
HAL Id: hal-01274772
https://hal.science/hal-01274772

Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kinematic Modeling and Singularity Treatment of
Steerable Wheeled Mobile Robots with Joint

Acceleration Limits
Mohamed Sorour, Andrea Cherubini, Robin Passama, Philippe Fraisse

To cite this version:
Mohamed Sorour, Andrea Cherubini, Robin Passama, Philippe Fraisse. Kinematic Modeling and
Singularity Treatment of Steerable Wheeled Mobile Robots with Joint Acceleration Limits. ICRA:
International Conference on Robotics and Automation, May 2016, Stockholm, Sweden. pp.2110-2115,
�10.1109/ICRA.2016.7487360�. �hal-01274772�

https://hal.science/hal-01274772
https://hal.archives-ouvertes.fr


  

 

Abstract— Non-holonomic omnidirectional mobile robots 

have higher load carrying capacity than their holonomic 

counterparts. Once the steer joint configuration is initialized, 

they can perform arbitrarily complex three-dimensional 

trajectories in the plane of motion and, as such, are more 

suitable for industrial contexts. However, their kinematic 

model presents representational and structural singularities, 

solutions to which must respect actuator performance limits. 

Recent research efforts have provided either simple restricting 

of the velocity space (among which few considered hardware 

limits) or complex non-restricting (no hardware limits 

considered) solutions. Most of these efforts are providing 

solutions at the kinematic control level. Instead, here we 

propose both a representational singularity free kinematic 

model, and a simple numeric treatment for the kinematic 

singularity. We further provide a method to tune the latter, to 

respect the actuator acceleration limits. Thanks to its steer rate 

damping behavior, the method can be further extended, to 

respect joint limits. Another benefit is the treatment of the 

singularity at the level of the kinematic model, which enhances 

real time capabilities. The developed method has been tested 

successfully on the Neobotix-MPO700 mobile robot and shown 

superior results as compared to the embedded controller. 

Index Terms—Wheeled mobile robots, Steerable wheels.  

I. INTRODUCTION 

Mobile robots equipped with fully steerable wheels are 
usually described as pseudo-omnidirectional (or non-
holonomic or quasi onmi), providing a distinction from the 
omnidirectional ones, that employ either castor or 
omnidirectional (swedish) wheels. Since steerable wheels are 
usually characterized by higher load carrying capacity than 
castor or omni-wheels, pseudo-omni platforms are more 
adequate for industrial applications. Although these platforms 
possess only one degree of mobility (i.e., the directly 
controllable degree of freedom, here the rotation about the 
instantaneous center of rotation - ICR), they can perform 
complex three-dimensional trajectories in the plane, only 
after reorienting the steer joints to the proper initial 
conditions. Thus, they do not require special maneuvers, and 
are more suitable than less complex systems (e.g., differential 
drive, car) for limited footprint applications. 

Kinematic modeling of steerable (centered or off-
centered) mobile robots is usually done using the Cartesian 
coordinates of the ICR [1], the polar coordinates of the ICR 
[2-4], or by considering the Cartesian coordinates of the robot 
frame [5, 6]. Each of these methods has its own mathematical 
singularities, indicated in the literature as representational 
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singularities. This type of singularity results from two distinct 
situations, namely having null angular and/or linear velocity. 
Employing the Cartesian coordinates is less prone to such 
singularities, especially if 3 or more wheels are used [5].  

Kinematic (or structural) singularity also exists. This 
refers to cases where the ICR passes by (or nearby) any of the 
steering axes. Then, the steer angle is not uniquely defined 
(infinite solutions respect the kinematic constraints). In the 
neighborhood of such singularity, the steering rate grows 
unbounded. Different approaches have been employed to deal 
with structural singularities. The admissible velocity space 
has been constrained in [3]. Repulsive potential fields have 
been constructed at the steering axes in [1, 4, 7]. Although 
such techniques reduce the available velocity space, they 
suffice in static environments. However, in the emerging 
industrial applications involving human robot collaboration, 
the environment can change suddenly, due to moving 
operators. Then, all the available velocity workspace should 
be exploited, including worst-case scenarios with 1) ICR 
passing by and/or 2) ICR stopping at a steering axis 
(kinematic singularity). Besides, the controller must respect 
joint acceleration limits and mechanical constraints [4, 8, 9]. 

Such issues have recently drawn researchers’ attention. In 
[10], a complex formulation provides a locally singular-free 
representation, by switching between several state space 
representations of the twist. In [11], a time optimal controller 
is developed to account for the joint velocity limits. Such 
controller is shown to be successful in passing by singular 
configurations, while respecting the actuator velocity limits. 
Acceleration limits were further taken into account in [8]. 
However, the methods developed in [11] and [8] result in the 
maximum steering/driving velocity for the axis passed by the 
ICR. While they can handle the scenario 1 mentioned above, 
they are not suitable for scenario 2. The simulations in [10] 
do not provide information on joint axes rates in the vicinity 
and at the singular configurations. 

