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I. INTRODUCTION

Mobile robots equipped with fully steerable wheels are usually described as pseudo-omnidirectional (or nonholonomic or quasi onmi), providing a distinction from the omnidirectional ones, that employ either castor or omnidirectional (swedish) wheels. Since steerable wheels are usually characterized by higher load carrying capacity than castor or omni-wheels, pseudo-omni platforms are more adequate for industrial applications. Although these platforms possess only one degree of mobility (i.e., the directly controllable degree of freedom, here the rotation about the instantaneous center of rotation -ICR), they can perform complex three-dimensional trajectories in the plane, only after reorienting the steer joints to the proper initial conditions. Thus, they do not require special maneuvers, and are more suitable than less complex systems (e.g., differential drive, car) for limited footprint applications.

Kinematic modeling of steerable (centered or offcentered) mobile robots is usually done using the Cartesian coordinates of the ICR [START_REF] Dietrich | Singularity avoidance for nonholonomic omnidirectional wheeled mobile platforms with variable footprint[END_REF], the polar coordinates of the ICR [START_REF] Connette | Control of an pseudoomnidirectional nonholonomic mobile robot based on an ICM representation in spherical coordinates[END_REF][START_REF] Thuilot | Modeling and feedback control of mobile robots equipped with several steering wheels[END_REF][START_REF] Schwesinger | A novel approach for steeringwheel synchronization with velocity/acceleration limits and mechanical constraints[END_REF], or by considering the Cartesian coordinates of the robot frame [START_REF] Giordano | On the kinematic modeling and control of a mobile platform equipped with steering wheels and movable legs[END_REF][START_REF] Betourne | Kinematic modeling of a class of omnidirectional mobile robots[END_REF]. Each of these methods has its own mathematical singularities, indicated in the literature as representational 1 Interactive Digital Human group IDH, Laboratory for Computer Science, Micro-electronics and Robotics LIRMM -University of Montpellier CNRS, 860 rue de Saint Priest, 34090 Montpellier, France. first.lastname@lirmm.fr.
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singularities. This type of singularity results from two distinct situations, namely having null angular and/or linear velocity.

Employing the Cartesian coordinates is less prone to such singularities, especially if 3 or more wheels are used [START_REF] Giordano | On the kinematic modeling and control of a mobile platform equipped with steering wheels and movable legs[END_REF]. Kinematic (or structural) singularity also exists. This refers to cases where the ICR passes by (or nearby) any of the steering axes. Then, the steer angle is not uniquely defined (infinite solutions respect the kinematic constraints). In the neighborhood of such singularity, the steering rate grows unbounded. Different approaches have been employed to deal with structural singularities. The admissible velocity space has been constrained in [START_REF] Thuilot | Modeling and feedback control of mobile robots equipped with several steering wheels[END_REF]. Repulsive potential fields have been constructed at the steering axes in [START_REF] Dietrich | Singularity avoidance for nonholonomic omnidirectional wheeled mobile platforms with variable footprint[END_REF][START_REF] Schwesinger | A novel approach for steeringwheel synchronization with velocity/acceleration limits and mechanical constraints[END_REF][START_REF] Connette | Singularity avoidance for overactuated pseudo-omnidirectional wheeled mobile robots[END_REF]. Although such techniques reduce the available velocity space, they suffice in static environments. However, in the emerging industrial applications involving human robot collaboration, the environment can change suddenly, due to moving operators. Then, all the available velocity workspace should be exploited, including worst-case scenarios with 1) ICR passing by and/or 2) ICR stopping at a steering axis (kinematic singularity). Besides, the controller must respect joint acceleration limits and mechanical constraints [START_REF] Schwesinger | A novel approach for steeringwheel synchronization with velocity/acceleration limits and mechanical constraints[END_REF][START_REF] Oftadeh | Time optimal path following with bounded velocities and accelerations for mobile robots with independently steerable wheels[END_REF][START_REF] Chamberland | Motion planning for an omnidirectional robot with steering constraints[END_REF].

