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Abstract— Load-sensing floors are capable of tracking objects
without suffering from occlusions nor posing the same privacy
issues as cameras. They have been mostly used to analyze
human gait as a way of continuous diagnosis but could also
be placed alongside robots to help monitoring in specialized
institutions, such as elderly care facilities. However, large-scale
deployments necessitate cheap sensors which do not necessarily
offer the same precision. With more noisy sensors, lighter robots
might be difficult to track and precisely localize. In this article,
we investigate various models in order to estimate the position
of a robot. We experiment with several robots of different
weights and compare the models’ estimates against ground
truth measurements provided by a motion capture system. We
show that with standard-sized tiles of 60 cm, we can track even
the lighter robots with less than 4 cm of error.

I. INTRODUCTION

Environments with embedded ambient intelligence are
more and more often equipped with sensing floors, due to
their inherent advantages. They can localize the objects sup-
ported by the floor, they don’t suffer from occlusions, and are
less intrusive than vision sensors. Although high-precision
object tracking is straightforward on high-resolution floors,
it is less obvious whether tracking is feasible on cheap, low-
resolution, noisy floors. This paper presents a method to
process sensor data, allowing for high-precision tracking of
robots on a low-resolution, noisy load-sensing floor.

Ever since their introduction in the 1990’s [1], [2], sensing-
floor prototypes have been mostly developed for tracking and
analysing the human gait for medical applications [3], such
as continuous diagnosis of the health-state of a person. Dif-
ferent technologies have been used for pressure sensing, such
as strain gauge load cells [1], [2], electro-mechanical film [4],
force-sensing resistor mats [5], [6], [7], piezo-electric sensors
[8], and photo-interruptor sensors [9]. These floors detect and
localize objects either directly, by identifying which sensor
has measured the pressure, or by calculating the position of
the center of pressure in the case of floors with a low density
of sensors. The latter, however, have difficulties tracking
multiple objects whenever they are too close compared to
the density of sensors. Thus, precise localization comes at
a cost proportional to the density of load sensors in the
floor. We work with a low-resolution modular floor prototype
[10] designed as a low-cost sensor for ambient intelligence
applications (Figure 1).

(a) Our prototype apartment with
the tiled sensing floor.

(b) Underside of a tile with the
load sensors in the corners.

Fig. 1: Experimental platform consisting in (a) a two-room
apartment whose floor is covered with (b) 90 smart tiles
(60 cm wide) with four load cells in the corners.

Given that all the mentioned floors have been designed
to fulfill the precision requirements of their applications, no
previous work has centered on increasing the precision of the
sensor measurements through post-treatment of the pressure
and position data. However, efforts were made to improve
tracking when doing it for multiple persons on a binary-
sensing floor (subject to tracking ambiguity), and on sensing
floors that do not cover all the floor, as detailed below.

To perform multi-person tracking on a binary pressure-
sensing floor, Suutala et al. [11] used Gaussian Process
Joint Particle Filtering. Similarly, Murakita et al. [12] used
a Markov Chain Monte Carlo algorithm: their prediction
model contained 2 parts: a generic linear model for predicting
human’s position (using his previous position, his current
velocity, and a Gaussian noise), and a bipedal model of
sensor activations while walking (based on which foot was
put forward). In order to track inhabitants on a tiled floor with
sensorless spacings of 20 cm between tiles, Wen-hau et al.
[13] used a Probability Data Association (PDA) algorithm,
which is based on the Kalman filter.

None of these works are able to provide a high-precision
localization of objects. In contrast, this paper presents a
technique for fine tracking of objects, in spite of the obstacles
posed by noisy sensors, and the low resolution of the floor.

We first present in more detail the apartment, including
the load-sensing floors and the robots (section II). Then,
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(a) Light robot in the smart
apartment (Turtlebot 2, 6.3 kg
including notebook). Source:
www.turtlebot.com

(b) A heavy robot in
the smart apartment
(Robosoft robuLAB-
10, 35.7 kg). Source:
www.robosoft.com

Fig. 2: Robots used in this paper.

we propose several models to localize robots on such a
floor (section III). Finally we compare those models on
real data taken with two different robots (section IV) before
concluding with a discussion about the choice of the models
(section V).