In this work, we propose a simple, yet numerically robust, 
treatment of the kinematic model. Such treatment introduces 
a damping effect, to oppose the singular behavior. 
Consequently, it solves not only the aforementioned 2 worst-
case scenarios, but also provides a promising candidate to the 
joint limits issue encountered in [4]. We provide a formula 
for online tuning of the damping effect, which maintains the 
joint accelerations below their limits. Additionally, we 
propose a benchmark test trajectory for evaluating, at all 
singular conditions, the performance of novel kinematic 
controllers for this class of mobile robots. 

This paper is organized as follows: Section II presents the 
forward and inverse kinematic models, along with the joint 
initialization strategy. Section III and IV respectively detail 
the proposed treatment of kinematic singularities, and the 
benchmark testing scenario. The experimental results are 
provided in section V, and we conclude in section VI. 
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II. KINEMATIC MODEL 

The kinematic model developed in this section is inspired 
by the pioneering work of Muir et al. [12], Campion et al. 
[6], [12] and Low et al. [14]. In Fig. 1, let 𝓡𝐼 =
(𝑜𝐼 , 𝒙𝐼 , 𝒚𝐼 , 𝒛𝐼) be the inertial (world) reference frame, 
𝓡𝑏 = (𝑜𝑏 , 𝒙𝑏 , 𝒚𝑏 , 𝒛𝑏) the mobile base attached frame with 
the origin 𝑜𝑏  located at its geometric center, 𝓡ℎ𝑖 =
(𝑜ℎ𝑖 , 𝒙ℎ𝑖 , 𝒚ℎ𝑖 , 𝒛ℎ𝑖) is the 𝑖𝑡ℎ hip frame, where 𝑖 = 1,… , 4; a 
frame attached to the fixed part of the steering joint (related 
to the base frame by a fixed transformation matrix) whereas 
the steering frame 𝓡𝑠𝑖 = (𝑜𝑠𝑖 , 𝒙𝑠𝑖 , 𝒚𝑠𝑖 , 𝒛𝑠𝑖) is attached to the 
movable part. The hip and steering frames share the same 
origin, with relative orientation depending on the steering 
angle 𝛽𝑖, 𝓡𝑤𝑖 = (𝑜𝑤𝑖 , 𝒙𝑤𝑖 , 𝒚𝑤𝑖 , 𝒛𝑤𝑖) is a frame attached to 

(but doesn’t rotate with) 𝑖𝑡ℎ wheel. Frame 𝓡𝑤𝑖  is assigned 
such that 𝒙𝑤𝑖  points along the heading of the wheel, which 
rotates about 𝒚𝑤𝑖 by the driving angle 𝜑𝑖. For all the 
described frames, the 𝒛 axis is always pointing upwards. Let 
the mobile base pose with respect to the inertial frame, 
expressed in the inertial frame define the task space 

coordinates and be described by the 3 × 1 vector: 𝝃𝐼 𝑏
𝐼 =

[𝑥 𝑦 𝜃]T, to simplify notation, the right sub, superscripts 
will be omitted in the sequel since they will never change. 
Let the mobile base joint actuation coordinates be the 8 × 1 

vector: 𝑨𝑏 = [𝛽1 … 𝛽4 𝜑1 … 𝜑4]
T. Let the wheel 

velocity at the ground contact point 𝑜𝑐 be the vector 𝒗𝑐𝑖 =
[𝑣𝑡𝑖 𝑣𝑛𝑖 0]T with 𝑣𝑡𝑖 and 𝑣𝑛𝑖 respectively the 𝑖𝑡ℎ wheel’s 
tangential and normal velocities: 
 

𝝂𝑐𝑖 = 𝑹𝑏
𝑤𝑖[𝑹𝐼

𝑏𝝃̇ + 𝜃̇𝒌̂𝑏 × 𝑜𝑏𝑜𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   
𝑏 + 𝛽̇𝑖𝑹𝑠𝑖

𝑏 𝒌̂𝑠𝑖 × 𝑜𝑠𝑖𝑜𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ 
𝑠𝑖 ] 

+𝜑̇𝑖𝒋𝑤̂𝑖 × 𝑜𝑤𝑖𝑜𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   
𝑤𝑖  . 

(1) 

 

In this equation, 𝒌̂𝑏, 𝒌̂𝑠𝑖 and 𝒋𝑤̂𝑖  are unit vectors along the 

axes 𝒛𝑏, 𝒛𝑠𝑖 and 𝒚𝑤𝑖 respectively, 𝑹𝑏
𝑤𝑖 = 𝑹𝑏

𝑠𝑖 = 𝑟𝑜𝑡(𝒛𝑏 , −𝛽𝑖) 

and 𝑹𝐼
𝑏 = 𝑟𝑜𝑡(𝒛𝐼 , −𝜃) are 3 × 3  rotation matrices, the 

vectors 𝑜𝑏𝑜𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   
𝑏 , 𝑜𝑠𝑖𝑜𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ 

