resources of the form (package,source)
where package is the logical name of a group of rules and source the actual code
of the rules (as shown in Listing 1.1 for instance).

When a resource is added in this bag, the rule is dynamically compiled. This
compilation includes syntax verifications, and various checks to prevent potential
issues at execution time. For instance the coordinator object checks that the bags
used by the rule are accessible, and that each variable will be instantiated at
some point by a rd() operation in the precondition phase. If the rule contains
no detectable error, the coordinator starts to execute it right away.

3.8 Registry-based programming

When interfacing with the hardware (very small embedded systems such as com-
plex actuators) it is required to prepare the data in some dedicated registries and
then to trigger the global action by acting on the control register. To reproduce
this behaviour in a rule is straightforward because actions inside a transaction
are executed sequentially. As shown in Listing 1.7, where two bags are used, one
to map the data registers and one to map the control one. It is just mandatory
to place the action of the control register at the last position in the transaction.

1. . .
: :

3{
[”o b j e c t ” , ”da t a”] . put (”r 1 ” , v a l u e 1) ;

5[”o b j e c t ” , ”da t a”] . put (”r 2 ” , v a l u e 2) ;
[”o b j e c t ” , ”cmd”] . put (”s end”) ;

7} .

Listing 1.7. Registry like programming

4 Case studies

This section presents case studies where the features of LINC have been used.

4.1 Building automation

Building automation is a typical case where coordination is essential and may
become very complex. We need to coordinate a high number of sensors (e.g.
temperature, light, co2, presence) and actuators (e.g. Heating, Ventilation and
Air-Conditioning (HVAC), dimmable spotlights). These devices belong to inde-
pendent subsystems distributed in the building and using different protocols:
BACnet [3], LONWorks [19], KNX [16] or Zigbee, 433Mhz/868Mhz for wireless.
These subsystems work autonomously but most of the time cannot cooperate.

In the context of the SCUBA (Self-organising, Co-operative and robUst
Building Automation) FP7 project [28], LINC has successfully been used to
offer the abstraction layer required to make all these devices able to coexist. In

addition LINC has provided the coordination in order to allow the binding of
devices of different constructors across a set of buildings [10]. Several scenarios
have been defined to coordinate the HVAC and the lighting systems in order
to improve the energy efficiency. The graceful degradation feature of LINC has
proven very efficient to handle partial failure of autonomous systems. The ap-
plication is currently distributed across 6 partners’ sites controlling 5 buildings.

Another important role played by LINC was the administration of autonomous
subsystems according to context. It has been used to reconfigure the LONWorks
bindings in a room that can be either two individual offices or a single larger
room, depending on the presence of a removable wall. The binding of the buttons,
temperature sensors, motion detectors to the lights, shutter, HVAC have to be
reconfigured accordingly. In LONWorks, this would involve the manual interven-
tion of a skilled technician. With LINC we have coordinated the reconfiguration
process with rules dynamically generated according to the current context [29].

4.2 RFID table

To illustrate the capability of LINC to manage complex events detection, [20]
describes our experiment with an original hardware. This hardware is a table
stacking a 42” LCD screen with a HD 1080p resolution on top of a set of rfid
readers organised as a matrix of 6 x 4 tiles, with each tile containing itself a
matrix of 4 x 4 rfid readers. As a result there are 24 x 16 (384) rfid readers
distributed in the table. The table works with classical rfid tags that can be
attached to any physical object. The raw information received is, for each rfid
reader, the set of detected tags. In addition, we have encapsulated as LINC bags
two software components: a 2D engine able to display arbitrary content on the
screen table allowing user interaction and a 3D engine able to render in a virtual
world the tagged physical objects placed on the table.

The coordination language of LINC allowed to manage complex events re-
sulting from the manipulation of the tags frequently added and removed from
the table. The full application is managed by a dozen of rules distributed on the
laptop responsible for displaying the 3D scene on the external display and the
Raspberry PI managing the screen embedded in the table.

