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HOW DOES VARIABILITY IN CELLS’ AGING AND GROWTH RATES

INFLUENCE THE MALTHUS PARAMETER?

ADÉLAÏDE OLIVIER

Abstract. The aim of this study is to compare the growth speed of different populations of cells

measured by their Malthus parameter. We focus on both the age-structured and size-structured

equations. A first population (of reference) is composed of cells all aging or growing at the same
rate v̄. A second population (with variability) is composed of cells each aging or growing at a rate

v drawn according to a non-degenerated distribution ρ with mean v̄. In a first part, analytical

answers are provided for the age-structured model. In a second part, numerical answers based on
stochastic simulations are derived for the size-structured model. It appears numerically that for

experimentally plausible division rates the population with variability proliferates more slowly

than the population of reference. The decrease in the Malthus parameter we measure, around
2% for distributions ρ with realistic coefficients of variations around 15-20%, is determinant since

it controls the exponential growth of the whole population.

Keywords: structured populations, age-structured equation, size-structured equation, eigen-
problem, Malthus parameter, cell division, piecewise-deterministic Markov process, continuous-
time tree.
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1. Introduction

Recent biological studies draw attention to the question of variability between cells. We refer to
the study of Kiviet et al. published in 2014 [13]. A cell in a controlled culture grows at a constant
rate v > 0, but this rate can differ from one individual to another. The biological question we
address here states as follows. How does individual variability in the growth rate influence the
growth speed of the population? The growth speed of the population is measured by the Malthus
parameter we define thereafter, also called in the literature fitness. Even if the variability in the
growth rate among cells is small, with a distribution of coefficient of variation around 10%, and
even if its influence on the Malthus parameter would be still smaller, such an influence may become
determinant since it characterises the exponential growth speed of the population.

1.1. Deterministic modeling.

1.1.1. Paradigmatic age or size equations. Structured models have been successfully used to de-
scribe the evolution of a population of cells over the past decades, we refer to Metz and Dickmann
[16], the textbook of Perthame [22] and references therein. We focus in this study on classical
structuring variables which are age (understood in a broad sense as a physiological age – it may
not be the time elapsed since birth) or size. The concentration n(t, a, x) of cells of physiological
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age a ≥ 0 and size x > 0 at time t ≥ 0 satisfies

(1)


∂
∂tn(t, a, x) + ∂

∂x

(
gx(a, x)n(t, a, x)

)
+ ∂

∂a

(
ga(a, x)n(t, a, x)

)
+ γ(x, a)n(t, a, x) = 0,

ga(a = 0, x)n(t, a = 0, x) = 4
∫∞

0
γ(a, 2x)n(t, a, 2x)da,

gx(a, x = 0)n(t, a, x = 0) = 0, n(t = 0, a, x) = nin(a, x),

in a weak sense. The mechanism at work here can be described as a mass balance. The concentra-
tion of cells n(t, a, x) evolves through two terms of transport which stand for the growth and the
aging, and with one term of fragmentation:

- Transport terms. Both size and age evolve in a deterministic way, the growth speed and
aging speed being respectively gx and ga. Let xt and at be the size and physiological age
at time t of a cell born with characteristics (0, xb) = (at=0, xt=0). Then their evolution is
given by dxt/dt = gx(at, xt) and dat/dt = ga(at, xt).

- Fragmentation terms. We assume that the division is perfectly symmetric: an individual
of size x divides into two individuals of size x/2 (and age 0). A cell of current size x
and current physiological age a divides with probability γ(a, x)dt between t and t + dt.
The boundary condition for a = 0 ensures that the quantity of new cells of character-
istics (0, x) is exactly twice the number of cells of characteristics (s, 2x) for s > 0 that
have just divided. The factor 4 is thus the product of a factor 2 arising from the birth of
two new cells at each division and another factor 2 coming from the 2x size of dividing cells.

Equation 1 also encloses two paradigmatic equations. 1) If gx and γ do not depend on size,
integrating (1) in x from zero to infinity, we obtain the age-structured equation. The age-structured
equation is a classical equation and we refer to Rubinov [27] and to Perthame [22] (Section 3.9.1)
for a complete study. 2) If gx and γ do not depend on age, integrating (1) in a from zero to
infinity, we obtain the size-structured equation, as introduced by Metz and Dickmann [16]. We
refer to Mischler and Scher [19] and to references therein for the study of this equation.

1.1.2. Introducing individual variability. To take into account variability between cells, we extend
the previous framework adding an individual feature – an aging rate or a growth rate – as struc-
turing variable. Let V be a compact set of (0,∞) where the individual feature takes its values
and let ρ(v, dv′) be a Markov kernel with support in V × V (i.e. satisfying

∫
V ρ(v, dv′) = 1 for all

v ∈ V). In this study we focus on two cases of special interest:

Model (A+V). The age-structured model with variability, extending the classical setting (see
Section 2). The individual feature v we introduce represents here an aging rate. The concentration
n(t, a, v) of cells of physiological age a ≥ 0 and aging rate v ∈ V at time t ≥ 0 evolves as

∂
∂tn(t, a, v) + ∂

∂a

(
ga(a, v)n(t, a, v)

)
+ γ(a, v)n(t, a, v) = 0,

ga(a = 0, v′)n(t, a = 0, v′) = 2
∫∫
S γ(a, v)n(t, a, v)ρ(v, dv′)dvda, n(t = 0, a, v) = nin(a, v),

in a weak sense, abusing slightly notation here, S being the state space [0,∞)× V.

Model (S+V). The size-structured model with variability, as already introduced in Doumic,
Hoffmann, Krell and Robert [10] (see Section 3). The concentration n(t, x, v) of cells of size x ≥ 0
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and growth rate v ∈ V at time t ≥ 0 evolves as
∂
∂tn(t, x, v) + ∂

∂x

(
gx(x, v)n(t, x, v)

)
+ γ(x, v)n(t, x, v) = 4

∫
V γ(2x, v′)n(t, 2x, v′)ρ(v′, v)dv′,

gx(x = 0, v′)n(t, x = 0, v′) = 0, n(t = 0, x, v) = nin(x, v),

still in a weak sense.

The underlying mechanism of the two previous equations is similar to the one described previ-
ously for (1):

- Transport terms. The individual feature v does not evolve through time, it is given once
and for all at birth. Only the physiological age or the size evolve deterministically through
the transport terms in ga or gx.

- Fragmentation terms. A cell of current physiological age a or current size x, and fea-
ture v, divides with probability γ(a, v)dt or γ(x, v)dt between t and t+dt. It gives birth to
two new cells, each of one having age 0 or size x/2, and feature v′ with probability ρ(v, dv′).

We stress again that the age-structured and size-structured equations were extensively studied
but mainly without variability. Here the novelty is the structuring variable v we add to take into
account an individual feature.

1.2. Objective and related studies.

1.2.1. Mathematical formulation of our problem. The initial biological question can now be re-
formulated mathematically. As we will see, the Malthus parameter is defined as the dominant
eigenvalue of Model (A+V) or (S+V). We denote it by λγ,ρ to stress the dependence not only
on the division rate γ but also on the variability Markov kernel ρ(v, dv′). The long-time behaviour
of the solution to Model (A+V) or (S+V) is expected to be n(t, a, v) ≈ eλγ,ρtNγ,ρ(a, v) or
n(t, x, v) ≈ eλγ,ρtNγ,ρ(x, v), with Nγ,ρ a stationary profile, where we see that the growth speed
of the system is governed by λγ,ρ. Our aim is to compare the growth speed of the two following
populations:

1) Population with variability. Each cell has its own aging or growth rate drawn according to
a non-degenerated density ρ(dv′) such that

∫
V v
′ρ(dv′) = v̄ (if one neglects heredity in the trans-

mission of the individual feature). This population grows at speed λγ,ρ.

2) Population of reference (without variability). All cells age or grow at the same rate v̄.
This population grows at speed1 λγ,v̄.

In other words, our aim is to compare λγ,ρ to λγ,v̄.

1.2.2. Existing studies on the fitness. Before going ahead let us describe existing studies on the
variations of the Malthus parameter. We sum up below two studies dealing with the size-structured
model (without variability). We also mention a corpus of articles by Clairambault, Gaubert, Lep-
outre, Michel and Perthame (see [5, 11] and references therein) comparing the eigenvalue of a
partial differential equation with time dependent periodic coefficients (birth and death rates) to

1We denote λγ,ρ by λγ,v̄ when ρ is the Dirac mass at point v̄.
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the eigenvalue of the equation with time-averaged coefficients. They mainly focus on the age-
structured system for the cell division cycle. Evolution equations with time periodic coefficients
require specific techniques (Floquet’s theory).

Asymmetry of the division. The influence of asymmetry in the division is investigated by Michel
in [17] for the model described by

∂
∂tn(t, x) + ∂

∂xn(t, x) +B(x)n(t, x) = 1
σB( xσ )n(t, xσ ) + 1

1−σB
(

x
1−σ

)
n
(
t, x

1−σ
)
,

with n(t, x = 0) = 0, where the size of each cell evolves linearly (at speed gx ≡ 1) and a cell of size
x divides at a rate B(x) into two cells of sizes σx and (1−σ)x, for some parameter σ ∈ (0, 1). The
case of reference is the symmetric division case corresponding to σ = 1/2. If we denote by λB,σ the
Malthus parameter in this model, the aim is to compare λB,σ to λB,1/2. Depending on the form
of the division rate B, the asymmetry division is beneficial or not for the growth of the overall
cell population. Two special cases are highlighted in [17], 1) qualitatively, if cells divide at high
sizes (the support of B is far away from zero), then λB,σ < λB,1/2 which means that asymmetry
slows the growth speed of the population, 2) qualitatively, if cells divides early (the support of B
contains zero and B decreases), then λB,σ > λB,1/2 which means that asymmetry creates a gain
speeding up the growth of the population. We refer to Theorems 2.1 and 2.2 of [17] for precise
statements of the assumptions on B. The method developed in [17] is an interesting approach to
investigate our question as regards variability.

