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This article introduces new tools to study self-organisation in a family of simple cellular automata which contain some particle-like objects with good collision properties (coalescence) in their time evolution. We draw an initial conguration at random according to some initial shiftergodic measure, and use the limit measure to describe the asymptotic behaviour of the automata.

We rst take a qualitative approach, i.e. we obtain information on the limit measure(s). We prove that only particles moving in one particular direction can persist asymptotically. This provides some previously unknown information on the limit measures of various deterministic and probabilistic cellular automata: 3 and 4-cyclic cellular automata (introduced by Fisch, 1990), one-sided captive cellular automata (introduced by Theyssier, 2004), the majority-trac cellular automaton, a self stabilisation process towards a discrete line (introduced by Regnault and Remila, 2015). . . In a second time we restrict our study to to a subclass, the gliders cellular automata. For this class we show quantitative results, consisting in the asymptotic law of some parameters: the entry times (generalising [KFD11]), the density of particles and the rate of convergence to the limit measure.

diagrams produced by the time evolution of cellular automata starting from a random conguration.

One of these classes corresponds to a particular form of self-organisation: from a random conguration, after a short transitional regime, regions consisting in a simple repeated pattern emerge and grow in size, while the boundaries between them persist under the action of the cellular automaton and can be followed from an instant to the next. Therefore their movement (time evolution) can be dened inductively, and in this case we call these boundaries particles. In the simplest case, these particles evolve at constant speed and are annihilated when colliding with other particles; however, Key words and phrases. Cellular automata, Particles, limit measures

Introduction

A cellular automaton is a complex system dened by a local rule which acts synchronously and uniformly on a conguration space. These simple models exhibit a wide variety of dynamical behaviour and even in the one-dimensional case (the focus of this article) they are not completely understood. Formally, given a nite alphabet A, a conguration is an element of the set A Z . This set is compact for the product topology. A cellular automaton F : A Z → A Z is dened by a local function f : A [-r,r] → A, for some radius r > 0, which acts synchronously and uniformly on every cell of the conguration: F (x) i = f (x [i-r,i+r] ) for all x ∈ A Z and i ∈ Z.

Equivalently, cellular automata can be dened as continuous functions that commute with the shift map σ dened by σ(x) i = x i+1 for all x ∈ A Z and i ∈ Z.

Even though cellular automata have been introduced by J. Von Neumann [vN56], the impulsion for their systematic study was given by the work of S. Wolfram [START_REF] Wolfram | Universality and complexity in cellular automata[END_REF]. He instigated a systematic study of elementary cellular automata, which are the cellular automata dened on the alphabet {0, 1} with radius 1 (there are 2 2 3 = 256 such cellular automata; to each of them we associate a number #n). In particular he proposed a classication according to the observation of the space-time σ-invariant measure µ ∈ M σ (A Z ) (i.e. µ(σ -1 (U )) = µ(U ) for all Borel set U ), we consider the iteration of a cellular automaton F on this measure:

F * : M σ (A Z ) -→ M σ (A Z ) µ -→ F * µ
where F * µ(U ) = µ(F -1 (U )) for all Borel U.

We then study the asymptotic properties of the sequence (F t * µ) t∈N , and particularly the set of cluster points called the µ-limit measures set. Sometimes, we are only able to provide information on the µ-limit set, introduced in [START_REF] Rka | Limit sets of cellular automata associated to probability measures[END_REF], which is the union of the supports of all limit measures. Equivalently, it is the set of congurations containing only patterns whose probability to appear in the space-time diagram does not tend to zero as time tends to innity.

When studying typical asymptotic behaviour in this sense, it is unreasonable to expect a general result since a wide variety of limit measures can be reached in the general case [START_REF] Hellouin | Characterisation of sets of limit measures after iteration of a cellular automaton on an initial measure[END_REF] and any nontrivial property of the µ-limit set is undecidable [START_REF] Delacourt | Rice's theorem for µ-limit sets of cellular automata[END_REF]. That is why we consider restricted cases for the dynamics of the particles. To determine the µ-limit set in some cases, P. K•rka suggests an approach based on particle weight function which assigns weights to certain words [K•r03].

However, this method does not cover any case when a defect can remain in the µ-limit set. Hence we aim at a more general approach, in terms of particle dynamics as well as initial measures.

