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We consider parametric equations driven by the sum of a p-Laplacian and a Laplace operator (the so-called (p, 2)-equations). We study the existence and multiplicity of solutions when the parameter λ > 0 is near the principal eigenvalue λ1(p) > 0 of (-∆p, W 1,p 0 (Ω)). We prove multiplicity results with precise sign information when the near resonance occurs from above and from below of λ1(p) > 0.

Introduction

Let Ω ⊆ R N be a bounded domain with a C 2 -boundary ∂Ω. In this paper, we study the following parametric nonlinear nonhomogeneous Dirichlet problem (P λ ) -∆ p u(z) -∆u(z) = λ|u(z)| p-2 u(z) + f (z, u(z)) in Ω, u| ∂Ω = 0, 2 < p < ∞.

Here ∆ p denotes the p-Laplacian differential operator defined by ∆ p u = div (|Du| p-2 Du) for all u ∈ W 1,p 0 (Ω). Also, λ > 0 is a parameter and f : Ω × R → R is a Carathéodory perturbation (that is, for all x ∈ R, z -→ f (z, x) is measurable and for a.a. z ∈ Ω, x -→ f (z, x) is continuous).

Our aim in this paper is to study the existence and multiplicity of nontrivial solutions when the parameter λ > 0 is near the principal eigenvalue λ1 (p) > 0 of (-∆ p , W 1,p 0 (Ω)) either from the left or from the right. Such equations, which are near resonance, were first investigated by Mawhin and Schmitt [START_REF] Mawhin | Landesman-Lazer type problems at an eigenvalue of odd multiplicity[END_REF], [START_REF] Mawhin | Nonlinear eigenvalue problems with the parameters near resonance[END_REF] (for semilinear Dirichlet and periodic problems, respectively). Subsequently, their work was extended by Badiale and Lupo [START_REF] Badiale | Some remarks on a multiplicity result by Mawhin-Schmitt[END_REF], Chiappinelli, Mawhin and Nugari [START_REF] Chiappinelli | Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities[END_REF] and Ramos and Sanchez [START_REF] Ramos | A variational approach to multiplicity in elliptic problems near resonance[END_REF]. All these papers consider semilinear elliptic equations driven by the Laplacian. Extensions to equations driven by the p-Laplacian were obtained by Ma, Ramos and Sanchez [START_REF] Ma | Multiple solutions for a class of nonlinear boundary value problems near resonance: a variational approach[END_REF] and Papageorgiou and Papalini [START_REF] Papageorgiou | Multiple solutions for nearly resonant nonlinear Dirichlet problems[END_REF].

In this work we extend the analysis to (p, 2)-equations (that is, equations driven by the sum of a p-Laplacian (p > 2) and a Laplacian). We stress that the differential operator in (P λ ) is nonhomogeneous and this is a source of difficulties in the analysis of the problem (P λ ). We note that (p, 2)-equations arise in many physical applications (see Cherfils and Ilyasov [START_REF] Cherfits | On the stationary solutions of generalized reaction-diffusion equations with p&q Laplacian[END_REF]) and recently such equations were studied by Barile and Figueiredo [START_REF] Barile | Existence of least energy positive, negative and nodal solutions for a class of p&q-problems with potentials vanishing at infinity[END_REF], Carvalho, Goncalves and da Silva [START_REF] Carvalho | On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition[END_REF], Chaves, Ercole and Miyagaki [START_REF] Chaves | Existence of a nontrivial solution for the (p, q)-Laplacian in R N without the Ambrosetti-Rabinowitz condition[END_REF], Mugnai and Papageorgiou [START_REF] Mugnai | Wang's multiplicity result for superlinear (p, q)-equations without the Ambrosetti-Rabinowitz condition[END_REF], Papageorgiou and Rȃdulescu [START_REF] Papageorgiou | Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance[END_REF], [START_REF] Papageorgiou | Solutions with sign information for nonlinear nonhomogeneous elliptic equations[END_REF], [START_REF] Papageorgiou | Resonant (p, 2)-equations with asymmetric reaction[END_REF] and Papageorgiou and Winkert [START_REF] Papageorgiou | On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction[END_REF], [START_REF] Papageorgiou | Resonant (p, 2)-equations with concave terms[END_REF].

Our approach is variational, based on the critical point theory, together with suitable truncation and comparison techniques, and Morse theory (critical groups). In the next section, for the convenience of the reader, we recall the main mathematical tools which we will use in the paper.

Mathematical Background

The topological notion of linking sets is central in the critical point theory.

Definition 1. Let Y be a Hausdorff topological space and E 0 , E, D be closed subspaces of Y such that E 0 ⊆ E. We say that the pair {E 0 , E} is linking with D in Y , if (a) E 0 ∩ D = ∅; and (b) for every γ ∈ C(E, Y ) such that γ| E 0 = id| E 0 , we have γ(E) ∩ D = ∅. Now, let X be a Banach space and X * its topological dual. By •, • we denote the duality brackets for the pair (X, X * ). Given ϕ ∈ C 1 (X), we say that ϕ satisfies the Cerami condition (the C-condition for short), if the following is true: "If {u n } n 1 ⊆ X is a sequence such that {ϕ(u n )} n 1 ⊆ R is bounded and

(1 + ||u n ||)ϕ ′ (u n ) → 0 in W -1,p ′ (Ω) = W 1,p 0 (Ω) * 1 p + 1 p ′ = 1 as n → ∞,
then it admits a strongly convergent subsequence". This is a compactness-type condition on the functional ϕ, which compensates for the fact that the ambient space X need not be locally compact (since X is in general, infinite dimensional). The C-condition is important in developing a minimax theory for the critical values of ϕ. A basic result in that theory is the following theorem which involues the notion of linking sets (see, for example, Gasinski and Papageorgiou [16, p. 644]).

Theorem 2. If X is a Banach space, E 0 , E and D are nonempty closed subsets of X such that the pair {E 0 , E} is linking with D in X (see Definition 1), ϕ ∈ C 1 (X) and satisfies the C-condition, sup E 0 ϕ < inf D ϕ and c = inf With suitable choices of the linking sets, we obtain the well-known mountain pass theorem, saddle point theorem and the generalized mountain pass theorem (see [START_REF] Gasinski | Nonlinear Analysis[END_REF]). For future use, we state the mountain pass theorem. Remark 1. It is easy to see that Theorem 3 can be deduced from Theorem 2, if we consider

E 0 = {u 0 , u 1 }, E = {u ∈ X : u = tu 1 + (1 -t)u 0 , t ∈ [0, 1]}, D = ∂B ρ (u 0 ) = {u ∈ X : ||u -u 0 || = ρ}.
In this analysis of problem (P λ ), we will use the Sobolev space W 1,p 0 (Ω) and the Banach space C 1 0 (Ω) = u ∈ C 1 (Ω) : u| ∂Ω = 0 . The latter is an ordered Banach space with positive cone C + = {u ∈ C 1 0 (Ω); u(z) 0 for all z ∈ Ω}. This cone has nonempty interior given by int

C + = u ∈ C + : u(z) > 0 for all z ∈ Ω, ∂u ∂n ∂Ω < 0 .
Here n(•) denotes the outward unit normal on ∂Ω.

In what follows, by || • || we denote the norm of the Sobolev space W 1,p 0 (Ω). By virtue of the Poincaré inequality, we have ||u|| = ||Du|| p for all u ∈ W 1,p 0 (Ω). Next, we present some basic facts about the spectrum of (-∆ q , W 1,q 0 (Ω)) with 1 < q < ∞. So, we consider the following nonlinear eigenvalue problem

-∆ q u(z) = λ|u(z)| q-2 u(z) in Ω, u| ∂Ω = 0.
We say that λ ∈ R is an eigenvalue of (-∆ q , W 1,q 0 (Ω)), if the above equation admits a nontrivial solution û ∈ W 1,q 0 (Ω). We say that û is an eigenfunction corresponding to the eigenvalue λ. We know that there exists a smallest eigenvalue λ1 (q) with the following properties: (i) λ1 (q) > 0;

(ii) λ1 (q) is isolated, that is, there exists ǫ > 0 such that ( λ1 (q), λ1 (q) + ǫ) contains no eigenvalue of (-∆ q , W 1,q 0 (Ω)); and (iii) λ1 (q) is simple, that is, if û, v are eigenfunctions corresponding to λ1 (q), then û = ξv for some ξ ∈ R\{0}.

Moreover, λ1 (q) admits the following variational characterization

(1) λ1 (q) = inf ||Du|| q q ||u|| q q : u ∈ W 1,q 0 (Ω), u = 0 .

In (1) the infimum is realized on the corresponding one-dimensional eigenspace. By (1) it is clear that the elements of this eigenspace do not change the sign. By û1 (q) we denote the positive, L p -normalized (that is, ||û 1 (q)|| q = 1) eigenfunction corresponding to λ1 (q) > 0. From the nonlinear regularity theory and the nonlinear maximum principle (see, for example, Gasinski and Papageorgiou [16, pp. 737-738]), it follows that û1 (q) ∈ int C + .

Let σ(q) denote the set of eigenvalues of (-∆ q , W 1,q 0 (Ω)). It is easy to check that this set is closed. Since λ1 (q) > 0 is isolated, the second eigenvalue λ * 2 (q) is well-defined by λ * 2 (q) = inf[ λ ∈ σ(q) : λ > λ1 (q)]. If N = 1 (ordinary differential equations), then σ(q) = { λk (q)} k 1 with each λk (q) being a simple eigenvalue and λk (q) ↑ +∞ as k → ∞ and the corresponding eigenfunctions {û k (q)} k 1 have exactly k -1 zeros. If N 2 (partial differential equations), then using the Ljusternik-Schnirelmann minimax scheme, we can produce a strictly increasing sequence { λk (q)} k 1 ⊆ σ(q) such that λk (q) → +∞ as k → ∞. However, we do not know if this is the complete list of all eigenvalues. We know that λ * 2 (q) = λ2 (q), that is, the second eigenvalue and the second Ljusternik-Schnirelmann eigenvalue coincide. The Ljusternik-Schnirelmannn theory gives a minimax characterization of λ2 (q). For our purposes, this characterization is not convenient. Instead, we will us an altern ative one due to Cuesta, de Figueiredo and Gossez [START_REF] Cuesta | The beginning of the Fucik spectrum for the p-Laplacian[END_REF].