Influence of the growth rate. The influence of the individual growth rate is investigated by Calvez
et al. in [4] for the model described by

∂
∂tn(t, x) + ∂

∂x

(
v̄xn(t, x)

)
+B(x)n(t, x) = 4B(2x)n(t, 2x),

where the size of each cell evolves exponentially at rate v̄ and assuming that division is symmetric
for simplicity. On this very simple model, the Malthus parameter is exactly equal to the common
individual growth rate v̄, hence it seems that the faster the cells grow, the faster the overall cell
population grows. This is not the case in general: if the growth speed would be g(x) instead of
x, then increasing g by a factor may have the effect of diminishing the Malthus parameter. A
plausible example: if around infinity g(x) is equivalent to xν (up to a constant) with ν < 1 and
if B(x) vanishes at infinity, being equivalent to x−γ (up to a constant) with 0 < γ < 1 − ν, then
the Malthus parameter vanishes when inflating g by a multiplicative factor. This was proved in [4]
(see Theorem 1 and Proposition 1 in Appendix 2, see also Figure 2(a)). Note that in the present
study, we inflate the growth speed by a factor that depends on each individual.

1.3. Main results and outline. Our main results are summed up in Table 1. Our analysis
begins with Model (A+V) in Section 2, neglecting heredity in the transmission of the aging rate
by picking ρ(v, dv′) = ρ(v′)dv′. We analytically prove that the Malthus parameter, well-defined by
Theorem 3 (we give a proof for the sake of completeness in Section 7), can increase or decrease when
introducing variability in the aging rate, depending on the form of the division rate γ (Theorem 4).
We also compute the perturbation at order two of the Malthus parameter λγ,ρα when ρα converges
in distribution to a Dirac mass as α→ 0 (Theorem 5).

The paradigmatic age-structured model still being a toy model for cellular division (at least
for E. coli, see Robert et al. [23]), we turn to Model (S+V) in Section 3. A numerical study,
based on stochastic simulations, is carried out to give preliminary answers. For the division rate γ
chosen as a power law with some lag (see Table 1), for ρ(·) a truncated Gaussian distribution with
mean v̄, we infer that λγ,ρ < λγ,v̄. Admittedly this conclusion agrees with biological wisdom but
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the strength of our methodology is to quantify such a decrease. We evaluate the magnitude of the
decrease around 2% when the variability distribution has a realistic coefficient of variation around
15%-20%. Such a decrease is far from being negligible since the Malthus parameter governs the
exponential growth of the whole population. In addition, we observe a monotonous relationship:
the Malthus parameter decreases when there is more and more variability in the growth rate.

Model (A+V) Model (S+V)
Division rate γ v(a− 1)21{a≥1} vx(x− 1)21{x≥1}
Variability In the aging rate In the growth rate

Variations
λγ,ρ ↘ λγ,ρ ↘

(Figure 1) (Figure 2)

Comments
Analytic result:

–
Theorems 4 and 5

Table 1. Variations of the Malthus parameter compared to the reference value
when introducing variability between cells, for an experimentally realistic division
rate. Note: λγ,ρ ↘ means that λγ,ρ < λγ,v̄ for a non-degenerated probability
distribution ρ(·) with mean v̄ (truncated Gaussian), and so on.

We provide perspectives in Section 4. Finally Section 5 is devoted to the proofs of our main
results of Section 2. Section 6 gives supplementary figures and tables to complete the numerical
study of Section 3.

2. The age-structured model with variability

In this section we study the age-structured model with variability (A+V). Lebowitz and Ru-
binow [14] and Rotenberg [24] already enriched the age-structured model by an additional feature.
In [14], the model is structured by the age and the lifetime, called generation time, which is in-
herited from the mother cell to the daughter cells. The death or disappearance of the cells occur
at a constant rate. In [24], the model is structured by a maturity (our physiological age) and by
a maturity velocity (our aging rate). Rotenberg’s model is further studied by Mischler, Perthame
and Ryzhik [18], establishing the existence of a steady state and the long-time behaviour of the
solution.

Rotenberg’s model is close to the model we are interested in, but different. From a certain
viewpoint, the model introduced by Rotenberg [24] and studied in [18] is more general than Model
(A+V): there are distinct death and birth rates and maturity velocity can change at any moment
during the life of an individual. However, in our Model (A+V) we allow for a general evolution
of the aging rate (through the aging speed ga) and, most importantly, we allow for heredity in the
transmission of the aging rate (through the Markov kernel ρ) in Section 2.1 which follows.

2.1. Definition of the Malthus parameter.

2.1.1. Main assumptions. We use the notation S = [0,∞)×V for the state space of the physiological
age and the aging rate. We require the following two assumptions throughout this section.

Assumption 1 (Aging speed ga and division rate γ). The following conditions are fulfilled:

(a) Both (a, v) ; γ(a, v) and (a, v) ; ga(a, v) are continuous.
(b) For any (a, v) ∈ S, ga(a, v) > 0 and sup(a,v)∈S ga(a, v) <∞.
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(c) For any v ∈ V there exits 0 ≤ amin(v) < amax(v) ≤ ∞ such that γ(a, v) > 0 for a ∈
[amin(v), amax(v)].

(d) For any v ∈ V, we have
∫∞ γ(a,v)

ga(a,v)da =∞ and sup(a,v)∈S
γ(a,v)
ga(a,v)e

−
∫ a
0

γ(s,v)
ga(s,v)

ds <∞.

Assumption 2 (Markov kernel ρ). There exists a continuous and bounded ρ : V2 → [0,∞)
satisfying

∫
V ρ(v, v′)dv′ = 1 for any v ∈ V, such that ρ(v, dv′) = ρ(v, v′)dv′, which satisfies in

addition

inf
v′∈V

∫
V
ρ(v, v′)dv = % > 1

2 .

These two assumptions enable us to define the Malthus parameter studying the direct and adjoint
eigenproblems below. In Assumption 1, we require (a) since we look for continuous eigenvectors.
The requirement (b) on the aging speed ga authorises the case ga(a, v) = v we are interested in
(Section 2.2). Note that the non-negativity of ga means that cells can only age, but not rejuvenate.
The boundedness of the aging speed is technical. The condition (c) is needed in our proof for the
uniqueness of the eigenelements. Finally note that (d) is not very restrictive and it can be read

as follows: for any v ∈ V, a ;
γ(a,v)
ga(a,v) is a hazard rate and the associated density is bounded in a

(and in v, which belongs to a compact set of (0,∞)). Assumption 2 on ρ is rather strong but it
simplifies the study of the eigenproblem.

These assumptions have the advantage of leading to a simple proof (in Section 5). The recent
results of Mischler and Scher [19] should enable us to weaken it. We stress that our objective here
is not the extensive study of the eigenproblem, but lies beyond with the study of the variations of
the eigenvalue.

2.1.2. The direct and adjoint eigenproblems. We now precisely define the Malthus parameter. To
that end, let us introduce the direct eigenproblem,

(2)


∂
∂a

(
ga(a, v)Nγ,ρ(a, v)

)
+ γ(a, v)Nγ,ρ(a, v) = −λγ,ρNγ,ρ(a, v),

ga(a = 0, v′)Nγ,ρ(a = 0, v′) = 2
∫∫
S γ(a, v)Nγ,ρ(a, v)ρ(v, v′)dvda,

Nγ,ρ ≥ 0,
∫∫
S Nγ,ρ(a, v)dvda = 1,

and the adjoint eigenproblem,

(3)


ga(a, v) ∂∂aφγ,ρ(a, v) + γ(a, v)

(
2
∫
V φγ,ρ(0, v

′)ρ(v, v′)dv′ − φγ,ρ(a, v)
)

= λγ,ρφγ,ρ(a, v),

φγ,ρ ≥ 0,
∫∫
S(Nγ,ρφγ,ρ)(a, v)dvda = 1,

linked to Model (A+V).

Let Cb
(
V) be the set of functions f : V → R which are bounded and continuous and let C1

b

(
R+) be

the set of functions f : R+ → R which are bounded and continuously differentiable. For f : S → R
the notation f ∈ C1

b

(
R+; Cb(V)

)
means that a; f(a, v) belongs to C1

b

(
R+) for any v ∈ V and that

v ; f(a, v) belongs to Cb
(
V) for any a ∈ R+.

Theorem 3. Work under Assumptions 1 and 2. There exists a unique solution (λγ,ρ, Nγ,ρ, φγ,ρ)
to the direct and adjoint eigenproblems (2) and (3) such that λγ,ρ > 0, (gaNγ,ρ) ∈ C1

b

(
R+; Cb(V)

)
and φγ,ρ ∈ C1

b

(
R+; Cb(V)

)
.

The unique λγ,ρ defined in such a way is what we call the Malthus parameter (or fitness) and
let us now study its variations (with respect to ρ, for γ fixed).
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2.2. Influence of variability on the Malthus parameter. A preliminary remark first: let us
consider the case of a constant division rate, γ(a, v) = c > 0 for any (a, v) ∈ S. Since γ is constant,
we expect that variability in the aging rate has no influence on the Malthus parameter. When
ρ(v, dv′) = ρ(v′)dv′, one can easily check that λγ,ρ = c which is independent of ρ.

2.2.1. Model specifications. From now on we consider Model (A+V) with the aging speed set to

(4) ga(a, v) = v

which means that the physiological age is proportional to the time elapsed since birth, up to a
factor v which may change from an individual to another.

Let 0 < amax ≤ ∞. For a continuous B : [0, amax) → [0,∞) such that
∫ amax B(s)ds = ∞, we

assume that

(5) γ(a, v) = ga(a, v)B(a) = vB(a).

Cells divides at a rate

γ(a, v)dt = ga(a, v)B(a)dt = B(a)da,

since da = ga(a, v)dt. Thus one has to see the division rate B(a) as a rate per unit of physiological
age and γ(a, v) = ga(a, v)B(a) as a rate per unit of time. We mimic here the choice made by S.
Taheri-Araghi et al. [29] in a more general model – choice relying on biological evidence.

2.2.2. Variations. In this section, contrarily to the previous one, we neglect heredity in the trans-
mission of the aging rate assuming that

(6) ρ(v, dv′) = ρ(v′)dv′

for some continuous and bounded ρ : V → [0,∞) such that
∫
V ρ(v′)dv′ = 1. In this framework2,

the eigenvectors solution to the eigenproblem (2)-(3) are explicit and an implicit relation uniquely
defines the eigenvalue (see Lemma 7 below, Section 5).

From now on we denote λγ,ρ by λB,ρ (to stress Specification (5)) and λB,v̄ stands for λB,δv̄
where δv̄ is the Dirac mass at point

(7) v̄ =

∫
V
vρ(v)dv.

If necessary, set B(a) = 0 for a ≥ amax, and define

(8) fB(a) = B(a) exp(−
∫ a

0

B(s)ds), a ≥ 0.