4.3 Smart actuators

In [14] we have designed smart actuators able to directly understand the LINC
coordination protocol and thus to be participant to transactions. The actuator is
thus able to locally detect that it will not be able to do the requested action. For
instance, this may be due to currently insufficient energy or unfeasible physical
actuation (e.g. due to an obstacle or an out of range request). This simplifies
the error management and allows synchronised physical actions. For instance,
we used these smart devices for the obstacle avoidance of an autonomous robot
where actions on the motors failed when associated sensors detect obstacles in
the considered direction. The bags encapsulating the control of the motor have
been implemented on small microcontrollers of type ATmega328 or PIC24.

5 Related works

Since the introduction of tuple-spaces by Linda [13] in 1985, many contributions
have been proposed to improve, extend and adapt the model.

MARS [8] extends the Linda tuple-spaces to add reactions. A reaction is
implemented by an agent which triggers an operation on a matching tuple. Re-
actions are implemented with “meta” tuples containing a reference to the agent.
In LINC, the reactions are defined by high-level coordination rules which embed
actions in distributed transactions.

LIME [23] (Linda In a Mobile Environment) replaces the globally accessi-
ble persistent tuple-space of Linda by transiently shared tuple-spaces. In LIME
each agent has its own tuple-space. When agents meets, they form a shared
tuple-space and can exchange tuples. Strong reactions (ensuring a transaction)
are restricted to a host or an agent. For distributed reactions, Weak reactions
are used to ensure that eventually the reactions will be done if connectivity is
preserved. LINC always uses distributed transactions in order to maintain the
system in a consistent state. A similar approach to LIME is proposed in [12],
with a lighter implementation of tuple-spaces.

The Holoparadigm [5] is a programming model to build context aware ap-
plications which introduces the concept of Being containing an interface, a be-
haviour and a history. History is a blackboard (similar to tuple-spaces) with
Linda-like primitives. Holoparadigm offers the architecture for building agents
however it mixes the coordination with the agents’ code.

EgoSpaces [15] is a middleware targeting development of context aware mo-
bile applications. It defines an agent as a unit of modularity and mobility with its
own local tuple-space. EgoSpaces adds the View concept to limit the data seen
by an agent (e.g. cost of the communication, physical location, thresholds on
data). The view concept is interesting because it allows the developer to define
when an agent should react.

The MobiGATE Coordination Language (MCL) [33] insists on the separa-
tion between computation and coordination which is a shared approach with
LINC. Their approach seems well suited for distributing a stream or a known
service in a mobile environment. However, in MCL it seems difficult to focus
on the coordination when a very complex and dynamic system is considered.
UbiCoMo [7] proposes a coordination model that mainly focuses on accessing
data in ubiquitous environments. However, this limits too much UbiCoMo ex-
pressiveness to fit into this specific paradigm. MCL and UbiCoMo share with
LINC the importance of separation between coordination and computation.

In [11] the authors propose a process-based methodology to design event-
based mobile applications. They aim to translate UML activity diagram to event
based models offering more flexibility. As outlined in their conclusion, event-
based approaches does not make synchronisation easy. We believe this issue
could be overcome by the transactional guaranties of LINC. We also believe
that LINC rules could be generated from the activity diagram. This could be an
interesting track to consider.

In [17] the authors present a programming model for concurrent coordina-
tion patterns targeting highly parallel and distributed applications. Similarly to
LINC, they provide a language to focus on the coordination in complex environ-
ment. They aim to provide a high level language, relying on a formal language
from which LINC could also take advantage of. Finally, their model relies on
a tuple-space middleware. LINC seems a good candidate to implement their
model. Generating LINC rules from a higher level model is in our future work.

In TOTA (Tuples On The Air) [21], tuples are not associated to a specific
host, they are injected in the network and can autonomously propagate in the
network according to a specified pattern. A tuple is defined by a content and
a propagation rule. The TOTA approach might be interesting in some context
where the data moves around the network while hosts come and go. However,
in other cases this might include an overhead in the traffic because tuples are
propagated even if no host is interested in them. On the contrary, in LINC, tuples
are exchanged only when a rule is needing them. We believe that the autonomous
and self evolution idea of TOTA could be implemented in LINC thanks to its
reflexivity. Indeed objects and rules can evolve to reach an emergent behaviour.