Proposition 4. If ∂B L q 1 = {u ∈ L q (Ω) : ||u|| q = 1}, M = W 1,q 0 (Ω) ∩ ∂B L q , and Γ 0 = {γ 0 ∈ C([-1, 1], M ) : γ 0 (-1) = -û 1 (q), γ 0 (1) = û1 (q)} then λ2 (q) = inf γ 0 ∈Γ 0 max -1 t 1 ||Dγ 0 (t)|| q q .
We mention that λ1 (q) > 0 is the only eigenvalue with eigenfunctions of constant sign. Every other eigenvalue has nodal (that is, sign-changing) eigenfunctions.

When q = 2 (linear eigenvalue problem), then σ(2) = { λk (2)} k 1 . In this case, the eigenspaces are linear spaces. By E( λk (2)), we denote the eigenspace corresponding to the eigenvalue λk [START_REF] Aizicovici | On p-superlinear equations with nonhomogeneous differential operator[END_REF]. The regularity theory implies that E( λk (2)) ⊆ C 1 0 (Ω). Moreover, E( λk (2)) has the so-called unique continuation property, that is, if u ∈ E( λk (2)) and vanishes on a set of positive Lebesgue measure, then u ≡ 0. In this case all eigenvalues admit variational characterization, namely

(2) λ1 (2) = inf ||Du|| 2 2 ||u|| 2 2 : u ∈ H 1 0 (Ω), u = 0
and for k 2, we have

λk (2) = sup ||Du|| 2 2 ||u|| 2 2 : u ∈ k ⊕ i=1 E( λi (2)), u = 0 = inf ||Du|| 2 2 ||u|| 2 2 : u ∈ ⊕ i k E( λi (2)), u = 0 . (3) 
In [START_REF] Aizicovici | On p-superlinear equations with nonhomogeneous differential operator[END_REF] the infimum is realized on E( λ1 (2)), while in (3) both the supremum and the infimum are realized on E( λk (2)).

From the variational characterizations in ( 2) and ( 3) and the unique continuation property, we have the following result (see Papageorgiou and Kyritsi [START_REF] Papageorgiou | Handbook of Applied Analysis[END_REF]).

Proposition 5.

(a) If k 1, ϑ ∈ L ∞ (Ω), ϑ(z) λk (2) for a.a. z ∈ Ω and ϑ ≡ λk (2), then there exists ξ0 > 0 such that

||Du|| 2 2 - Ω ϑ(z)u(z) 2 dz ξ0 ||u|| 2 for all u ∈ ⊕ i k E( λk (2)). (b) If k 1, ϑ ∈ L ∞ (Ω), ϑ(z) λk (2)
for a.a. z ∈ Ω and ϑ ≡ λk (2), then there exists ξ1 > 0 such that

||Du||| 2 2 - Ω ϑ(z)u(z) 2 dz -ξ1 ||u|| 2 for all u ∈ k ⊕ i=1 E( λi (2)).
For 1 < q < ∞, let A q : W 1,q 0 (Ω) → W -1,q ′ (Ω) be the nonlinear map defined by

A q (u), h = Ω |Du| q-2 (Du, Dh) R N dz for all u, h ∈ W 1,q 0 (Ω). If q = 2, then A 2 = A ∈ L(H 1 0 (Ω), H -1 (Ω))
. By Papageorgiou and Kyritsi [24, p. 314], we have the following result summarizing the basic properties of the map A q . Proposition 6. The map A q : W 1,q 0 (Ω) → W -1.q ′ (Ω) is bounded (that is, it maps bounded sets to bounded sets), demicontinuous, strictly monotone (hence maximal monotone, too) and of type (S)

+ , that is, if u n w → u in W 1,q 0 (Ω) and lim sup n→∞ A q (u n ), u n -u 0, then u n → u in W 1,q 0 (Ω) as n → ∞. Let f 0 : Ω × R → R be a Carathéodory function with subcritical growth in the x ∈ R variable, that is, |f 0 (z, x)| a 0 (z)(1 + |x| r-1 ) for a.a. z ∈ Ω, all x ∈ R, with a 0 ∈ L ∞ (Ω) + and 1 < r < p * = N p N -p if p < N +∞ if N p. We set F 0 (z, x) = x 0 f 0 (z, s)ds and consider the C 1 -functional ϕ 0 : W 1,p 0 (Ω) → R defined by ϕ 0 (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - Ω F 0 (z, u(z))dz for all u ∈ W 1,p 0 (Ω).
The next result is a special case of a more general result of Aizicovici, Papageorgiou and Staicu [START_REF] Aizicovici | On p-superlinear equations with nonhomogeneous differential operator[END_REF].

Proposition 7. Let u 0 ∈ W 1,p 0 (Ω) be a local C 1 (Ω)-minimizer of ϕ 0 , that is, there exists ρ 0 > 0 such that ϕ 0 (u 0 ) ϕ 0 (u 0 + h) for all h ∈ C 1 0 (Ω), ||h|| C 1 0 (Ω) < ρ 0 . Then u 0 ∈ C 1,α 0 (Ω)
for some α ∈ (0, 1) and it is also a local W 1,p 0 (Ω)-minimizer of ϕ 0 , that is, there exists ρ 1 > 0 such that ϕ 0 (u 0 ) ϕ 0 (u 0 + h) for all h ∈ W 1,p 0 (Ω), ||h|| ρ 1 . We also recall some basic definitions and facts from Morse theory. So, let ϕ ∈ C 1 (X) and c ∈ R. We introduce the following sets.

ϕ c = {u ∈ X : ϕ(u) c}, K ϕ = {u ∈ X : ϕ ′ (u) = 0} and K c ϕ = {u ∈ K ϕ : ϕ(u) = c}. Let (Y 1 , Y 2 ) be a topological pair with Y 2 ⊆ Y 1 ⊆ X.
For every integer k 0, by H k (Y 1 , Y 2 ) we denote the k-th relative singular homology group with integer coefficients. The critical groups of ϕ at u ∈ K c ϕ which is isolated among the critical points, are defined by

C k (ϕ, u) = H k (ϕ c ∩ U, ϕ c ∩ U \{u}) for all k 0.
Here U is a neighborhood of u such that K ϕ ∩ ϕ c ∩ U = {u}. The excision property of the singular homology implies that this definition is independent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C 1 (X) satisfies the C-condition and inf ϕ(K ϕ ) > -∞. Let c < inf ϕ(K ϕ ). Then the critical groups of ϕ at infinity are defined by

C k (ϕ, ∞) = H k (X, ϕ c ) for all k 0.
The second deformation theorem (see, for example, Gasinski and Papageorgiou [16, p. 628]), implies that this definition is independent of the choice of the level c < inf ϕ(K ϕ ).

We introduce

M (t, u) = k 0 rank C k (ϕ, u)t k for all t ∈ R, all u ∈ K ϕ and P (t, ∞) = k 0 rank C k (ϕ, ∞)t k for all t ∈ R.
The Morse relation says that

(4) u∈Kϕ M (t, u) = P (t, ∞) + (1 + t)Q(t)
where

Q(t) = k 0 β k t k is a formal series in t ∈ R with nonnegative coefficients.
Finally, let us fix our notation in this paper. By | • | N we denote the Lebesgue measure on R N . Given x ∈ R, we let x ± = max{±x, 0}. Then for u ∈ W 1,p 0 (Ω) we define u ± (•) = u(•) ± . We know that u ± ∈ W 1,p 0 (Ω), u = u +u -, |u| = u + + u -. Given a measurable function g(z, x) (for example, a Carathéodory function), we set

N g (u)(•) = g(•, u(•)
) for all u ∈ W 1,p 0 (Ω) (the Nemytski map corresponding to g). Evidently, z → N g (u)(z) is measurable.

Near Resonance from the left of λ1 (p) > 0

In this section we deal with problem (P λ ) in which the parameter is close to λ1 (p) > 0 from the left (near resonance from the left). We introduce the following conditions on the perturbation f (z, x): 

H 1 : f : Ω × R → R
η(z) ∈ [ λm (2), λm+1 (2)] for a.a. z ∈ Ω, η ≡ λm (2), η ≡ λm+1 (2) lim x→0 f (z, x) x = η(z) uniformly for a.a. z ∈ Ω. Remark 2. Evidently, f (z, •) is differentiable at x = 0 and f ′ x (z, 0) = η(z). Hypothesis H 1 imply that there exists c 1 > 0 such that F (z, x) -c 1 x 2 for a.a. z ∈ Ω, all x ∈ R.
For λ > 0, let ϕ λ : W 1,p 0 (Ω) → R be the energy functional for problem (P λ ), defined by

ϕ λ (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - λ p ||u|| p p - Ω F (z, u(z))dz for all u ∈ W 1,p 0 (Ω).
Evidently,

ϕ λ ∈ C 1 (W 1,p 0 (Ω)).
Proposition 8. If hypotheses H 1 (i), (ii) hold and λ ∈ (0, λ1 (p)), then the functional ϕ λ is coercive.

Proof. By virtue of hypotheses H 1 (i), (ii), given ǫ > 0, we can find

c 2 = c 2 (ǫ) > 0 such that (5) F (z, x) ǫ p |x| p + c 2 for a.a. z ∈ Ω, all x ∈ R.
Then for all u ∈ W 1,p 0 (Ω), we have 1) and ( 4)).

ϕ λ (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - λ p ||u|| p p - Ω F (z, u(z))dz 1 p 1 - λ + ǫ λ1 (p) ||u|| p -c 2 |Ω| N (see (
Choosing ǫ ∈ (0, λ1 (p)λ) (recall that λ < λ1 (p)), we can conclude from the last inequality that ϕ λ is coercive.