One wants to compare 1) the Malthus parameters λB,ρ solution to

(9) 2

∫∫
S

exp
(
− λB,ρa

v

)
fB(a)ρ(v)dvda = 1,

controlling the growth speed of the population with variability ; to 2) the Malthus parameters
λB,v̄ solution to

(10) 2

∫ ∞
0

exp
(
− λB,v̄a

v̄

)
fB(a)da = 1,

2Note that under Specifications (4) and (5) the previous Assumption 1 is valid.
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controlling the growth speed of the population of reference.

Theorem 4. Consider Model (A+V) with Specifications (4), (5) and (6). Assuming in addition
that B : [0, amax)→ [0,∞) is differentiable,

(i) for amax ∈ (0,∞], if B′(a) < B(a)2 for any a ∈ [0, amax) then λB,ρ < λB,v̄.
(ii) for amax < ∞, if B is such that fB is bounded and B′(a) > B(a)2 for any a ∈ [0, amax)

then λB,ρ > λB,v̄.

First note that Theorem 4 is valid independently of the density ρ on V (with mean v̄). The first
derivative of the density fB being

f ′B(a) =
(
B′(a)−B(a)2

)
exp(−

∫ a

0

B(s)ds),

(for B differentiable), a condition of sign on B′ −B2 is nothing but imposing fB to be decreasing
(statement (i)) or increasing (statement (ii)) .

One canonical example is the following. Assume that B is constant equal to b > 0 so that
γ(a, v) = vb for any (a, v) ∈ S. Then, fB is the exponential density of mean b−1: it is non-
increasing and statement (i) of Theorem 4 applies.

We give the proof of Theorem 4 now: relying mainly on Jensen’s inequality, we obtained a
straightforward proof.

Proof of Theorem 4. Let λB,v̄ be such that

Hv̄(λB,v̄) = 1 with Hv̄(λ) = 2

∫ ∞
0

exp
(
− λa

v̄

)
fB(a)da,

and λB,ρ be such that

Hρ(λB,ρ) = 1 with Hρ(λ) = 2

∫∫
S

exp
(
− λa

v

)
fB(a)ρ(v)dvda.

We know that 1) both Hv̄ and Hρ are continuous on [0,∞), 2) both Hv̄ and Hρ are decreasing
on [0,∞), 3) when λ goes to infinity, Hv̄(λ)→ 0 and Hρ(λ)→ 0, 4) at point λ = 0, Hv̄(λ = 0) =
Hρ(λ = 0) = 2 > 1. Then, by the intermediate values theorem, we know there exists a unique
positive λB,v̄ such that Hv̄(λB,v̄) = 1 and a unique positive λB,ρ such that Hρ(λB,ρ) = 1. Recall
that we want to compare λB,ρ to λB,v̄. We claim that 5) if f ′B ≤ 0, then

Hρ(λ) < Hv̄(λ)

for any λ > 0. Together with points 1) to 4), this enables us to conclude that λB,ρ < λB,v̄.

Let us prove 5). For any λ > 0, introduce

hλ : v ∈ V ; 2

∫ ∞
0

exp
(
− λa

v

)
fB(a)da.

Then Hv̄ and Hρ can be written

Hv̄(λ) = hλ(v̄) and Hρ(λ) =

∫
V
hλ(v)ρ(v)dv

for λ > 0. We claim that hλ is strictly concave when f ′B ≤ 0. Then hλ(v̄) >
∫
V hλ(v)ρ(v)dv by

Jensen’s inequality, since
∫
V vρ(v)dv = v̄, and 5) immediately follows.
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We now compute the second derivative of hλ,

h′′λ(v) =
2

v2

∫ ∞
0

λa

v

(λa
v
− 2
)
e−

λa
v fB(a)da.

Integrating by parts, recalling that we choose B differentiable, we get

h′′λ(v) =
2λ

v3

∫ ∞
0

a2e−
λa
v f ′B(a)da < 0

for any v ∈ V when f ′B < 0. This ends the proof for the case f ′B ≤ 0 and the case f ′B > 0 is treated
in the same way (we need fB to be bounded for the integration by parts). �

2.2.3. Small perturbations. The density of the aging rates is thought of as a deformation around
an average aging rate v̄. Given a baseline density ρ : V → [0,∞) continuous and bounded with
mean v̄, we define, for α ∈ (0, 1],

(11) ρα(v) = α−1ρ
(
α−1(v − (1− α)v̄)

)
, v ∈ Vα = αV + (1− α)v̄,

so that
∫
Vα ρα(v)dv = 1 and the mean value is constant, i.e.

∫
Vα vρα(v)dv = v̄. The density ρα

converges in distribution to the Dirac mass δv̄ as α→ 0. Thus we want to investigate the behaviour
of the Malthus parameter λB,ρα – which is a perturbation of λB,v̄ – for small value of α.

Theorem 5. Consider Model (A+V) with Specifications (4), (5) and ρ(v, dv′) = ρα(v′)dv′.
Then α; λB,ρα is twice differentiable and the Malthus parameter λB,ρα defined by (9) satisfies

λB,ρα = λB,v̄ +
α2

2

d2λB,ρα
dα2

∣∣∣
α=0

+ o(α2)

with λB,v̄ defined by (10) and

d2λB,ρα
dα2

∣∣∣
α=0

= σ2
(∫ ∞

0

a

v̄
e−

λB,v̄a

v̄ fB(a)da
)−1

∫ ∞
0

λB,v̄a

v̄

(λB,v̄a
v̄
− 2
)
e−

λB,v̄a

v̄ fB(a)da

where σ2 =
∫
V(v − v̄)2ρ(v)dv.

Note that the perturbation plays at order 2, but not at order 1 since the mean v̄ is preserved

(we prove
dλB,ρα
dα

∣∣
α=0

= 0 in Proposition 8 below, Section 5). The amplitude of the perturbation at

order 2 depends on the baseline aging rate density ρ only through its means v̄ and its variance σ2.
The proof heavily relies on the explicit expressions of the eigenelements solution to the eigenproblem
(2)-(3), available when neglecting heredity in the transmission of the aging rate (see Lemma 7 below,
Section 5).

Remark 6. If B is differentiable, integrating by parts we get

d2λB,ρα
dα2

∣∣∣
α=0

= λB,v̄σ
2
(∫ ∞

0

ae−
λB,v̄a

v̄ fB(a)da
)−1

∫ ∞
0

a2e−
λB,v̄a

v̄ f ′B(a)da

and the variation study of α; λB,ρα around α = 0 follows as in the proof of Theorem 4 above.

The class of B for which Theorem 4 applies is unfortunately quite restrictive. In view of
applications, a monotonous density fB seems not realistic since we expect to observe a mode
in the density of the physiological ages at division (exactly as for lifetimes). One can see the
distribution of lifetimes, also called doubling times or generation times, in [21] (Figure 1.D), and in
[29] for various medium (Figure S10). Given a more realistic division rate B, in this simple model,
one can numerically solve Equations (9) and (10) in order to compare λB,ρ to λB,v̄.

A plausible division rate would be of the form B(a) = (a − 1)β1{a≥1}. For such a division
rate, Theorem 4 does not apply since fB is non-monotonous. Figure 1 shows curves α ; λB,ρα
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for different values of β and we see that all these curves are non-increasing, which means that
variability in the aging rate slows down the growth speed of the overall cell population, for such
division rates B and the tested baseline variability kernel (a truncated Gaussian distribution).

Figure 1. Model (A+V). CVρα ; λB,ρα defined by (9) for ρα(v) =
α−1ρ

(
α−1(v− (1− α)v̄)

)
(the baseline density ρ is a Gaussian density with mean

v̄ = 1 and standard deviation 0.7 truncated on [0, 2]) and different division rates
γ(a, v) = vB(a) with B(a) = (a − 1)β1{a≥1}, β ∈ {0, 0.25, 0.5, 0.75, 1, 2, . . . , 7}.
Reference (all cells age at rate v̄ = 1): point of null abscissa and y-coordinate
λB,v̄=1 defined by (10).

3. The size-structured model with variability

In this section we study the size-structured model with variability (S+V). A precise definition
of the Malthus parameter λγ,ρ is based on the associated eigenproblem. We refer to Doumic and
Gabriel [9] (size-structured model without variability) and references therein for the study of the
eigenproblem. We carry out a numerical study of our initial question.

3.1. Stochastic approach. Our aim is to approximate numerically the Malthus parameter and
to do so we use a stochastic approach. One could use deterministic methods and approximate the
Malthus parameter via a discretisation of the PDE. The stochastic approach we propose enables
us to build confidence intervals for λγ,ρ (in order to check if the variation compared to a reference
value is significant or not). In addition, the computational cost of our method should be invariant
to the dimension of the model and it could be used as well for more complex models.

3.1.1. Stochastic modeling. We closely follow here the description given in Doumic et al. [10].
Introduce the infinite genealogical tree

T =

∞⋃
m=0

{0, 1}m.
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Informally we may view T as a population of cells (where the initial individual is denoted by ∅).
Each node u ∈ T, identified with a cell of the population, has a mark

(bu, ζu, ξu, τu),

where bu is the birth time, ζu the lifetime, ξu the size at birth and τu the individual feature of
cell u. We introduce du the division time of u, du = bu + ζu.

The growth rate of one cell is drawn according to

ρ(v, dv′) = P(τu ∈ dv′|τu− = v)

where u− is the parent of u. We choose gx(x, v) = vx which means the size of each sizes evolves
exponentially. Such an assumption is realistic, we refer to the analysis of single cells growth by
Schaechter et al. [25] and by Robert et al. [23] (Figure 2). Then the size at time t of cell u is

ξtu = ξue
τut, t ∈ [bu, du).

Stochastically, cells divide according to the rate γ(x, v)dt,

P(ζu ∈ [t, t+ dt)|ζu ≥ t, ξu = xb, τu = v) = γ(xbe
vt, v)dt

where xbe
vt = x is the size after a time t for a cell born with size xb and growth rate v. Cells

divide into two equal parts,

(12) ξu = 1
2ξu− exp

(
τu−ζu−

)
.

From the two previous relations, we readily obtain that (ξu, u ∈ T) is a bifurcating Markov chain
(see [12] for a definition) with explicit transition

Pγ(x, y)dy = P(ξu ∈ dy|ξu− = x).

This stochastic modeling and the previous deterministic modeling match. Define the set of
living cells at time t,

(13) ∂Tt = {u ∈ T; bu ≤ t < du}.

Define the measure n(t, dxdv) as the expectation of the empirical measure at time t over smooth
test functions f : S → R, ∫∫

S
f(x, v)n(t, dxdv) = E

[ ∑
u∈∂Tt

f(ξtu, τu)
]

where (ξtu, τu) is the size at time t of u together with its growth rate, constant through time.
Then n(t, dxdv) satisfies in the weak sense of measures the partial differential equation of Model
(S+V). We refer to Theorem 1 of Doumic et al. [10] for such a result.

