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Abstract. Predictability is considered as a crucial system property that
determines with certainty the future occurrence of a fault based on a
sequence of observations on system model. There are very few works
done on the predictability problem for discrete event systems, which is
however extremely important for developing critical complex systems.
In this paper, we propose a formal sufficient and necessary condition
for this property before presenting a new algorithm based on it, which
is extendible from a centralized framework to a distributed one. Both
are formally presented, as well as experimental results that show the
efficiency of our approach.

1 Introduction

Fault diagnosis is a crucial and challenging task in the automatic control of com-
plex systems [15, 19, 5, 14, 4, 8, 1, 9], whose very possibility depends on a system
property called diagnosability. The diagnosability problem has received consid-
erable attention in the literature. Diagnosability describes the system ability to
determine whether a fault has effectively occurred based on the observations.
In a given system, the existence of two infinite behaviors, with the same obser-
vations but exactly one containing the considered fault, violates diagnosability.
The existing works search for such ambiguous behaviors both in centralized [17,
12, 16, 3, 7] and distributed [13, 18, 20] ways. The most classical method is to
construct a structure called twin plant that captures all pairs of observationally
equivalent behaviors to directly check the existence of such ambiguous pairs.
However, sometimes it is very expensive to recover the system after fault, which
motivates the work on predictability problem, i.e., the system ability to predict
with certainty future faults when this system is still in a normal state.

Predictability is an important system property that determines at design
stage whether the considered fault can be correctly predicted before its occur-
rence based on available observations. If a fault is predicted, the system operator
can be warned and may decide to halt the system or otherwise take preventive
measures. However, up to now, very few works have been done on this subject
for discrete event systems (DESs). The authors of [6] proposed a deterministic
diagnoser approach with exponential complexity as well as a polynomial method
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that checks predictability directly on a twin plant. Both of them were established
in a centralized way and are difficult to be extended for distributed systems due
to combinatorial explosion. The first distributed method handling this problem
was proposed in [21], which however has the same search space as the centralized
one in the worst case.

In this paper, we propose a new efficient algorithm of predictability for DESs.
First, we propose and then prove a sufficient and necessary condition for pre-
dictability, i.e., characterizing pairs of behaviors violating predictability as two
trajectories, exactly one containing the fault, with the same observations before
the fault and the normal one being infinite. Totally different from the polynomial
method proposed in [6] that reused twin plant, we construct another structure
that captures all pairs of trajectories with the same observations only before the
fault while preserving the normal trajectories, where the existence of violating
pairs can be directly checked. More importantly, we show how to extend this
method in a distributed framework with smaller state space even in the worst
case. Our distributed algorithm is different from that proposed for checking di-
agnosability described in [13]. For diagnosability, it suffices to synchronize local
twin plants based on communication events in a unique way since the same ob-
servations are imposed both before and after the fault. While for predictability,
we have to check the same observations only before the fault as well as the
infinity of the corresponding normal trajectory, both in an incremental way.

The organization of the rest of the paper is as follows. The next section recalls
the definitions and gives a sufficient and necessary condition for predictability.
Section 3 proposes a new predictability algorithm before extending it to a dis-
tributed framework in Section 4. Section 5 gives some experimental results. Then
we conclude in Section 7 after a discussion in Section 6.

2 Preliminaries

In this section, we show how to model a DES, recall the definition of its pre-
dictability, and propose a sufficient and necessary condition with a formal proof.

2.1 Models of DESs

We model a DES as a Finite State Machine (FSM), denoted by G = (Q,Σ, δ, q0),
where Q is the finite set of states, Σ is the finite set of events, δ ⊆ Q × Σ ×Q
is the set of transitions (the same notation will be kept for its natural extension
to words of Σ∗), and q0 is the initial state. The set of events Σ is divided into
three disjoint parts: Σ = Σo]Σu]Σf , where Σo is the set of observable events,
Σu the set of unobservable normal events and Σf the set of unobservable fault
events.

Example 1. The left part of Figure 1 shows an example of a system model G,
where Σo = {O1, O2, O3}, Σu = {U1, C1, C2}, and Σf = {F}.
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Fig. 1. A system example (left) and its diagnoser (right).