Let V = {u ∈ W 1,p 0 (Ω) : Ω u û1 (p) p-1 dz = 0} (recall û1 (p) ∈ int C + ). We have W 1,p 0 (Ω) = Rû 1 (p) ⊕ V. We introduce the following quantity λV (p) = inf ||Du|| p p ||u|| p p : u ∈ V, u = 0 . Lemma 9. λ1 (p) < λV (p) λ2 (p).
Proof. Clearly, λ1 (p) λV (p) (see [START_REF] Aizicovici | Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints[END_REF]). Suppose that λ1 (p) = λV (p). Then we can find

{u n } n 1 ⊆ V such that ||u n || p = 1 and ||Du|| p p → λV (p) = λ1 (p)
. By passing to a suitable subsequence if necessary, we may assume that

u n w → u in W 1,p 0 (Ω) and u n → u in L p (Ω) as n → ∞. We have u ∈ V and ||u|| p = 1. Also, λ1 (p) ||Du|| p p lim inf n→∞ ||Du n || p p = λV (p) = λ1 (p), ⇒ λ1 (p) = ||Du|| p p , hence u = ±û 1 (p) (recall ||u|| p = 1). But then u / ∈ V , a contradiction. So, we have proved that λ1 (p) < λV (p).
Next, suppose that λ2 (p) < λV (p). By virtue of Proposition 4, we can find γ0 = Γ 0 such that [START_REF] Benguria | The Thomas-Fermi-von Weizsäcker theory of atoms and molecules[END_REF] ||Dγ 0 (t)|| p p < λV (p) for all t ∈ [0, 1].

We have γ0 (

-1) = -û 1 (p), γ0 (1) = û1 (p). Consider the function [-1, 1] ∋ t → σ(t) = Ω γ0 (t)û 1 (p) p-1 dz. Evidently, this function is continuous and σ(-1) = -||û 1 (p)|| p p < 0 < ||û 1 (p)|| p p = σ(1)
. So, by Bolzano's theorem, we can find t 0 ∈ (0, 1) such that

σ(t 0 ) = Ω γ0 (t 0 )û 1 (p) p-1 dz = 0 ⇒ γ0 (t 0 ) ∈ V, which contradicts (6).
Therefore we infer that λV (p) λ2 (p).

Proposition 10. If hypotheses H 1 (i), (ii) hold and λ = λ1 (p), then ϕ λ | V is bounded from below.

Proof. Let v ∈ V . We have

ϕ λ (v) = 1 p ||Dv|| p p + 1 2 ||Dv|| 2 2 - λ1 (p) p ||v|| p p - Ω F (z, v)dz λV (p) -λ1 (p) -ǫ 2 ||v|| p p -c 2 |Ω| N (see (4)). ( 7 
)
From Lemma 9 we know that λ1 (p) < λV (p). So, we choose ǫ ∈ (0, λv (p) -λ1 (p)). Then from [START_REF] Carvalho | On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition[END_REF] we infer that

ϕ λ | V with λ = λ1 (p), is bounded from below. Let m 1 = inf V ϕ λ1 (p) > -∞ (see Proposition 10). Note that, if λ ∈ (0, λ1 (p)) then ϕ λ1 (p) ϕ λ , ⇒ m 1 inf V ϕ λ for all λ ∈ (0, λ1 (p)). ( 8 
)
Proposition 11. If hypothesis H 1 holds, then we can find small ǫ > 0 such that every λ ∈ ( λ1 (p)ǫ, λ1 (p)) we can find large t 0 > 0 such that

ϕ λ (±t 0 û1 (p)) < m 1 .
Proof. By virtue of hypothesis H 1 (ii), given ξ > 0, we can find

M 1 = M 1 (ξ) > 0 such that (9) F (z, x) ξx 2 for a.a. z ∈ Ω, all |x| M 1 .
Let t > 0. We have

Ω F (z, tû 1 (p))dz = {tû 1 (p) M 1 } F (z, tû 1 (p))dz + {0 tû 1 (p)<M 1 } F (z, tû 1 (p))dz ξt 2 {tû 1 (p) M 1 } û1 (p) 2 dz + {0 tû 1 (p)<M 1 } F (z, tû 1 (p))dz (see (9)) ξt 2 ||û 1 (p)|| 2 2 -(ξ + c 1 )t 2 |{0 tû 1 (p) < M 1 }| N . ( 10 
) Note that |{0 tû 1 (p) < M 1 }| N → 0 as t → ∞ (recall that û1 (p) ∈ int C + )
. Also, ξ > 0 is arbitrary. So, we see that for all large t > 0, we have

(11) ξt 2 ||û 1 (p)|| 2 2 -(ξ + c 1 )t 2 |{0 tû 1 (p) < M 1 }| N -(m 1 -1) + t 2 2 ||Dû 1 (p)|| 2 2 .
From ( 10) and ( 11) and for t 1 0 > 0 big, we have ( 12)

Ω F (z, tû 1 (p))dz -(m 1 -1) + t 2 2 ||Dû 1 (p)|| 2 2 for all t t 1 0 .
So, we have

ϕ λ (t 1 0 û1 (p)) = (t 1 0 ) p p ||Dû 1 (p)|| p p + (t 1 0 ) 2 2 ||Dû 1 (p)|| 2 2 - λ(t 1 0 ) p p ||û 1 (p)|| p p - Ω F (z, t 1 0 û1 (p))dz (t 1 0 ) p [ λ1 (p) -λ] p + (t 1 0 ) 2 2 ||Dû 1 (p)|| 2 2 + m 1 -1 - (t 1 0 ) 2 2 ||Dû 1 (p)|| 2 2
(see [START_REF] Cingolani | Critical groups computations on a class of Sobolev Banach spaces via Morse index[END_REF] and recall that ||û 1 (p)|| p = 1)

(t 1 0 ) p ǫ p + m 1 -1 with ǫ > 0 (recall λ < λ1 (p))
< m 1 by choosing ǫ > 0 small such that t 1 0 < p ǫ

1/p .
In a similar fashion, we can find large t 2 0 > 0 such that ϕ λ (-t 0 û1 (p)) < 0 for all λ ∈ ( λ1 (p)ǫ, λ1 (p)), all t t 2 0 . Let t 0 = max{t 1 0 , t 2 0 }. Then ϕ λ (±t 0 û1 (p)) < m 1 for all λ ∈ ( λ1 (p)ǫ, λ1 (p)) with small ǫ > 0 .

We introduce the following sets Proof. We introduce the functional

U + = {u ∈ W 1,p 0 (Ω) : u = tû 1 (p) + v, t > 0, v ∈ V }, U -= {u ∈ W 1,p 0 (Ω) : u = -tû 1 (p) + v, t > 0, v ∈ V }. Proposition 12.
φ+ λ (u) = ϕ λ (u) if u ∈ U + +∞ if u / ∈ U + .
Evidently, φ+ λ is lower semicontinuous and bounded from below (see Proposition 8). So, we can apply the Ekeland variational principle (see, for example, Gasinski and Papageorgiou [16, p. 582]) and

{u n } n 1 ⊆ U + such that ϕ λ (u n ) = φ+ λ (u n ) ↓ inf φ+ λ as n → ∞ (13) ϕ λ (u n ) = φ+ λ (u n ) φ+ λ (y) + 1 n(1 + ||u n ||) ||y -u n || (14)
for all y ∈ W 1,p 0 (Ω), all n 1. Fix n 1 and let h ∈ W 1,p 0 (Ω). Then for small t > 0 we have u n + th ∈ U + . Using this as a test function in [START_REF] Dunford | Linear Operators I[END_REF], we have

- ||h|| n(1 + ||u n ||) ϕ λ (u n + th) -ϕ λ (u n ) t (note that ϕ λ | U 1 = φ+ λ | U + ) ⇒ - ||h|| n(1 + ||u n ||) ϕ ′ λ (u n ), h (recall ϕ λ ∈ C 1 (W 1,p 0 (Ω))). ( 15 
) Since h ∈ W 1,p 0 (Ω) is arbitrary, from (15) it follows that (1 + ||u n ||)ϕ ′ λ (u n ) → 0 in W -1,p ′ (Ω) as n → ∞.
But ϕ λ being coercive, satisfies the C-condition (see [START_REF] Papageorgiou | On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction[END_REF]). So, it follows that u n → û+ in W 1,p 0 (Ω) as n → ∞. We have û+ ∈ U + and so from [START_REF] Cuesta | The beginning of the Fucik spectrum for the p-Laplacian[END_REF] we infer that

ϕ λ (û + ) = inf U + ϕ λ Suppose that û+ ∈ ∂U + = V . Then m 1 inf U + ϕ λ = ϕ λ (û + ) (see (8)),
which contradicts Proposition 11. Therefore û+ ∈ U + and it is a local minimizer of ϕ λ , hence a nontrivial solution of (P λ ). By Ladyzhenskaya and Uraltseva [18, p. 286] we have û+ ∈ L ∞ (Ω). Then we can apply Theorem 1 of Lieberman [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF] and obtain that û+ ∈ C 1 0 (Ω). Similarly, working with the functional

φλ (u) = ϕ λ (u) if u ∈ U - +∞ if u / ∈ U -,
we obtain a second nontrivial solution û-∈ U -∩ C 1 0 (Ω), which is a local minimizer of ϕ λ and is distinct from û+ .

Next, using Morse theory, we will produce the third nontrivial solution. To this end, we need to compute the critical groups of ϕ λ at the origin.

Proposition 13. If hypotheses H 1 hold and λ > 0, then C k (ϕ λ , 0) = δ k,dm Z for all k 0 with d m = dim m ⊕ i=1 E( λi (2)) 2. Proof. Let ψ : W 1,p 0 (Ω) → R be the C 2 -functional defined by ψ(u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - 1 2 Ω η(z)u(z) 2 dz for all u ∈ W 1,p 0 (Ω).
We consider the homotopy

h λ (t, u) = (1 -t)ϕ λ (u) + tψ(u) for all (t, u) ∈ [0, 1] × W 1,p 0 (Ω). Suppose that we can find {t n } n 1 ⊆ [0, 1] and {u n } n 1 ⊆ W 1,p 0 (Ω) such that t n → t in [0, 1], u n → 0 in W 1,p 0 (Ω) as n → ∞ and (h λ ) ′ u (t n , u n ) = 0 (16)
for all n 1.

We have

(17) A p (u n ) + A(u n ) = (1 -t n )λ|u n | p-2 u n + (1 -t n )N f (u n ) + t n ηu n for all n 1.
Let y n = un ||un|| n 1. Then ||y n || = 1 for all n 1 and so may assume that (18)

y n w → y in W 1,p 0 (Ω) and y n → y in L p (Ω) as n → ∞. From (17), we have ||u n || p-2 A p (y n ) + A(y n ) = (1 -t n )λ|u n | p-2 y n + (1 -t n ) N f (u n ) ||u n || + t n ηy n (19)
for all n 1.