3.1.2. Stochastic tools. Relying on a stochastic procedure, we numerically evaluate λγ,ρ for given
division rates γ and growth rate densities ρ. Our estimates of λγ,ρ are based on trees observed
between time 0 and time T . The theoretical framework legitimating our approach is thus a con-
tinuous time setting as in Bansaye et al. [2] or Cloez [6].
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Estimation of the Malthus parameter. The value of the Malthus parameter is encoded in the time
evolution of the tree. To build an estimator one can exploit the asymptotic behaviour of empirical
means at time t, as studied in Cloez [6],

(14) e−λγ,ρt
∑
u∈∂Tt

f(ξtu, τu) ≈ cγ,ρ(f)Wγ,ρ,

when t is large, in probability, where cγ,ρ(f) is a constant and Wγ,ρ a non-degenerated random
variable. Now define the sum of all sizes of living cells at time t,

(15) Mt =
∑
u∈∂Tt

ξtu =
∑
u∈∂Tt

ξue
τu(t−bu),

called biomass in the biological literature. If we observe (ξ
T/2
u , u ∈ ∂TT/2) and (ξTu , u ∈ ∂TT ) we

can define an estimator of the Malthus parameter as

(16) λ̂T =
2

T
ln
( MT

MT/2

)
.

Approximation (14) ensures that this estimator is close to the true value for large T . Note that a
large collection of estimators based on (14) can be built, choosing different test functions, and we
discuss this in Section 6 (see Figure 3). We see that the estimator (16) requires the observation
of the whole population at two different large times, chosen for simplicity as T/2 and T . Thus in
order to numerically approximate λB,ρ by (16) for given parameters B and ρ one need to simulate
continuous time trees up to a large time T .

Simulation of a continuous time tree up to time T . Let us be given a division rate B and a density
ρ on V. To simulate a full tree up to a time T , we have to keep the birth and division dates. Set
ξ∅ = x∅ some given initial value and b∅ = 0. For any cell u− ∈ T, given its birth time bu− and its
size at birth ξu− , we compute (ζu− , τu−) and its division time du− in the following way,

1) Draw its growth rate τu− according to ρ.
2) Draw ξu given ξu− = x according to the transition Pγ(x, y)dy.
3) Recalling (12), compute its lifetime ζu− by

(17) ζu− =
1

τu−
ln(

2ξu
ξu−

).

Set its division time du− = bu− + ζu− (and set bu = du−). Then,
(i) If du− ≥ T , keep (bu− , ζu− , ξu− , τu−) but drop (bu, ξu) and do not simulate further

the descendants of u−.
(ii) If du− < T , keep (bu, ξu) and go back to Step 1).

3.2. Influence of variability on the Malthus parameter.

3.2.1. Numerical protocol. We first specify the division rate γ and the growth rate Markov kernel ρ.

Division rate. Mimicking again S. Taheri-Araghi et al. [29], we work with a division rate per unit
of time γ chosen as

(18) γ(x, v) = vxB(x)

for a continuous B : [0,∞) → [0,∞) such that
∫∞

B(s)ds = ∞. Note that vxB(x)dt = B(x)dx
(since dx = gx(x, v)dt with gx(x, v) = vx) and that is why we call B a division rate per unit of
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size. As previously, from now on we denote the Malthus parameter λγ,ρ by λB,ρ to emphasize we
work under Specification (18). We choose B of the general form

(19) B(x) = Bx0,β(x) = (x− x0)β1{x≥x0}

for x0 ≥ 0 and β ≥ 0. This power form in β with some lag x0 is inspired by experimental
data. For instance we refer to [23], Supplementary Figures S1 and S2, where the division rate is
estimated for the age-structured and size-structured models. Adjusting β and x0 is an easy way
to mimic qualitatively all these curves. The estimation is not accurate for large sizes or ages since
observations are lacking and we opt not to truncate B making it constant after some threshold but
to let it grow to infinity. For such a choice of γ and B, one has to draw ξu given ξu− according to

(20) Pγ(x, y)dy = P(ξu ∈ dy|ξu− = x) = 2B(2y) exp
(
−
∫ y

x/2

2B(2s)ds
)
1y≥x/2dy,

in Step 2) of the previous algorithm3. In our numerical tests, we pick x0 = 1 and β = 2.

Parametrisation of the variability. We suppose here that the growth rate of the daughter cell is
independent of its parent, by picking a variability kernel ρ(v, dv′) independent of v. Given a
non-degenerated baseline density ρ : V → [0,∞) with mean v̄, we define, for α ∈ (0, 1],

(21) ρα(v) = α−1ρ
(
α−1(v − (1− α)v̄)

)
, v ∈ Vα = αV + (1− α)v̄.

We set
∫
V vρ(v)dv = v̄ and

∫
V(v − v̄)2ρ(v)dv = η2. The coefficient of variation, denoted by CV

indexed by the probability distribution considered, is defined as the quotient of its standard error

and mean. Then CVρ = η/v̄ and CVρα = αCVρ. Set ϕ(x) = (2π)−1/2e−x
2/2 the density of the

standard gaussian and Φ(x) =
∫ x
−∞ ϕ(y)dy its cumulative distribution function. We pick for the

baseline density ρ,

(22) ρ(v) =
ϕ
(
σ−1
η (v − v̄)

)
1vmin≤v≤vmax

Φ
(
σ−1
η (vmax − v̄)

)
− Φ

(
σ−1
η (vmin − v̄)

)
with v̄ = (vmin + vmax)/2. That is to say, ρ is the truncation on [vmin, vmax] = V of a Gaussian
distribution with mean v̄ and standard deviation ση. We set vmin = 0, vmax = 2 so that v̄ = 1 and
we choose ση = 0.70 so that CVρ = 50% (using the known formulae of the moments of a truncated
Gaussian distribution). Once ρ is fixed, it enables us to define the collection

(
ρα, α ∈ (0, 1]

)
. For

α ∈ (0, 1] the support of the density ρα is Vα = [1 − α, 1 + α] and CVρα = α/2 for such a choice
of ρ. The larger the coefficient of variation CVρα , the more variability in the growth rate.

Estimation of the curve CVρα ; λB,ρα . For a given α ∈ (0, 1), we simulate M = 50 continuous
time trees up to a large time T , picking x∅ = 2, v∅ = 1, with division rate B = Bx0=1,β=2 and
growth rate density

ρ(v, dv′) = ρα(v′)dv′.

We obtain a collection

(λ̂
(α)
T,m,m = 1, . . . ,M)

of M estimators of the Malthus parameter computed according to (16). We denote the mean of

these M estimators by λ̂
(α)
T . It enable us to obtain a reconstruction of the curve CVρα ; λB,ρα .

3Note that for the choice (19) of B, we can easily do it inverting the cumulative distribution function.
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The question now states as follows: what can we say about λB,ρα compared to λB,v̄ = v̄ the
average growth rate, which is the Malthus parameter of a population without variability in the
growth rate?

3.2.2. Main result: the Malthus parameter decreases when introducing variability. Figure 2 below
shows the curve

CVρα ; λ̂
(α)
T ,

together with a confidence interval for each α, such that it contains 95% of the M estimators.
The aim is to get confidence intervals of good precision and to that end we choose large enough
times T . The mean numbers of living individuals at time T is at least of magnitude 50 000, see
Supplementary Table 2 in Section 6. (Such an amount of data, in a full tree case, would correspond
to the observation of the first 16 generations.) We first observe that λB,ρα is significantly lower
than the value of reference

∫
V vρα(v)dv = v̄ = 1, for CVρα exceeding 10%. In addition, the curve is

significantly decreasing as CVρα increases, i.e. as there is more and more variability in the growth
rate.

Figure 2. Model (S+V). Division rate γ(x, v) = vxB(x) with B(x) = (x −
1)21{x≥1}. Estimated curve CVρα ; λB,ρα using estimator (16) (mean and 95%
confidence interval based on M = 50 Monte Carlo continuous time trees). Refer-
ence (all cells grow at a rate v̄ = 1): λB,v̄ = v̄ = 1.

3.2.3. Robustness our results. The result illustrated by Figure 2 is robust when changing parame-
ters or changing slightly the model.

Division rate change. The result is robust when changing the division rate B. In particular, we
have explored several couples of parameters (x0, β) (recall Parametrisation (19)). The conclusion
remains the same: the Malthus parameter significantly decreases when there is more and more
variability in the growth rate. Supplementary Table 3 in Section 6 displays the results for x0 = 1
and β = 8.
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Asymmetric division. So far we have assumed symmetry in the division. However a slight asym-
metry can arise, see Marr et al. [15] or Soifer et al. [26] (Figure 8). Asymmetry is defined as
the ratio of the size at birth of one daughter cell over the size at division of its parent. The
distribution of this ratio shows a mode at 0.50 and has a coefficient of variation of about 4%. In
our numerical study, we amplify asymmetry since we aim at measuring an effect of asymmetry on
the curve CVρα ; λB,ρα . We immediately extend the model presented in Section 3.1 to allow for
asymmetry: we assume that a cell of size x divides into two cells of sizes ux and (1− u)x with u
uniformly drawn on the interval [ε, 1 − ε], independently of everything else, for 0 ≤ ε < 1/2. A
dividing cell does not produce an arbitrarily small cell, that is why we chose ε 6= 0. However we
fix ε quite close to 0 for our study. Supplementary Table 4 in Section 6 collects the results for
ε = 0.10. Once again there is no significant change compared to Figure 2. Thus asymmetry seems
to have no significant impact on the Malthus parameter, in presence of variability.

Linear growth. Consider now that the size at time t of cell u is ξtu = ξu + τut for t ∈ [bu, du).
In order to simulate a continuous time tree, we still use the transition defined by (20) in Step 2)
of our algorithm and one has only to replace (17) by ζu− = (2ξu − ξu−)/τu− in Step 3). We
still observe a penalisation due to variability in terms of the overall cell population growth (see
Supplementary Table 5 in Section 6). For coefficient of variations around 15%-20% in the growth
rates, the decrease of the Malthus parameter is estimated at 1-1.5%.