Given a system model G, its prefix-closed language L(G), which describes
both normal and faulty behaviors of the system, is the set of words produced by
G, L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}. In the following, we call a word from
L(G) a trajectory in the system G and a sequence q0σ0q1σ1... a path in G, where
σ0σ1... is a trajectory in G and we have ∀i, (qi, σi, qi+1) ∈ δ. Given s ∈ L(G), we
denote its set of strict prefixes as s, i.e., s /∈ s, and the post-language of L(G) after
s by L(G)/s, formally defined as: L(G)/s = {t ∈ Σ∗|s.t ∈ L(G)}. The projection
of the trajectory s to observable events of G (resp. Gi in distributed system) is
denoted by P (s) (resp. Pi(s)). Traditionally, we assume that the system language
is always live (any trajectory has a continuation, i.e. is a strict prefix of another
trajectory) without unobservable cycle. Precisely, we have at least one transition
from any state and every cycle in the system contains at least one observable
event. This makes it feasible to check the infiniteness of a trajectory. Given two
FSMs G1 and G2, their synchronization with respect to the set of synchronized
events Σs ⊆ Σ1∩Σ2

4 consists in synchronizing only the events in Σs, denoted by
G1 ‖Σs

G2. All events not in Σs can occur independently whenever possible. It
is easy to generalize the synchronization for a set of FSMs using its associativity
properties [2]. We will need also some infinite objects. So, we denote by Σω the
set of infinite words on Σ and by Σ∞ = Σ∗ ∪Σω the set of words on Σ, finite
or infinite. We define in an obvious way Lω(G) and L∞(G) and thus infinite
trajectories and infinite paths.

2.2 Predictability of DESs

Predictability is considered as a crucial property of a DES in the sense that
a predictable fault can possibly be avoided. Similar to diagnosability, the pre-
dictability algorithm that we will propose has exponential complexity with the
number of fault types. For the sake of reducing complexity and simplicity, only
one fault type at a time is considered but multiple occurrences of faults are al-
lowed, and the other types of faults are processed as unobservable normal events.
However, this framework can be extended in a straightforward way such that a
number of different faults can be considered simultaneously. Now we rephrase
the predictability definition [6], where a trajectory ending with a first occurrence

4 To avoid heavy notations, we will use sometimes Σs * Σ1 ∩Σ2. Synchronization set
has then to be understood as Σs ∩Σ1 ∩Σ2.
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of the fault F (enough to cover the case with several occurrences of F ) is denoted
by sF and the set of natural numbers by N.

Definition 1 (Predictability). A fault F is predictable in a DES G, iff

∃k ∈ N,∀sF ∈ L(G),∃η ∈ sF ,∀p ∈ L(G),∀p′ ∈ L(G)/p,
[(P (p) = P (η)) ∧ (F /∈ p) ∧ (|p′| ≥ k)⇒ (F ∈ p′)].

A fault F is predictable iff for any trajectory sF ending with a first occurrence
of F , there exists at least one strict prefix of sF , denoted by η (thus η does not
contain F ) such that for each normal trajectory p with the same observations as
η, all the long enough (depending only on F ) continuations of p should contain
F . Only in this way, F can be certainly predicted before its occurrence.

2.3 Sufficient and Necessary Condition

Suppose now that we have two trajectories in a given system such that exactly
one, denoted by sF , ends with the fault F , the other without F has at least
one prefix with the same observations as the maximum strict prefix of sF and is
infinite. With such two trajectories, whatever we observe before the occurrence
of F , we cannot tell whether F will occur or not since both are possible while
only one will contain F in the future. Now we formally define such a pair of
trajectories.

Definition 2 (Pre-Violating Pair (PVP)). Given a system G and a fault F to
be predicted, a pair of trajectories sF , p.p′ ∈ L∞(G) is called a Pre-Violating Pair
(PVP) with respect to F if the three conditions are satisfied: 1) P (sF ) = P (p);
2) F /∈ p.p′; 3) p′ is infinite.

Here is the sufficient and necessary condition of predictability.

Theorem 1. A fault F is predictable in a system G iff there is no PVP in G
with respect to F .

Proof. ⇒ Suppose that we have a PVP in G, i.e., sF and p.p′ as in Definition
2. Hence, we have P (sF ) = P (p), i.e., the maximum normal prefix of sF has

the same observations as p since F is not observable. It follows that ∀η ∈ sF ,
∃η′ ∈ p ∪ {p} such that P (η) = P (η′). Furthermore, η′ has at least one normal
infinite continuation since F /∈ p.p′ and p′ is infinite. This violates Definition 1,
i.e., F is not predictable.
⇐ Now suppose that F is not predictable. It follows that Definition 1 is violated,
which can be expressed by the following: ∀k ∈ N, ∃sF ∈ L(G), ∀η ∈ sF , ∃p ∈
L(G), F /∈ p, P (p) = P (η), ∃p′ ∈ L(G)/p, |p′| ≥ k, F /∈ p′. Let η as the maximum
normal prefix of sF . The above formula implies (by taking k greater than |Q|)
that there must exist a normal infinite trajectory p.p′, i.e., F /∈ p.p′, such that
P (p) = P (η). This means P (p) = P (sF ) since η is the maximum normal prefix
of sF . Hence, p.p′ and sF constitute exactly a PVP. �



A Predictability Algorithm for Distributed Discrete Event Systems 5

3 Centralized Framework

Since the predictability verification of a given fault F is to check the existence of
PVP, from Definition 2, we take three steps: 1) obtain the set of maximum strict
prefixes for all sF , and actually we can restrict to those sF which are minimal for
the order induced by the prefix relation (with F excluded), which is enough from
Theorem 1 as a PVP for w.w′.F is a PVP for w.F; 2) obtain the set of infinite
normal trajectories; 3) compare the above two sets in terms of observations to
check the existence of PVP. We will construct one FSM for each step. Before
this, given a system model, we first construct its non-deterministic diagnoser
to explicitly show fault information, which is different from the deterministic
diagnoser proposed in [17].

Definition 3 (Diagnoser). Given a system G, its diagnoser with respect to a
considered fault F is a nondeterministic FSM D = (QD, ΣD, δD, q

0
D), where 1)

QD ⊆ Q× {N,F} is the set of states; 2) ΣD = Σo is the set of events; 3) δD ⊆
QD×ΣD×QD is the set of transitions; 4) q0D = (q0, N) is the initial state. The
transitions of δD are those ((q, `), e, (q′, `′)), with (q, `) reachable from the initial

state q0D, such that there is a transition path p = (q
u1−→ q1...

um−−→ qm
e−→ q′) in

G, with uk /∈ Σo,∀k ∈ {1, ...,m}, e ∈ Σo and `′ = F , if ` = F ∨F ∈ {u1, ..., uk},
and otherwise, `′ = N .

The diagnoser preserves all observable information. Then we append the fault
label F to those states, up to which the fault has already occurred, and normal
label N to those without the fault occurrence. The right part of Figure 1 depicts
the diagnoser of the system in Example 1, where gray nodes represent the states
where F has effectively occurred. Based on such a diagnoser, we then construct
two different FSMs to capture the set of maximum normal prefixes of all minimal
faulty trajectories and the set of normal ones, respectively.

Definition 4 (Fault-Prefix Diagnoser). Given a diagnoser D, the fault-prefix
diagnoser DFP is constructed as follows:

– Keep only the minimal paths containing the fault label;
– ∀((q, l), e, (q′, l′)) ∈ δD, l = N, l′ = F , it is transformed into ((q, l), Σo, (q, l)) ∈
δD, i.e., (q, l) goes back to itself with any observable event. Such a state (q, l)
is called an absorbing state in the following.

Recall that predictability analysis consists in first checking whether the max-
imum normal prefix of a faulty trajectory has the same observations with a
normal one, and then examining whether the normal one is infinite, which is
represented by a cycle in a FSM. This is why in a fault-prefix diagnoser, we keep
the exact observable events before the fault and then add to an absorbing state
a self-cycle with all observable events. The idea is to make it able to synchronize
with a normal trajectory to check whether the latter has a cycle in the future.

Definition 5 (Normal Diagnoser). Given a diagnoser D, the normal diagnoser
DN is obtained by retaining only normal states with their associated transitions.
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To check the existence of PVP, we synchronize the fault-prefix diagnoser and
the normal diagnoser based on the set of observable events. This synchronization
is actually the intersection of the maximum normal prefixes of minimal faulty
trajectories and the normal trajectories in terms of observations.

Definition 6 (Pre-Verifier). Given a system, its pre-verifier PV is constructed
by synchronizing its fault-prefix diagnoser DFP and its normal diagnoser DN

based on observable events, i.e., PV = DFP ‖Σo
DN .

A state of a pre-verifier sv is composed of a state of the fault-prefix diagnoser
and a state of the normal diagnoser, denoted by sv = (qf , qn). All states in DFP ,
DN and thus PV having by construction a normal label N , it will be skipped in
the following. If qf is an absorbing state, then sv is also called an absorbing state.
In a pre-verifier, a path containing a cycle made up of absorbing states is called
a violating path. Note that pre-verifier proposed here greatly reduces the state
space compared to twin plant used both in [6] and [13]. The latter is constructed
directly by synchronizing the whole diagnoser defined in Definition 3 with itself.
Clearly, both fault-prefix diagnoser DFP and normal one DN are smaller than
the diagnoser D. Thus, the pre-verifier DFP ‖Σo DN is much smaller than
D ‖Σo

D, even in the worst case.

Lemma 1. A path in PV is a violating one iff it corresponds to a PVP with
minimal sF in the corresponding system.