𝑠𝑖  and 𝑜𝑤𝑖𝑜𝑐⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   
𝑤𝑖  (colored red in Fig. 1) are 

defined with respect to frames 𝓡𝑏 , 𝓡𝑠𝑖  and 𝓡𝑤𝑖  

respectively, ℎ𝑥𝑖 = ±𝑏 and ℎ𝑦𝑖 = ±𝑎 denote the position of 

the 𝑖𝑡ℎ hip frame origin 𝑜ℎ𝑖  in the base frame 𝓡𝑏 , while 𝑑 

and 𝑟𝑤 denote the steerable wheel offset and radius 

respectively. Using (1) we get the contact point velocities as: 
 

𝜈𝑡𝑖 = [𝑐(𝛽𝑖) 𝑠(𝛽𝑖) 𝑑 − ℎ𝑦𝑖𝑐(𝛽𝑖) + ℎ𝑥𝑖𝑠(𝛽𝑖)] 𝝃̇ 
𝑏  

+𝑑𝛽̇𝑖 − 𝑟𝑤𝜑̇𝑖  , 
(2) 

 

𝜈𝑛𝑖 = [−𝑠(𝛽𝑖) 𝑐(𝛽𝑖) ℎ𝑥𝑖𝑐(𝛽𝑖) + ℎ𝑦𝑖𝑠(𝛽𝑖)] 𝝃̇ 
𝑏  , (3) 

 

with 𝝃̇ 
𝑏 = 𝑹𝐼

𝑏𝝃̇, 𝑐(∗) and 𝑠(∗) shorthand the trigonometric 

cosine and sine functions respectively. By setting 𝑣𝑡𝑖 = 0 

and 𝑣𝑛𝑖 = 0, (2) and (3) respectively describe the rolling 

without slipping, and the no lateral skidding kinematic 

constraints. The no-skid constraint restricts the mobile base 

motion (the wheel cannot move sideways) and forces the 

existence of a unique ICR, around which all the wheels and 

the base frame rotate. From (3), we derive the steering 

angles that respect such constraint: 
 

𝛽𝑖 = 𝑡𝑎𝑛−1 (
𝑦̇ 

𝑏 + ℎ𝑥𝑖𝜃̇

𝑥̇ 
𝑏 − ℎ𝑦𝑖𝜃̇

) . (4) 

This can be time differentiated to obtain the steering rates: 
 

𝛽̇𝑖 =
𝜕𝛽𝑖

𝜕 𝑥̇ 
𝑏

𝑥̈ 
𝑏 +

𝜕𝛽𝑖

𝜕 𝑦̇ 
𝑏

𝑦̈ 
𝑏 +

𝜕𝛽𝑖

𝜕𝜃̇
𝜃̈ = 𝒇1𝑖( 𝝃̇ 

𝑏 ) 𝝃̈ 
𝑏  . (5) 

 

The wheel drive rates can be evaluated using (2) and (5): 
 

𝜑̇𝑖 =
1

𝑟𝑤
([𝑐(𝛽𝑖) 𝑠(𝛽𝑖) 𝑑 − ℎ𝑦𝑖𝑐(𝛽𝑖) + ℎ𝑥𝑖𝑠(𝛽𝑖)] 𝝃̇ 

𝑏 + 𝑑𝛽̇𝑖)

=
1

𝑟𝑤
𝒇2𝑖(𝜷) 𝝃̇ 

𝑏 +
𝑑

𝑟𝑤
𝒇1𝑖( 𝝃̇ 

𝑏 ) 𝝃̈ 
𝑏  . 

(6) 

 

In (5) and (6), the steering and wheel drive rates are related 

to the base velocity 𝝃̇ 
𝑏  and acceleration 𝝃̈ 

𝑏 , expressed in the 

base frame. These equations can be grouped in matrix form 

to derive the inverse kinematic actuation model (IKAM): 
 

𝑨̇𝑏 = 𝑴𝐼( 𝝃̇ 
𝑏 ) 𝜼̇ 

𝑏  , (7) 

 

𝑴𝐼( 𝝃̇ 
𝑏 ) = [

𝟎4×3 𝑭1( 𝝃̇ 
𝑏 )

1

𝑟𝑤
𝑭2(𝜷)

𝑑

𝑟𝑤
𝑭1( 𝝃̇ 

𝑏 )
] , 

 

𝑭1( 𝝃̇ 
𝑏 ) = [𝒇11

𝑇 … 𝒇14
𝑇 ]T , 

 

𝑭2(𝜷) = [𝒇21
𝑇 … 𝒇24

𝑇 ]T , 
 

with 𝜼 
𝑏 = [ 𝝃 

𝑏 𝝃̇ 
𝑏 ]T. Similarly, the forward kinematic 

actuation model (FKAM) can be derived from (6): 
 

𝝃̇ 
𝑏 = 𝑴𝑓(𝜷𝑚)𝑨̇𝑏 , (8) 

 

𝑴𝑓(𝜷𝑚) = [−𝑑 ∗ 𝑭2(𝑑)
+ (𝜷𝑚) 𝑟 ∗ 𝑭2(𝑑)

+ (𝜷𝑚)] . 
 