One of our main motivations for this study is the class of captive cellular automata, where the local rule cannot make a colour appear if it is not already present in the neighbourhood. These automata were introduced by G. Theyssier in [START_REF] Theyssier | Captive Cellular Automata[END_REF] for their algebraic properties, but he also noticed an interesting phenomenon: when drawing a captive cellular automaton at random (xed alphabet and neighbourhood), most captive automata exhibited the type of self-organised behaviour described above. Any kind of general result regarding self-organisation of captive cellular automata remains a challenging open problem. This article is divided into two main sections, corresponding to improved versions of results previously published in conferences [START_REF] Hellouin | Self-organization in cellular automata: a particlebased approach[END_REF][START_REF] Hellouin | Entry times in automata with simple defect dynamics[END_REF]. In Section 2, we present a qualitative result generalised from [START_REF] Hellouin | Self-organization in cellular automata: a particlebased approach[END_REF] with an improved formalism, shorter proofs and a new application to probabilistic cellular automata (Section 2.7). Then, in Section 3, we rene our approach on a subclass to obtain some quantitative results. Sections 3.1 to 3.3 were published in [START_REF] Hellouin | Entry times in automata with simple defect dynamics[END_REF]; we correct some inaccuracies in the proofs and extend the study to other parameters.

Qualitative approach. In Section 2, we prove a qualitative result: for any initial σ-ergodic measure µ, assuming particles have good collision properties (coalescence), only particles moving in one particular direction can persist aymptotically. We introduce our own formalism of particle system in Section 2.1 so as to be able to describe the dynamics of the particles, and Section 2.4 is dedicated to the proof itself. Section 2.5 presents a simplied version of Pivato's formalism which is by far the simplest way to nd such a particle system in most examples.

We spend Section 2.6 on various examples of automata where this result can be applied: Section 2.6.1: we characterise the µ-limit set of the trac automaton (rule #184), a simple case that may clarify the formalism. The results were known for initial Bernoulli measures [START_REF] Belitsky | Ballistic annihilation and deterministic surface growth[END_REF][START_REF] Belitsky | Invariant measures and convergence properties for cellular automaton 184 and related processes[END_REF] but our method applies for every σ-ergodic measure.

Section 2.6.2: we consider the family of n-cyclic cellular automata introduced in [START_REF] Fisch | Cyclic cellular automata and related processes[END_REF][START_REF] Fisch | The one-dimensional cyclic cellular automaton: a system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics[END_REF]. Using our method, we go further in the study of these simple automata: in particular, for n = 3 or 4, we show that the limit measure is unique and is a convex combination of Dirac measures supported by uniform congurations.

Section 2.6.3: we characterise the µ-limit set of all one-sided captive cellular automata. This is a rst step to the study of asymptotic behaviour of captive cellular automata. Section 2.6.4: last, we apply our formalism to a cellular automaton where the particles do not have a linear speed but instead perform random walks by drawing randomness from the initial measure. However, our results are not general enough to apply to defects of a soc subshift that can have a particle-like behaviour, such as in Rule #18 (see the bottom right picture in Figure 1 and [START_REF] Eloranta | The kink of cellular automaton rule 18 performs a random walk[END_REF]), or to more complicated particle systems such as those observed in general captive cellular automata.

Finally, in Section 2.7, we generalise our method to probabilistic cellular automata. As an application, we partially describe limit measures of the probabilistic majority-trac cellular automaton proposed by N. Fatès in [START_REF] Fatès | Stochastic cellular automata solutions to the density classication problem[END_REF] as a candidate to solve the density classication problem. This complements the approach of [START_REF] Bu²i¢ | Density classication on innite lattices and trees[END_REF] which characterises invariant measures. Another application proposed in Section 2.7.3 presents a generalisation to the innite line of a self stabilisation process toward a discrete line proposed in [START_REF] Regnault | Lost in self-stabilization[END_REF].

Quantitative approach. In Section 3, we improve the previous qualitative results with a quantitative approach, considering the time evolution of some parameters when the particle dynamics are very simple. This research direction was inspired by [START_REF] Petr | Asymptotic distribution of entry times in a cellular automaton with annihilating particles[END_REF], where the authors consider the waiting time before a particle crosses the central column (called entry time). Using the same approach as in [BF95, KM00], we show that the behaviour of these automata can be described by a random walk process (Section 3.1), and we approximate this process by a Brownian motion using scale invariance (Section 3.3). Thanks to this tool, we answer negatively a conjecture proposed in [START_REF] Petr | Asymptotic distribution of entry times in a cellular automaton with annihilating particles[END_REF] by determining the correct asymptotic law for the entry time of a particle in the central column (Section 3.2). We then use the same approach on various natural parameters such as the density of particles at time t (Section 3.4) or the rate of convergence to the limit measure (Section 3.5). This generalises some known results on initial Bernoulli measures from [START_REF] Petr | Asymptotic distribution of entry times in a cellular automaton with annihilating particles[END_REF] and [START_REF] Belitsky | Invariant measures and convergence properties for cellular automaton 184 and related processes[END_REF], in particular relaxing the conditions on the initial measures. In Section 3.6, we exhibit various examples with similar dynamics on which these results apply.