II. PLATFORM

This work is a contribution to an innovative platform for
favoring research in assistance for elderly people at home.
This platform consists of a two-room apartment (Figure 1a),
with numerous sensing and connected devices such as mobile
robots, a motion capture system, a network of RGB-D
cameras, and a load-sensing floor made up of 90 tiles, all
connected with the Robotic Operating System (ROS) ([14]).

A. Tiles
The load-sensing floor is composed of square 60× 60 cm

tiles, each equipped with two ARM processors (Cortex m3
and a8), four load cells in the corners (Figure 1b), 16
LEDs, and a wired ethernet connection. There is also a
magnetometer, that could be used to detect variations of
magnetic field induced by a moving metallic object such as
a robot, and an accelerometer to detect shocks. Both of these
are not used in this paper.

B. Motion Capture system
We installed a motion capture system with 8 Qualisys

oqus 700 cameras allowing to track the position of robots
at 150 Hz with high accuracy (less than 1 mm). In this
paper, this tracking is considered as the ground truth for the
localization (see subsection IV-A for more details).

C. Robots
An other objective of the platform is to develop companion

robots able to interact with people and monitoring their
activities while detecting emergency situations. The chosen
approach is to propose services which can run on low-cost
robotic platforms such as Turtlebots (Figure 2a) or Robosoft
Robulab mobile robot (Figure 2b).

III. MODELS

In this section, we present various estimators with increas-
ing complexity: a full direct estimate, a direct estimate on
selected tiles, a Kalman Filter (KF) and an Extended Kalman
Filter (EKF).
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Fig. 3: Estimates of the Robulab position using sensor data
from (a) all available tiles of the floor and (b) a subset of the
tiles selected with a hypothesis test on the measured force,
at α = 10−8. Theoretical position is displayed as a black
circle.

A. Direct estimation

The simplest way to estimate the center-of-pressure (CoP)
position of an object placed on a tile is to compute the
barycenter of the load measured by the gauge sensors:

(
x̂t
ŷt

)
=

∑
i s̃i,t.

(
xi
yi

)
∑

i s̃i,t
, (1)

where x̂t and ŷt are the estimated coordinates of the CoP at
time frame t, s̃i,t the load measured1 by sensor i and (xi, yi)
the coordinates of sensor i. In case the object is spanning
several tiles, the CoP can be computed as a weighted average
of the estimates of each tile, which simplifies to Equation 1
considering the sensors of the tiles all together. We can even
use the same equation with all sensors of the sensitive floor
as non-loaded tiles should not record any force.

However, as we use noisy sensors, this ideal case provides
poor estimates of the CoP location. Indeed, the summation
terms in the numerator and denominator of Equation 1 imply
that the variance of these quantities grows with the number
of noisy measures summed. Consequently, the variance of
the ratio also grows [15], [16] (Figure 3a).

B. Selection of tiles

In order to reduce the noise level of direct estimates, one
idea is to select at each time frame the right subset of tiles
that actually have a significant load. The selection is made
independently for each tile and not each sensor because on
the one hand sensors of a tile are mechanically coupled (since
our tiles are rigid) and on the other hand we do not have a
precise enough model of the noise of a single sensor. To
decide whether there is a load on a tile, we do a statistical
test on the total force measured by its sensors, with a null
hypothesis H0 of no force. The tile is selected if H0 is

1We have to subtract the load when the tile is empty, which is estimated
as the smallest of the means of the values in a given time-window.
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Fig. 4: Empirical distributions of the observed CoP z̃, for
two different positions and weights of a static punctiform
object placed on one tile. Top row: the object is placed in
the center of a tile; bottom row: the object is placed in a
corner. Left column: a heavy object; right column: a light
object. Black thick lines represent the tile contours.

rejected at a fixed α level. Otherwise, we ignore it for this
time frame.