Unit size versus unit time division rate. Notice that the model studied in Doumic et al. [10]
corresponds to the choice γ(x, v) = B(x) (there B is a rate per unit of time) instead of γ(x, v) =
vxB(x) (here B is a rate per unit of size). This is fundamentally different. As one can see in (20),
with the choice γ(x, v) = vxB(x), the size at birth of a cell actually does not depend on the growth
rate of its parent whereas it would be the case with the choice γ(x, v) = B(x), since

P(ξu− ∈ dy|ξu = x, τu = v) =
B(2y)

vy
exp

(
−
∫ y

x/2

B(2s)

vs
ds
)
1{y≥x/2},

(see [10], Equation (11)), and this is the main difference. In order to simulate a continuous time
tree up to a given time, at Step 2) of our algorithm, we draw ξu given ξu− and τu (simulated
in Step 1)) according to the previous equation (we use a rejection sampling algorithm for this
Step 2)). Whatever the specification is, our results concerning the Malthus parameter remain
unchanged (see Supplementary Table 6 in Section 6): we observe a decrease when there is more
and more variability (the decrease seems slightly higher in the case γ(x, v) = vxB(x) than in the
case γ(x, v) = B(x)).

Three main conclusions regarding Model (S+V) are in order. For a unit size division rate B
experimentally plausible, when there is variability in the growth rate among cells,

1) The Malthus parameter is lower than the value of reference computed assuming all cells
grow at the mean growth rate.

2) The variation is of magnitude 2% for experimentally realistic coefficients of variation in
the growth rates distribution, around 15-20%.

3) In addition the Malthus parameter is monotonous: it decreases when there is more and
more variability.

These conclusions are robust as argued above changing the unit size B, introducing asymmetry in
the division, assuming the individual growth of each cell is linear instead of exponential or even
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considering a unit time division rate B. We stress that our conclusion 1) coincides with conven-
tional wisdom in biology and our methodology has the advantage of bringing some quantification
through 2).

4. Discussion

The scope of the perspectives is large and includes both theoretical, with analytical and statis-
tical aspects, and experimental issues. We mention here some open questions.

Eigenproblem. In order to prove existence and uniqueness of the eigenelements in Model (A+V),
we would like to find minimal assumptions on the aging speed ga, on the division rate γ and on
the variability kernel ρ (based on the general results of Mischler and Scher [19] for instance).

Without heredity – ρ(v, v′) = ρ(v′). For Model (A+V), can we build more general classes of
B (including experimentally more plausible B) in order to discriminate between the two cases
λB,ρ > λB,v̄ and λB,ρ < λB,v̄? For Model (S+V), one can ask if the these two cases are possible.
Is there some plausible B such that λB,ρ > λB,v̄? We would like to build general classes of B
to discriminate between the two cases (specifying a density ρ if needed, a truncated Gaussian for
instance), and to compute the perturbations of λB,ρα around λB,v̄ for ρα tending to δv̄ as α → 0
(using the same kind of tools as to prove Theorem 5, see also Michel [17]).

With heredity – general ρ(v, v′). We would like to take into account heredity in the transmission
of the aging or growth rate, considering a general Markov kernel ρ(v, v′). In particular, for Model
(A+V), a natural question is: how does heredity in the transmission of the aging rate influence
the results of Theorems 4 and 5?

Malthus parameter. Beyond estimation, to conduct statistically reliable tests on the Malthus pa-
rameter would be of great interest, especially for experimental issues.

Alternative models. Some other models successfully describe the division of E. coli. We refer to
Amir [1] and Taheri-Araghi et al. [29]. We wonder what can be said on the Malthus parameter in
these two models. Preliminary answers are given in Olivier [20] (Chapter 4).

5. Proof of Theorem 5

As a preliminary, note that neglecting heredity in the transmission of the aging rate enables us
to obtain explicit expressions for the eigenvectors Nγ,ρ and φγ,ρ, and an implicit relation which
uniquely defines the Malthus parameter λγ,ρ.

Lemma 7. Work under Assumption 1. Assume in addition that ρ(v, dv′) = ρ(v′)dv′ for some
continuous and bounded ρ : V → [0,∞) such that

∫
V ρ(v′)dv′ = 1. Then the eigenvalue λγ,ρ > 0 is

uniquely defined by

2

∫∫
S

γ(a, v)

ga(a, v)
exp

(
−
∫ a

0

λγ,ρ + γ(s, v)

ga(s, v)
ds

)
ρ(v)dvda = 1.

The unique solution Nγ,ρ such that (gaNγ,ρ) ∈ C1
b

(
R+; Cb(V)

)
to (2) and the unique solution

φγ,ρ ∈ C1
b

(
R+; Cb(V)

)
to (3) are respectively given by, for any (a, v) ∈ S,

Nγ,ρ(a, v) =
κρ(v)

ga(a, v)
exp

(
−
∫ a

0

λγ,ρ + γ(s, v)

ga(s, v)
ds
)
, φγ,ρ(a, v) =

κ′
∫∞
a
γ(s, v)Nγ,ρ(s, v)ds

ga(a, v)Nγ,ρ(a, v)
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with κ, κ′ normalizing constants such that
∫∫
S Nγ,ρ = 1 and

∫∫
S Nγ,ρφγ,ρ = 1.

For a proof, one can easily check that Nγ,ρ and φγ,ρ defined in such a way satisfy respectively (2)
and (3). The uniqueness is guaranteed by Theorem 3 (see a proof in the appendix, Section 7).

First note that since ρα converges in distribution to the Dirac mass at point v̄ as α→ 0, we get
the convergence of λB,ρα to λB,v̄ as α→ 0 using the characterisations (9) and (10). In a first step,
we aim at computing the first derivative of α; λB,ρα .

Proposition 8 (First derivative). Consider Model (A+V) with Specifications (4), (5) and
ρ(v, dv′) = ρα(v′)dv′ defined by (11),

dλB,ρα
dα

=
(∫∫

S

a

α(v − v̄) + v̄
exp

( −λB,ραa
α(v − v̄) + v̄

)
fB(a)ρ(v)dvda

)−1

×
∫∫
S

λB,ραa(v − v̄)

(α(v − v̄) + v̄)2
exp

( −λB,ραa
α(v − v̄) + v̄

)
fB(a)ρ(v)dvda

for any α ∈ (0, 1].

Proof. Introduce the operator

Aγ,ρf(a, v) = ga(a, v)
∂

∂a
f(a, v) + γ(a, v)

(
2

∫
V
f(0, v′)ρ(v′)dv′ − f(a, v)

)
(23)

densely defined on bounded continuous functions and let A∗γ,ρ be its dual operator. The eigen-
problem given by (2) and (3) can be written more shortly

A∗γ,ρNγ,ρ = λγ,ρNγ,ρ, Aγ,ρφγ,ρ = λγ,ρφγ,ρ,

with Nγ,ρ ≥ 0 such that
∫∫
S Nγ,ρ = 1 and φγ,ρ ≥ 0 such that

∫∫
S Nγ,ρφγ,ρ = 1. In order to ease

notation, when no confusion is possible, we abbreviate Aγ,ρα by Aα, Nγ,ρα by Nα, λγ,ρα by λα
and so on. We denote the support of ρα by Vα and [0,∞)× Vα by Sα.

Step 1. Let α ∈ (0, 1] be fixed. For 0 < ε < α, we claim that

(24) (λα − λα−ε)
∫∫
Sα−ε

φαNα−ε =

∫∫
Sα−ε

(Aαφα −Aα−εφα)Nα−ε.

Indeed, operators Aα and A∗α are dual, then∫∫
Sα−ε

(Aαφα −Aα−εφα)Nα−ε =

∫∫
Sα−ε

(Aαφα)Nα−ε − φα(A∗α−εNα−ε)

which leads to (24) since Aαφα = λαφα and A∗α−εNα−ε = λα−εNα−ε (see also [17], Lemma 3.2
and Equation (3.11)). Using the definition (23) of Aα, we get

Aαφα(a, v)−Aα−εφα(a, v) = 2γ(a, v)
(∫
Vα
φα(0, v′)ρα(v′)dv′ −

∫
Vα−ε

φα(0, v′)ρα−ε(v
′)dv′

)
,

which we insert in (24) to obtain

λα − λα−ε
ε

=

∫∫
Sα−ε 2γ(a, v)Nα−ε(a, v)dvda∫∫
Sα−ε φα(a, v)Nα−ε(a, v)dvda

×
(∫
Vα f(0, v′)ρα(v′)dv′ −

∫
Vα−ε f(0, v′)ρα−ε(v

′)dv′

ε

)
|f=φα
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and we let ε go to zero to study the differentiability on the left of α; λα at point α. In the same
way we compute ε−1(λα+ε − λα) to study the differentiability on the right of α ; λα at point α.
Since Nα±ε → Nα pointwise when ε→ 0 and

∫∫
Sα φαNα = 1, by Lebesgue dominated convergence

theorem we get

(25)
dλα
dα

= κα
d

dα

(∫
Vα
f(0, v′)ρα(v′)dv′

)∣∣f=φα

with
∫∫
Sα 2γ(a, v)Nα(a, v)dvda = κα as defined in Lemma 7. Thus, λα is differentiable in α if the

derivative of the right-hand side exists.

Step 2. The adjoint eigenvector φα has an explicit expression we exploit now. For β ∈ (0, 1],
recalling the explicit expression of φβ given by Lemma 7,

φβ(0, v) = κ′β

∫ ∞
0

γ(a, v)

ga(a, v)
exp

(
−
∫ a

0

λβ + γ(s, v)

ga(s, v)
ds
)
da, v ∈ Vβ

with κ′β defined in Lemma 7. Thus (25) becomes

dλα
dα

= κακ
′
α

∫ ∞
0

d

dα

(∫
Vα

γ(a, v)

ga(a, v)
exp

(
−
∫ a

0

λβ + γ(s, v)

ga(s, v)
ds
)
ρα(v)dv

)
|β=α

da.

Before going ahead in computations, recall Specifications (4), ga(a, v) = v, and (5), γ(a, v) = vB(a).
The previous equality boils down to

(26)
dλα
dα

= κ̄α

∫ ∞
0

d

dα

(∫
Vα

exp
(−λβa

v

)
ρα(v)dv

)
|β=α

fB(a)da

with fB defined by (8) and κ̄α = κακ
′
α equal to

(27) κ̄α =
(∫∫

Sα

a

v
exp(−λαa

v
)fB(a)ρα(v)dvda

)−1

,

using
∫∫
Sα φαNα = 1.

Step 3. In the case of the kernel (11), we can explicitly compute the derivative with respect to α.
After a change of variables (setting α−1(v − v̄(1− α)) as new variable), (26) reads

dλα
dα

= κ̄α

∫ ∞
0

d

dα

(∫
V

exp
(
− λβa

α(v − v̄) + v̄

)
ρ(v)dv

)
|β=α

fB(a)da.