In all the article, space-time diagrams were produced using the Sage mathematical software [S + 12] and follow the convention = 0, = 1, = 2, = 3.

Cases with quantitative results (Section 3) (-1,1)-gliders CA (Sec. Space-time diagrams of some cellular automata with particles, starting from a conguration drawn uniformly at random.

Particle-based organisation: qualitative results

In this section, we take a qualitative approach to self-organisation: that is, we assume some properties on the dynamics of the particles of some cellular automaton and try to deduce properties of its µ-limit measures set, with no regard to how fast this organisation takes place. On A Z we dene the shift map σ(x) i = x i+1 for all x ∈ A Z and i ∈ Z. A subshift is a closed σ-invariant subset of A Z . Equivalently, a subshift can be dened by a set of forbidden patterns F ⊂ A * as the set of congurations where no pattern of F appears. If F is nite, we call the corresponding subshift a subshift of nite type or SFT. The radius of an SFT Σ is the smallest such that Σ can be dened by a set of forbidden patterns in A . The language of a subshift Σ is dened as

L n (Σ) = {u ∈ A n : Σ ∩ [u] = ∅} and L(Σ) = n∈N L n (Σ). A SFT is σ-transitive if for any two patterns u, v ∈ L(Σ), there exists w ∈ A * such that uwv ∈ L(Σ).
Given two nite alphabets A and B, a morphism from A Z to B Z is a continuous function π : A Z → B Z which commutes with the shift (i.e. σ(π(x)) = π(σ(x)) for all x ∈ A Z ). Equivalently a morphism can be dened by a local map f :

A N → B where N ⊂ Z is a nite set called the neighbourhood such that π(x) i = f (x i+N ) for all x ∈ A Z and i ∈ Z.
The radius of π is the minimal r ∈ N such that π admits a local map with N ⊂ [-r, r]. A cellular automaton is a morphism from A Z to itself, that is, the input and the output are dened on the same alphabet. In particular a cellular automaton can be iterated and it makes sense to study its dynamics.

2.1.2. Particle system Denition 1 (Particle system). Let F : A Z → A Z be a cellular automaton. A particle system for F is a triplet (P, π, φ), where:

• P is a nite set of elements called particles ;

• π : A Z → (P ∪{0}) Z is a morphism identifying the presence of particles at each position; The set of positions that carry particles on x is denoted by Part P,π (x) = {k ∈ Z : π(x) k ∈ P} (we omit P and π when they are clear from the context); • φ : A Z × Z → 2 Z (where 2 Z denotes the set of subsets of Z) is a function called the update function that describes the movement and/or osprings of each particle after one iteration of F ; such that the following conditions are satised for all x ∈ A Z and k ∈ Z:

Locality: There is a constant r > 0 (the radius of the system) such that φ(x, k) ⊂ [k -r, k +r].

The particles cannot jump arbitrarily far; the radius does not depend on x and k.

Redistribution:

k∈Part(x) φ(x, k) = Part(F (x)) k / ∈Part(x) φ(x, k) = ∅ .
The particle in F (x) are exactly the osprings of particles of x, and non-particles do not have osprings.

Disjunction:

k < k ⇒ φ(x, k) = φ(x, k ) or max φ(x, k) < min φ(x, k ).
Two particles either do not interact (in which case they cannot cross), or they share the same set of osprings.

The four conditions ensure that the update function accurately describes the time evolution of the particles. Notice that since the morphism and update function are dened locally, the conditions can be checked algorithmically by simple enumeration of patterns up to a certain length.

In the context of a xed particle system for F , we use shorthands for the composition of the update function, dened inductively:

φ t (x, k) = k ∈φ(x,k) φ t-1 (F (x), k ),
and a notion of pre-image (with an abuse of notation):

φ -1 x (A) = {k ∈ Z | φ(x, k) ∩ A = ∅}.
If φ(x, k) is a singleton, we use φ(x, k) instead of the only member of φ(x, k) as an abuse of notation.