Let Ft be the random variable associated with the total
force measured on the tile. Assuming noise of each sensor
is independent additive white noise of variance σ2

i , we ap-
proximate the distribution of Ft under H0 with a zero-mean
Gaussian distribution of variance σ2 =

∑
i σ

2
i . Therefore,

the probability of measuring a force as high as the observed
load f̃t =

∑
i s̃i,t under H0 is written as follows:

P (Ft ≥ f̃t|H0) = Φ(−f̃t/
√
σ2), (2)

where Φ stands for the cumulative density function of the
standard normal distribution.2 The null hypothesis H0 at is
rejected at level α if p(Ft ≥ f̃t|H0) < α.

The α level corresponds to a false positive rate considered
as acceptable. To set it, we take into account the multiple
hypothesis tests issue, as one statistical test is made per tile
and per time frame. Thus, to control the familywise error
rate (FWER), i.e. the probability to have one false positive
for all tests together, we add a Bonferroni correction to α,
dividing it by the total number of tests made for a fixed
period of time [17]. Figure 3 highlights the benefits of this
tile selection approach.

C. Filtering

The objects we are tracking with such a sensing floor
are moving robots. Therefore, we can use the temporal

2Even if the distribution of noise within each sensor is not Gaussian, in
practice the sum is well approximated by a Gaussian distribution, as a result
of the central-limit theorem.
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Fig. 5: Q-Q plots of the distributions of the observed CoP x̃,
for the same scenarios as in Figure 4. Top row: the object is
placed in the center of a tile; bottom row: the object is placed
in a corner. Left column: a heavy object; right column: a
light object. Straight lines represent theoretical curves under
a Gaussian distribution assumption.

information to reduce the noise level of the CoP position
estimates, considering a model of the robot movements.

The simplest possible approach is to employ a KF to
track the position of the robot through time from the noisy
direct estimates. The hidden state we seek to estimate is
the CoP position xt = (xt, yt) in the global reference
frame. Observations are the direct estimates z̃t = (x̂t, ŷt),
as computed by Equation 1. We chose basic transition and
measurement models:

xt ∼ N (xt−1,Qt) and zt ∼ N (zt,R),

where N (µ,Σ) is the Gaussian distribution with mean µ and
covariance matrix Σ.

The matrix Qt is specified as a scaled identity matrix,
that allows for the motion of the robot through the noise
component of the transition model. Our system is asyn-
chronous and to account for the various time arrivals of the
sensor data, the Qt matrix is scaled by the time interval
∆t: Qt = ∆tQ0, where Q0 is the covariance expected after
1 s. As an approximation of real phenomena, the matrix R
is also specified as a scaled identity matrix tuned to reflect
the expected spread of the direct estimates in both x and y
directions.

The KF might not perform optimally as the noise assump-
tions in the measurement model do not reflect the real noise
of the direct estimates. Indeed, as shown by Figure 4, the
noise of the observations is correlated, position dependent
and weight dependent. The Q-Q plots in Figure 5 highlight
a non-Gaussianity of the noise, as the curve deviates from
the theoretical one in the tails of the distribution. This effect
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Fig. 6: Comparisons of the empirical distribution of f̃xt with
a fitted Gaussian distribution, for the scenario from Figure 4
of a light punctiform object located in the corner of a tile.
Black curves represent the theoretical curves.

is particularly visible in case of a light weight placed in a
corner.

Thus, setting R to a sensible value might turn out to be
a difficult task, which is not feasible without knowing the
weight of the tracked object. Besides, it will not fix the
violation of the Gaussianity noise implied by the KF model.

D. Observations transformation

The particular issue of the non-Gaussian distribution stems
from the division in the computation of the barycenter. More
precisely, both numerator and denominator terms in Equa-
tion 1 are made of random values as explained above. These
terms corresponding to weighted sums of finite-variance
random variables, by virtue of the central-limit theorem,
their distributions are approximately Gaussian, correlated
by construction. [15], [16] provides the analytical form for
the probability density function of a ratio of two correlated
Gaussian variables which proves to be unwieldy.