Note that hypothesis H 1 (i) and ( 16), imply that

N f (un) ||un|| n 1 ⊆ L 2 (Ω) is bounded. This
fact, in conjunction with hypothesis H 1 (iii) implies (at least for a subsequence) that [START_REF] Aizicovici | Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints[END_REF]).

(20) N f (u n ) ||u n || w → ηy in L 2 (Ω) as n → ∞ (see
Also, we have that {A p (y n )} n 1 ⊆ W -1,p ′ (Ω) is bounded (see [START_REF] Ladyzhenskaya | Linear and Quasilinear Elliptic Equations[END_REF] and Proposition 6). Therefore [START_REF] Mawhin | Landesman-Lazer type problems at an eigenvalue of odd multiplicity[END_REF] ||u n || p-2 A p (y n ) → 0 in W -1,p ′ (Ω) as n → ∞ (see ( 16)).

So, if in [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF] we pass to the limit as n → ∞ and use ( 18), ( 20), ( 21), then

A(y) = ηy, ⇒ -∆y(z) = η(z)y(z) for a.a. z ∈ Ω, y | ∂Ω = 0. ( 22 
)
From hypothesis H 1 (iii) and ( 22) it follows that y ≡ 0. On the other hand, from [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF] we have ( 23)

   ||u n || p-2 (-∆ p y n (z)) -∆y n (z) = (1 -t n )λ|y n (z)| p-2 y n (z) + (1 -t n ) f (z,un(z)) ||un|| +t n η(z)y n (z) for a.a. z ∈ Ω, u n | ∂Ω = 0   
Then by [START_REF] Mugnai | Wang's multiplicity result for superlinear (p, q)-equations without the Ambrosetti-Rabinowitz condition[END_REF] and Ladyzhenskaya and Uraltseva [18, p. 286], we know that we can find M 2 > 0 such that [START_REF] Papageorgiou | Handbook of Applied Analysis[END_REF] ||u n || ∞ M 2 for all n 1.

Since ||u n || p-2 → 0 as n → ∞ (see ( 16)), from ( 23), [START_REF] Papageorgiou | Handbook of Applied Analysis[END_REF] and Theorem 1 of Lieberman [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF], we know that there exist α ∈ (0, 1) and M 3 > 0 such that

y n ∈ C 1,α 0 (Ω) and ||y n || C 1,α 0 (Ω) M 3 for all n 1.
Exploiting the compact embedding of C 1,α 0 (Ω) into C 1 0 (Ω) and using [START_REF] Ladyzhenskaya | Linear and Quasilinear Elliptic Equations[END_REF], we have

y n → y = 0 in C 1 0 (Ω) as n → ∞, ⇒ y n → y = 0 in W 1,p 0 (Ω)
as n → ∞, which contradicts the fact that ||y n || = 1 for all n 1. Hence ( 16) cannot occur and so by the homotopy invariance of critical groups we have [START_REF] Papageorgiou | Multiple solutions for nearly resonant nonlinear Dirichlet problems[END_REF] C k (ϕ λ , 0) = C k (ψ, 0) for all k 0.

From Cingolani and Vannella [12, Theorem 1.1] we know that

C k (ψ, 0) = δ k,dm Z for all k 0, ⇒ C k (ϕ λ , 0) = δ k,dm
Z for all k 0 (see [START_REF] Papageorgiou | Multiple solutions for nearly resonant nonlinear Dirichlet problems[END_REF]). Now we can generate the third nontrivial solution.

Proposition 14. If hypotheses H 1 hold and λ ∈ ( λ1 (p)ǫ, λ1 (p)) with ǫ > 0 as in Proposition 11, then problem (P λ ) admits a third nontrivial solution ŷ ∈ C 1 0 (Ω). Proof. Without any loss of generality, we may assume that ϕ λ (û -) ϕ λ (û + ) (the analysis is similar if the opposite inequality holds). Also, we assume that K ϕ λ is finite (otherwise we already have infinitely many solutions for problem (P λ )). From Proposition 12, we know that û+ ∈ C 1 0 (Ω) is a local minimizer of ϕ λ . So, we can find small ρ ∈ (0, 1) such that

ϕ λ (û -) ϕ λ (û + ) < inf[ϕ λ (u) : ||u -û+ || = ρ] = m λ ρ , ||û --û+ || > ρ (26) 
(see Aizicovici, Papageorgiou and Staicu [START_REF] Aizicovici | Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints[END_REF], proof of Proposition 29). Recall that ϕ λ satisfies the C-condition. This fact and (26) permit the use of Theorem 2 (the mountain pass theorem). So, we can find ŷ ∈ W 1,p 0 (Ω) such that [START_REF] Papageorgiou | Solutions with sign information for nonlinear nonhomogeneous elliptic equations[END_REF] ŷ ∈ K ϕ λ and m λ ρ ϕ λ (ŷ).

From [START_REF] Papageorgiou | Solutions with sign information for nonlinear nonhomogeneous elliptic equations[END_REF] it follows that ŷ is a solution of (P λ ) and ŷ / ∈ {û -, û+ }. Since ŷ is a critical point of ϕ λ of mountain pass type, we have [START_REF] Papageorgiou | Resonant (p, 2)-equations with asymmetric reaction[END_REF] C 1 (ϕ λ , ŷ) = 0.

On the other hand, from Proposition 13, we have

(29) C k (ϕ λ , 0) = δ k,dm Z for all k 0 with d m 2.
Comparing ( 28) and ( 29), we see that ŷ = 0. Nonlinear regularity theory (see [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF]) implies ŷ ∈ C 1 0 (Ω). This is the third nontrivial solution of (P λ ). So, we can state our first multiplicity theorem for problem (P λ ).

Theorem 15. If hypotheses H 1 hold, then there exists ǫ > 0 such that for all λ ∈ ( λ1 (p)ǫ, λ1 (p)) problem (P λ ) admits at least three nontrivial solutions û+ , û-, ŷ ∈ C 1 0 (Ω), with û+ and û-being local minimizers of the energy functional ϕ λ .

By strengthening the regularity conditions on f (z, •), we can improve Theorem 15 and produce the fourth nontrivial solution. The new hypotheses on f (z, x) are the following:

H 2 : f : Ω×R → R is a measurable function such that for a.a. z ∈ Ω, f (z, 0) = 0, f (z, •) ∈ C 1 (R) and
(i) for every ρ > 0, there exists 

a ρ ∈ L ∞ (Ω) + such that |f (z, x)| a ρ (z)
f ′ x (z, 0) ∈ [ λm (2), λm+1 (2)] for a.a. z ∈ Ω, f ′ x (•, 0) ≡ λm (2), f ′ x (•, 0) ≡ λm+1 (2) f ′ x (z, 0) = lim
C k (ϕ λ , û+ ) = C k (ϕ λ , û-) = δ k,0 Z for all k 0.
Recall that (31) C 1 (ϕ λ , ŷ) = 0 (see [START_REF] Papageorgiou | Resonant (p, 2)-equations with asymmetric reaction[END_REF]).

Since ϕ λ ∈ C 2 (W 1,p 0 (Ω)), from [START_REF] Papageorgiou | Resonant (p, 2)-equations with concave terms[END_REF] and Papageorgiou and Smyrlis [START_REF] Papageorgiou | On nonlinear nonhomogeneous resonant Dirichlet equations[END_REF] (see also Papageorgiou and Rȃdulescu [START_REF] Papageorgiou | Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance[END_REF]) it follows that [START_REF] Pucci | The Maximum Principle[END_REF] C k (ϕ λ , ŷ) = δ k,1 Z for all k 0.

From Theorem 15, we know that

(33) C k (ϕ λ , 0) = δ k,dm Z for all k 0.
From Proposition 8, we know that ϕ λ is coercive. Therefore

(34) C k (ϕ λ , ∞) = δ k,0 Z for all k 0.
Suppose that K ϕ λ = {0, û+ , û-, ŷ}. Then from ( 30), ( 32), ( 33), (34) and the Morse relation (see ( 4)) with t = -1, we have (-1) dm + 2(-1) 0 + (-1) 1 = (-1) 0 , ⇒ (-1) dm = 0, a contradiction. So, we can find ỹ ∈ K ϕ λ , ỹ / ∈ {0, û+ , û-, ŷ}. It follows that ỹ is the fourth nontrivial solution of (P λ ) and the nonlinear regularity theory implies ỹ ∈ C 1 0 (Ω).

4. Near Resonance from the Right of λ1 (p) > 0

In this section we examine problem (P λ ) as the parameter λ approaches λ1 (p) > 0 from the above (from the right). In contrast to the previous case (Section 3), now the energy functional is indefinite.

We start with an existence result which is valid for all λ in the open spectral interval ( λ1 (p), λ2 (p)). The hypotheses on the perturbation f (z, x) are the following: As before, for every λ > 0, ϕ λ : W 1,p 0 (Ω) → R is the energy functional of problem (P λ ) defined by

H 3 : f : Ω × R → R
ϕ λ (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - λ p ||u|| p p - Ω F (z, u(z))dz for all u ∈ W 1,p 0 (Ω).
We have ϕ λ ∈ C 1 (W 1,p 0 (Ω)). Proposition 17. If hypotheses H 3 hold and λ > 0, then ϕ λ satisfies the C-condition.

Proof. Let {u n } n 1 ⊆ W 1,p 0 (Ω) be a sequence such that |ϕ λ (u n )| M 3 for some M 3 > 0, all n 1 (35) (1 + ||u n ||)ϕ ′ λ (u n ) → 0 in W -1,p ′ (Ω) as n → ∞. (36) 
From (36) we have

| ϕ ′ λ (u n ), h | ǫ n ||h|| 1 + ||u n || for all h ∈ W 1,p 0 (Ω) with ǫ n → 0 + , ⇒ A p (u n ), h + A(u n ), h -λ Ω |u n | p-2 u n hdz - Ω f (z, u n )hdz ǫ n ||h|| 1 + ||u n || (37) for all n 1.
In (37) we choose h = u n ∈ W We add (38) and (39).

Then

Ω [pF (z, u n ) -f (z, u n )u n ]dz M 4 + p 2 -1 ||Du n || 2 2 (40)
for some M 4 > 0, all n 1.