Coalescence

We postpone the discussion on how to nd a particle system in a given cellular automaton to Section 2.5. We now look for assumptions on the dynamics of the particles that let us deduce that some particles disappear asymptotically. Simulations suggest that this is the case when the particles are forced to collide, and that these collisions are destructive in the sense that the total number of particles decreases; thus we introduce the notion of coalescence.

Denition 2 (Coalescence). Let F : A Z → A Z be a cellular automaton, and (P, π, φ) a particle system for F . This particle system is coalescent if, for every x ∈ A Z and k ∈ Part(x), the particle has one of the two following behaviours:

Progression: |φ(x, k)| = |φ -1
x (φ(x, k))| = 1, and π(x) k = π(F (x)) φ(x,k)

(the particle persists and its type does not change), or

Destructive interaction: |φ(x, k)| < |φ -1

x (φ(x, k))|

(particles collide and generate strictly fewer particles (possibly 0); or a single particle disappears).

Progressing and interacting particles of a conguration x ∈ A Z are denoted by Prog P,π,φ (x) and Inter P,π,φ (x), respectively, and P, π and φ are omitted when the particle system is clear from the context. k ∈ Prog P,π,φ (x) is the case when we use φ(x, k) to mean the only member of the singleton φ(x, k).

2.2. Probability measures and µ-limit sets The µ-limit set was introduced in [KM00] to describe the asymptotic behaviour corresponding to empirical observations. It consists in the patterns whose probability to appear does not tend to 0 when the initial point is chosen at random. To dene it formally, let us introduce some notations.

Denote by M σ (A Z ) the set of σ-invariant probability measures on A Z (i.e. measures µ such that µ(σ -1 (U )) = µ(U ) for any Borel set U ). A measure is σ-ergodic if every σ-invariant Borel set has measure 0 or 1, and we denote by M σ-erg (A Z ) the set of σ-ergodic probability measures. [START_REF] Walters | An introduction to ergodic theory[END_REF] gives a good introduction to ergodic probability measures.

Examples. The Bernoulli measure λ (pa) a∈A associated with a sequence (p a ) a∈A of elements of [0, 1] whose sum is 1 is dened by λ (pa) a∈A ([u]) = p u 0 p u 1 . . . p u |u|-1 for all u ∈ A * . If all the elements of (p a ) a∈A have the same value 1

|A| we call it the uniform Bernoulli measure and denote it by λ. For any nite word u ∈ A * , dene δ u as the unique σ-invariant probability measure supported by the σ-periodic conguration ω u ω and its translations.

Given a cellular automaton F : A Z → A Z and an initial measure µ ∈ M σ (A Z ), we dene the measure F * µ by F * µ(U ) = µ(F -1 (U )) for any Borel set U . Since F commutes with σ, one has F * µ ∈ M σ (A Z ). Moreover if µ ∈ M σ-erg (A Z ), then F * µ ∈ M σ-erg (A Z ) as well. This allows to dene the following action:

F * : M σ (A Z ) -→ M σ (A Z ) µ -→ F * µ.
We consider the set of cluster points of the sequence (F t * µ) t∈N called the µ-limit measures set and denoted by V(F, µ). The closure of the union of the supports of these measures is called the µ-limit set and it is denoted by Λ µ (F ). Equivalently, it can be dened as the subshift

Λ µ (F ) = x ∈ A Z : ∀i, j ∈ Z, F t * µ([x [i,j] ]) 0 .
See [START_REF] Rka | Limit sets of cellular automata associated to probability measures[END_REF] for all basic examples. The µ-limit (measures) set has been also well studied for two classes of cellular automata : automata exhibiting particle-like behaviour ([Fis90a, BF05] and many others) and automata with an algebraic structure ([Lin84] and others).

Evoution of the density of particles for coalescent systems

Dene the frequency with which the pattern u appears in the conguration x as Freq(u, x) = lim sup

n→∞ Card{i ∈ [-n, n] : x [i,i+|u|-1] = u} 2n + 1 .
Similarly we dene Freq(S, x) where S is a set of patterns. We introduce the following notations for all the subsequent proofs. For n ∈ N, let B n be the set [-n, n] ⊂ Z. Let F : A Z → A Z be a cellular automaton. In the context of a xed particle system (P, π, φ), the densities of particles in a conguration x ∈ A Z are dened by: for p ∈ P, D p (x) = Freq(p, π(x)) and D(x) = Freq(P , π(x)); D Prog (x) = lim sup t→∞ 1 2t + 1 |Prog(x) ∩ B t | and similarly for D Inter (x), the last two denitions applying only if the particle system is coalescent.