Inverting the derivative in α and the integral and computing the derivative with respect to α, we
get the announced result, recalling the definition (27) of κ̄α. �

As a corollary of Proposition 8, for all division rate B, when α goes to zero, the first derivative
is null,

(28)
dλB,ρα
dα

∣∣∣
α=0

= lim
α→0

dλB,ρα
dα

= 0

since
∫
V(v− v̄)ρ(v)dv = 0 (we picked a baseline density ρ with mean v̄). So we compute the second

derivative when α converges to zero.

Proposition 9 (Second derivative at point 0). Consider Model (A+V) with Specifications (4),
(5) and ρ(v, dv′) = ρα(v′)dv′ defined by (11),

d2λB,ρα
dα2

∣∣∣
α=0

= σ2
(∫ ∞

0

a

v̄
e−

λB,v̄a

v̄ fB(a)da
)−1

∫ ∞
0

λB,v̄a

v̄

(λB,v̄a
v̄
− 2
)
e−

λB,v̄a

v̄ fB(a)da

with σ2 =
∫
V(v − v̄)2ρ(v)dv.
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Proof. For α ∈ (0, 1], we set

Λ1(α, a, u) =
a

u
exp

(
− λB,ραa

u

)
, Λ2(α, a, u) =

λB,ραa

u2
exp

(
− λB,ραa

u

)
,

so that Proposition 8 reads

dλB,ρα
dα

=
(∫∫

S
Λ1(α, a, α(v − v̄) + v̄)fB(a)ρ(v)dvda

)−1

×
∫∫
S

(v − v̄)Λ2(α, a, α(v − v̄) + v̄)fB(a)ρ(v)dvda = D1(α)−1D2(α)

say. Then,
d2λB,ρα
dα2 the second derivative of α; λB,ρα can be written

D2(α)D1(α)−2

∫∫
S

(∂Λ1

∂α
(α, a, α(v − v̄) + v̄) + (v − v̄)

∂Λ1

∂u
(α, a, α(v − v̄) + v̄)

)
fB(a)ρ(v)dvda

+D1(α)−1

∫∫
S

(
(v− v̄)

∂Λ2

∂α
(α, a, α(v− v̄)+ v̄)+(v− v̄)2 ∂Λ2

∂u
(α, a, α(v− v̄)+ v̄)

)
fB(a)ρ(v)dvda.

We claim that the first term converges to zero as α→ 0 and that

(29)
∂Λ2

∂α
(α, a, α(v − v̄) + v̄)→ 0, as α→ 0,

so that,

(30)
d2λB,ρα
dα2

∣∣∣
α=0

=
(

lim
α→0

D1(α)
)−1

∫∫
S

(v − v̄)2 lim
α→0

∂Λ2

∂u
(α, a, v̄)fB(a)ρ(v)dvda,

since limα→0
∂Λ2

∂u (α, a, α(v − v̄) + v̄) = limα→0
∂Λ2

∂u (α, a, v̄) by continuity of u; ∂Λ2

∂u (α, a, u).

Step 1. We first treat the second term of
d2λB,ρα
dα2 , with three ingredients. 1) In order to check (29),

let us compute

∂Λ2

∂α
(α, a, u) =

( dλB,ρα
dα a

u2
− λB,ραa

u2

dλB,ρα
dα a

u

)
e−

λB,ρα
a

u .

As α→ 0, λB,ρα converges to λB,v̄ defined by (10) and
dλB,ρα
dα to 0 (recall (28)), thus ∂Λ2

∂α (α, a, u)→
0. Since u; ∂Λ2

∂α (α, a, u) is continuous, we deduce (29). 2) Let us now compute

∂Λ2

∂u
(α, a, u) =

(−2λB,ραa

u3
+

(λB,ραa)2

u4

)
e−

λB,ρα
a

u ,

which leads to

(31) lim
α→0

∂Λ2

∂u
(α, a, v̄) =

λB,v̄a

v̄3

(λB,v̄a
v̄
− 2
)
e−

λB,v̄a

v̄

since λB,ρα converges to λB,v̄ defined by (10) as α→ 0. 3) Since Λ1(α, a, α(v − v̄) + v̄) converges
to Λ1(0, a, v̄) as α→ 0, we get

(32) lim
α→0

D1(α) =

∫ ∞
0

a

v̄
exp

(−λB,v̄a
v̄

)
fB(a)da > 0

using
∫
V ρ(v)dv = 1. Gathering (31) and (32) enables us to compute the right-hand side of (30).

Step 2. We now check that the first term of
d2λB,ρα
dα2 converges to zero as α→ 0. One readily checks

that

1)
∂Λ1

∂α
(α, a, α(u′ − v̄) + v̄)→ 0, as α→ 0, 2) lim

α→0

∂Λ1

∂u
(α, a, α(v − v̄) + v̄) <∞.
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We know in addition that 3) limα→0D1(α) > 0 (see (32)) and that 4) limα→0D2(α) = 0 since∫
V(v − v̄)ρ(v)dv = 0. Gathering the four points enables us to conclude. �

Proof of Theorem 5. For α ∈ [0, 1),

λB,ρα = λB,v̄ + α
dλB,ρα
dα

∣∣∣
α=0

+
α2

2

d2λB,ρα
dα2

∣∣∣
α=0

+ o(α2)

and we use Proposition 8 (or more precisely (28)) and Proposition 9 to get the final result. �

6. Supplementary figures and tables

In the following tables, the variability kernel is defined by (21) and (22).

Supplementary to Figure 2.

CVρα = 5% CVρα = 10% CVρα = 15% CVρα = 20%
T 10.5 11 11.25 11.5

Mean
(Min.≤·≤Max.)

|∂TT | 46 837
(42 358≤·≤52 147)

73 100
(57 254≤·≤87 282)

90 027
(53 615≤·≤116 052)

98 270
(68 946≤·≤128 379)

Mean
(sd.)

λ̂T 0.9985
(0.0006)

0.9938
(0.0009)

0.9867
(0.0014)

0.9757
(0.0018)

95% CI [0.9974, 0.9999] [0.9923, 0.9954] [0.9841, 0.9893] [0.9717, 0.9789]

CVρα = 25% CVρα = 30% CVρα = 35% CVρα = 40% CVρα = 45%
11.75 12 12.25 12.5 13

107 305
(71 884≤·≤157 032)

120 102
(63 409≤·≤200 860)

104 628
(52 116≤·≤172 328)

117 208
(28 171≤·≤192 021)

114 180
(39 238≤·≤238 181)

0.9617
(0.0019)

0.9450
(0.0027)

0.9245
(0.0035)

0.8985
(0.0030)

0.8722
(0.0039)

[0.9583, 0.9656] [0.9397, 0.9505] [0.9178, 0.9312] [0.8920, 0.9036] [0.8650, 0.8794]

Table 2. Model (S+V). Division rate γ(x, v) = vxB(x) with B(x) = (x −
1)21{x≥1}. Estimation of the Malthus parameter λB,ρα (mean and 95% confidence
interval based on M = 50 Monte Carlo continuous time trees simulated up to time
T ) with respect to the coefficient of variation of the growth rates density ρα with
mean v̄ = 1. Reference (all cells grow at a rate v̄ = 1): λB,v̄ = 1.
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Robustness of our results: division rate change.

CVρα = 5% CVρα = 10% CVρα = 15% CVρα = 20%
T 10.5 11 11.25 11.5

Mean
(Min.≤·≤Max.)

|∂TT | 47 160
(41 357≤·≤53 270)

73 670
(61 758≤·≤84 191)

86 410
(66 499≤·≤118 486)

95 230
(61 924≤·≤127 299)

Mean
(sd.)

λ̂T 0.9984
(0.0005)

0.9934
(0.0009)

0.9855
(0.0012)

0.9732
(0.0015)

95% CI [0.9975, 0.9995] [0.9918, 0.9952] [0.9833, 0.9876] [0.9705, 0.9763]

CVρα = 25% CVρα = 30% CVρα = 35% CVρα = 40% CVρα = 45%
11.75 12 12.25 12.5 13

104 480
(53 902≤·≤156 868)

107 540
(53 156≤·≤145 125)

100 480
(50 784≤·≤162 615)

90 440
(42 533≤·≤192 984)

102 880
(22 600≤·≤200 034)

0.9589
(0.0019)

0.9384
(0.0023)

0.9166
(0.0025)

0.8890
(0.0036)

0.8597
(0.0044)

[0.9554, 0.9628] [0.9332, 0.9426] [0.9113, 0.9214] [0.8820, 0.8945] [0.8489, 0.8655]

Table 3. Model (S+V). Division rate γ(x, v) = vxB(x) with B(x) = (x −
1)81{x≥1}. Estimation of the Malthus parameter λB,ρα (mean and 95% confidence
interval based on M = 50 Monte Carlo continuous time trees simulated up to time
T ) with respect to the coefficient of variation of the growth rates density ρα with
mean v̄ = 1. Reference (all cells grow at a rate v̄ = 1): λB,v̄ = 1.

Robustness of our results: asymmetric division.

CVρα = 5% CVρα = 10% CVρα = 15% CVρα = 20%
T 10.5 11 11.25 11.5

Mean
(Min.≤·≤Max.)

|∂TT | 53 590
(49 880≤·≤59 486)

85 310
(69 343≤·≤97 237)

101 350
(82 182≤·≤129 410)

121 570
(86 751≤·≤154 226)

Mean
(sd.)

λ̂T 0.9987
(0.0006)

0.9948
(0.0008)

0.9880
(0.0014)

0.9783
(0.0016)

95% CI [0.9972, 0.9996] [0.9932, 0.9963] [0.9855, 0.9906] [0.9755, 0.9824]

CVρα = 25% CVρα = 30% CVρα = 35% CVρα = 40% CVρα = 45%
11.75 12 12.25 12.5 13

129 770
(84 620≤·≤234 613)

135 650
(67 334≤·≤222 004)

141 660
(50 493≤·≤234 646)

140 170
(23 530≤·≤243 023)

154 120
(18 187≤·≤359 824)

0.9665
(0.0019)

0.9511
(0.0021)

0.9322
(0.0026)

0.9099
(0.0038)

0.8836
(0.0039)

[0.9634, 0.9706] [0.9472, 0.9545] [0.9263, 0.9372] [0.9018, 0.9166] [0.8743, 0.8925]

Table 4. Model (S+V). Division rate γ(x, v) = vxB(x) with B(x) = (x −
1)21{x≥1}. Asymmetric division (a cell of size x splits into two cells of size ux
and (1 − u)x for u uniformly drawn on [0.1, 0.9]). Estimation of the Malthus
parameter λB,ρα (mean and 95% confidence interval based on M = 50 Monte
Carlo continuous time trees simulated up to time T ) with respect to the coefficient
of variation of the growth rates density ρα with mean v̄ = 1. Reference (all cells
grow at a rate v̄ = 1): λB,v̄ = 1.