By virtue of hypotheses H 3 (i), (iii), we can find β 1 ∈ (0, β 0 ) and c 3 > 0 such that (41)

β 1 |x| τ -c 3 pF (z, x) -f (z, x)x for a.a. z ∈ Ω, all x ∈ R.
We use (41) in (40) and obtain (42)

β 1 ||u n || τ τ M 5 + p 2 -1 ||Du n || 2 2
for some M 5 > 0 and all n 1.

Suppose that {u n } n 1 ⊆ W → y in W 1,p 0 (Ω) and y n → y in L p (Ω) as n → ∞. From (42) we have

β 1 ||y n || τ τ M 5 ||u n || τ + p 2 -1 1 ||u n || τ -2 ||Dy n || 2 2 for all n 1, ⇒ y n → 0 in L τ (Ω) as n → ∞ (recall 2 < τ < p), hence y = 0 (see (43)). ( 44 
)
On the other hand, from (37) we have

A p (y n ), h + 1 ||u n || p-2 A(y n ), h -λ Ω |y n | p-2 y n hdz - Ω f (z, u n ) ||u n || p-1 hdz ǫ n (45) for all n 1.
Hypotheses H 3 (i), (ii), imply that |f (z, x)| c 4 (1 + |x| p-1 ) for a.a. z ∈ Ω, all x ∈ R, some c 4 > 0,

⇒ N f (u n ) ||u n || p-1 n 1 ⊆ L p ′ (Ω) is bounded.
If in (45) we choose h = y ny ∈ W 1,p 0 (Ω), pass to the limit as n → ∞ and use (44), we obtain

lim n→∞ A p (y n ), y n -y = 0 (recall p > 2), ⇒ y n → y in W 1,p 0 (Ω) (see Proposition 6), hence ||y|| = 1. (46)
Comparing ( 44) and (46), we reach a contradiction. This proves that {u n } n 1 ⊆ W 1,p 0 (Ω) is bounded. So, we may assume that (47) u n w → u in W 1,p 0 (Ω) and u n → u in L p (Ω) as n → ∞. In (37) we choose h = u nu ∈ W 1,p 0 (Ω), pass to the limit as n → ∞ and use (47). Then lim

n→∞ [ A p (u n ), u n -u + A(u n ), u n -u ] = 0, ⇒ lim sup n→∞ [ A p (u n ), u n -u + A(u), u n -u ] 0 (since A is monotone), ⇒ lim sup n→∞ A p (u n ), u n -u 0 (see (47)), ⇒ u n → u in W 1,p 0 (Ω)
as n → ∞. This proves that the functional ϕ λ satisfies the C-condition for all λ > 0. From (48) and hypothesis H 3 (i), we see that given ǫ > 0, we can find c 5 = c 5 (ǫ) > 0 such that (49) F (z, x) -ǫ|x| pc 5 for a.a. z ∈ Ω, all x ∈ R.

Then for t = 0, we have

ϕ λ (tû 1 (p)) = |t| p p λ1 (p) + t 2 2 ||Dû 1 (p)|| 2 2 - λ|t| p p - Ω F (z, tû 1 (p))dz (recall ||û 1 (p)|| p = 1) |t| p p [ λ1 (p) -λ] + t 2 2 ||Dû 1 (p)|| 2 2 + ǫ|t| p p + c 5 |Ω| N (see (49)) = |t| p p [ λ1 (p) + ǫ -λ] + t 2 2 ||Dû 1 (p)|| 2 2 + c 3 |Ω| N . ( 50 
)
Choose ǫ ∈ (0, λ -λ1 (p)) (recall λ > λ1 (p)). Then from (50) and since p > 2, we have Let u ∈ D. We have

ϕ λ (tû 1 (p)) → -∞ as t → ±∞.
ϕ λ (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - λ p ||u|| p p - Ω F (z, u)dz 1 p ||Du|| p p - λ p λ2 (p) ||Du|| p p - ǫ p λ2 (p) ||Du|| p p -c 6 |Ω| N (see (51)) = 1 p 1 - λ + ǫ λ2 (p) ||u|| p -c 6 |Ω| N . (52) Choosing ǫ ∈ (0, λ2 (p) -λ) (recall λ ∈ ( λ1 (p), λ2 (p))), from (52) we infer that ϕ λ | D is coercive.

By virtue of Proposition 19, we have

m D = inf D ϕ λ > -∞.
Then, invoking Proposition 18, we can find t * > 0 such that

(53) ϕ λ (±t * û1 (p)) < m D .
We introduce the following sets

E 0 = {±t * û1 (p)}, E = conv {±t * û1 (p)} = {-st * û1 (p) + (1 -s)t * û1 (p) : s ∈ [0, 1]}.
For this pair {E 0 , E} and the set D introduced above, we have the following property.

Proposition 20. The pair {E 0 , E} is linking with D in W 1,p 0 (Ω).

Proof. Let Ĝ = {u ∈ W and so we can find t 0 ∈ (0, 1) such that γ(t 0 ) / ∈ Ĝ, which shows that -t * û1 (p) and t * û1 (p) cannot be in the same path component of the set Ĝ. This means that, given any

γ ∈ C([0, 1], W 1,p 0 (Ω)) with γ(0) = -t * û1 (p) and γ(1) = t * û1 (p), we have γ([0, 1]) ∩ ∂ Ĝ = ∅. Note that ∂ Ĝ ⊆ D. Therefore γ([0, 1]) ∩ D = ∅ ⇒ {E 0 , E} links with D in W 1,p 0 (Ω) (see Definition 1).
Proposition 21. If hypothesis H 3 holds and λ > 0, then u = 0 is a local minimizer of the functional ϕ λ .

Proof. By virtue of hypotheses H 3 (i), (iv) we see that given ǫ > 0, we can find c 7 = c 7 (ǫ) > 0 such that (54) F (z, x) 1 2 (ϑ(z) + ǫ)x 2 + c 7 |x| p for a.a. z ∈ Ω, all x ∈ R.

Then for every u ∈ W 1,p 0 (Ω), we have

ϕ λ (u) 1 2 ||Du|| 2 2 - Ω ϑ(z)u 2 dz - ǫ 2 λ1 (2) ||u|| 2 -c 8 ||u|| p - λ p λ1 (p) ||u|| p
for some c 8 > 0 (see ( 1), ( 2) and ( 54))

1 2 ξ0 - ǫ λ1 (2)
||u|| 2c 9 ||u|| p for some c 9 > 0 (see Proposition 5).

We choose ǫ ∈ (0, λ1 (2) ξ0 ) and have (55) ϕ λ (u) c 10 ||u|| 2c 9 ||u|| p for some c 10 > 0, all u ∈ W 1,p 0 (Ω). Since 2 < p, from (55) it follows that we can find small ρ ∈ (0, 1) such that

ϕ λ (u) > 0 = ϕ λ (0) for all u ∈ W 1,p 0 (Ω) with 0 < ||u|| ρ, ⇒ u = 0 is a (strict) local minimizer of ϕ λ .
We can state the following existence result. Proof. Propositions 17,[START_REF] Ma | Multiple solutions for a class of nonlinear boundary value problems near resonance: a variational approach[END_REF]and (53), permit the use of Theorem 1 (the linking theorem). So, we can find û ∈ W 1,p 0 (Ω) such that (56) û ∈ K ϕ λ and C 1 (ϕ λ , û) = 0 (see Chang [START_REF] Chang | Methods in Nonlinear Analysis[END_REF]).

By Proposition 21, we know that u = 0 is a local minimizer of ϕ λ . Hence

(57) C k (ϕ λ , 0) = δ k,0 Z for all k 0.
From ( 56) and (57) it follows that û = 0 and û is a solution of (P λ ). Moreover, the nonlinear regularity theory implies that û ∈ C 1 0 (Ω).

We can have multiple solutions when we restrict λ to be near λ1 (p) from above (near resonance from the right). To do this, we introduce the following hypotheses on the perturbation f (z, x). (iii) there exist an integer m 2 and a function η

∈ L ∞ (Ω) + such that η(z) ∈ [ λm (2), λm+1 (2)] for a.a. z ∈ Ω, η ≡ λm (2), η ≡ λm+1 (2) lim x→0 f (z, x) x = η(z 
) uniformly for a.a. z ∈ Ω; and

(iv) for every ρ > 0 there exists ξ ρ > 0 such that for a.a. z ∈ Ω the function

x -→ f (z, x) + ξ ρ |x| p-2 x is nondecreasing on [-ρ, ρ].
Remark 3. Evidently, for a.a. z ∈ Ω, f (z, •) is differentiable at x = 0 and η(•) = f ′ x (•, 0). We will produce solutions of constant sign. For this purpose, we introduce the positive and negative truncations of f (z, •), namely the Carathéodory functions

f ± (z, x) = f (z, ±x ± ). Let F ± (z, x) = x 0 f ± (z, s)ds and consider the C 1 -functionals ϕ ± λ : W 1,p 0 (Ω) → R defined by ϕ ± λ (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - λ p ||u ± || p p - Ω F ± (z, u(z))dz
for all u ∈ W 1,p 0 (Ω). Next, we produce a pair of nontrivial constant sign solutions. Proposition 23. If hypothesis H 4 holds, then we can find ǫ > 0 such that for all λ ∈ ( λ1 (p), λ1 (p) + ǫ) problem (P λ ) has at least two nontrivial solutions of constant sign

u n ∈ int C + and v 0 ∈ -int C + ,
both being local minimizers of the energy functional ϕ λ .

Proof. By virtue of hypotheses H 4 (i), (ii), given δ > 0, we can find c 11 = c 11 (δ) > 0 such that (58)

F (z, x) 1 p (ϑ(z) + δ)|x| p + c 11 for a.a. z ∈ Ω, all x ∈ R.
Since λ > λ1 (p), we have λ = λ1 (p) + µ with µ > 0. Then for every u ∈ W 1,p 0 (Ω) we have Papageorgiou and Kyritsi [24,p. 356]).