Inspired by Gamma [4], another approach to reach self evolving system is to
use chemical inspired tuple-spaces [30]. The idea is to rely on the semantic of
chemical reactions to build coordination laws. High level information are then
given on tuples and they autonomously evolve and move. The goal is to have an
emergent behaviour with this approach. For instance, services scarcely used will
automatically disappear from the tuple-space. This work only focus on the long
run emerging behaviour, they do not allow to directly build coordination for the
physical world. Moreover, focus has been on simulation [26] even if a middleware
is under development in the scope of the SAPERE project [27]. Finally, in [31]
the author define a spatial computing coordination language to extend Linda
with space and time information in the tuples. As far as we understand, no
implementation exists so far. LINC, with its reflexivity, could implement these
proposal on large scale distributed systems.

6 Conclusion

This paper has presented the LINC coordination environment. It provides a com-
pact yet powerful coordination language based on the three paradigms: associa-
tive memory, production rules and distributed transactions. This combination
provides a language with a high expressiveness. High level coordination rules can
be written while relying on the tuple-space to abstract low level implementation
and communication details.

In addition, LINC is highly reflexive. Because everything is a resource it is
easy to control the execution of rules or group of rules. Coordination rules can
be dynamically added, removed or moved to another object. Objects themselves
can migrate and independently designed applications can be merged at run-time.

With all these properties and its reflexivity, LINC is a powerful environment
to tackle the challenges of the future systems of systems.

We illustrated this with several real world case studies implemented on top
of LINC. This demonstrated the ability of LINC to be used in contexts such as
building automation, power efficiency or monitoring network systems.

Future work will focus on providing a high-level language such as automata
in order to prove the correctness of the coordination and then to automatically
generate the corresponding coordination rules. We envisage to use this mech-
anism for self-evolving system where we can prove that the evolution will not
break the running application.

Acknowledgement. This work has been partially funded by the FP7 SCUBA
project under grant nb 288079.

References

1. Jean-Marc Andreoli, Damián Arregui, François Pacull, and Jutta Willamowski.
Resource-based scripting to stitch distributed components. In Engineering and
Deployment of Cooperative Information Systems, pages 429–443. Springer, 2002.

2. Jean-Marc Andreoli, François Pacull, Daniele Pagani, and Remo Pareschi. Mul-
tiparty negotiation of dynamic distributed object services. Science of Computer
Programming, 31(2):179–203, 1998.

3. BACNet. http://www.bacnet.org/, 2014.
4. Jean-Pierre Banătre, Pascal Fradet, and Daniel Le Métayer. Gamma and the

chemical reaction model: Fifteen years after. In Multiset Processing, pages 17–44.
Springer, 2001.

5. Jorge Barbosa, Fabiane Dillenburg, Gustavo Lermen, Alex Garzão, Cristiano
Costa, and João Rosa. Towards a programming model for context-aware appli-
cations. Computer Languages, Systems & Structures, 38(3):199–213, 2012.

6. Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency control
and recovery in database systems, volume 370. Addison-wesley New York, 1987.

7. Manfred Bortenschlager, Gabriella Castelli, Alberto Rosi, and Franco Zambonelli.
A context-sensitive infrastructure for coordinating agents in ubiquitous environ-
ments. Multiagent and Grid Systems, 5(1):1–18, 2009.

8. Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Mars: A programmable
coordination architecture for mobile agents. Internet Computing, IEEE, 4(4):26–
35, 2000.

9. Thomas Cooper and Nancy Wogrin. Rule-based Programming with OPS5, volume
988. Morgan Kaufmann, 1988.

10. Laurent-Frederic Ducreux, Claire Guyon-Gardeux, Suzanne Lesecq, Francois Pac-
ull, and Safietou Raby Thior. Resource-based middleware in the context of het-
erogeneous building automation systems. In IECON 2012-38th Annual Conference
on IEEE Industrial Electronics Society, pages 4847–4852. IEEE, 2012.