Proof. ⇒ Let ρ a violating path in PV . Thus ρ = sv0σ0 . . . s
v
i σi . . . s

v
jσj . . . s

v
kσk . . .

where 0 ≤ i ≤ j, j < k, svj = svk and ∀l < i svl is not an absorbing state, ∀l ≥ i
svl is an absorbing state. By construction of DFP , σ0 . . . σi−1 comes from min-
imal sF where P (sF ) = σ0 . . . σi−1. By construction of DN , σ0 . . . σk comes
from p.p′ ∈ Lω(G) where P (p) = σ0 . . . σi−1, F /∈ p.p′ and p′ is infinite (with
P (p′) = σi . . . (σj . . . σk−1)ω). Thus sF , p.p′ is a PVP in G.

⇐ Let sF , p.p′ a PVP in G with sF minimal. sF gives birth in DFP to qf0σ0 . . .

σi−1q
f
i , 0 ≤ i, where qfi is an absorbing state. p.p′ gives birth in DN to qn0 σ0 . . .

σi−1q
n
i . . . q

n
kσk . . . where i < k and ∃j, j < k, qnj = qnk . Then ρ = (qf0 , q

n
0 )σ0 . . . σi−1

(qfi , q
n
i ) . . . (qfi , q

n
k )σk . . . is a violating path in PV. �

Figure 2 shows the two diagnosers and a part of PV for G in Example 1.
In PV, a state is composed of a fault-prefix diagnoser state (top) and a normal
diagnoser state (bottom). The absorbing states in the fault-prefix diagnoser (X2
and X8) and in PV (all states whose top part is X2 or X8) are bold circles.
A violating path in PV, i.e., with an absorbing state cycle, corresponds to a
PVP. For example, the path whose trajectory is O2.O2.O2ω is a violating path.
Its corresponding trajectories in G are C1.O2.F and C2.O2.U1.O2ω, which are
exactly a PVP with sF = C1.O2.F , p = C2.O2 and p′ = U1.O2ω. So F is not
predictable in G.

The following theorem is from Theorem 1 and Lemma 1.

Theorem 2. A fault F is predictable in a system G iff there is no violating path
in the corresponding PV.
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Fig. 2. Fault-prefix diagnoser (left), normal diagnoser (middle) and part of PV (right)
of G in Example 1.

4 Distributed Framework

In the previous section, we have presented a centralized approach of predictabil-
ity analysis. However, it is not realistic to construct a global model for a complex
system due to combinatorial explosion. In this section, we will show how to ex-
tend our centralized method to a distributed framework.

4.1 Distributed Model

We consider a distributed DES G composed of a set of components G1, ..., Gn
that communicate with each other by communication events. Similar to the
system model in the centralized approach, each component is modeled by a
FSM, denoted by Gi = (Qi, Σi, δi, q

0
i ). Differently, the set of events Σi is divided

into four disjoint parts instead of three: Σi = Σio ] Σiu ] Σif ] Σic , where
Σic is the set of unobservable correct communication events. For any pair of
distinct local components Gi and Gj , we have Σio ∩ Σjo = ∅, Σiu ∩ Σju = ∅,
and Σif ∩ Σjf = ∅. In other words, the only shared events between different
components are communication ones. Thus, given a considered fault F , it can
only occur in one component, denoted by GF (called the faulty component, the
others being the normal ones). Similarly, we assume that the language for each
component is always live without unobservable cycle.

Example 2. A distributed system G′ is composed of two components G1 and
G2, where the system in Example 1 is now considered as G1 with the difference
Σ1u = {U1} and Σ1c = {C1, C2}, and G2 is shown in the left part of Figure 3
with Σ2o = {O4, O5, O6} and Σ2c = {C1, C2}.

Given a distributed DES, to apply the centralized predictability algorithm,
we have first to synchronize all components based on communication events to
obtain the global model. The global pre-verifier is calculated by synchronizing
the fault-prefix diagnoser with the normal diagnoser, both built from the global
model, based on observable events before the fault. The PVP is then checked
directly on this global pre-verifier. To save search space but with the same result,
the idea of our distributed algorithm is to first construct local structures (e.g.,
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Fig. 3. Component G2 (left) and the diagnoser of G1 (right) for the system G′ in
Example 2.

local pre-verifier) by synchronization on local observable events before the fault
to search for local version of PVP. The correspondence between this local version
and global PVP is then checked by the synchronization based on communication
events, which is done partially and incrementally. We will provide a formal proof
for the equivalence between centralized and distributed approach.

4.2 Local Analysis

In a distributed DES, since the fault to be predicted can only occur in GF ,
we should obtain the original local predictability information from GF before
determining the global decision. For this, we first define the local version of
PVP, the projection of s on the local observations in GF denoted by PF (s).
Different from PVP, local PVP does not require an infinite trajectory, which
will be checked from global point of view.