ϕ + λ (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - λ1 (p) p ||u + || p p - µ p ||u + || p p - Ω F + (z, u)dz 1 p ||Du|| p p - Ω ( λ1 (p) + ϑ(z))(u + ) p dz - µ + δ p λ1 (p) ||u|| p -c 11 |Ω| N (see (58)) 1 p ξ * - µ + δ λ1 (p) ||u|| p -c 11 |Ω| N for some ξ * > 0 (see
Since δ > 0, is arbitrary, for µ ∈ (0, ξ * λ1 (p)), we have that ϕ + λ is coercive. Also, using the Sobolev embedding theorem, we see that ϕ + λ is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find u 0 ∈ W 1,p 0 (Ω) such that (59)

ϕ + λ (u 0 ) = inf[ϕ + λ (u) : u ∈ W 1,p 0 (Ω)]
. Hypothesis H 4 (iii) implies that for small t ∈ (0, 1)

ϕ + λ (tû 1 (2)) < 0 (recall that p > 2), ⇒ ϕ + λ (u 0 ) < 0 = ϕ + λ (0) (see (59)), hence u 0 = 0. From (59) we have (ϕ + λ ) ′ (u 0 ) = 0, ⇒ A p (u 0 ) + A(u 0 ) = λ(u + 0 ) p-1 + N f + (u 0 ). (60) 
On (60) we act with -u - 0 ∈ W 1,p 0 (Ω) and obtain u 0 0, u 0 = 0. So, (60) becomes

A p (u 0 ) + A(u 0 ) = λu p-1 0 + N f (u 0 ), ⇒ u 0 is a solution of (P λ ), u 0 ∈ C + \{0}
(by the nonlinear regularity theory).

Let ρ = ||u n || ∞ and let ξ ρ > 0 be as postulated by hypothesis H 2 (iv). Then

-∆ p u 0 (z) -∆u 0 (z) + ξ ρ u 0 (z) p-1 = (λ + ξ ρ )u 0 (z) p-1 + f (z, u 0 (z)) 0 for a.a. z ∈ Ω, ⇒ ∆ p u 0 (z) + ∆u 0 (z) ξ ρ u p (z) for a.a. z ∈ Ω.
From the nonlinear maximum principle of Pucci and Serrin [32, pp. 111 and 120], we obtain that

u 0 ∈ int C + . Since ϕ λ | C + = ϕ + λ C + , we infer that u 0 ∈ int C + is a local C 1 0 (Ω) minimizer of ϕ λ . Invoking Proposition 7, we infer that u 0 is a local W 1,p 0 (Ω)-minimizer of ϕ λ .
Similarly, working with ϕ - ϕ we produce v 0 ∈ -int C + a second nontrivial constant sign solution of (P λ ), which is a local minimizers of ϕ λ .

Let ǫ > 0 be as in the above proposition. Hypotheses H 4 (i), (iii) imply that given δ > 0, we can find

c 12 = c 12 (δ) > λ1 (p) + ǫ such that (61) f (z, x)x (η(z) -δ)x 2 -c 12 |x| p for a.a. z ∈ Ω, all x ∈ R.
This estimate leads to the following auxiliary Dirichlet problem

(62) -∆ p u(z) -∆u(z) = (η(z) -δ)u(z) -c 13 |u(z)| p-2 u(z) in Ω, u| ∂Ω = 0
where c 13 = c 13 (δ, λ) = c 12λ, with λ ∈ ( λ1 (p), λ1 (p) + ǫ).

Proposition 24. For small δ > 0, problem (62) has a unique nontrivial positive solution u * ∈ int C + and because (62) is odd v * = -u * ∈ -int C + is the unique nontrivial negative solution of (62).

Proof. First we establish the existence of a nontrivial positive solution. To this end, let ψ + : W 1,p 0 (Ω) → R be the C 1 -functional defined by

ψ + (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - 1 2 Ω (η(z) + δ)(u + ) 2 dz + c 13 p ||u + || p p
for all u ∈ W 1,p 0 (Ω). Since p > 2, it is clear that ψ + is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find u * ∈ W 1,p 0 (Ω) such that (63)

ψ + (u * ) = inf[ψ + (u) : u ∈ W 1,p 0 (Ω)]. Let t > 0. We have ψ + (tû 1 (2)) = t p p ||Dû 1 (2)|| p p + t 2 2 λ1 (2) - t 2 2 Ω (η(z) -δ)û 1 (2) 2 dz + c 13 p t p ||û 1 (2)|| p p (recall ||û 1 (2)|| 2 = 1) t p p 1 + c 13 λ1 (p) ||û 1 (2)|| p - t 2 2 Ω (η(z) -λ1 (2))û 1 (2) 2 dz -δ .
Evidently, ξ 0 = Ω (η(z) -λ1 ( 2))û 1 (2) 2 dz > 0. So, if δ ∈ (0, ξ 0 ), then

ψ + (tû 1 (2)) t p p c 14 - t 2 2 c 15 some c 14 , c 15 > 0.
Since p > 2, by choosing small t ∈ (0, 1), we have

ψ + (tû 1 (2)) < 0, ⇒ ψ + (u * ) < 0 = ψ + (0) (see (63)), hence u * = 0.
From (63) we have

ψ ′ + (u * ) = 0, ⇒ A p (u * ) + A(u * ) = (η -δ)u + * -c 13 (u + * ) p-1 . (64)
On (64) we act with -u - * ∈ W 1,p 0 (Ω) and obtain u * 0, u * = 0. Then A p (u * ) + A(u * ) = (ηδ)u *c 13 u p-1 * , ⇒ u * ∈ C + \{0} (nonlinear regularity solves (62)).

In fact, we have ∆ p u * (z) + ∆u * (z) c 13 u * (z) p-1 for a.a. z ∈ Ω ⇒ u * ∈ int C + (see Pucci and Serrin [32,pp. 111 and 120]).

Next, we show the uniqueness of this positive solutions. To this end, let

G 0 (t) = t p p + t 2 2 for all t 0.
Then G 0 (•) is increasing and t → G 0 (t 1/2 ) is convex. We set

G(y) = G 0 (|y|) for all y ∈ R N .
Evidently, G ∈ C 1 (R N ) (recall p > 2) and we have ∇G(y) = a(y) = |y| p-2 y + y for all y ∈ R N div a(Du) = ∆ p u + ∆u for all u ∈ W 1,p 0 (Ω). Let µ + : L 1 (Ω) → R be the integral functional defined by

µ + (u) =    Ω G(Du 1/2 )dz if u 0, u 1/2 ∈ W 1,p 0 (Ω) +∞ otherwise.
From Dunford and Schwartz [14,p. 336], we know that we can find

{u n } n 1 ⊆ S + (λ) such that inf S + (λ) = inf n 1 u n .
We have

A p (u n ) + A(u n ) = λu p-1 n + N f (u n ) for all n 1, (66) ⇒ {u n } n 1 ⊆ W 1,p 0 (Ω) is bounded (see (65)
). So, we may assume that (67) u n w → u * λ in W 1,p 0 (Ω) and u n → u * λ in L p (Ω) as n → ∞. On (66) we act with u nu * λ ∈ W 1,p 0 (Ω), pass to the limit as n → ∞ and use (67). Then lim Let u ∈ S + (λ) and consider the following function

n→∞ [ A p (u n ), u n -u * λ + A(u n ), u n -u * λ ] = 0, ⇒ u n → u * λ in W 1,p 0 (Ω)
β + (z, x) =    0 if x < 0 (η(z) -δ)x -c 13 x p-1 if 0 x u(z) (η(z) -δ)u(z) -c 13 u(z) p-1 if u(z) < x (see (61)) (69) 
(see ( 61)). This is a Carathéodory function. We set B + (z, x) = x 0 β + (z, s)ds and consider the C 1 -functional ξ + : W 1,p 0 (Ω) → R defined by

ξ + (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - Ω B + (z, u(z))dz for all u ∈ W 1,p 0 (Ω).
From (69) it is clear that ξ + is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find û * ∈ W 1,p 0 (Ω) such that (70) ξ + (û * ) = inf[ξ + (u) : u ∈ W 1,p 0 (Ω)]. As before (see the proof of Proposition 24), for y ∈ int C + , and for small t > 0 (at least such that ty u, recall that u ∈ int C + , and see Lemma 3.3. of Filippakis, Kristaly and Papageorgiou [START_REF] Filippakis | Existence of five nonzero solutions with exact sign for a p-Laplacian operator[END_REF]), we have

ξ + (ty) < 0 = ξ + (0), ⇒ ξ + (û * ) < 0 = ξ + (0) (see (70)), hence û * = 0.
From (70) we have

ξ ′ + (û * ) = 0, ⇒ A p (û * ) + A(û * ) = N β + (û * ). (71)
On (71) we act with -û - * ∈ W 1,p 0 (Ω) and obtain û * 0, û * = 0 (see ( 69)). Also, on (71) we act with (û *u) + ∈ W 1,p 0 (Ω) we have Thus we have proved the claim. Passing to the limit as n → ∞ in (66) and using (68), we obtain 

A p (û * ), (û * -u) + + A(û * ), (û * -u) + = Ω β + (z, û * )(û * -u) + dz = Ω [(η(z) -δ)u -c 13 u p-1 ](û * -u) + dz (see (71)) Ω [λu p-1 + f (z, u)](û * -u) + dz (see (61
A p (u * λ ) + A(u * λ ) = λ(u * λ ) p-1 + N f (u * λ ), u * u * λ , ⇒ u * λ ∈ S + (λ)
∈ [v * λ , u * λ ] ∩ C 1 0 (Ω). Proof. Let u * λ ∈ int C + and v * λ ∈ -int C +
be the extremal constant sign solutions of (P λ ) produced in Proposition 26. We introduce the following truncation of the reaction in problem (P λ )

g λ (z, x) =    λ|v * λ (z)| p-2 v * λ (z) + f (z, v * λ (z)) if x < v * λ (z) λ|x| p-2 x + f (z, x) if v * λ (z) x u * λ (z) λu * λ (z) p-1 + f (z, u * λ (z)) if u * λ (z) < x. (72) 
This is a Carathéodory function. We set G λ (z, x) = Also, we introduce g

± λ (z, x) = g λ (z, ±x ± ), G ± λ (z, x) = x 0 g ± λ (z, s)ds and the C 1 -functional φ± λ : W 1,p 0 (Ω) → R defined by φ± λ (u) = 1 p ||Du|| p p + 1 2 ||Du|| 2 2 - Ω G ± λ (z, u(z))dz for all u ∈ W 1,p 0 (Ω).
Reasoning as in the proof of Proposition 25 and using (72), we obtain 