11. Tore Fjellheim, Stephen Milliner, Marlon Dumas, and Julien Vayssière. A process-
based methodology for designing event-based mobile composite applications. Data
& Knowledge Engineering, 61(1):6–22, 2007.

12. Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann. A lightweight
coordination middleware for mobile computing. In Coordination Models and Lan-
guages, pages 135–151. Springer, 2004.

http://www.bacnet.org/

13. David Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

14. Hoel Iris and Francois Pacull. Smart sensors and actuators: A question of discipline.
Sensors & Transducers Journal, 18(special Issue jan 2013):14–23, 2013.

15. Christine Julien and G-C Roman. Egospaces: Facilitating rapid development of
context-aware mobile applications. Software Engineering, IEEE Transactions on,
32(5):281–298, 2006.

16. KNX. http://www.knx.org/, 2014.
17. Eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas Scheller.

Peer-based programming model for coordination patterns. In Coordination Models
and Languages, pages 121–135. Springer, 2013.

18. Edward A Lee. Cyber physical systems: Design challenges. In Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium
on, pages 363–369. IEEE, 2008.

19. LONWorks. http://www.lonmark.org/, 2013.
20. Maxime Louvel and Francois Pacull. A coordinated matrix of rfid readers as inter-

actions input. In SENSORDEVICES 2013, The Fourth International Conference
on Sensor Device Technologies and Applications, pages 91–96, 2013.

21. Marco Mamei and Franco Zambonelli. Programming pervasive and mobile comput-
ing applications: The tota approach. ACM Transactions on Software Engineering
and Methodology, 18(4):15, 2009.

22. Amy L Murphy, Gian Pietro Picco, and G-C Roman. Lime: A middleware for
physical and logical mobility. In Distributed Computing Systems, 2001. 21st Inter-
national Conference on., pages 524–533. IEEE, 2001.

23. Amy L Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A coor-
dination model and middleware supporting mobility of hosts and agents. ACM
Transactions on Software Engineering and Methodology, 15(3):279–328, 2006.

24. Andrea Omicini and Mirko Viroli. Coordination models and languages: From paral-
lel computing to self-organisation. The Knowledge Engineering Review, 26(01):53–
59, 2011.

25. George A Papadopoulos and Farhad Arbab. Coordination models and languages.
Advances in computers, 46:329–400, 1998.

26. Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation of
computational systems with alchemist. Journal of Simulation, 7(3):202–215, 2013.

27. SAPERE. http://www.sapere-project.eu, 2013.
28. SCUBA. http://www.aws.cit.ie/scuba/, 2011.
29. Scuba. Deliverable 5.3. http://linc.middlewares.info/wiki1/images/8/81/

Scuba_d_5_3.pdf, 2013.
30. Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. Spatial

coordination of pervasive services through chemical-inspired tuple spaces. ACM
Trans. Auton. Adapt. Syst., 6(2):14:1–14:24, June 2011.

31. Mirko Viroli, Danilo Pianini, and Jacob Beal. Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments. In Coordination Models and
Languages, pages 212–229. Springer, 2012.

32. Günter von Bültzingsloewen, Arne Koschel, Peter C Lockemann, and H-D Wal-
ter. Eca functionality in a distributed environment. In Active Rules in Database
Systems, pages 147–175. Springer, 1999.

33. Yongjie Zheng, Alvin TS Chan, and Grace Ngai. Mcl: a mobigate coordination
language for highly adaptive and reconfigurable mobile middleware. Software:
Practice and Experience, 36(11-12):1355–1380, 2006.

http://www.knx.org/
http://www.lonmark.org/
http://www.sapere-project.eu
http://www.aws.cit.ie/scuba/
http://linc.middlewares.info/wiki1/images/8/81/Scuba_d_5_3.pdf
http://linc.middlewares.info/wiki1/images/8/81/Scuba_d_5_3.pdf

	LINC: a compact yet powerful coordination environment