In (7), 𝜷 is computed as a function of 𝝃̇ 
𝑏  using (4), whereas 

in (8) it is measured by the steer joint position sensor. Matrix 

𝑭2(𝑑)
+ = (𝑭2

T𝑭2 + 𝜆2𝑰3)
−1𝑭2

T is the damped pseudo-inverse 

𝒙𝑏 

𝒚𝑏 

𝑜𝑏 

𝒙𝑤2 

𝑜𝑤1 

𝑜ℎ1, 𝑜𝑠1 

2𝑏 

𝑜𝑤𝑖 

𝑜𝑐𝑖 

𝒙𝑤𝑖 𝒚𝑤𝑖 

𝒗𝑡𝑖 

𝒗𝑛𝑖 

𝒛𝑤𝑖 

𝒙𝑤3 

𝒙𝑤4 

𝒙𝐼 

𝒚𝐼 

𝑜𝐼 

𝜑1 

𝛽1 

𝒙ℎ1 

𝒚ℎ1 

𝒙𝑠1 
𝒚𝑠1 

𝒙𝑤1 𝒚𝑤1 
𝑑 

 

𝑟𝑤 
 

Fig. 1 Modeling schematic for the four fully motorized off-centered, 

steerable wheeled mobile base 
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of 𝑭2 [15, 16], with damping factor 𝜆. Using it, the velocity 
trajectory can be reconstructed from joint velocity 
measurements, even at 𝑭2 singularities, making (8) a robust 

odometry model. Typically when moving with 𝜃̇ = 0; such 
motion will yield a column of zeros depending on the 
direction of motion according to (7).  

As mentioned earlier, mobile robots with steerable wheels 
can perform complex planar trajectories, provided their 
wheels orient to the proper initial values. These initial steer 
angles depend on the trajectory to be performed, and can be 
obtained, using (4) as: 
 

𝛽𝑖(𝑖𝑛𝑖𝑡) = 𝑡𝑎𝑛−1 (
𝑦̇(𝑡𝑖𝑛𝑖𝑡+𝑇𝑠) 

𝑏 + ℎ𝑥𝑖𝜃̇(𝑡𝑖𝑛𝑖𝑡+𝑇𝑠)

𝑥̇(𝑡𝑖𝑛𝑖𝑡+𝑇𝑠) 
𝑏 − ℎ𝑦𝑖𝜃̇(𝑡𝑖𝑛𝑖𝑡+𝑇𝑠)

) . (9) 

 

In (9), 𝑇𝑠 is the sample time and the subscript (𝑡𝑖𝑛𝑖𝑡 + 𝑇𝑠) 
denotes the value of the desired velocity component at the 
first sample time of the trajectory. Since the time needed to 
initialize the steer joints must be taken into account in the 
motion planning phase, it will affect the desired trajectory 
timing. To minimize such effect, the initial steer angles must 
be attained as fast as possible. In addition to using the 
maximum joint acceleration and/or velocity limits, we apply 
the following modification on the output of (9), to minimize 
the motion, based on the current configuration 𝛽𝑖(𝑐): 
 

𝛽𝑖(𝑖𝑛𝑖𝑡) = {

𝛽𝑖(𝑖𝑛𝑖𝑡) − 𝜋, ∀ 𝛽𝑖(𝑖𝑛𝑖𝑡) − 𝛽𝑖(𝑐) > 𝜋 2⁄

𝛽𝑖(𝑖𝑛𝑖𝑡) + 𝜋, ∀ 𝛽𝑖(𝑖𝑛𝑖𝑡) − 𝛽𝑖(𝑐) < 𝜋 2⁄

𝛽𝑖(𝑐), ∀ 𝛽𝑖(𝑖𝑛𝑖𝑡) − 𝛽𝑖(𝑐) = 𝜋

  , (10) 

 

The formula provided in (10) guarantees that the initial steer 
joint angle will always be ≤ ±𝜋 2⁄ . 

III. SINGULARITY TREATMENT 

Singularities related to this kind of mobile robots are 

divided into two categories: kinematic and representational. 

While the latter (for 3 or more steerable WMR) is solved by 

using the Cartesian coordinates of the base frame [1], the 

former still presents a challenging problem. Kinematic 

singularity refers usually to the case where the ICR passes 

by (or nearby) any of the steering axes. In such case, the 

steer angle 𝛽𝑖 in not uniquely defined, as there exist infinite 

values respecting the kinematic constraints. While passing 

this configuration, the steering rate shall grow unbounded 

from the “nearby” to the “at” singular configuration. This is 

shown mathematically in (4), where the denominator of the 

argument of the tan inverse function decreases to zero at 

such singularity. In this paper, we fix this problem with a 

very simple, yet effective, numerical treatment, by adding 

the damping parameters 𝛿1 and 𝛿2 respectively to the 

denominator of the tan inverse argument for the steer angle: 
 

𝛽𝑖 = 𝑡𝑎𝑛−1 (
𝑦̃𝑖

𝑥̃𝑖 + 𝛿1 ∗ 𝑠𝑖𝑔𝑛(𝑥̃𝑖)
) , (4’) 

 

and to the denominator of the partial derivatives in 𝒇1𝑖:  
 