Definition 7 (Local PVP). In the component GF , a pair of local trajectories
sF , p.p′ ∈ L∞(GF ) is called a local PVP if F /∈ p.p′ and PF (sF ) = PF (p).

Lemma 2. Given a distributed DES G, the projection of a PVP on GF is a
local PVP. But conversely, it is not true that all local PVPs can be extended into
(global) PVPs.

Proof. ⇒ Suppose that two global trajectories, denoted by sF and p.p′ are a
PVP. We show that the projections of sF and p.p′ on GF , denoted by PF (sF )
and PF (p.p′), are a local PVP. Since F can only occur in GF , We must have
PF (sF ) = s′F , i.e., the projection of sF on GF should also be a local trajectory
ending with F . From F /∈ p.p′, we have F /∈ PF (p.p′). Furthermore, Σio ∩Σjo =
∅ for i 6= j implies that P (sF ) = P (p) ⇒ PF (PF (sF )) = PF (PF (p)). From
Definition 7, PF (sF ) and PF (p.p′) constitute a local PVP.
: Now consider the two local trajectories p1 = C1.O2.F and p2 = C2.O2.U1
in G1 that constitute a local PVP and show that they are not extendible into
a PVP. The reason is that when synchronizing G1 and G2, for p2, O5 occurs
necessarily before O2 to synchronize on C2 while, for p1, we have O2 without O5
before F . Thus, O5 distinguishes the normal trajectory from its corresponding
faulty one before F . Hence, p1 and p2 cannot be extended into a global PVP. �
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From Lemma 2, we know that a local PVP may or may not correspond to
a PVP. To verify predictability, it is necessary to check whether a local PVP
can be effectively extended into a global PVP. To obtain the set of local PVPs,
we construct the local diagnoser exactly as in Definition 3 except that here the
set of events retained are not only observable events but also communication
events, the latter used to check the extendibility of a local PVP into a PVP
in the following step. The right part of Figure 3 shows the diagnoser of G1

in Example 2. Then the local fault-prefix diagnoser DFPF
and local normal

diagnoser DNF
are constructed in the same way as Definition 4 and Definition 5

with the only difference that their construction is based on the local diagnoser.
To obtain the local pre-verifier for GF , denoted by PVF , we distinguish the
unobservable communication events in DFPF

, prefixed by F , and those in DNF
,

prefixed by N , such that PVF is built by synchronizing DFPF
and DNF

based
on the set of observable events. From now on, we call a path of a local PV
containing at least one absorbing state a local violating path. The left part
of Figure 4 depicts a part of the local PV for G1, where absorbing states are
represented by bold circles. All paths of length at least 3 shown here are local
violating paths.
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Fig. 4. Part of local PV of G1 (left) and part of normal verifier of G2 (right) for the
system G′ in Example 2.

The proof of Lemma 3 is similar to that of Lemma 1.

Lemma 3. A path in PVF is a local violating one iff it corresponds to a local
PVP with minimal sF in GF .

4.3 Global Checking

Since a local violating path corresponds to a local PVP, the predictability check-
ing for a distributed system is to check whether a local violating path in PVF
corresponds to a PVP.
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Definition 8 (Global Extendibility of Local Violating Paths). Given a system G,
let p1 and p2 be the corresponding local trajectories in GF for a local violating
path ρ in the PVF . ρ is globally extendible if the following two conditions are
satisfied: 1) ∃p′1, p′2 ∈ L∞(G), such that PF (p′1) = p1 and PF (p′2) = p2; 2) p′1
and p′2 constitute a PVP.

Now the following theorem can be proved from Theorem 1, Lemma 2, Lemma 3
and Definition 8.

Theorem 3. A fault F is predictable in a system G iff there is no local violating
path in PVF that is globally extendible.

Checking the extendibility of a local violating path means to check firstly whether
the observations in other components can distinguish the corresponding two
trajectories before fault occurrence and secondly whether the normal trajectory
can be extended into an infinite one. For this, given a normal component, we
construct the following structure.

Definition 9 (Normal Verifier). Given a normal component Gi, its normal ver-
ifier NVi is constructed as follows:

1. Construct a coarser model G′i based on Gi by keeping only the set of com-
munication and observable events;

2. Construct two instances G′Fi and G′Ni of G′i by prefixing the communication
events by F and N , respectively, and then synchronize them based on the
observable events: NVi = G′Fi ‖Σio

G′Ni ;
3. Retrieve the lost parts of G′Ni in NVi that are blocked by different observable

events during step 3, called Normal Unique parts, shortly NU parts. i.e.,
add to NVi all transitions (qf , qn0 )

e1−→ (qf , qn1 ) . . .
ek−→ (qf , qnk ) such that:

∀j, 1 ≤ j ≤ k, qnj−1
ej−→ qnj is a transition in G′Ni , e1 ∈ Σio , ∃ qf o−→ q′f

transition in G′Fi with o ∈ Σio and ∀ qf
o−→ q′f transition in G′Fi with

o ∈ Σio , e1 6= o.