K φλ ⊆ [v * λ , u * λ ], K φ+ λ ⊆ [0, u * λ ]; K φ- λ ⊆ [v * λ , 0] The extremality of u * λ ∈ int C + and of v * λ ∈ -int C + , implies that (73) K φλ ⊆ [v * λ , u * λ ], K φ+ λ = {0, u * λ }, K φ- λ = {v * λ , 0}. Claim 
∈ K φ+ λ , ⇒ û ∈ {0, u * λ }, û = 0, ⇒ û = u * λ ∈ int C + . Since φ+ λ C + = φλ | C + , it follows that u * λ is a local C 1 0 ( 
Ω)-minimizer of φλ , hence it is a local W 1,p 0 (Ω)-minimizer of φλ (see Proposition 7). Similarly for v * λ , using this time the functional φλ . This proves the claim. Without any loss of generality, we may assume that φλ (v * λ ) φλ (u * λ ). The analysis is similar if the opposite inequality holds. We may assume that K φλ is finite (otherwise we already have infinity many nodal solutions, see (73)). From the claim we know that u * λ is a local minimizer of φλ . So, we can find small ρ ∈ (0, 1) such that (75

) φλ (v * ) φλ (u * ) < inf[ φλ (u) : ||u -u * λ || = ρ] = m λ ρ , ||v * λ -u * λ || > ρ (see Aizicovici, Papageorgiou and Staicu [1] (proof of Proposition 22)).
The functional φλ is coercive, hence it satisfies the C-condition (see [START_REF] Papageorgiou | On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction[END_REF]). This fact and (75) permit the use of Theorem 2 (the mountain pass theorem). So, we can find y 0 ∈ W 1,p 0 (Ω) such that (76)

y 0 ∈ K φλ ⊆ [v * λ , u * λ ] (see (73)) and m λ ρ φλ (y 0 ).
From ( 75) and (76) we have that y 0 / ∈ {v * λ , u * λ } and y 0 is a solution of (P λ ) (see ( 72)) with y 0 ∈ C 1 0 (Ω) (nonlinear regularity). We need to show that y 0 = 0 in order to conclude that y 0 is nodal.

Let ρ = max{||u * λ || ∞ , ||v * λ || ∞ } and let ξ ρ > 0 be as postulated by hypothesis H 4 (iv). Then -∆ p y 0 (z) -∆y 0 (z) + ξ ρ (y 0 (z)) p-2 y 0 (z)

= (λ + ξ ρ )|y 0 (z)| p-2 y 0 (z) + f (z, y 0 (z)) (λ + ξ ρ )u * λ (z) p-1 + f (z, u * λ (z)) (since y 0 u * λ , see hypothesisH 4 (iv)) = -∆ p u * λ (z) -∆u * λ (z) + ξ p u * λ (z) p-1 a.e. in Ω. ( 77 
)
As before (see the proof of Proposition 24), we consider the map a : R N → R N defined by

a(y) = |y| p-2 y + y for all y ∈ R N , ⇒ ∇a(y) = |y| p-2 I + (p -2) y ⊗ y |y| 2 + I, ⇒ (∇a(y)ξ, ξ) R N |ξ| 2 for all y, ξ ∈ R N .
So, we can apply the tangency principle of Pucci and Serrin [32, p. 35], and obtain y 0 (z) < u * λ (z) for all z ∈ Ω. Then from (77) and Proposition 2.6 of Arcoya and Ruiz [START_REF] Arcoya | The Ambrosetti-Prodi problem for the p-Laplacian operator[END_REF], we have u * λy 0 ∈ int C + . In a similar fashion, we show that

y 0 -v * λ ∈ int C + . So, we have proved that (78) y 0 ∈ int C 1 0 (Ω) [v * λ , u * λ ].
We consider the deformation

h(t, u) = h t (u) = (1 -t) φλ (u) + tϕ λ (u) for all (t, u) ∈ [0, 1] × W 1,p 0 (Ω) Suppose we can find {t n } n 1 ⊆ [0, 1] and {u n } n 1 ⊆ W 1,p 0 (Ω) such that t n → t in [0, 1], u n → y 0 in W 1,p 0 (Ω)
as n → ∞ and (h tn ) ′ u (t n , u n ) = 0 (79) for all n 1.

We have

A p (u n ) + A(u n ) = (1 -t n )N g λ (u n ) + t n λ|u n | p-2 u n + t n N f (u n ) n 1
⇒ -∆ p u n (z) -∆u n (z) = (1t n )g λ (z, u n (z)) + t n λ|u n (z)| p-2 u n (z) + t n f (z, u n (z)) for a.a. z ∈ Ω.

From Ladyzhenskaya and Uraltseva [18, p. 286], we know that there exists M 7 > 0 such that ||u n || ∞ M 7 for all n 1. Hence by virtue of Theorem 1 of Lieberman [START_REF] Lieberman | Boundary regularity for solutions of degenerate elliptic equations[END_REF], there exists α ∈ (0, 1) and M 8 > 0 such that u n ∈ C 1,α 0 (Ω) and ||u n || C 1,α 0 (Ω)

M 8 for all n 1.

Exploiting the compact embedding of C 1,α 0 (Ω) into C 1 0 (Ω) and using (79), we have

u n → y 0 in C 1 0 (Ω) as n → ∞, ⇒ u n ∈ [v *
λ , u * λ ] for all n n 0 (see (78)). But from (72) we see that {u n } n 1 ⊆ K ϕ λ , a contradiction to our hypotheses that K ϕ λ is finite. So, (78) cannot happen and hence the homotopy invariance of singular homology implies that (80)

C k (ϕ λ , y 0 ) = C k ( φλ , y 0 ) for all k 0.

Recall that y 0 is a critical point of mountain pass type the functional φλ . Therefore So, we can state the following multiplicity theorem for problem (P λ ).

Theorem 27. If hypothesis H 4 holds, then there exists ǫ > 0 such that for all λ ∈ ( λ1 (p), λ1 (p) + ǫ) problem (P λ ) has at least three nontrivial solutions u 0 ∈ int C + , v 0 ∈ -int C + and y 0 ∈ int C 1 0 (Ω) [v 0 , u 0 ] is nodal. Remark 4. We stress that the above theorem provides sign information for all solutions and localizes them. None of the other papers mentioned in the introduction, contains such a multiplicity result for equations near resonance from above.

In fact we can improve Theorem 27 and generate a second nodal solution provided we strengthen the regularity of f (z, •). The new hypotheses on f (z, x) are the following: We can now state the following multiplicity theorem.

Theorem 28. If hypothesis H 5 holds, then there exists ǫ > 0 such that for all λ ∈ ( λ1 (p), λ1 (p) + ǫ) problem (P λ ) admits at least four nontrivial solutions u 0 ∈ int C + , v 0 ∈ -int C + and y 0 , ŷ ∈ int C 1 0 (Ω) [v 0 , u 0 ] is nodal. Proof. From Theorem 27 we already know that there exists ǫ > 0 such that for all λ ∈ ( λ1 (p), λ1 (p) + ǫ) has at least three nontrivial solutions u 0 ∈ int C + , v 0 ∈ -int C + and y 0 ∈ int C 1 0 (Ω) [v 0 , u 0 ] is nodal. By virtue of Proposition 25, we may assume that u 0 and v 0 are extremal (that is, u 0 = u * λ ∈ int C + and v 0 = v * λ ∈ -int C + ). From the proof of Proposition 26 (see the claim), we know that u 0 and v 0 are local minimizers of the functional φλ . Therefore From the proof of Proposition 26, we have C k ( φλ , y 0 ) = 0, ⇒ C k ( φλ , y 0 ) = δ k,1 Z for all k 0 (84) (see Papageorgiou and Smyrlis [START_REF] Papageorgiou | On nonlinear nonhomogeneous resonant Dirichlet equations[END_REF] and Papageorgiou and Rȃdulescu [START_REF] Papageorgiou | Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance[END_REF]).

Finally, since φλ is coercive (see (72)), we have (85) C k ( φλ , ∞) = δ k,0 Z for all k 0.

Suppose K φλ = {u 0 , v 0 , 0, y 0 }. From (82), ( 83), (84), (85) and the Morse relation with t = -1 (see ( 4)), we have 2(-1) 0 + (-1) dm + (-1) 1 = (-1) 0 , ⇒ (-1) dm = 0, a contradiction. So, we have û ∈ K φλ ⊆ [v 0 , u 0 ] (see (73)), ŷ / ∈ {u 0 , v 0 , 0}, thus ŷ is nodal. Moreover, from the nonlinear regularity theory and reasoning as before (see the proof of Proposition 26), we have ŷ ∈ int C 1 0 (Ω) [v 0 , u 0 ].

  γ∈Γ sup u∈E ϕ(γ(u)) with Γ = {γ ∈ C(E, X) : γ| E 0 = id| E 0 }, then c inf D ϕ and c is a critical value of ϕ.

Theorem 3 .t 1 ϕ

 31 If X is a Banach space, ϕ ∈ C 1 (X) and satisfies the C-condition, u 0 , u 1 ∈ Xmax{ϕ(u 0 ), ϕ(u 1 )} < inf [ϕ(u) : ||uu 0 || = ρ] = m ρ , ||u 1u 0 || > ρ > 0 and c = inf γ∈Γ max 0 (γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u 0 , γ(1) = u 1 }, then c m ρand c is a critical value of ϕ.

F

  is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and (i) for every ρ > 0, there existsa ρ ∈ L ∞ (Ω) + such that |f (z, x)| a ρ (z) for a.a. z ∈ Ω, all |x| ρ; (ii) lim x→±∞ f (z,x) |x| p-2 x = 0 uniformly for a.a. z ∈ Ω and if F (z, x) = x 0 f (z, s)ds, then lim x→±∞ (z, x)x 2 = +∞ uniformly for a.a. z ∈ Ω; and (iii) there exist an integer m 2 and a function η ∈ L ∞ (Ω) such that

  If hypothesis H 1 holds and λ ∈ ( λ1 (p)ǫ, λ1 (p)) with ǫ > 0 as in Proposition 11, then problem (P λ ) has at least two nontrivial solutions û+ ∈ U + and û-∈ U - and both are local minimizers of the energy functional ϕ λ .