𝜕𝛽𝑖

𝜕 𝑥̇ 
𝑏 =

−𝑦̃𝑖

𝑥̃𝑖
2 + 𝑦̃𝑖

2 + 𝛿2

 ,  

𝜕𝛽𝑖

𝜕 𝑦̇ 
𝑏

=
𝑥̃𝑖

𝑥̃𝑖
2 + 𝑦̃𝑖

2 + 𝛿2

,
𝜕𝛽𝑖

𝜕𝜃̇
=

ℎ𝑥𝑖 𝑥̇ 
𝑏 + ℎ𝑦𝑖 𝑦̇ 

𝑏

𝑥̃𝑖
2 + 𝑦̃𝑖

2 + 𝛿2

 , 

(5’) 

where 𝑦̃𝑖 = 𝑦̇ 
𝑏 + ℎ𝑥𝑖𝜃̇, 𝑥̃𝑖 = 𝑥̇ 

𝑏 − ℎ𝑦𝑖𝜃̇. Although the 

developed inverse kinematic model aims at providing joint 

steer rates, rather than joint steer angles, it is important to 

provide a singularity-free model for the steer joint variable 

too, since this is used in initializing robot configuration at 

the start of each new trajectory via (9), which justifies the 

need for (4’). The value of 𝛿1 can be arbitrarily adjusted to 

be infinitesimally small, while 𝛿2 should respect the 

acceleration limits of the steer joints (in case of centered 

WMRs) or of the steer/drive joints (in case of off-centered 

WMRs). Such effect is shown in Fig. 3(b). Once tuned, 𝛿2 

provides a damping effect which is completely the opposite 

to the singular behavior. Using (5’) the steering rate will 

decrease to zero from the “nearby” to the “at” singular 

configuration. In order to tune 𝛿2 to respect steer 

acceleration limits, we differentiate (5’) with respect to time, 

neglecting higher order derivatives, to obtain: 
 

𝛽̈𝑖 =
𝑘( 𝝃̇ 

𝑏 , 𝝃̈ 
𝑏 )

(𝑥̃𝑖
2 + 𝑦̃𝑖

2 + 𝛿2)
2 , (11) 

 

where 𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 ) = 2(𝑦̃𝑖 𝑥̃̇𝑖 − 𝑥̃𝑖 𝑦̃̇𝑖)(𝑥̃𝑖 𝑥̃̇𝑖 + 𝑦̃𝑖 𝑦̃̇𝑖) is a function 

of the base frame trajectory. We define a candidate value of 

𝛿2 (called 𝛿2𝑐) as: 
 

𝛿2𝑐 = √
|𝑘( 𝝃̇ 

𝑏 , 𝝃̈ 
𝑏 )|

𝛽̈𝑖(𝑚𝑎𝑥)

− (𝑥̃𝑖
2 + 𝑦̃𝑖

2) , (12) 

 

where 𝛽̈𝑖(𝑚𝑎𝑥) is the i
th

 steer joint acceleration limit in 

centered steerable robots, or the smallest acceleration limit 

of the steer/drive joint in off-centered steerable robots. 

Although the value obtained in (12) depends on the 

trajectory, to respect the acceleration limits at all times, we 

can conservatively use, for 𝛿2, the maximum value over all 

possible trajectories in a bounded domain around the 

singularity. This value exists, since 𝛿2𝑐 is upper-bounded, in 

such a bounded domain around the singularity. In 

applications involving human-robot collaboration, the 

trajectory is generally unknown a priori. In this case, we 

need to evaluate the maximum 𝛿2𝑐 online. For this, we use: 
 

𝑚𝑎𝑥(𝑥𝑘) = {
𝑥𝑘 , 𝑥𝑘 > 𝑥𝑘−1

 𝑥𝑘−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 

 

which will store the input argument with highest magnitude, 

where (∗)𝑘 and (∗)𝑘−1 denote a value at the current and the 

previous sampling instances respectively. Also, (12) has 

shown empirically (the authors intend to prove this in the 

future) to evaluate to a positive value in the neighborhood of 

kinematic singularity. In this region of interest, where 

respecting the acceleration limits becomes critical, we set 𝛿2 

to 𝑚𝑎𝑥(𝛿2𝑐). We should point out that this is the minimum 

value that can be used in (5’), while respecting the joint 

acceleration limit. Indeed, we need the minimum value so as 

to obtain the highest accuracy in evaluating the steer rate 

command. Finally, the online evaluation of 𝛿2 is done using: 
 

𝛿2 = {
𝛿1     ∀ 𝛿2𝑐 ≤ 0

𝑚𝑎𝑥(𝛿2𝑐)     ∀ 𝛿2𝑐 > 0
 . (13) 



  

Thanks to (13), the smallest 𝛿2 value can be obtained online 

and set only in the vicinity of singular configurations at 

which the acceleration limits are to be monitored. Away 

from the critical zone (around singularity), this formula 

provides negligibly small value (𝛿1) for 𝛿2, consequently 

much higher accuracy for (5’). In what follows we prove that 

using (13) guarantees respecting the joint acceleration limits: 
 