We propose to change the space of observation zt of the
filter. The objective is to find the simplest observation space
for which the Gaussianity assumption reasonably holds. Our
solution is to separate the denominator from the numerators
and add it as a third dimension:

zt =

fxtfyt
ft

 =

∑i sixi∑
i siyi∑
i si

 = Cst, (3)

where, for N sensors,

C =

x1 . . . xN
y1 . . . yN
1 . . . 1

 and st =

 s1
...
sN

 .

As illustrated by Figure 6, the observation values in this new
input space tend to be more Gaussian, even for the most
problematic case of a light object placed in a corner of a
tile.

With these observations, the state of the filter has to incor-
porate the force ft at time t, and becomes xt = (xt, yt, ft).
The transition model of the filter can be written similarly as
above:

xt ∼ N (xt−1,Qt),

Algorithm 1 EKF with tile selection
Require: sensors measures {s̃i,t}Ni=1 at time t
Require: previous estimate x̂t−1

Require: previous covariance P̂t−1

for all tiles j do . individual tiles selection
f̃j,t ←

∑
s̃i,f if sensor i belongs to tile j

if Φ(−f̃j,t/σj) < α then
reject tile j

end if
end for
z̃t ← Cs̃t . observation on remaining sensors
Rt ← CStC

ᵀ{
x̂t ← x̂t−1

P̂t ← P̂t−1 + ∆tQ0
. filter prediction

if Φ((f̂t − f̃t)/
√

R3,3
t ) ≥ β then . observation rejection

Ht ← Hx̂t
. linearization of observation model

ỹt ← z̃t − g(x̂t)
St ← HtPtH

ᵀ
t + Rt

Kt ← PtHtS
−1{

x̂t ← x̂t + Ktỹt

P̂t ← (I3 −KtHt)P̂t
. filter update

end if
return state estimate x̂t and its covariance matrix P̂t

but the measurement model does change:

zt ∼ N (g(xt),Rt) with g(xt) =

ftxtftyt
ft

 .

The noise terms are still unbiased Gaussian noise with
covariance matrices Qt and Rt. Interestingly, Rt can be
deduced from Equation 3 as:

R = CStC
ᵀ with St =

σ
2
1 0

. . .
0 σ2

N

 ,

where σ2
i are the sensors noise variance. We have observed

that the individual sensors noise do not depend on the weight
(which does not prevent the CoP depending on it), thus Rt

does not depend on the weight. But note that, due to the tile
selection procedure, Rt changes at each time step according
to the retained sensors. Besides, the measurement model is
no longer linear w.r.t. the state vector and we thus need to
implement an EKF which involves Hx, the Jacobian of g at
a value x.

Finally, as this filter tracks the object weight, it can be af-
fected by the selection algorithm presented in subsection III-
B. Indeed, when a light robot spreads its load on several tiles,
there is a risk that only a subset of these tiles get selected,
providing an incorrect value for zt. To prevent this issue, we
added a test after the prediction step of the EKF, discarding
the update step if the probability of observing a value as low
as f̃t is smaller than a fixed threshold β:

P (Ft ≤ f̃t) = Φ((ft − f̃t)/
√

R3,3
t ) < β,



Turtlebot Methods

Scenarios DE-TS KF EKF

all 6.0 cm (±6.1) 3.8 cm (±2.6) 5.1 cm (±5.8)
static 5.0 cm (±4.2) 3.5 cm (±1.8) 3.7 cm (±1.9)
rotation 6.9 cm (±7.5) 5.5 cm (±2.9) 5.6 cm (±2.7)
straight line 6.3 cm (±8.2) 3.7 cm (±2.9) 6.0 cm (±8.3)
rectangle 5.8 cm (±5.6) 3.8 cm (±2.6) 5.1 cm (±6.0)
figure eight 6.5 cm (±5.9) 3.7 cm (±2.7) 5.0 cm (±5.1)

Robulab Methods

Scenarios DE-TS KF EKF

all 2.1 cm (±2.8) 2.1 cm (±2.9) 3.9 cm (±7.2)
static 1.3 cm (±1.0) 1.2 cm (±0.3) 1.4 cm (±0.7)
rotation 2.0 cm (±1.2) 1.9 cm (±0.8) 2.0 cm (±0.9)
straight line 1.9 cm (±1.3) 1.7 cm (±0.8) 4.1 cm (±6.9)
rectangle 2.2 cm (±4.0) 2.4 cm (±4.2) 5.8 cm (±9.7)
figure eight 2.2 cm (±1.7) 2.2 cm (±1.5) 1.8 cm (±1.2)

TABLE I: Summary values for the evaluation of the methods,
as errors mean (± sd.) in centimeters. Top: with the light
robot. Bottom: with the heavy robot.

where noise covariance matrix Rt can change at each time
step depending on the involved tiles.