A normal verifier has two characteristics: 1) obtain all pairs of observationally
equivalent trajectories (non NU parts); 2) recover all parts of trajectories in
G′Ni that are blocked by different observable events (NU parts). The first one is
to check the same observations before the fault while the second is to examine
whether the normal trajectory is infinite. The right part of Figure 4 shows a part
of the normal verifier for G2, where the transitions with double arrows are the
NU parts.

Given the local pre-verifier PVF and a normal verifier NVi, to check the ex-
tendibility of local violating paths in the subsystem composed of GF and Gi,
we take two steps: 1) synchronizing PVF and the non NU parts of NVi based
on communication events (with the same prefix F or N) until arriving in an
absorbing state; 2) from an absorbing state, synchronizing based on communi-
cation events only with the prefix N . Intuitively, the first step checks whether
the corresponding two trajectories in this subsystem have the same observations
before the fault. In NVi, only the non NU parts have the same observations for
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both trajectories. Hence, before achieving absorbing states, only the non NU
parts should synchronize with PVF to guarantee the same observations before
the fault. The second step extends only the normal trajectory to check its infinity
since synchronized events now become the common communication events with
the prefix N. If we synchronize PVF with all NVi with the two steps without
any reduction, then what we get is isomorphic (same set of paths from origin,
and thus same language) to the global pre-verifier obtained by the centralized
approach.

Theorem 4. Given a distributed system G = (G1, ..., Gn), the final synchro-
nized product of PVF with NVi for all normal components is isomorphic to the
global pre-verifier.

Proof. (sketch) Base Case: We first show this equivalence for n=2, i.e., two
components with GF = G1. Given G = (G1, G2), the global pre-verifier is ob-
tained by PV c2 = [G1 ‖Σc G2]FP+PF ‖Σo [G1 ‖Σc G2]N+PN , where FP + PF
(resp. N + PN ) means constructing fault-prefix diagnoser (resp. normal diag-
noser) and adding prefix of F (resp. N) for communication events. This can
be transformed into PV c2 = [DF

1FP
‖ΣF :c

G′F2 ]? ‖Σo
[DN

1N ‖ΣN:c
G′N2 ], where

? represents absorbing state calculation. With our distributed algorithm, the
final FSM obtained is PV d2 = [DF

1FP
‖Σ1o

DN
1N ] ‖ΣF :c?,N:c

[G′F2 ‖Σ2o
G′N2 ]??,

where ΣF :c?,N :c signifies the synchronized events are F communications events
before absorbing states and all N communication events (in particular those in
NU parts after absorbing states) and ?? means the recuperation of NU parts,
i.e., 3rd step in Definition 9. From [DF

1FP
‖ΣF :c

G′F2 ]?, in PV c2 , we only keep F
communication events before absorbing states while retaining the rest of normal
trajectory. This is transformed in PV d2 through the set of synchronized events
ΣF :c?,N :c with ?? operation. Hence, we have PV c2 ' PV d2 .
Inductive Case: Suppose PV cm ' PV dm, we now show PV cm+1 ' PV dm+1. From
above, we have the following demonstration, where the synchronized events are
omitted that are similar to the base case: PV cm+1 = [DF

1FP
‖ ... ‖ G′Fm+1]? ‖

[DN
1N ‖ ... ‖ G

′N
m+1] = [[DF

1FP
‖ ... ‖ G′Fm ]? ‖ G′Fm+1]? ‖ [[DN

1N ‖ ... ‖ G
′N
m ] ‖

G′Nm+1] ' PV cm ‖ [G′Fm+1 ‖ G′Nm+1]?? ' PV dm ‖ [G′Fm+1 ‖ G′Nm+1]?? = PV dm+1. �

We have proved the equivalence between the centralized result and the dis-
tributed one. However, to save search space, in distributed framework, we can
partially and incrementally synchronize all local violating paths in PVF with
NVi for connected components and we have the following theorem.

Theorem 5. Given a system G, let Θ be the set of connected components con-
taining GF . After incrementally checking the extendibility of local violating paths
in PVF with NVi of all normal components in Θ, a local violating path is globally
extendible iff there exists a path p in the final FSM satisfying one of the following
conditions: 1) p has an absorbing state cycle; 2) p has an absorbing state and
Θ 6= G.