Case I: 𝛿2𝑐 ≤ 0 

From (12), this case corresponds to: 
 

√|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )| 𝛽̈𝑖(𝑚𝑎𝑥)⁄ ≤ 𝑥̃𝑖
2 + 𝑦̃𝑖

2 , 

 

and we can assume that: 
 

𝑥̃𝑖
2 + 𝑦̃𝑖

2 = √|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )| 𝛽̈𝑖(𝑚𝑎𝑥)⁄ + 𝑐 , (14) 

 

where 𝑐 𝜖 ℝ+ (positive semidefinite). Substituting by (14) in 

(11) where 𝛿2 = 𝛿1 we obtain: 
 

𝛽̈𝑖 =
𝑘( 𝝃̇ 

𝑏 , 𝝃̈ 
𝑏 )

|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )|

𝛽̈𝑖(𝑚𝑎𝑥)
+ 2𝑐1√

|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )|

𝛽̈𝑖(𝑚𝑎𝑥)
+ 𝑐1

2

 , 
(15) 

 

where 𝑐1 = (𝑐 + 𝛿1) 𝜖 ℝ
+. Rearranging we obtain:  

 

|
𝛽̈𝑖

𝛽̈𝑖(𝑚𝑎𝑥)

| =
|𝑘( 𝝃̇ 

𝑏 , 𝝃̈ 
𝑏 )|

|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )| + 2𝑐1√|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )|𝛽̈𝑖(𝑚𝑎𝑥) + 𝑐1
2𝛽̈𝑖(𝑚𝑎𝑥)

 , 
(16) 

 

From (16), it is evident that the right hand side will always 

be smaller than one. Consequently, the steer joint 

acceleration will comply with the maximum limit. 
 

Case II: 𝛿2𝑐 > 0 

In this case, we assume that the value of 𝛿2 is constant and 

as such (11) still holds true. This is a reasonable assumption 

after few movements of the robot passing by kinematic 

singularity, where it quickly converges to the maximum 

value of 𝛿2𝑐. Then (12) becomes: 
 

√|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )| 𝛽̈𝑖(𝑚𝑎𝑥)⁄ > 𝑥̃𝑖
2 + 𝑦̃𝑖

2 , 

 

and we can assume that: 
 

𝑥̃𝑖
2 + 𝑦̃𝑖

2 = √|𝑘( 𝝃̇ 
𝑏 , 𝝃̈ 

𝑏 )| 𝛽̈𝑖(𝑚𝑎𝑥)⁄ − 𝑐 , (17) 

 

where 𝑐 𝜖 ℝ+. Substituting by (17) in (11), we obtain the 

same formulae in (15) and (16) with 𝑐1 =  𝑚𝑎𝑥(𝛿2𝑐) − 𝑐. 

However the definition of the 𝑚𝑎𝑥(∗) function guarantees 

that  𝑚𝑎𝑥(𝛿2𝑐) ≥ 𝑐, so 𝑐1 ≥ 0 and consequently 𝛽̈𝑖 ≤

𝛽̈𝑖(𝑚𝑎𝑥). 

IV. BENCHMARK TESTING TRAJECTORY 

In this section, we propose a velocity trajectory to 

benchmark test the model and controller performances w.r.t 

representational and kinematic singularities. The benchmark 

is composed of five motion profiles (all defined in the robot 

frame), depicted in Fig. 2:  

 1) ICR approaching, coinciding with and departing from 

a steering axis. We employ a parabolic ICR motion profile 

with vertex at the steering axis (note that a straight line 

would impose no motion on the steering joint). 

2) ICR coincident with a steering axis: the robot pivots 

about that axis.  

3) Straight line motion in the direction of one of the axes 

(ICR at infinity). This tests the proposed singularity 

avoidance algorithm for zero angular velocity, i.e., at a 

representational singularity of ICR-based kinematic models. 

It also tests the developed forward kinematic model, since it 

will lead to a column of zeros, hence a rank loss in 𝑭2.  

4) Zero linear and angular velocities 𝝃̇ 
𝑏 = [0 0 0]𝑇, 

which result in joint angles being undefined, refer to (4). 

5) Straight line motion profile between two of each of the 

steering axes (i.e., six straight lines for a 4-steerable WMR). 

This motion profile tests the performance of kinematic 

models developed using only two steerable wheels, since 

then it will result in undefined steer joint values.  

Since in our model development, we use four steerable 

wheels, we will exclude the fifth test from our benchmark 

trajectory. The results of numerical simulations (in C++) of 

trajectories 1-4 are shown in Fig. 3.a, where 𝛽̈𝑖(𝑚𝑎𝑥) is set to 

5 𝑟𝑎𝑑/𝑠2. To ensure a smooth behavior of each motion test, a 

linear trajectory with 5
th

 order blends (indicated in the 

subscript) is employed: 
 