Such issues have recently drawn researchers' attention. In [START_REF] Connette | Singularity-free state-space representaion for non-holonomic omnidirectional undercarriages by means of coordinate switching[END_REF], a complex formulation provides a locally singular-free representation, by switching between several state space representations of the twist. In [START_REF] Oftadeh | A novel time optimal path following controller with bounded velocities for mobile robots with independently steerable wheels[END_REF], a time optimal controller is developed to account for the joint velocity limits. Such controller is shown to be successful in passing by singular configurations, while respecting the actuator velocity limits. Acceleration limits were further taken into account in [START_REF] Oftadeh | Time optimal path following with bounded velocities and accelerations for mobile robots with independently steerable wheels[END_REF]. However, the methods developed in [START_REF] Oftadeh | A novel time optimal path following controller with bounded velocities for mobile robots with independently steerable wheels[END_REF] and [START_REF] Oftadeh | Time optimal path following with bounded velocities and accelerations for mobile robots with independently steerable wheels[END_REF] result in the maximum steering/driving velocity for the axis passed by the ICR. While they can handle the scenario 1 mentioned above, they are not suitable for scenario 2. The simulations in [START_REF] Connette | Singularity-free state-space representaion for non-holonomic omnidirectional undercarriages by means of coordinate switching[END_REF] do not provide information on joint axes rates in the vicinity and at the singular configurations.

In this work, we propose a simple, yet numerically robust, treatment of the kinematic model. Such treatment introduces a damping effect, to oppose the singular behavior. Consequently, it solves not only the aforementioned 2 worstcase scenarios, but also provides a promising candidate to the joint limits issue encountered in [START_REF] Schwesinger | A novel approach for steeringwheel synchronization with velocity/acceleration limits and mechanical constraints[END_REF]. We provide a formula for online tuning of the damping effect, which maintains the joint accelerations below their limits. Additionally, we propose a benchmark test trajectory for evaluating, at all singular conditions, the performance of novel kinematic controllers for this class of mobile robots.

This paper is organized as follows: Section II presents the forward and inverse kinematic models, along with the joint initialization strategy. Section III and IV respectively detail the proposed treatment of kinematic singularities, and the benchmark testing scenario. The experimental results are provided in section V, and we conclude in section VI.
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II. KINEMATIC MODEL

The kinematic model developed in this section is inspired by the pioneering work of Muir et al. [START_REF] Muir | Kinematic modeling of wheeled mobile robots[END_REF], Campion et al. [START_REF] Betourne | Kinematic modeling of a class of omnidirectional mobile robots[END_REF], [START_REF] Muir | Kinematic modeling of wheeled mobile robots[END_REF] and Low et al. [START_REF] Low | Kinematic modeling, mobility analysis and design of wheeled mobile robots[END_REF]. In Fig. 1, let 𝓡 𝐼 = (𝑜 𝐼 , 𝒙 𝐼 , 𝒚 𝐼 , 𝒛 𝐼 ) be the inertial (world) reference frame, 𝓡 𝑏 = (𝑜 𝑏 , 𝒙 𝑏 , 𝒚 𝑏 , 𝒛 𝑏 ) the mobile base attached frame with the origin 𝑜 𝑏 located at its geometric center, 𝓡 ℎ𝑖 = (𝑜 ℎ𝑖 , 𝒙 ℎ𝑖 , 𝒚 ℎ𝑖 , 𝒛 ℎ𝑖 ) is the 𝑖 𝑡ℎ hip frame, where 𝑖 = 1, … , 4; a frame attached to the fixed part of the steering joint (related to the base frame by a fixed transformation matrix) whereas the steering frame 𝓡 𝑠𝑖 = (𝑜 𝑠𝑖 , 𝒙 𝑠𝑖 , 𝒚 𝑠𝑖 , 𝒛 𝑠𝑖 ) is attached to the movable part. The hip and steering frames share the same origin, with relative orientation depending on the steering angle 𝛽 𝑖 , 𝓡 𝑤𝑖 = (𝑜 𝑤𝑖 , 𝒙 𝑤𝑖 , 𝒚 𝑤𝑖 , 𝒛 𝑤𝑖 ) is a frame attached to (but doesn't rotate with) 𝑖 𝑡ℎ wheel. Frame 𝓡 𝑤𝑖 is assigned such that 𝒙 𝑤𝑖 points along the heading of the wheel, which rotates about 𝒚 𝑤𝑖 by the driving angle 𝜑 𝑖 . For all the described frames, the 𝒛 axis is always pointing upwards. Let the mobile base pose with respect to the inertial frame, expressed in the inertial frame define the task space coordinates and be described by the 3 × 1 vector: 𝝃 𝐼 𝑏 𝐼 = [𝑥 𝑦 𝜃] T , to simplify notation, the right sub, superscripts will be omitted in the sequel since they will never change. Let the mobile base joint actuation coordinates be the 8 × 1 vector: 𝑨 𝑏 = [𝛽 1 … 𝛽 4 𝜑 1 … 𝜑 4 ] T . Let the wheel velocity at the ground contact point 𝑜 𝑐 be the vector 𝒗 𝑐𝑖 = [𝑣 𝑡𝑖 𝑣 𝑛𝑖 0] T with 𝑣 𝑡𝑖 and 𝑣 𝑛𝑖 respectively the 𝑖 𝑡ℎ wheel's tangential and normal velocities: (colored red in Fig. 1) are defined with respect to frames 𝓡 𝑏 , 𝓡 𝑠𝑖 and 𝓡 𝑤𝑖 respectively, ℎ 𝑥𝑖 = ±𝑏 and ℎ 𝑦𝑖 = ±𝑎 denote the position of the 𝑖 𝑡ℎ hip frame origin 𝑜 ℎ𝑖 in the base frame 𝓡 𝑏 , while 𝑑 and 𝑟 𝑤 denote the steerable wheel offset and radius respectively. Using (1) we get the contact point velocities as:

𝝂 𝑐𝑖 = 𝑹 𝑏 𝑤𝑖 [𝑹 𝐼 𝑏 𝝃 ̇+ 𝜃 k ̂𝑏 × 𝑜 𝑏 𝑜 𝑐 ⃑⃑⃑⃑⃑⃑⃑⃑ 𝑏 + 𝛽 ̇𝑖𝑹 𝑠𝑖 𝑏 𝒌 ̂𝑠𝑖 × 𝑜 𝑠𝑖 𝑜 𝑐 ⃑⃑⃑⃑⃑⃑⃑⃑⃑ 𝑠𝑖 ] +𝜑̇𝑖𝒋ŵ 𝑖 × 𝑜 𝑤𝑖 𝑜 𝑐 ⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑ 𝑤𝑖 . (1) 
𝜈 𝑡𝑖 = [𝑐(𝛽 𝑖 ) 𝑠(𝛽 𝑖 ) 𝑑 -ℎ 𝑦𝑖 𝑐(𝛽 𝑖 ) + ℎ 𝑥𝑖 𝑠(𝛽 𝑖 )] 𝝃 ̇ 𝑏 +𝑑𝛽 ̇𝑖 -𝑟 𝑤 𝜑̇𝑖 , (2) 
𝜈 𝑛𝑖 = [-𝑠(𝛽 𝑖 ) 𝑐(𝛽 𝑖 ) ℎ 𝑥𝑖 𝑐(𝛽 𝑖 ) + ℎ 𝑦𝑖 𝑠(𝛽 𝑖 )] 𝝃 ̇ 𝑏 , (3) 
with 𝝃 ̇ 𝑏 = 𝑹 𝐼 𝑏 𝝃 ̇, 𝑐( * ) and 𝑠( * ) shorthand the trigonometric cosine and sine functions respectively. By setting 𝑣 𝑡𝑖 = 0 and 𝑣 𝑛𝑖 = 0, (2) and ( 3) respectively describe the rolling without slipping, and the no lateral skidding kinematic constraints. The no-skid constraint restricts the mobile base motion (the wheel cannot move sideways) and forces the existence of a unique ICR, around which all the wheels and the base frame rotate. From (3), we derive the steering angles that respect such constraint:

𝛽 𝑖 = 𝑡𝑎𝑛 -1 ( 𝑦̇ 𝑏 + ℎ 𝑥𝑖 𝜃 ẋ̇ 𝑏 -ℎ 𝑦𝑖 𝜃 ̇) . ( 4 
)
This can be time differentiated to obtain the steering rates:

𝛽 ̇𝑖 = 𝜕𝛽 𝑖 𝜕 𝑥̇ 𝑏 𝑥̈ 𝑏 + 𝜕𝛽 𝑖 𝜕 𝑦̇ 𝑏 𝑦̈ 𝑏 + 𝜕𝛽 𝑖 𝜕𝜃 ̇𝜃̈= 𝒇 1𝑖 ( 𝝃 ̇ 𝑏 ) 𝝃 ̈ 𝑏 . (5) 
The wheel drive rates can be evaluated using ( 2) and ( 5):

𝜑̇𝑖 = 1 𝑟 𝑤 ([𝑐 (𝛽 𝑖 ) 𝑠(𝛽 𝑖 ) 𝑑 -ℎ 𝑦𝑖 𝑐(𝛽 𝑖 ) + ℎ 𝑥𝑖 𝑠(𝛽 𝑖 )] 𝝃 ̇ 𝑏 + 𝑑𝛽 ̇𝑖) = 1 𝑟 𝑤 𝒇 2𝑖 (𝜷) 𝝃 ̇ 𝑏 + 𝑑 𝑟 𝑤 𝒇 1𝑖 ( 𝝃 ̇ 𝑏 ) 𝝃 ̈ 𝑏 . (6) 
In ( 5) and ( 6), the steering and wheel drive rates are related to the base velocity 𝝃 ̇ 𝑏 and acceleration 𝝃 ̈ 𝑏 , expressed in the base frame. These equations can be grouped in matrix form to derive the inverse kinematic actuation model (IKAM):