The specific equations of the EKF combined with the other
steps of the model are summarized by Algorithm 1.

IV. APPLICATIONS

In order to evaluate the relevance of the models presented
in the previous section, we designed a set of experiments
with robots of different weights executing different types of
trajectories.

A. Evaluation

Our dataset is made of 10 replications – per robot – of
several kinds of trajectories: static robot, rotation on the spot,
straight line, rectangle, and driven in a figure eight. These
trajectories have been recorded in a rectangular area covered
with 3 by 5 sensing tiles. The location of the robot was
tracked with the Qualysis motion capture system.

To investigate the effect of the weight on the estimated
trajectories, we employed an heavy Robulab robot (35.7 kg)
and a lighter Turtlebot robot (6.3 kg).

Our criterion to assess the quality of the estimated trajecto-
ries is absolute error of the CoP. It was therefore necessary to
calibrate both the transformation between the motion capture
and the tiles reference frames, and the CoP position of
the robot w.r.t. the motion capture object. This was done
using least-square estimation on a subset of the figure-eight
scenarios with all three methods.

The methods evaluated are: the direct estimates with tile
selection (DE-TS), the KF and the EKF. For the KF method,
several values of R were tested. Similarly, we tested several
values of β parameter of EKF. Both filters used the same
Q0 values for (xt, yt) states, fixed at 0.1 m, to reflect the
range of speed of both robots. We fixed α = 10−8 for the
selection of tiles.3

3This value corresponds to an expected false positive rate of less than
one per hour for a set of 100 tiles with a sampling frequency of 50 Hz.
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Fig. 7: Comparison of error distributions for all models. Left:
on the light robot; right: on the heavy robot.
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Fig. 8: Comparison of error distributions for all models, in
the figure eight scenario. Left: on the light robot; right: on
the heavy robot.

B. Global results

The results with our dataset are summarized per robot in
Table I, for all scenarios pooled together and per scenario.
For the KF and EKF models, which depend on parameter
values, only the best results are reported (R = 0.1 Id and
β = 0.1), an extended analysis of their sensitivity to their
parameter being presented in the following sections.

The three models (DE-TS, KF, EKF) present similar
results when pooling data from all scenarios (see Figure 7
shown using violin plots [18] with inner boxplots). They are
all capable of tracking a robot with a maximum average error
of 6 cm. The KF model outperforms the two other models for
the lightest robot, with 1 cm less in average error.4 The same
pattern arises when analyzing each scenario individually, as
illustrated in Figure 8 for the figure eight scenario.

Even if most differences of average errors between meth-
ods are statistically significant, these differences are in an
order of magnitude of 1 cm, while the standard deviation of
the errors is up to 7 cm for the worst case. Therefore, the
mean errors can be considered – for practical purposes – as
sensibly identical for these methods, and a more valuable
analysis is found in looking at the spread of the errors.

In this case, we can see that DE-TS performs worse than
KF and similarly to EKF, with a standard deviation of 6.1 cm,
compared to respectively 2.6 cm and 5.8 cm, when dealing
with the light Turtlebot robot. This implies that trajectories

4This result is statistically significant at p-value ≤ 0.01, assessed by a
bootstrap test for the difference between two sample means (2000 samples).
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Fig. 9: Estimated trajectories in a figure eight scenario. Black line: ground truth trajectory; blue line: estimated trajectory.
Grey circle: starting point; grey triangle: stopping point. Top row: the heavy robot; bottom row: the light robot.

estimated by DE-TS and EKF are noisier, which can be seen
in a sample trajectory in Figure 9.