𝑇𝑙5𝑏 = {

𝑎0 + 𝑎1∆𝑡1 + 𝑎2∆𝑡1
2 + 𝑎3∆𝑡1

3 + 𝑎4∆𝑡1
4 + 𝑎5∆𝑡1

5     ∀ 𝑡𝑖 ≤ 𝑡 < 𝑡1
𝑎6 + 𝑎7∆𝑡2     ∀ 𝑡1 ≤ 𝑡 < 𝑡2

𝑎0 + 𝑎1∆𝑡3 + 𝑎2∆𝑡3
2 + 𝑎3∆𝑡3

3 + 𝑎4∆𝑡3
4 + 𝑎5∆𝑡3

5     ∀ 𝑡2 ≤ 𝑡 < 𝑡𝑓

. (18) 

 

Constants 𝑎0 → 7 in (18) depend on initial and terminal 

conditions, 𝑡𝑖 (𝑡𝑓) denotes initial (final) time, and ∆𝑡1 =

𝑡 − 𝑡𝑖, ∆𝑡2 = 𝑡 − 𝑡1, ∆𝑡3 = 𝑡 − 𝑡2, while 𝑡1 = 𝑡𝑖 + 0.1 ∗

(𝑡𝑓 − 𝑡𝑖) and 𝑡2 = 𝑡𝑓 − 0.1 ∗ (𝑡𝑓 − 𝑡𝑖).  

For motion test 1, 𝑡 = [4, 8[, we apply rigid body 

mechanics: the robot linear tangential velocity 𝑣𝑏 = 𝑅𝜃̇, 

with 𝑅 the radius of curvature. For 𝜃̇ = −1 𝑟𝑎𝑑/𝑠 (i.e., 

𝑣𝑏 = −𝑅), it can be shown that: 𝑥̇ 
𝑏 = −𝑣𝑏 𝑠𝑖𝑛(𝛾) =

𝑅 𝑠𝑖𝑛(𝛾) = 𝑦 
𝑏

𝐼𝐶𝑅 and 𝑦̇ 
𝑏 = − 𝑥 

𝑏
𝐼𝐶𝑅. The base trajectory can 

be expressed as: 
 

𝑦̇ 
𝑏 = 𝑇𝑙5𝑏( 𝑦̇𝑖 = 

𝑏 0, 𝑦̇𝑓 = 
  𝑏 2ℎ𝑥2,   𝑡𝑖 = 4,   𝑡𝑓 = 8 ) 

𝑥̇ 
𝑏 = −( 𝑦̇ 

𝑏 − ℎ𝑥2)
2 − ℎ𝑦2,     𝜃̇ = −1. 

(19) 

𝒙𝑏 

𝒚𝑏 

𝑜𝑏 

𝐼𝐶𝑅 
③  ICR at infinity 

①  Parabolic 

ICR passing by 

the steer axis 

②  ICR at the 

steer axis 

⑤  Straight ICR 

profile between 

steering axes 

④  Zero base 

frame velocity 

Fig. 2 ICR position in the base frame in each of the five motion tests of 

the proposed benchmark testing trajectory. 



 

1 www.coppeliarobotics.com/ 
2 https://www.youtube.com/watch?v=9RCOUp24Gvs 
 

 

Equation (19) gives a parabolic motion profile for 𝑥̇ 
𝑏 , with 

vertex at the 2
nd

 steering axis, while 𝑦̇ 
𝑏  changes from 0 to 

2ℎ𝑥2 𝑚/𝑠 in 4 seconds, following a linear trajectory with 5
th

 

order blends. In test 2, 𝑡 = [12, 15[, the robot pivots about 

the 2
nd

 steer axis. It accelerates in 1.5 𝑠 and then decelerates 

in 1.5 𝑠. Test 3: 𝑡 = [18, 20[, imposes robot motion in x-

axis; accelerating in 1 𝑠 and then decelerating in 1 𝑠. Finally, 

null robot velocity command is sent for 2 𝑠 to conclude test 

4. Intervals 𝑡 = [0, 3[, 𝑡 = [9, 12[ and 𝑡 = [15, 18[ are 

dedicated to initialize the steer joints to the proper values, to 

start the corresponding trajectory. During intervals 𝑡 = [3, 4[ 
and 𝑡 = [8, 9[, the velocity respectively increases from null 

to the initial value of test 1, and decreases from the final 

value of test 1, to null. Steer joint rates for such trajectory 

with the proposed numeric treatment are shown in Fig. 3.a 

(middle). Damping effect of 𝛿2 is shown in Fig. 3.b.     

V. EXPERIMENTS AND DISCUSSION 

In this section, we present the experiments conducted on 

the Neobotix MPO700 mobile robot to assess the proposed 

model, compare it with the embedded controller. The 

experiments are shown in Fig. 4, and in the video attached to 

this paper (available online at: IDH-LIRMM youtube 

channel2). The robot driver allows two modes of commands; 

joint velocity or robot velocity modes. We use the former to 

test the proposed model while the latter (employing the 

embedded model) is used in the comparative study. In a first 

experiment, the testing trajectory shown in Fig. 3.a (top) is 

sent in robot velocity mode, to evaluate the joint commands 

output by the embedded model. In a second experiment, the 

output of our inverse kinematic model shown in Fig. 3.a 

(middle) is used to control the robot in joint velocity mode. 