𝑨 ̇𝑏 = 𝑴 𝐼 ( 𝝃 ̇ 𝑏 ) 𝜼̇ 𝑏 , (7) 
𝑴 𝐼 ( 𝝃 ̇ 𝑏 ) = [ 𝟎 4×3 𝑭 1 ( 𝝃 ̇ 𝑏 ) 1 𝑟 𝑤 𝑭 2 (𝜷) 𝑑 𝑟 𝑤 𝑭 1 ( 𝝃 ̇ 𝑏 ) ] , 𝑭 1 ( 𝝃 ̇ 𝑏 ) = [𝒇 11 𝑇 … 𝒇 14 𝑇 ] T , 𝑭 2 (𝜷) = [𝒇 21 𝑇 … 𝒇 24 𝑇 ] T ,
with 𝜼 𝑏 = [ 𝝃 𝑏 𝝃 ̇ 𝑏 ] T . Similarly, the forward kinematic actuation model (FKAM) can be derived from [START_REF] Betourne | Kinematic modeling of a class of omnidirectional mobile robots[END_REF]:

𝝃 ̇ 𝑏 = 𝑴 𝑓 (𝜷 𝑚 )𝑨 ̇𝑏 , (8) 
𝑴 𝑓 (𝜷 𝑚 ) = [-𝑑 * 𝑭 2(𝑑) + (𝜷 𝑚 ) 𝑟 * 𝑭 2(𝑑) + (𝜷 𝑚 ) ] .
In [START_REF] Connette | Singularity avoidance for overactuated pseudo-omnidirectional wheeled mobile robots[END_REF], 𝜷 is computed as a function of 𝝃 ̇ 𝑏 using (4), whereas in [START_REF] Oftadeh | Time optimal path following with bounded velocities and accelerations for mobile robots with independently steerable wheels[END_REF] of 𝑭 2 [START_REF] Nakamura A Nd | Inverse kinematic solutions with singularity robustness for robot manipulator control[END_REF][START_REF] Wampler | Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods[END_REF], with damping factor 𝜆. Using it, the velocity trajectory can be reconstructed from joint velocity measurements, even at 𝑭 2 singularities, making (8) a robust odometry model. Typically when moving with 𝜃 ̇= 0; such motion will yield a column of zeros depending on the direction of motion according to [START_REF] Connette | Singularity avoidance for overactuated pseudo-omnidirectional wheeled mobile robots[END_REF].

As mentioned earlier, mobile robots with steerable wheels can perform complex planar trajectories, provided their wheels orient to the proper initial values. These initial steer angles depend on the trajectory to be performed, and can be obtained, using (4) as:

𝛽 𝑖(𝑖𝑛𝑖𝑡) = 𝑡𝑎𝑛 -1 ( 𝑦( 𝑡 𝑖𝑛𝑖𝑡 +𝑇 𝑠 ) 𝑏 + ℎ 𝑥𝑖 𝜃 ̇(𝑡 𝑖𝑛𝑖𝑡 +𝑇 𝑠 ) 𝑥( 𝑡 𝑖𝑛𝑖𝑡 +𝑇 𝑠 ) 𝑏 -ℎ 𝑦𝑖 𝜃 ̇(𝑡 𝑖𝑛𝑖𝑡 +𝑇 𝑠 ) ) . (9) 
In ( 9), 𝑇 𝑠 is the sample time and the subscript (𝑡 𝑖𝑛𝑖𝑡 + 𝑇 𝑠 ) denotes the value of the desired velocity component at the first sample time of the trajectory. Since the time needed to initialize the steer joints must be taken into account in the motion planning phase, it will affect the desired trajectory timing. To minimize such effect, the initial steer angles must be attained as fast as possible. In addition to using the maximum joint acceleration and/or velocity limits, we apply the following modification on the output of ( 9), to minimize the motion, based on the current configuration 𝛽 𝑖(𝑐) :

𝛽 𝑖(𝑖𝑛𝑖𝑡) = { 𝛽 𝑖(𝑖𝑛𝑖𝑡) -𝜋, ∀ 𝛽 𝑖(𝑖𝑛𝑖𝑡) -𝛽 𝑖(𝑐) > 𝜋 2 ⁄ 𝛽 𝑖(𝑖𝑛𝑖𝑡) + 𝜋, ∀ 𝛽 𝑖(𝑖𝑛𝑖𝑡) -𝛽 𝑖(𝑐) < 𝜋 2 ⁄ 𝛽 𝑖(𝑐) , ∀ 𝛽 𝑖(𝑖𝑛𝑖𝑡) -𝛽 𝑖(𝑐) = 𝜋 , (10) 
The formula provided in [START_REF] Connette | Singularity-free state-space representaion for non-holonomic omnidirectional undercarriages by means of coordinate switching[END_REF] guarantees that the initial steer joint angle will always be ≤ ± 𝜋 2 ⁄ .