Concerning the effect of the robot weight, the perfor-
mances of DE-TS, KF and EKF methods respectively de-
grade by 3.9 cm, 1.7 cm and 1.2 cm between the heavy robot
and the light robot. Furthermore, robot lightness drastically
increases the standard deviation of the error for DE-TS.

C. Influence of R tuning in KF
One concern that arose while designing the KF model was

the value of R. Assuming this matrix is a scaled identity
matrix, we tried different values for the diagonal element
σ2
xy , i.e. the variance of CoP position direct estimates.
It turns out that the KF is robust to the setting of the same

parameter for both robots, as shown in Figure 10. Best results
are obtained with σxy = 0.05 for Robulab and σxy = 0.10
with Turtlebot.

Underestimating the measurement noise has a mild effect
in the Turtlebot case, slightly increasing the variance of the
errors, but improves results in the Robulab case in terms of
average error and variance. Overestimating the measurement
noise increases both mean and variance of the errors, in the
cases of both robots.

D. Influence of β tuning in EKF
Our EKF model includes a β parameter used to prevent

poor estimates due to partial information from the selected
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Fig. 10: Errors of KF depending on the σxy parameter
(R = σ2

xyI). Thick lines represent the mean error. Shades
represent one standard deviation around the mean. In blue:
the light robot; in red: the heavy robot.

tiles. As it acts as a threshold on probabilities, we used
a logarithmic sampling to explore the influence of this
parameter. Results are graphically transposed in Figure 11.

The effect of this parameter is negligeable in the Robulab
case. It is highly likely that very few time frames are affected
by the issue of incorrectly rejected tiles, due to the good
signal to noise ratio brought by the robot weight.

On the other hand, β affects the results for the Turtlebot.
Up to β = 10−1, this parameter decreases the mean error.
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Fig. 11: Errors of EKF depending on β parameter. Thick
lines represent the mean error. Shades represent one standard
deviation around the mean. Dashed lines represent 90th
percentile of the error. In blue: the light robot; in red: the
heavy robot.

Furthermore, it lowers the extreme values of the error, as
shown by the 90th percentile displayed in Figure 11.

For too high values such as β = 0.35 ≈ 10−0.5, the EKF
rejects too many observations to be able to track reliably
the Turtlebot. Recall, when the EKF only predicts the po-
sition, without incorporating evidence from the observation,
it replicates the last estimates, as our transition model does
not incorporate any speed component.

V. CONCLUSION

In this paper, we have proposed several models to estimate
the CoP position of wandering mobile robots on a low-
cost load-sensing floor. We have evaluated them on several
datasets, recorded with two robots and included ground truth.
The results have shown that we are able to track heavy and
light robots up to 4 cm.

This work highlights issues with load-sensing floors for
tracking light targets, namely that the constant noise level
on the individual sensors translates into an increased noise
on the CoP position. Furthermore, the statistical distribution
of such noise is highly correlated and becomes non-Gaussian,
which has to be taken into consideration in the estimation
process.

Interestingly, all these problems are non-issues in case of
heavy robots. In these cases, a basic robust approach (DE-
TS) performs very well.

We proposed two more advanced models, namely KF and
EKF which are capable of accurately tracking light targets as
well. They represent different trade-offs in complexity and
parameter tuning. The KF model is simpler but requires a
reasonably good estimate of the scale of the measurement
noise covariance matrix. This implies knowledge of the
weights of the robots one tracks on such a floor. In contrast,
the EKF model is more complex but the parameters that need
to be fixed do not depend on the tracked weight.

Both of these models can serve as basis for advanced
models, which could include a motion model, kinematic
constraints and control inputs at the expense of losing the
generality of our approach. Other extensions would include

multi-robot tracking in a mixed human-robot environment.
For this purpose, one extension could be to segregate areas
for each moving object before position estimation, using
a more advanced tile selection process including temporal
information.

To conclude, we believe that load-sensing floors, deployed
for elderly assistance, could be useful both as gait analysis
tools and tracking devices to help robots navigate in their
environment.
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