The global checking of predictability is much more complex than that of
diagnosability [13]. For the latter, it is enough to construct local twin plants for
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all components before synchronizing them in a unique way since the violating
pair has the same observations in the whole way. While for the former, as shown
in this paper, we have to construct different structures for normal and faulty
components with different ways of synchronization before and after fault.

Consider the part of PVF and of NV2 shown in Figure 4. The local vio-
lating paths whose trajectories are t1 = F :C1.N :C2.O2.O2.O2∗ (resp. t2 =
F :C1.N :C2.O2.N :C1.O3∗) are not globally extendible because N :C2 is blocked
during extendibility checking with NV2. The reason is explained in the proof
of Lemma 2: observations before F are not the same after synchronization.
For the local violating path whose trajectory is t3 = N :C2.O1.O3.N :C1.O3∗,
after checking t3 with NV2, the normal trajectory is blocked by N :C1 after
arriving in absorbing states. This means that the trajectories of the corre-
sponding pair have the same observations before F but the normal one cannot
be infinite. Thus, t3 is not globally extendible. Consider finally the trajectory
t4 = N :C2.O1.O3.O2.O2∗. Its extendibility checking with NV2 achieves absorb-
ing states and makes the normal trajectory infinite with a cycle, i.e., an absorbing
state cycle. Precisely, O5.C2.O1.O3.U1.O2ω is an infinite normal trajectory in
G′ of Example 2, which has the same observable prefix O5.O1.O3 with the faulty
trajectory O5.O1.O3.F . It follows that t4 is globally extendible, i.e., F is not
predictable in G′.

4.4 Algorithm

Now we formally describe our distributed predictability algorithm based on The-
orem 5, which is shown by Algorithm 1. Given the input (line 1) as the set of
component models and the fault F in GF , which is used as initialization of the
current subsystem GS (line 2), we first construct PVF (see Section 4.2 for more
details) and reduce it to only retain local violating paths, i.e., with at least one
absorbing state (lines 3-4). If the reduced PVF is not empty and there exists at
least one connected component to GS , i.e., with at least one common communi-
cation event (line 5), meaning that the retained PVF should be further checked
in an extended subsystem, then we repeatedly perform the following steps: 1)
Select one component Gi not in GS but connected to it before constructing its
normal verifier NVi as described in Definition 9 (lines 6-7); 2) Check the ex-
tendibility of PVF with NVi as described in the previous section (line 8); 3)
Reduce the newly obtained PVF to keep only paths containing at least one ab-
sorbing state before updating the subsystem GS by adding Gi (lines 9-10). In
the final resulting FSM, if there exists at least one globally extendible violating
path (line 11), F is not predictable and PVF is provided (line 12). Otherwise, F
is predictable and predictable information is returned (lines 13-14).

5 Experimental Results

We have proved the correctness of our algorithms from theoretical point of view.
To show their efficiency from practical point of view, we have implemented and
compared our centralized algorithm with twin plant method in [6] as well as
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Algorithm 1 Predictability Algorithm for Distributed DES

1: INPUT: component models G1, ..., Gn in G; F in GF

2: Initializations: GS ← GF (current subsystem)
3: PVF ← ConstructPVF (GF )
4: PVF ← Reduce(PVF )
5: while PVF 6= ∅ and ConnectComp(GS , G) 6= ∅ do
6: Gi ← Select(ConnectComp(GS , G))
7: NVi ← ConstructNVi(Gi)
8: PVF ← CheckExtendibility(PVF , NVi)
9: PVF ← Reduce(PVF )

10: GS ← ADD(GS , Gi)
11: if ∃ρ(ρ ∈ PVF ∧GlobExtV iolating(ρ)) then
12: return PVF

13: else
14: return ”the fault is predictable in G”

our distributed one with that described in [21] (for this comparison we also
implemented algorithms described in [6, 21] as codes were not available from the
authors). All our experimental results are obtained by running our java program
on a Mac OS laptop running on a 1.7 GHz Intel Core i7 processor with 8 Go
1600 MHz DDR3 of memory.

Centralized Distributed
S/T (TP)
vs. S/T(PV)

T (ms)
T(LPV)
[21] vs. O

T(NV)
[21] vs. O

T(FP)
[21] vs. O

T(ms)

Ex G 36/62 vs. 16/21 26 vs. 21 —
G1[6] 9/10 vs. 4/3 16 vs. 9 —
G2[6] 10/12 vs. 3/4 17 vs. 10 —

Ex1 [21] 23/27 vs. 7/7 15 vs. 12 —
h-c c1 300/566 vs. 21/16 51 vs. 23 —

Ex G′ — 69 vs. 21 43 vs. 25 86 vs. 28 186 vs. 43
Ex2 [21] — 68 vs. 21 29 vs. 16 106 vs. 33 81 vs. 33
h-c d1 — 51 vs. 22 204 vs. 20 836 vs. 51 8s vs. 30
h-c d2 — 226 vs. 16 204 vs. 20 536 vs. 15 6mn vs. 33
h-c d3 — 116 vs. 21 254 vs. 24 1344 vs. 42 1mn vs. 36