III. SINGULARITY TREATMENT

Singularities related to this kind of mobile robots are divided into two categories: kinematic and representational. While the latter (for 3 or more steerable WMR) is solved by using the Cartesian coordinates of the base frame [START_REF] Dietrich | Singularity avoidance for nonholonomic omnidirectional wheeled mobile platforms with variable footprint[END_REF], the former still presents a challenging problem. Kinematic singularity refers usually to the case where the ICR passes by (or nearby) any of the steering axes. In such case, the steer angle 𝛽 𝑖 in not uniquely defined, as there exist infinite values respecting the kinematic constraints. While passing this configuration, the steering rate shall grow unbounded from the "nearby" to the "at" singular configuration. This is shown mathematically in [START_REF] Schwesinger | A novel approach for steeringwheel synchronization with velocity/acceleration limits and mechanical constraints[END_REF], where the denominator of the argument of the tan inverse function decreases to zero at such singularity. In this paper, we fix this problem with a very simple, yet effective, numerical treatment, by adding the damping parameters 𝛿 1 and 𝛿 2 respectively to the denominator of the tan inverse argument for the steer angle: 

𝛽 𝑖 = 𝑡𝑎𝑛 -1 ( 𝑦 ̃𝑖 𝑥 ̃𝑖 + 𝛿 1 * 𝑠𝑖𝑔𝑛(𝑥 ̃𝑖) ) , ( 4 
where 𝑦 ̃𝑖 = 𝑦̇ 𝑏 + ℎ 𝑥𝑖 𝜃 ̇, 𝑥 ̃𝑖 = 𝑥̇ 𝑏 -ℎ 𝑦𝑖 𝜃 ̇. Although the developed inverse kinematic model aims at providing joint steer rates, rather than joint steer angles, it is important to provide a singularity-free model for the steer joint variable too, since this is used in initializing robot configuration at the start of each new trajectory via [START_REF] Chamberland | Motion planning for an omnidirectional robot with steering constraints[END_REF], which justifies the need for (4'). The value of 𝛿 1 can be arbitrarily adjusted to be infinitesimally small, while 𝛿 2 should respect the acceleration limits of the steer joints (in case of centered WMRs) or of the steer/drive joints (in case of off-centered WMRs). Such effect is shown in Fig. 3(b). Once tuned, 𝛿 2 provides a damping effect which is completely the opposite to the singular behavior. Using (5') the steering rate will decrease to zero from the "nearby" to the "at" singular configuration. In order to tune 𝛿 2 to respect steer acceleration limits, we differentiate (5') with respect to time, neglecting higher order derivatives, to obtain:

𝛽 ̈𝑖 = 𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 ) (𝑥 ̃𝑖 2 + 𝑦 ̃𝑖 2 + 𝛿 2 ) 2 , (11) 
where 𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 ) = 2(𝑦 ̃𝑖𝑥̇𝑖 -𝑥 ̃𝑖𝑦̇𝑖)(𝑥 ̃𝑖𝑥̇𝑖 + 𝑦 ̃𝑖𝑦̇𝑖) is a function of the base frame trajectory. We define a candidate value of 𝛿 2 (called 𝛿 2𝑐 ) as:

𝛿 2𝑐 = √ |𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| 𝛽 ̈𝑖(𝑚𝑎𝑥) -(𝑥 ̃𝑖 2 + 𝑦 ̃𝑖 2 ) , (12) 
where 𝛽 ̈𝑖(𝑚𝑎𝑥) is the i th steer joint acceleration limit in centered steerable robots, or the smallest acceleration limit of the steer/drive joint in off-centered steerable robots.