F

  for a.a. z ∈ Ω, all |x| ρ;(ii) lim x→±∞ f (z,x) |x| p-2 x = 0 uniformly for a.a. z ∈ Ω and if F (z, x) = x 0 f (z, s)ds, then lim x→±∞ (z, x)x 2 = +∞ uniformly for a.a. z ∈ Ω; and (iii) there exists an integer m 2 such that

x→0fTheorem 16 .

 16 (z, x) x uniformly for a.a. z ∈ Ω. If hypotheses H 2 hold, then there exists ǫ > 0 such that for every λ ∈ ( λ1 (p)ǫ, λ1 (p)) problem (P λ ) has at least four nontrivial solutions û+ , û-, ŷ, ỹ ∈ C 1 0 (Ω) with û+ and û-being local minimizers of the energy functional ϕ λ .Proof. From Theorem 15, we already have three nontrivial solutions û+ , û-, ŷ ∈ C 1 0 (Ω), with û+ and û-being local minimizers of ϕ λ . Hence[START_REF] Papageorgiou | On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction[END_REF] 

  is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and (i) for every ρ > 0, there existsa ρ ∈ L ∞ (Ω) + such that |f (z, x)| a ρ (z) for a.a. z ∈ Ω, all |x| ρ; (ii) lim x→±∞ f (z,x) |x| p-2 x = 0 uniformly for a.a. z ∈ Ω; (iii) if F (z, x) =x 0 f (z, s)ds, then there exists τ ∈ (2, p) and β 0 > 0 such thatβ 0 lim inf x→±∞ pF (z, x)f (z, x)x|x| τ uniformly for a.a. z ∈ Ω; and(iv) there exists a function ϑ ∈ L ∞ (Ω) such that ϑ(z) λ1 (2) for a.a. z ∈ Ω, ϑ ≡ λ1 (uniformly for a.a. z ∈ Ω.

Proposition 18 .

 18 If hypotheses H 3 hold and λ > λ1 (p), then ϕ λ (tû1 (p)) → -∞ as t → ±∞ (that is, ϕ λ | Rû 1 (p) is anticoercive). Proof. Hypothesis H 3 (ii) implies that (48) lim x→±∞ F (z, x)|x| p = 0 uniformly for a.a. z ∈ Ω.

Proposition 19 .

 19 This completes the proof.Let D = {u ∈ W 1,p 0 (Ω) : ||Du|| p p = λ2 (p)||u|| p p }. If hypotheses H 3 hold and λ ∈ ( λ1 (p), λ2 (p)), then ϕ λ | D is coercive.Proof. From (48) and hypothesis H 3 (i), we see that given ǫ > 0, we can find c 6 = c 6 (ǫ) > 0 such that (51) F (z, x) ǫ p |x| p + c 6 for a.a. z ∈ Ω, all x ∈ R.

Theorem 22 .

 22 If hypothesis H 3 holds and λ ∈ ( λ1 (p), λ2 (p)), then problem (P λ ) admits a nontrivial solution û ∈ C 1 0 (Ω).

H 4 :

 4 f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and (i) |f (z, x)| a(z)(1 + |x| r-1 ) for a.a. z ∈ Ω, all x ∈ R with a ∈ L ∞ (Ω) + ; (ii) there exists a function ϑ ∈ L ∞ (Ω), ϑ(z) 0 for a.a. z ∈ Ω, ϑ ≡ 0 such that lim sup x→±∞ pF (z, x)|x| p ϑ(z) uniformly for a.a. z ∈ Ω;

  as n → ∞ (see the proof of Proposition 17). (68) Claim 1. u * u for all u ∈ S + (λ).

  ) and recall c 13 = c 12λ > 0)= A p (u) + A(u), (û *u) + (since u ∈ S + (λ)) ⇒ A p (û * ) -A p (u), (û *u) + + ||D(û *u) + || 2 2 0, ⇒ û * u.Therefore we have proved that û * ∈ [0, u] = {y ∈ W 1,p 0 (Ω) : 0 y(z) u(z) for a.a. z ∈ Ω}, û * = 0. So, (71) becomesA p (û * ) + A(û * ) = (η(z)δ)û *c 13 ûp-1 * , ⇒ û * is a positive solution of problem (62), ⇒ û * = u * ∈ int C + (seeProposition 24).

x0G

  g λ (z, s)ds and consider the C 1functional φλ : W 1,p 0 (Ω) → R defined by λ (z, u(z))dz for all u ∈ W 1,p 0 (Ω).

C 1 (

 1 φλ , y 0 ) = 0, ⇒ C 1 (ϕ λ , y 0 ) = 0 (see (80)). (81)From Proposition 13, we know thatC k (ϕ λ , 0) = δ k,dm Z for all k 0, with d m 2, ⇒ y 0 = 0 (see (81)), ⇒ y 0 ∈ C 1 0 (Ω) is nodal.

H 5 :Remark 5 .

 55 f : Ω×R → R is a measurable function such that for a.a. z ∈ Ω, f (z, 0) = 0, f (z, •) ∈ C 1 (R) and (i) |f ′ x (z, x)| a(z)(1 + |x| p-2 ) for a.a. z ∈ Ω, all x ∈ R with a ∈ L ∞ (Ω) + ;(ii) there exists ϑ ∈ L ∞ (Ω) such that ϑ(z) 0 for a.a. z ∈ Ω, ϑ = 0 and lim sup x→±∞ pF (z, x) |x| p ϑ(z) uniformly for a.a. z ∈ Ω; and(iii) there exists integer m 2 such thatf ′ x (z, 0) ∈ [ λm (2), λm+1 (2)] for a.a. z ∈ Ω, f ′ x (•, 0) ≡ λm (2), f ′ x (•, 0) ≡ λm+1 (2) f ′ x (z, 0) = lim x→0 f (z, x)x uniformly for a.a. z ∈ Ω. The differentiability of f (z, •) and hypothesis H 5 (i) imply that for every ρ > 0, there exists ξ ρ > 0 for a.a. z ∈ Ω, x → f (z, x) + ξ ρ |x| p-2 x is nondecreasing on [-ρ, ρ].

  (82) C k ( φλ , u 0 ) = C k ( φλ , v 0 ) = δ k,0 Z for all k 0. Since φλ | [v 0 ,u 0 ] = ϕ λ | [v 0 ,u 0 ] (see (72)) and since v 0 ∈ -int C + , u 0 ∈ int C + from Proposition 13, we have (83) C k ( φλ , 0) = δ k,dm Z for all k 0, with d m 2.

  1,p 0 (Ω) is unbounded. Then ||u n || → ∞ as n → ∞. Set y n = un ||un|| , n 1. By passing to a suitable subsequence if necessary, we may assume that

	(43)	y n	w

  We claim that -t * û1 (p) and t * û1 (p) belong to different path components of the set Ĝ. To this end, let γ ∈ C([0, 1], W

	a path such that	1,p 0 (Ω) : ||Du|| p p < λ2 (p)||u|| p p }. 1,p 0 (Ω)) be
		γ(0) = -t * û1 (p) and γ(1) = t * û1 (p).
	By virtue of Proposition 4, we have	
		λ2 (p) max	||Dγ(t)|| p p p ||γ(t)|| p	: t ∈ [0, 1]

  and u * λ = inf S + (λ). For the biggest negative solution we use the setS -(λ) which is upward directed (that is, if v 1 , v 2 ∈ S -(λ), then we can find v ∈ S -(λ) such that v 1 v, v 2 v).Reasoning as above, we produce v * λ ∈ S -(λ) ⊆ -int C + a biggest negative solution of (P λ ). Using these extremal constant sign solutions, we can produce a nodal solution of problem (P λ ). If hypothesis H 4 holds and λ ∈ ( λ1 (p), λ1 (p) + ǫ) with ǫ > 0 as in Proposition 23, then problem (P λ ) admits a nodal solution y 0

	Proposition 26.

  2. u * λ and v * λ are local minimizers of the functional φλ .

	From (74) we have	
		û
	Clearly φ+ λ is coercive (see (72)). Also, it is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem we can find û ∈ W 1,p 0 (Ω) such that
	(74)	φ+

λ (û) = inf[ φ+ λ (u) : u ∈ W 1,p 0 (Ω)].

As before hypothesis H 4 (iii) and the fact that u * λ ∈ int C + and 2 < p, imply that φ+ λ (±û 1 (2)) < 0, ⇒ φ+ λ (û) < 0 = φ+ λ (0) (see (73)), hence û = 0.

Acknowledgments. V.D. Rȃdulescu was partially supported by the Romanian Research Council through the grant CNCS-UEFISCDI-PCCA-23/2014. D.D. Repovš acknowledges the partial support of the Slovenian Research Agency through grants P1-0292-0101, J1-7025-0101 and J1-6721-0101.

Let u 1 , u 2 ∈ dom µ + = {u ∈ L 1 (Ω) : µ + (u) < ∞} (the effective domain of µ + ) and let y = (tu 1 + (1t)u 2 ) 1/2 ∈ W 1,p 0 (Ω) with t ∈ [0, 1]. From Benguria, Brezis and Lieb [6, Lemma 4], we have

Also, by the Fatou lemma we see that µ + is lower semicontinuous. Let y * ∈ W 1,p 0 (Ω) be another positive solution of (62). From the first part of the proof, we have y * ∈ int C + . Let h ∈ C 1 0 (Ω) and t ∈ (-1, 1) with |t| small. Then we will have

* , y 2 * ∈ dom µ + . So, µ + is Gâteaux differentiable at u * and at y * in the direction h. Using the chain rule, we obtain

The convexity of µ + implies that µ ′ + is monotone. Hence

This proves the uniqueness of the positive solution u * ∈ int C + . Since (62) is odd, v * = -u * ∈ -int C + is the unique nontrivial negative solution of (62).

Using the proposition, we can establish the existence of extremal nontrivial constant sign solutions, that is, a smallest positive solution and a biggest nontrivial negative solution. As in Gasinski and Papageorgiou [START_REF] Gasinski | Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential[END_REF], exploiting the monotonicity of u → A p (u) + A(u) we have that the solution set S + (λ) is downward directed, that is, if u 1 , u 2 ∈ S + (λ), then we can find u ∈ S + (λ) such that u u 1 , u u 2 . Since we are looking for the smallest positive solution, without any loss of generality we may assume that there exists M 6 > 0 such that (65) 0 u(z) M 6 for all z ∈ Ω, all u ∈ S + (λ).