Table 1. Experimental comparison results for centralized and distributed algorithms

Table 1 shows part of our experimental results, where final verdict results,
i.e., whether the system is predictable or not, of all examples are omitted, which
are exactly the same for all algorithms. For centralized comparison, we give the
number of states/transitions of twin plant (S/T(TP)) for algorithm in [6] and
that of our pre-verifier (S/T(PV)), for the examples G in this paper, G1, G2

in [6], Ex1 in [21] and one hand-craft (h-c c1) example. And for distributed
comparison, we have the number of transitions in local pre-verifier(T(LPV)),
normal verifier (T(NV)) as well as in the final synchronized product (T(FP)),
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both for algorithm proposed in [21] and our distributed one (O). The examples
that we chose to show here include G′ in this paper and the distributed one Ex2
in [21] with some h-c examples to show the scalability. For the sake of simplicity,
we use the name of structures defined in this paper to compare the different local
structures with the same goal in both algorithms to show the state space that can
be saved by our algorithm. To compare running time for all these algorithms, we
use millisecond (ms) as time unit by default and s for second and mn for minute.

Our experimental results show that our algorithms can save at least 50%
space for most of our examples. Note that in this figure, we only give the results
for systems with two components due to space limit. Actually our experimental
results with more components show that more components we have, more space
can be saved by our algorithm. Another important observation is that the state
space saved by our algorithm also depends on two other factors. One is the
percentage of observable events, less this percentage is, more space is saved. For
example, h-c c1 has the same structure in terms of observable events as Ex G
in this paper but with more unobservable events. We can save state space much
more for h-c c1 compared to Ex G. Another one is the position of the fault,
earlier the fault occurs, more space is saved. For example, in h-c d1, the fault
occurs almost at the latest step while in h-c d2, the fault occurs at the very
beginning. The faulty components have the same structure. The results show
that our algorithm can save more space in the case of early occurrence of the
fault, which is reasonable considering that we introduce absorbing states to not
only guarantee the same observations before the fault but also avoid keeping all
the events after the fault. The time saved is even more dramatical in the extreme
case h-c d2 in terms of the fault position, 6 minutes vs. 33 milliseconds. Note
that the state space saved for big examples (e.g., hand-craft ones) is more clear
than for smaller ones (e.g., ones found in the literature).

6 Discussion

In [6], the authors analyzed predictability directly on a global twin plant. They
captured the ambiguous behaviors violating predictability in different paths of
the twin plant, which is not suitable for a distributed framework. While we pro-
pose a different structure where a PVP violating predictability is caught by only
one path, which facilitates the distributed extension by enabling the extensibility
checking of local violating paths. To verify diagnosability in a distributed way, it
is sufficient to construct a local twin plant for each component and then synchro-
nize them to make sure that the two corresponding trajectories of each path in
the final product have the same global occurrence of the observations; this is the
distributed algorithm proposed in [13]. While to verify predictability, we have
to construct a structure where each path captures a pair of trajectories with
the same observations only before the fault but where the normal trajectory
cannot be blocked after the fault, which is quite different from diagnosability
and much more difficult, especially in the distributed case. Another close work
is the distributed algorithm in [21], where the condition violating predictability
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is not formally proved. Moreover, the authors chose to exploit all states after
the fault, which is not necessary since predictability concerns the same obser-
vations only before the fault. It follows that, in the worst case, the state space
could be the same as the centralized approach. While we construct two different
diagnosers with absorbing states, which greatly reduce the search space even in
the worst case but always with the correct result. As in the previous approaches
proposed in the above papers, our predictability checking is also polynomial in
the number of system states. But it can practically be much more applicable for
large complex systems considering the reduced space. This is confirmed by our
experimental results shown in the previous section.

7 Conclusion

In this paper, we propose a new approach for predictability analysis both in a
centralized and a distributed framework. First, we formally characterize pairs of
trajectories violating predictability. Then, we show how to check the existence
of such pairs in a centralized way before adapting it for a distributed frame-
work. Finally, we provide some experimental results to support the efficiency of
our algorithms. One perspective of this work is to adapt our approach to deal
with fault patterns [11], which is more general in the diagnosis domain. In the
literature, only a centralized framework is proposed in [10], which is not extend-
able to a distributed one since predictability violation is also checked directly on
twin plant. Another one is to extend our approach to distributed systems with
asynchronous communication events, which is not yet handled in the literature.
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