Although the value obtained in [START_REF] Muir | Kinematic modeling of wheeled mobile robots[END_REF] depends on the trajectory, to respect the acceleration limits at all times, we can conservatively use, for 𝛿 2 , the maximum value over all possible trajectories in a bounded domain around the singularity. This value exists, since 𝛿 2𝑐 is upper-bounded, in such a bounded domain around the singularity. In applications involving human-robot collaboration, the trajectory is generally unknown a priori. In this case, we need to evaluate the maximum 𝛿 2𝑐 online. For this, we use:

𝑚𝑎𝑥(𝑥 𝑘 ) = { 𝑥 𝑘 , 𝑥 𝑘 > 𝑥 𝑘-1 𝑥 𝑘-1 ,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , which will store the input argument with highest magnitude, where ( * ) 𝑘 and ( * ) 𝑘-1 denote a value at the current and the previous sampling instances respectively. Also, (12) has shown empirically (the authors intend to prove this in the future) to evaluate to a positive value in the neighborhood of kinematic singularity. In this region of interest, where respecting the acceleration limits becomes critical, we set 𝛿 2 to 𝑚𝑎𝑥(𝛿 2𝑐 ). We should point out that this is the minimum value that can be used in (5'), while respecting the joint acceleration limit. Indeed, we need the minimum value so as to obtain the highest accuracy in evaluating the steer rate command. Finally, the online evaluation of 𝛿 2 is done using:

𝛿 2 = { 𝛿 1 ∀ 𝛿 2𝑐 ≤ 0 𝑚𝑎𝑥(𝛿 2𝑐 ) ∀ 𝛿 2𝑐 > 0 . ( 13 
)
Thanks to [START_REF] Campion | Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[END_REF], the smallest 𝛿 2 value can be obtained online and set only in the vicinity of singular configurations at which the acceleration limits are to be monitored. Away from the critical zone (around singularity), this formula provides negligibly small value (𝛿 1 ) for 𝛿 2 , consequently much higher accuracy for (5'). In what follows we prove that using ( 13) guarantees respecting the joint acceleration limits:

Case I: 𝛿 2𝑐 ≤ 0 From ( 12), this case corresponds to:

√|𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| 𝛽 ̈𝑖(𝑚𝑎𝑥) ⁄ ≤ 𝑥 ̃𝑖 2 + 𝑦 ̃𝑖 2 ,
and we can assume that:

𝑥 ̃𝑖 2 + 𝑦 ̃𝑖 2 = √|𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| 𝛽 ̈𝑖(𝑚𝑎𝑥) ⁄ + 𝑐 , ( 14 
)
where 𝑐 𝜖 ℝ + (positive semidefinite). Substituting by ( 14) in [START_REF] Oftadeh | A novel time optimal path following controller with bounded velocities for mobile robots with independently steerable wheels[END_REF] where 𝛿 2 = 𝛿 1 we obtain:

𝛽 ̈𝑖 = 𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 ) |𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| 𝛽 ̈𝑖(𝑚𝑎𝑥) + 2𝑐 1 √ |𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| 𝛽 ̈𝑖(𝑚𝑎𝑥) + 𝑐 1 2 , ( 15 
)
where 𝑐 1 = (𝑐 + 𝛿 1 ) 𝜖 ℝ + . Rearranging we obtain:

| 𝛽 ̈𝑖 𝛽 ̈𝑖(𝑚𝑎𝑥) | = |𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| |𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| + 2𝑐 1 √|𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )|𝛽 ̈𝑖(𝑚𝑎𝑥) + 𝑐 1 2 𝛽 ̈𝑖(𝑚𝑎𝑥) , (16) 
From ( 16), it is evident that the right hand side will always be smaller than one. Consequently, the steer joint acceleration will comply with the maximum limit.

Case II: 𝛿 2𝑐 > 0 In this case, we assume that the value of 𝛿 2 is constant and as such [START_REF] Oftadeh | A novel time optimal path following controller with bounded velocities for mobile robots with independently steerable wheels[END_REF] still holds true. This is a reasonable assumption after few movements of the robot passing by kinematic singularity, where it quickly converges to the maximum value of 𝛿 2𝑐 . Then [START_REF] Muir | Kinematic modeling of wheeled mobile robots[END_REF] becomes:

√|𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| 𝛽 ̈𝑖(𝑚𝑎𝑥) ⁄ > 𝑥 ̃𝑖 2 + 𝑦 ̃𝑖 2 ,
and we can assume that:

𝑥 ̃𝑖 2 + 𝑦 ̃𝑖 2 = √|𝑘( 𝝃 ̇ 𝑏 , 𝝃 ̈ 𝑏 )| 𝛽 ̈𝑖(𝑚𝑎𝑥) ⁄ -𝑐 , (17) 
where 𝑐 𝜖 ℝ + . Substituting by ( 17) in [START_REF] Oftadeh | A novel time optimal path following controller with bounded velocities for mobile robots with independently steerable wheels[END_REF], we obtain the same formulae in ( 15) and ( 16) with 𝑐 1 = 𝑚𝑎𝑥(𝛿 2𝑐 ) -𝑐.