For µ ∈ M σ-erg (A Z ), by Birkho 's ergodic theorem, the lim sup can be replaced by a simple limit in the denition of frequency for µ-almost all congurations. This implies for example that D(x) = p∈P D p (x) for µ-almost all x.

First of all, the following proposition claries how controlling the frequency of interactions gives us information about the evolution of the density of the dierent kinds of particles.

Proposition 1 (Evolution of densities). Let F : A Z → A Z be a cellular automaton, µ ∈ M σ-erg (A Z ), (P, π, φ) a coalescent particle system for F , and r the radius of the update function φ. Then, for µ-almost all x ∈ A Z :

(1) D(F (x)) ≤ D(x) -1 r+1 D Inter (x); (2) ∀p ∈ P, D p (F (x)) ≤ D p (x) + D Inter (x).
Lemma 1.

(1) For all x and k:

|φ(x, k)| + |φ -1 x (φ(x, k))| ≤ 2r + 2,
(2) which implies when k ∈ Inter(x):

|φ(x, k)| ≤ r r + 1 |φ -1 x (φ(x, k))|.
Proof. (of Lemma 1) Take i ≤ i , resp. j ≤ j , the extremal points of |φ(x, k)| and |φ -1 x (φ(x, k))| respectively. By locality of the update function, we have:

|φ(x, k)| + |φ -1 x (φ(x, k))| ≤ (i -i + 1) + (j -j + 1) = (i -j) + (j -i) + 2 ≤ 2r + 2.
The proof is illustrated in Figure 2.

x F (x)

φ -1 x (φ(x, k)) φ(x, k) ≤ r ≤ r Figure 2. Visual proof that |φ(x, k)| + |φ -1 x (φ(x, k))| ≤ 2r + 2.
If furthermore k ∈ Inter(x), since the particle system is coalescent, we have |φ(

x, k)| < |φ -1 x (φ(x, k))|.
The maximum of the ratio

|φ(x,k)| |φ -1 x (φ(x,k))| is then reached on |φ(x, k)| = r, |φ -1 x (φ(x, k))| = r + 1.
We continue the proof of Proposition 1

Proof.

(1) By the redistribution property of the update function, we have Part(F (x)) = k∈Part(x) φ(x, k). 

∀x ∈ A Z , k∈Prog(x)∩B n+r φ(x, k) = |Prog(x) ∩ B n+r | and ∀x ∈ A Z , k∈Inter(x)∩B n+r φ(x, k) ≤ r r + 1 φ -1 x   k∈Inter(x)∩B n+r φ(x, k)   ≤ r r + 1 |Inter(x) ∩ B n+2r | .
This rst equality is because progressing particles are one-to-one. The second inequality is by Lemma 1 and by locality. It follows:

∀x ∈ A Z , |Part(F (x)) ∩ B n | ≤ |Prog(x) ∩ B n+r | + r r + 1 |Inter(x) ∩ B n+2r | .
Then, passing to the limit:

For µ-almost all x ∈ A Z , D(F (x)) ≤ D Prog (x) + r r + 1 D Inter (x) = D(x) - 1 r + 1 D Inter (x).
(2) Similarly, for any particle p ∈ P, one has for all x ∈ A Z and n ∈ N:

{k ∈ B n | π(F (x)) k = p} ⊆ k∈Part(x)∩B n+r φ(x, k) (locality).
For k ∈ Prog(x), if π(F (x)) φ(x,k) = p, then by denition of coalescence π(x) k = p. For µ-almost all x, using Part(x) = Prog(x) Inter(x), we conclude that D p (F (x)) ≤ D p (x) + D inter (x) by passing to the limit.

A particle-based self-organisation result

We state our main result. A simple version (Corollary 1) states that in a coalescent particle system with a σ-ergodic initial measure, if all particles can be assigned a speed, then only particles with one xed speed may survive asymptotically. The more general result is designed to handle more dicult cases such as particles performing random walks, as in the last example of Section 2.6. Denition 3 (Clashing). Let F : A Z → A Z be a cellular automaton, (P, π, φ) a coalescent particle system for F , and P 1 and P 2 two subsets of P. We say that P 1 clashes with P 2 µ-almost surely if, for every n ∈ N * and µ-almost all x ∈ A Z , π(x) 0 ∈ P 1 and π(x

) n ∈ P 2 =⇒ ∃t ∈ N, φ t (x, 0) ∈ Inter(F t (x)) or φ t (x, n) ∈ Inter(F t (x))
The abuse of notation in the last line is justied by the fact that, if the images φ t (x, k) (k = 0, n) are not in interaction for all t < t, then φ t (x, k) is still a singleton.