22 ADÉLAÏDE OLIVIER

Robustness of our results: linear growth.

CVρα = 5% CVρα = 10% CVρα = 15% CVρα = 20%
T 17.5 18 18.25 18.5

Mean
(Min.≤·≤Max.)

|∂TT | 55 219
(38 138≤·≤71 168)

67 760
(43 802≤·≤95 071)

75 748
(40 296≤·≤113 904)

76 084
(32 035≤·≤119 198)

Mean
(sd.)

λ̂T 0.6116
(0.0014)

0.6090
(0.0014)

0.6043
(0.0015)

0.5976
(0.0018)

95% CI [0.6086, 0.6138] [0.6066, 0.6115] [0.6017, 0.6071] [0.5945, 0.6010]

CVρα = 25% CVρα = 30% CVρα = 35% CVρα = 40% CVρα = 45%
18.75 19 19.25 19.5 20
73 931

(29 071≤·≤131 343)
76 074

(30 940≤·≤141 046)
69 719

(28 704≤·≤118 295)
57 913

(10 488≤·≤120 506)
62 582

(3 017≤·≤190 355)

0.5893
(0.0021)

0.5788
(0.0023)

0.5658
(0.0025)

0.5513
(0.0033)

0.5348
(0.0038)

[0.5838, 0.5942] [0.5752, 0.5861] [0.5607, 0.5702] [0.5438, 0.5578] [0.5270, 0.5413]

Table 5. Model (S+V). Division rate γ(x, v) = vB(x) with B(x) = (x −
1)21{x≥1}. Estimation of the Malthus parameter λB,ρα (mean and 95% confidence
interval based on M = 50 Monte Carlo continuous time trees simulated up to time
T ) with respect to the coefficient of variation of the growth rates density ρα with
mean v̄ = 1. Reference (all cells grow at a rate v̄ = 1): λB,v̄ ≈ 0.6130 (over 50

continuous time trees simulated up to time 17.25, sd. 0.0016). Among the 50 realisations, 95%

lie between 0.6098 and 0.6161. The mean-size of the 50 trees is 46 353 (the smallest tree counts

30 553 cells and the largest 70 914).

Robustness of our results: unit size versus unit time division rate.

CVρα = 5% CVρα = 10% CVρα = 15% CVρα = 20%
T 10.5 10.75 11 11.25

Mean
(Min.≤·≤Max.)

|∂TT | 39 660
(35 256≤·≤42 659)

49 520
(38 675≤·≤60 374)

61 150
(47 384≤·≤82 371)

79 470
(48 639≤·≤111 048)

Mean
(sd.)

λ̂T 0.9993
(0.0006)

0.9974
(0.0013)

0.9937
(0.0016)

0.9893
(0.0019)

95% CI [0.9982, 1.0006] [0.9949, 0.9996] [0.9894, 0.9966] [0.9861, 0.9933]

CVρα = 25% CVρα = 30% CVρα = 35% CVρα = 40% CVρα = 45%
11.5 11.75 12 12.25 12.5

92 490
(50 665≤·≤139 785)

109 600
(60 083≤·≤171 387)

124 320
(48 810≤·≤231 667)

143 760
(45 032≤·≤239 816)

146 400
(43 934≤·≤287 633)

0.9827
(0.0022)

0.9743
(0.0027)

0.9644
(0.0034)

0.9530
(0.0030)

0.9400
(0.0041)

[0.9784, 0.9878] [0.9688, 0.9794] [0.9588, 0.9715] [0.9466, 0.9590] [0.9317, 0.9470]

Table 6. Model (S+V). Division rate γ(x, v) = B(x) with B(x) = (x −
1)21{x≥1}. Estimation of the Malthus parameter λB,ρα (mean and 95% confi-
dence interval based on M = 50 Monte Carlo continuous time trees simulated up
to time T ) with respect to the coefficient of variation of the growth rates density
ρα with mean v̄ = 1. Reference (all cells grow at a rate v̄ = 1): λB,v̄ = 1.

Number of cells versus biomass. Recall Approximation (14). Observing
(
(ξtu, τu), u ∈ ∂Tt

)
, or only

a component of it for all living cells, at two different times, T/2 and T for instance, with T large
enough, one can estimate the Malthus parameter, with a free choice for the smooth test function
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f . One common choice is f(x, v) = x (the empirical mean defines in this case the mean size of the
cells) and it lead us to the estimator (16). Another choice would be f ≡ 1 (the empirical mean
defining here the mean number of cells) and it lead us to the estimator

(33) λ̂T =
2

T
ln
( |∂TT |
|∂TT/2|

)
where |∂TT | stands for the cardinality of the set (13) of living particles at time T . It is interesting
to compare these two estimators. For a fixed T , the estimator (16) is better than (33) in the sense
that its standard deviation is smaller, as pointed out in Supplementary Figure 3. However the two
estimators perform equivalently for large T .

Figure 3. Model (S+V). Standard deviation of two estimators of the Malthus
parameter as T increases (based on M = 50 Monte Carlo continuous time trees
simulated up to time T ), for ρα=0.3 and division rate γ(x, v) = vxB(x) with
B(x) = (x − 1)21{x≥1}. Blue lower curve: estimation by (16) via the biomass.
Green upper curve: estimation by (33) via the number of cells.

7. Appendix

Theorem 3 concerns the eigenproblem of the age-structured model with variability. Contrary to
Lemma 7, we now work in the general case where ρ is a Markov kernel.

Proof of Theorem 3. We first study the direct eigenproblem (2), then we turn to the adjoint eigen-
problem (3). At last we prove uniqueness of the eigenelements. The methodology we use is inspired
by the one of [8]. In this proof we denote by Cb(V) = X the Banach space of bounded continuous
functions f : V → R, equipped with the supremum norm, ‖f‖X = supv∈V |f(v)|, for V compact
set of (0,∞).

Direct eigenproblem. We split the proof into four steps.

Step 1. Since Nγ,ρ satisfies (2), we immediately deduce that, for any (a, v) ∈ S,

(34) (gaNγ,ρ)(a, v) = (gNγ,ρ)(0, v) exp
(
−
∫ a

0

λγ,ρ + γ(s, v)

ga(s, v)
ds
)
.
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Using the boundary condition leads us to

(35) (gaNγ,ρ)(0, v
′) = 2

∫∫
S

(gNγ,ρ)(0, v)e−
∫ a
0

λγ,ρ
ga(s,v)

dsfγ/ga(a, v)ρ(v, v′)dvda

for v′ ∈ V, setting

(36) fγ/ga(a, v) =
γ(a, v)

ga(a, v)
exp

(
−
∫ a

0

γ(s, v)

ga(s, v)
ds
)
, (a, v) ∈ S.

Note that, for every v ∈ V, a ; fγ/ga(a, v) is a density. Equation (35) leads us to define an
operator Gλ : X → X by

(Gλf)(v′) = 2

∫∫
S
f(v)e−

∫ a
0

λ
ga(s,v)

dsfγ/ga(a, v)ρ(v, v′)dvda, v′ ∈ V,

for any λ ≥ 0. In the next steps, we look for a solution (λ, f) to the equation Gλ(f) = f . We
work on the space X of continuous functions since we want to apply the Krein-Rutman theorem
[7] (then the interior of the positive cone is the set of positive functions).

Step 2. We introduce a so-called regularized operator, which is strictly positive. For a fixed ε > 0,
set

(37) ρε(v, v
′) = ρ(v, v′) + |V|−1ε, (v, v′) ∈ V2,

where |V| stands for the Lebesgue measure of the compact set V ⊂ (0,∞) and define the operator
Gλ,ε : X → X by

(Gλ,εf)(v′) = 2

∫∫
S
f(v) exp

(
−
∫ a

0

λ

ga(s, v)
ds
)
fγ/ga(a, v)ρε(v, v

′)dvda, v′ ∈ V,

for any λ ≥ 0. We claim that Gλ,ε is 1) strictly positive on X (i.e. for any f ∈ X non-negative and
different from the null function, (Gλ,εf)(v′) > 0 for any v′ ∈ V), 2) a linear mapping from X into
itself, 3) continuous and 4) compact. Thus we are now in position to apply the Krein-Rutman
theorem (we use Theorem 6.5 of [22]). For any λ ≥ 0 there exist a unique µλ,ε > 0 and a unique
positive Uλ,ε ∈ X such that

(38) Gλ,ε(Uλ,ε) = µλ,εUλ,ε

and ‖Uλ,ε‖X = 1.

It just remains to prove the four claimed properties. 1) is precisely achieved thanks to the
regularisation ρε of ρ by (37). 2) The linearity is obvious and for f ∈ X , we have Gλ,ε(f) ∈ X
since v′ ; ρε(v, v

′) is continuous and bounded for any v ∈ V. 3) We even achieve Lipschitz
continuity, for any (f, g) ∈ X 2,

‖Gλ,ε(f)− Gλ,ε(g)‖X ≤ 2(|V||ρ|∞ + ε)‖f − g‖X
where |ρ|∞ = sup(v,v′)∈V2 ρ(v, v′). 4) We prove that for any λ ≥ 0 the family

(
Gλ,ε(f), f ∈ X

)
is

equicontinuous. Indeed (Gλ,εf)(v′1)−(Gλ,εf)(v′2) is arbitrarily small when |v′1−v′2| is small enough,
uniformly in f ∈ X such that ‖f‖X ≤ 1, since v′ ; ρε(v, v

′) is continuous for any v ∈ V. Therefore
by the Ascoli-Arzelà theorem for any λ ≥ 0 the family

(
Gλ,ε(f), f ∈ X

)
is compact in X .

Step 3. We now study the mapping λ ; µλ,ε. Our aim is to prove that there exists a unique
λε > 0 such that

(39) µλε,ε = 1.
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To prove so we successively verify that 1) as λ increases, µλ,ε decreases (strictly), 2) the mapping
λ; µλ,ε is continuous, 3) for λ = 0, µλ=0,ε = 2(1 + ε) > 1, 4) as λ→∞, µλ,ε converges to zero.

To prove 1), since µλ,ε is the spectral radius of Gλ,ε, it holds

(40) µλ,ε = sup
f∈X ,‖f‖X=1

‖Gλ,εf‖X .