However the definition of the 𝑚𝑎𝑥( * ) function guarantees that 𝑚𝑎𝑥(𝛿 2𝑐 ) ≥ 𝑐, so 𝑐 1 ≥ 0 and consequently 𝛽 ̈𝑖 ≤ 𝛽 ̈𝑖(𝑚𝑎𝑥) .

IV. BENCHMARK TESTING TRAJECTORY

In this section, we propose a velocity trajectory to benchmark test the model and controller performances w.r.t representational and kinematic singularities. The benchmark is composed of five motion profiles (all defined in the robot frame), depicted in Fig. 2: 1) ICR approaching, coinciding with and departing from a steering axis. We employ a parabolic ICR motion profile with vertex at the steering axis (note that a straight line would impose no motion on the steering joint).

2) ICR coincident with a steering axis: the robot pivots about that axis.

3) Straight line motion in the direction of one of the axes (ICR at infinity). This tests the proposed singularity avoidance algorithm for zero angular velocity, i.e., at a representational singularity of ICR-based kinematic models. It also tests the developed forward kinematic model, since it will lead to a column of zeros, hence a rank loss in 𝑭 2 .

4) Zero linear and angular velocities 𝝃 ̇ 𝑏 = [0 0 0] 𝑇 , which result in joint angles being undefined, refer to (4). 5) Straight line motion profile between two of each of the steering axes (i.e., six straight lines for a 4-steerable WMR). This motion profile tests the performance of kinematic models developed using only two steerable wheels, since then it will result in undefined steer joint values.

Since in our model development, we use four steerable wheels, we will exclude the fifth test from our benchmark trajectory. The results of numerical simulations (in C++) of trajectories 1-4 are shown in Fig. 3.a, where 𝛽 ̈𝑖(𝑚𝑎𝑥) is set to 5 𝑟𝑎𝑑/𝑠 2 . To ensure a smooth behavior of each motion test, a linear trajectory with 5 th order blends (indicated in the subscript) is employed:

𝑇 𝑙5𝑏 = { 𝑎 0 + 𝑎 1 ∆𝑡 1 + 𝑎 2 ∆𝑡 1 2 + 𝑎 3 ∆𝑡 1 3 + 𝑎 4 ∆𝑡 1 4 + 𝑎 5 ∆𝑡 1 5 ∀ 𝑡 𝑖 ≤ 𝑡 < 𝑡 1 𝑎 6 + 𝑎 7 ∆𝑡 2 ∀ 𝑡 1 ≤ 𝑡 < 𝑡 2 𝑎 0 + 𝑎 1 ∆𝑡 3 + 𝑎 2 ∆𝑡 3 2 + 𝑎 3 ∆𝑡 3 3 + 𝑎 4 ∆𝑡 3 4 + 𝑎 5 ∆𝑡 3 5 ∀ 𝑡 2 ≤ 𝑡 < 𝑡 𝑓 . ( 18 
)
Constants 𝑎 0 → 7 in (18) depend on initial and terminal conditions, 𝑡 𝑖 (𝑡 𝑓 ) denotes initial (final) time, and ∆𝑡 1 = 𝑡 -𝑡 𝑖 , ∆𝑡 2 = 𝑡 -𝑡 1 , ∆𝑡 3 = 𝑡 -𝑡 2 , while 𝑡 1 = 𝑡 𝑖 + 0.1 * (𝑡 𝑓 -𝑡 𝑖 ) and 𝑡 2 = 𝑡 𝑓 -0.1 * (𝑡 𝑓 -𝑡 𝑖 ). 

V. EXPERIMENTS AND DISCUSSION

In this section, we present the experiments conducted on the Neobotix MPO700 mobile robot to assess the proposed model, compare it with the embedded controller. The experiments are shown in Fig. 4, and in the video attached to this paper (available online at: IDH-LIRMM youtube channel 2 ). The robot driver allows two modes of commands; joint velocity or robot velocity modes. We use the former to test the proposed model while the latter (employing the embedded model) is used in the comparative study. In a first experiment, the testing trajectory shown in Fig. 3.a (top) is sent in robot velocity mode, to evaluate the joint commands output by the embedded model. In a second experiment, the output of our inverse kinematic model shown in Fig. 3.a (middle) is used to control the robot in joint velocity mode. Fig. 5.a and Fig . 5.b respectively show the results for the embedded and developed models. For test 1 (parabolic motion of the ICR), the embedded controller gives a velocity peak for the steering joint in the neighborhood of the kinematic singularity, green curve, at 6.3 𝑠 on Fig. 5.a (top). This corresponds to a steer angle change of 180 degrees in a very short time (see Fig. 4 (top) at t = 6 s and t = 7 s), implying that the embedded model probably employs steer position, rather than steer velocity control. Corresponding wheel velocity response can be seen in Fig. 5.a (middle) and the effect of such inconvenient velocity command on the velocity error is evident in Fig. 5.a (bottom). The otherundesirable -steering velocity peaks in Fig. 5.a (top) are due to the fact that the embedded controller goes to each initial trajectory configuration as quickly as possible.