The intuition behind clashing particles is the following: if two clashing particles are present with positive frequency, then at least one of them end up almost surely in interaction with positive frequency, decreasing the global frequency of particles. This is why they cannot both persist asymptotically. Note that clashing is oriented left to right: intuitively, particles with speed +1 clash with particles with speed -1, but the converse is not true.

Theorem 1 (Main qualitative result). Let F : A Z → A Z be a cellular automaton, µ an initial σ-ergodic measure and (P, π, φ) a coalescent particle system for F where P can be partitioned into sets P 1 . . . P n such that, for every i < j, P i clashes with P j µ-almost surely.

Then:

(1) All particles appearing in the µ-limit set belong to the same subset, i.e.

∃i ∈ [1, n], ∀p ∈ P, p ∈ L(π(Λ µ (F ))) ⇒ p ∈ P i .

(2) If furthermore there exists a j such that P j clashes with itself µ-almost surely, then this subset of particles does not appear in the µ-limit set, i.e. ∀p ∈ P, p ∈ L(π(Λ µ (F ))) ⇒ p / ∈ P j .

We introduce the notion of speed which is less general but easier to handle than the notion of clashing.

Denition 4 (Speed). Let F be a cellular automaton and (P, π, φ) be a particle system for F .

A particle p ∈ P has speed v ∈ Z if for any conguration x ∈ A Z and k ∈ Z such that π(x) k = p,
we have one of the following:

Eventual interaction: ∃t, φ t (x, k) ∈ Inter(F t (x)); Progression at speed v: ∀t, φ t (x, k) ∈ Prog(F t (x)) and φ t (x,k)-k t → t→∞ v.
Corollary 1 (Version with speedy particles). Let F : A Z → A Z be a cellular automaton, µ an initial σ-ergodic measure and (P, π, φ) a coalescent particle system for F . If each particle p ∈ P has speed v p ∈ R,then there is a speed v ∈ R such that:

∀p ∈ P, p ∈ L(π(Λ µ (F ))) ⇒ v p = v.
Proof of Theorem 1. For the rst point, Let i = 1, j = 2 for clarity and let p 1 ∈ P 1 , p 2 ∈ P 2 be two particles. We show that they cannot both appear in the µ-limit set.

First we study the behaviour of the sequences of density of particles. For all x ∈ A Z , by Proposition 1(1), (D(F t (x))) t∈N is a decreasing sequence of positive reals and admits a limit d ∞ (x). In particular D Inter (x) → 0. Applying Birkho 's theorem to π * F t * µ for any t, we get that D(

F t (x)) = π * F t * µ([P]) for µ-almost all x (recall that [P] = p∈P [p]). In particular there is a real d ∞ such that d ∞ (x) = d ∞ for µ-almost all x.
For x ∈ A Z , we dene D P i (x) = Freq(P i , π(x)); we prove that this sequence also admits a limit.

By Proposition 1(2), we have:

For i ∈ {1, 2}, sup n∈N |D P i (F t+n (x)) -D P i (F t (x))| ≤ ∞ n=0 D Inter (F t+n (x)).
To prove that (D P i (F t (x))) t∈N is a Cauchy sequence, we need to show that t∈N D Inter (F t (x)) < +∞. By Proposition 1(1), we have:

t∈N D Inter (F t (x)) ≤ (r + 1) t∈N D(F t (x)) -D(F t+1 (x)) ≤ (r + 1)(D(x) -d ∞ (x)) < +∞.
Thus (D P i (F t (x))) t∈N is a Cauchy sequence and admits a limit d i (x) = 0. Using again Birkho 's theorem, we have that

(D P i (F t (x))) t∈N = (π * F t * µ([P i ]
)) t∈N for µ-almost all x, and therefore there is a real

d i such that d i (x) = d i for µ-almost all x. Assume that p i ∈ L(π(Λ µ (F ))) for i = 1, 2. This implies d i > 0 for i = 1, 2. Since clashing
particles generate interactions, we show that this contradicts the fact that

D Inter (F t (x)) < +∞ for all x. Fix ε < d 1 •d 2 r+3 and T large enough such that for t ≥ T, π * F t * µ([P])-d ∞ < ε and |π * F t * µ([P i ])-d i | < ε for i ∈ {1, 2}
. By Birkho 's ergodic theorem applied on π * F T * µ, we have:

1 K K k=0 π * F T * µ ([p 1 ] 0 ∩ [p 2 ] k ) -→ K→∞ π * F T * µ([p 1 ]) • π * F T * µ([p 2 ]).
Note that [p 1 ] 0 ∩ [p 2 ] k are words containing clashing particles positioned so that they will generate an interaction. We have