Note that Gλ,ε itself decreases as λ increases: if λ2 > λ1 then Gλ2,ε(f) < Gλ1,ε(f) for any f ∈ X
and we deduce µλ1,ε ≤ µλ2,ε using (40). 2) Let (λk, k ≥ 0) be a sequence such that λk ≥ 0 which
converges to λ̄ ≥ 0 as k → ∞. Then ‖Gλk,ε(f)‖X converges to ‖Gλ̄,ε(f)‖X uniformly in f ∈ X ,
‖f‖X = 1, as k → ∞. By representation (40), we deduce that µλk,ε converges to µλ̄,ε. To prove
3), we successively compute,

(Gλ=0,εf)(v′) = 2

∫∫
S
f(v)fγ/ga(a, v)ρε(v, v

′)dvda = 2

∫
V
f(v)ρε(v, v

′)dv

since
∫∞

0
fγ/ga(a, v)da = 1 for any v ∈ V, and∫

V
(Gλ=0,εf)(v′)dv′ = 2(1 + ε)

∫
V
f(v)dv

since
∫
V ρε(v, v

′)dv′ = 1 + ε for any v ∈ V. Thus, by (38) and choosing f = Uλ,ε in the previous
calculus, ∫

V
(Gλ=0,εUλ=0,ε)(v

′)dv′ = µλ=0,ε

∫
V
Uλ=0,ε(v

′)dv′ = 2(1 + ε)

∫
V
Uλ=0,ε(v)dv.

Since
∫
V Uλ=0,ε(v)dv < ∞ (Uλ=0,ε being bounded and V being a compact set), we deduce that

µλ=0 = 2(1 + ε). To prove 4),∫
V

(Gλ,εf)(v′)dv′ = 2(1 + ε)

∫∫
S
f(v) exp

(
−
∫ a

0

λ

ga(s, v)
ds
)
fγ/ga(a, v)dvda

≤ 2(1 + ε)
|ga|∞|fγ/ga |∞

λ

∫
V
f(v)dv

using again
∫
V ρε(v, v

′)dv′ = 1 + ε and Assumption 1 for the upper bound. Then, as previously,
by (38) and taking f = Uλ,ε in the previous calculus, we check that

(41) µλ,ε ≤ 2(1 + ε)
|ga|∞|fγ/ga |∞

λ
,

which implies that µλ,ε → 0 as λ→∞.

Step 4. In this last step, the aim is to let ε tend to zero. Let λε be uniquely defined by (39) and
denote by Uλε,ε = Uε ∈ X the associated positive eigenvector such that ‖Uε‖X = 1. On the one
hand, the family, (Uε, 0 < ε < 1) is compact in X (recall that Uε = Gλε,εUε and use again the
Ascoli-Arzelà theorem). On the other hand, the family (λε, 0 < ε < 1) is bounded, recalling (39)
and (41). Thus we can extract a subsequence, still denoted by (λε, Uε), converging to (λ̄, Ū) in
R×X with λ̄ ≥ 0 and Ū ∈ X positive such that ‖Ū‖X = 1. Since

Uε(v) = 2

∫∫
S
Uε(v) exp

(
−
∫ a

0

λε
ga(s, v)

ds
)
fγ/ga(a, v)(ρ(v, v′) + |V|−1ε)dvda,
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letting ε → 0, we obtain Ū = Gλ̄Ū , which means that we have found a solution to (35). Now set
λγ,ρ = λ̄ and for any (a, v) ∈ S,

Nγ,ρ(a, v) =
κŪ(v)

ga(a, v)
exp

(
−
∫ a

0

λ̄+ γ(s, v)

ga(s, v)
ds
)
,

reminding (34) and Uγ,ρ = gNγ,ρ, with κ > 0 chosen such that
∫∫
S Nγ,ρ = 1 (which is possible

since
∫∫
S Nγ,ρ <∞). �

Adjoint eigenproblem. The proof follows the same steps as in the direct eigenproblem.

Step 1. Since φγ,ρ satisfies (3), one easily checks that

∂

∂a

(
φγ,ρ(a, v)e−

∫ a
0

λγ,ρ+γ(s,v)

ga(s,v)
ds
)

= −2fγ/ga(a, v)e−
∫ a
0

λγ,ρ
ga(s,v)

ds

∫
V
φγ,ρ(0, v

′)ρ(v, v′)dv′

with fγ/ga defined by (36). Integrating in a between zero and infinity, we deduce

(42) φγ,ρ(0, v) = 2

∫ ∞
0

fγ/ga(a, v)e−
∫ a
0

λγ,ρ
ga(s,v)

dsda

∫
V
φγ,ρ(0, v

′)ρ(v, v′)dv′

and integrating between zero and a, we deduce

(43) φγ,ρ(a, v) = 2e
∫ a
0

λγ,ρ+γ(s,v)

ga(s,v)
ds

∫ ∞
a

fγ/ga(s, v)e−
∫ s
0

λγ,ρ
ga(t,v)

dtds

∫
V
φγ,ρ(0, v

′)ρ(v, v′)dv′.

Remark 10. By a reductio ad absurdum argument, using (42) and the Markov kernel properties,
we prove that for any v ∈ V, φγ,ρ(0, v) > 0. Then, using (43), we deduce that φγ,ρ(a, v) > 0 for
any (a, v) ∈ S.

Equation (42) leads us to define an operator G∗λ : X → X by

(G∗λf)(v) = 2

∫ ∞
0

fγ/ga(a, v)e−
∫ a
0

λ
ga(s,v)

dsda

∫
V
f(v′)ρ(v, v′)dv′, v ∈ V,

for any λ ≥ 0. The aim is now to find a solution (λ, f) to the equation G∗λ(f) = f .

Step 2. For a fixed ε > 0, we define a regularized operator G∗λ,ε : X → X by

(44) (G∗λ,εf)(v) = 2

∫ ∞
0

fγ/ga(a, v)e−
∫ a
0

λ
ga(s,v)

dsda

∫
V
f(v′)ρε(v, v

′)dv′, v ∈ V,

with ρε picked as in (37), for any λ ≥ 0. With similar arguments as previously, we prove we are
in position to apply the Krein-Rutman theorem: for any λ ≥ 0 there exist a unique µλ,ε > 0 and
a unique positive Hλ,ε ∈ X such that

(45) G∗λ,ε(Hλ,ε) = µλ,εHλ,ε

and ‖Hλ,ε‖X = 1.

Step 3. The study of λ ; µλ,ε consists in proving the same four points as previously. Only the
verification of 3) and 4) slightly differs. To prove 3), we successively compute

(G∗λ=0,εf)(v) = 2

∫
V
f(v′)ρε(v, v

′)dv′

and ∫
V

(G∗λ=0,εf)(v)dv = 2

∫
V
f(v′)

(∫
V
ρ(v, v′)dv + ε

)
dv′ ≥ 2(%+ ε)

∫
V
f(v′)dv′,
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relying on Assumption 2. Thus, choosing f = Hλ,ε in the previous calculus and using (45), we
obtain µλ=0,ε ≥ 2(%+ ε) > 1 as soon as % > 1/2. To prove 4), we readily obtain that

µλ,ε ≤ 2(|V||ρ|∞ + ε)
|ga|∞|fγ/ga |∞

λ
→ 0

as λ→ 0.

Step 4. We let ε go to zero as previously and we find (λ̄∗, H̄) with λ̄∗ ≥ 0 and H̄ non-negative,
‖φ∗‖X = 1, such that G∗

λ̄∗
H̄ = H̄, which means we have found a solution to (42). Recalling (43),

we set

φγ,ρ(a, v) = 2κ′e
∫ a
0
λ̄∗+γ(s,v)
ga(s,v)

ds

∫ ∞
a

fγ/ga(s, v)e−
∫ s
0

λ̄∗
ga(t,v)

dtds

∫
V
H̄(v′)ρ(v, v′)dv′.

and fix κ′ > 0 such that
∫∫
S Nγ,ρφγ,ρ = 1. �

Uniqueness of the eigenelements. We successively prove the uniqueness of the eigenvalue, of the
direct eigenvector and of the adjoint eigenvector.

Step 1. Let (λ,N) be a solution to the direct eigenproblem (2) and (λ∗, φ) be a solution to the
adjoint eigenproblem (3). We first prove that λ = λ∗. Indeed,

λ

∫∫
S
Nφ =

∫∫
S

(
− ∂

∂a
(gaN)(a, v)− γ(a, v)N(a, v)

)
φ(a, v)dvda

=

∫∫
S
N(a, v)

(
ga(a, v)

∂

∂a
φ(a, v) + γ(a, v)

(
2

∫
V
φ(0, v′)ρ(v, v′)dv′ − φ(a, v)

))
dvda

= λ∗
∫∫
S
Nφ

and since
∫∫
S Nφ > 0 we deduce λ = λ∗.

Step 2. Let (λ,N1) and (λ,N2) be two solutions of the direct eigenproblem (2). We prove that

N1 = N2. Following the proof of Proposition 6.3 of [22], we prove that Ñ = |N1 −N2| satisfies∫∫
S

( ∂
∂a

(gaÑ)(a, v) + γ(a, v)Ñ(a, v)
)
φ(a, v)dvda = 0

taking φ a solution to (3) as a test function. We deduce that

2

∫
V

(∫∫
S
γ(a, v)

∣∣N1 −N2

∣∣(a, v)ρ(v, v′)dvda
)
φ(0, v′)dv′

= 2

∫
V

∣∣∣ ∫∫
S
γ(a, v)(N1 −N2)(a, v)ρ(v, v′)dvda

∣∣∣φ(0, v′)dv′,

using that φ is a solution to (3) and since both N1 and N2 satisfy the boundary condition of the
eigenproblem (2). Thanks to the fact that φ(0, v′) > 0 for v′ ∈ V, we deduce that γ(a, v)(N1 −
N2)(a, v)ρ(v, v′) is of constant sign. Then, integrating in v′, γ(a, v)(N1−N2)(a, v) is also of constant
sign. Recall that for each rate v ∈ V, the division rate γ(a, v) is positive for a belonging to some
[amin(v), amax(v)], thus (N1 − N2)(a, v) is of constant sign on {[amin(v), amax(v)] × {v}, v ∈ V}.
Using (34), we deduce that (N1 − N2)(0, v) is of constant sign on V and thus, using (34) again,
(N1−N2)(a, v) is of constant sign on S. Since we have

∫∫
S(N1−N2) = 0, the conclusion N1 = N2

follows. To conclude, Fredholm alternative (see [3]) ensures that uniqueness of a solution to (2)
implies uniqueness of a solution to (3). �

The proof of Theorem 3 is now complete. �
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