The effect of the proposed model on the steering joint velocity is shown in Fig. 5.b (top). As shown, when approaching kinematic singularity, the velocity of the singular steer joint slows down to 0 𝑟𝑎𝑑/𝑠 at the kinematic singularity, with damped steer/drive rates in vicinity (observe Fig. 4 (middle) between t = 6 s and t = 7 s). Such effect is favorable, as it makes all the velocity space of the robot accessible, with minimum power consumption and with no risk of damage to motors performing at their top limits. Such damped behavior in the steering (Fig. 5.b, top) and driving (Fig. 5.b, middle) results in much smaller velocity error w.r.t the desired trajectory (Fig. 5.b, bottom). Both models show satisfactory response in the 3 other tests and as such the response is omitted from Fig. 4.

VI. CONCLUSION

A complete kinematic model for steerable wheeled mobile robots has been presented in terms of forward (odometry), inverse (actuation) kinematics, and minimum steer angle initialization models. The inverse kinematic model presented is free of representational singularities. Additionally, a numeric treatment is provided to solve the kinematic singularity, hence providing a completely singular-free model. A benchmark velocity trajectory is proposed, to evaluate the performance of the developed model in all singular conditions that can be encountered by such systems. Using the proposed benchmark test, the developed model has been tested on the Neobotix MPO700 robot, and shown superior results as compared with the embedded controller.

  In this equation, 𝒌 ̂𝑏, 𝒌 ̂𝑠𝑖 and 𝒋̂𝑤 𝑖 are unit vectors along the axes 𝒛 𝑏 , 𝒛 𝑠𝑖 and 𝒚 𝑤𝑖 respectively, 𝑹 𝑏 𝑤𝑖 = 𝑹 𝑏 𝑠𝑖 = 𝑟𝑜𝑡(𝒛 𝑏 , -𝛽 𝑖 ) and 𝑹 𝐼 𝑏 = 𝑟𝑜𝑡(𝒛 𝐼 , -𝜃) are 3 × 3 rotation matrices, the vectors 𝑜 𝑏 𝑜 𝑐 ⃑⃑⃑⃑⃑⃑⃑⃑ 𝑏 , 𝑜 𝑠𝑖 𝑜 𝑐 ⃑⃑⃑⃑⃑⃑⃑⃑⃑ 𝑠𝑖 and 𝑜 𝑤𝑖 𝑜 𝑐 ⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑ 𝑤𝑖

Fig. 1

 1 Fig. 1 Modeling schematic for the four fully motorized off-centered, steerable wheeled mobile base

For motion test 1 ,

 1 𝑡 = [4, 8[, we apply rigid body mechanics: the robot linear tangential velocity 𝑣 𝑏 = 𝑅𝜃 ̇, with 𝑅 the radius of curvature. For 𝜃 ̇= -1 𝑟𝑎𝑑/𝑠 (i.e., 𝑣 𝑏 = -𝑅), it can be shown that: 𝑥̇ 𝑏 = -𝑣 𝑏 𝑠𝑖𝑛(𝛾) = 𝑅 𝑠𝑖𝑛(𝛾) = 𝑦 𝑏 𝐼𝐶𝑅 and 𝑦̇ 𝑏 = -𝑥 𝑏 𝐼𝐶𝑅 . The base trajectory can be expressed as: 𝑦̇ 𝑏 = 𝑇 𝑙5𝑏 ( 𝑦̇𝑖 = 𝑏 0, 𝑦̇𝑓 = 𝑏 2ℎ 𝑥2 , 𝑡 𝑖 = 4, 𝑡 𝑓 = 8 ) 𝑥̇ 𝑏 = -( 𝑦̇ 𝑏 -ℎ 𝑥2 ) 2 -ℎ 𝑦2 , 𝜃 ̇= -1. (19)

Fig. 2

 2 Fig. 2 ICR position in the base frame in each of the five motion tests of the proposed benchmark testing trajectory.

Fig. 4 Fig. 3

 43 Fig. 4 Snapshots of the two experiments (test 1, with singular joint indicated by the red arrow). Top: embedded controller, Middle: developed model. Bottom: v-rep 1 simulation showing the ICR position.
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