π * F T * µ([p 1 ]) • π * F T * µ([p 2 ]) ≥ (d 1 -ε) • (d 2 -ε) ≥ d 1 • d 2 -2ε. By Birkho 's theorem, this means that for µ-almost all x ∈ A Z , words belonging in k V k where V k = p 1 (P ∪ {0}) k-1 p 2 ⊂ (P ∪ {0}) * have frequency at least d 1 • d 2 -2ε in πF T (x).
Since P 1 and P 2 clash µ-almost surely, any occurrence of V k yields a future interaction: that is,

Freq k V k , πF T (x) ≤ ∞ t=T D Inter (F t (x)
). We show the contradiction:

For µ-almost all x ∈ A Z , D(F T (x)) -d ∞ ≥ 1 r + 1 ∞ t=T D Inter (F t (x)) Proposition 1(i) ≥ 1 r + 1 (d 1 • d 2 -2ε) > ε,
which is a contradiction with the denition of ε. To prove the second point, apply the same proof to two particles in P j .

Proof of Corollary 1. Consider the set of speeds {v p : p ∈ P} and order it as

v 1 > v 2 > • • • > v n .
Now partition the set of particles into (P v i ) 0≤i≤n where P v i is the set of particles with speed v i , and apply the Theorem 1.

We check the hypothesis of Theorem 1: for any i < j, P v i clashes with P v j µ-almost surely. Let p i ∈ P v i and p j ∈ P v j , and x ∈ A Z such that π(x) 0 = p i and π(x) n = p j for some n ∈ N * . If both particles satisfy the second property in the denition of speed (Progression at speed v), then for some t large enough we have φ t (x, 0) > φ t (x, n), which is forbidden by coalescence since two particles in progression cannot cross. Thus at some time t we have either φ t (x, 0) ∈ Inter(F t (x)) or φ t (x, n) ∈ Inter(F t (x)).

Pivato's defect formalism

Before giving a series of examples where this result can be used to describe the typical asymptotic behaviour of a cellular automaton, we present the formalism introduced by Pivato in [START_REF] Pivato | Algebraic invariants for crystallographic defects in cellular automata[END_REF][START_REF] Pivato | Spectral domain boundaries in cellular automata[END_REF] that denes particles as defects with respect to a F -invariant subshift Σ. Indeed, this formalism gives us an easier way to nd the particle systems in our examples.

Intuitively, the F -invariant subshift describes the homogeneous regions that persist under the action of F in the space-time diagram, and defects are the borders between these regions. This allows us to dene P and π in a way that corresponds to the intuition, even though it gives no information on the dynamics of the particles (the update function φ).

Defects

For a cellular automaton F , consider Σ a F -invariant subshift. The defect eld of x ∈ A Z with respect to Σ is dened as:

F Σ x : Z → N ∪ {∞} k → max n ∈ N : x k+[-n-1 2 , n-1 2 ] ∈ L n (Σ)
, where the result is possibly 0 or ∞ if the set is empty or innite. Intuitively, this function returns the size of the largest word admissible for Σ centred on the cell k. A defect in a conguration x relative to Σ is a local minimum of F Σ x . Then the interval [k, l] between two defects forms a homogeneous region in the sense that x [k+1,l] ∈ L(Σ).

However, it is not true that we can always make a correspondence between defects and a nite set of words (forbidden patterns), so as to obtain a nite set of particles and a morphism. This is the case only when the set of forbidden patterns is nite, that is, when Σ is a SFT. In this case, a defect corresponds to the centre of the occurrence of a forbidden word. This is a limitation of our result.

The examples given in Figure 1 suggest that defects can usually be classied using one of these approaches:

• Regions correspond to dierent subshifts and defects behave according to their surrounding regions (interfaces -e.g. cyclic automaton);

• Regions correspond to the same periodic subshift and defects correspond to a phase change (dislocations -e.g. rule 184 automaton).

Interfaces

Assume that Σ is a SFT and can be decomposed as a disjoint union

Σ 1 • • • Σ n of F -invariant σ-
transitive SFTs (the domains ). Intuitively, the region between two defects belongs to the language of (at least) one of the domains; we classify each defect according to which domain the regions surrounding it on the left and on the right correspond to. Since each domain is F -invariant, this classication is conserved under the action of F for non-interacting defects.