Fig. 5.a and Fig .5.b respectively show the results for the 

embedded and developed models. For test 1 (parabolic 

motion of the ICR), the embedded controller gives a velocity 

peak for the steering joint in the neighborhood of the 

kinematic singularity, green curve, at 6.3 𝑠 on Fig. 5.a (top). 

This corresponds to a steer angle change of 180 degrees in a 

very short time (see Fig. 4 (top) at t = 6
 
s and t = 7 s), 

implying that the embedded model probably employs steer 

position, rather than steer velocity control. Corresponding 

wheel velocity response can be seen in Fig. 5.a (middle) and 

the effect of such inconvenient velocity command on the 

velocity error is evident in Fig. 5.a (bottom). The other – 

undesirable - steering velocity peaks in Fig. 5.a (top) are due 

to the fact that the embedded controller goes to each initial 

trajectory configuration as quickly as possible. 

The effect of the proposed model on the steering joint 

velocity is shown in Fig. 5.b (top). As shown, when 

approaching kinematic singularity, the velocity of the 

singular steer joint slows down to 0 𝑟𝑎𝑑/𝑠 at the kinematic 

singularity, with damped steer/drive rates in vicinity 

(observe Fig. 4 (middle) between t = 6
 
s and t = 7 s). Such 

effect is favorable, as it makes all the velocity space of the 

robot accessible, with minimum power consumption and 

with no risk of damage to motors performing at their top 

limits. Such damped behavior in the steering (Fig. 5.b, top) 

and driving (Fig. 5.b, middle) results in much smaller 

velocity error w.r.t the desired trajectory (Fig. 5.b, bottom). 

Both models show satisfactory response in the 3 other tests 

and as such the response is omitted from Fig. 4.  

VI. CONCLUSION 

A complete kinematic model for steerable wheeled mobile 

robots has been presented in terms of forward (odometry), 

Fig. 4 Snapshots of the two experiments (test 1, with singular joint 
indicated by the red arrow). Top: embedded controller, Middle: developed 

model. Bottom: v-rep1 simulation showing the ICR position.  

  

𝑡 = 3 𝑠 
 

𝑡 = 6 𝑠 
 

𝑡 = 6.7 𝑠 
 

𝑡 = 7 𝑠 
 

𝛽̇1   𝛽̇2   𝛽̇3   𝛽̇4 

𝑥̇ 
𝑏    𝑦̇ 

𝑏    𝜃̇ 

𝛿2 = 10−4 

𝛿2 = 10−5 

 

(a) 
 

② 

① 
③  ④ 

𝛽̈1   𝛽̈2   𝛽̈3   𝛽̈4 

Fig. 3 Simulation results of the proposed numeric treatment; (a) base frame 

velocity trajectory 𝝃̇ 
𝑏  of the first four benchmark tests (top), the 

corresponding steer joint rate commands (middle) and steer joint 

acceleration (limit of 5 𝑟𝑎𝑑/𝑠2), (b) the effect on the second steer joint rate 

𝛽̇2 passing kinematic singularity along with the steer rate variation with 𝛿2. 
 

(b) 
 



 

 

 

                                                       (a)                                                                                                             (b) 
Fig. 5 Results of the benchmark test on the MPO700 employing (a) the embedded controller and (b) the proposed method. Each figure shows the steering 

joint velocity (top), the drive joint velocity (middle) and the error in velocity trajectory ( 𝝃̇ 
𝑏

 
∗ − 𝝃̇ 

𝑏
𝑟
  with 𝝃̇ 

𝑏
 
∗, 𝝃̇ 

𝑏
𝑟
  the desired and actual velocities) (bottom). 

  
 

𝑥̇𝑒𝑟𝑟 
𝑏 (𝑚/𝑠) 

𝑦̇𝑒𝑟𝑟 
𝑏 (𝑚/𝑠) 

𝜃̇𝑒𝑟𝑟(𝑟𝑎𝑑/𝑠) 

② ① ③  ④ ① ② ③  ④ 

𝛽̇1   𝛽̇2   𝛽̇3   𝛽̇4 𝛽̇1   𝛽̇2   𝛽̇3   𝛽̇4 

𝜑̇1   𝜑̇2   𝜑̇3   𝜑̇4 𝜑̇1   𝜑̇2   𝜑̇3   𝜑̇4 

𝑥̇𝑒𝑟𝑟 
𝑏  (𝑚/𝑠) 

𝑦̇𝑒𝑟𝑟 
𝑏  (𝑚/𝑠) 

𝜃̇𝑒𝑟𝑟(𝑟𝑎𝑑/𝑠) 

inverse (actuation) kinematics, and minimum steer angle 

initialization models. The inverse kinematic model presented 

is free of representational singularities. Additionally, a 

numeric treatment is provided to solve the kinematic 

singularity, hence providing a completely singular-free 

model. A benchmark velocity trajectory is proposed, to 

evaluate the performance of the developed model in all 

singular conditions that can be encountered by such systems. 

Using the proposed benchmark test, the developed model 

has been tested on the Neobotix MPO700 robot, and shown 

superior results as compared with the embedded controller. 
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