Formally, since the dierent domains (Σ k ) k∈[1,n] are disjoint SFTs, there is a length α > 0 such that (L α (Σ k )) k∈[1,n] are disjoint (if two subshifts share arbitrarily long words, they share a conguration by closure). In particular, if u ∈ L α (Σ), then there is a unique k such that u ∈ L(Σ k ): we say that u belongs to the domain k. Thus, for a given conguration, we can assign a choice of a domain to each homogeneous region between two consecutive defects, and this choice is unique if this region is larger than α cells. To each interface corresponds a domain change, marked by a red line.

Defects relative to such an SFT are called interface defects and can be classied according to the domain of the surrounding regions. Let P = {p ij : (i, j) ∈ [1, n] 2 } be the set of particles. Dene the morphism π : A Z → (P ∪ {0}) Z of radius max( r/2 , α), where r is the radius of Σ, in the following way. For x ∈ A Z and k ∈ Z:

• if x k+[-r 2 , r 2 ] ∈ L(Σ), then π(x) k = 0; • else, let    u 1 = x [k-m,k] where m = max{ ≤ α : x [k-,k] ∈ L(Σ)} u 2 = x [k+1,k+m] where m = max{ ≤ α : x [k+1,k+ ] ∈ L(Σ)} d i a domain to which u i belongs (i ∈ {1, 2}) and put π(x) k = p d 1 d 2 .
The domain choice (choice of d i ) is unique when domains contain at least α cells; otherwise, the choice between the possible d i is arbitrary, or xed beforehand. Notice that the rst check requires radius at least r 2 and the second check requires radius at least α.

Dislocations

Contrary to interface defects that mark a change between languages of dierent SFT, dislocation defects mark a change of phase inside a single SFT.

Let Σ be a σ-transitive SFT of order r > 1. We say that Σ is P -periodic if there exists a partition

V 1 , . . . , V P of L r-1 (Σ) such that a 1 • • • a r ∈ L r (Σ) ⇔ ∃i ∈ Z/P Z, a 1 • • • a r-1 ∈ V i and a 2 • • • a r ∈ V i+1 .
The period of Σ is the maximal P ∈ N such that Σ is P -periodic. For example, the orbit of a nite word u ∈ A * , dened as {σ k ( ∞ u ∞ ) : k ∈ Z} is a periodic SFT of period at most |u|.

We thus associate to each x ∈ Σ its phase ϕ(x) As we can see in Figure 4, the nite word corresponding to a defect (here 00 or 11) does not depend only on the phase of the surrounding region but also on the position of the defect. More precisely, since ϕ(σ(x)) = ϕ(x) + 1, a defect in position j with a region in phase f to its left and a defect in position 0 with a region in phase f + j mod P to its left observe the same nite word to their left.

∈ Z/P Z such that x [0,r-2] ∈ V ϕ(x) . Obviously, ϕ(σ k (x)) = ϕ(x) + k mod p. For x ∈ A Z , we say that an homogeneous region [a, b] (i.e. a region such that x [a,b] ∈ Σ) is in phase k if ∃y ∈ Σ, ϕ(y) = k, x [a,b] = y [a,b] . If b -a > r -2, the phase of a region is unique and means x [a,a+r-2] ∈ V k+a mod p .
Therefore, we dene for each defect its local phases. Assume a defect is in position j surrounded by homogeneous regions [i, j] and [j, k] in phase ϕ and ϕ r , respectively. Then its left local phase (resp. right local phase ) is ϕ + j mod P , resp. ϕ r + j mod P . Now we classify the defects according to the local phase of the surrounding regions. Let P = {p ij : (i, j) ∈ Z/P Z 2 } be the set of particles. Since defects correspond to the centre of occurrences of forbidden words and the phase of a region can be locally distinguished, the morphism π : A Z → (P ∪ {0}) of order 2r -2 is dened exactly as in the interface case. The choice of local phase is unique if the region is larger than r -1 cells.

In the general case, those two formalisms can be mixed by xing a decomposition Σ = i∈A Σ i where some of the Σ i have nonzero periods. We can classify defects according to the domains and local phase of the surrounding regions in a similar manner. Except for the arbitrary choices for small regions, obtaining the set of particles and the morphism from the SFT decomposition can be done in an automatic way.

2.6. Examples 2.6.1. Rule 184

We consider the rule #184 or trac automaton F 184 : {0, 1} Z → {0, 1} Z dened by the following local rule: f 184 (x -1 x 0 x 1 ) = 1 if and only if x 0 x 1 = 11 or x -1 x 0 = 10.

The time evolution of this automaton can be seen as a road where the symbol 1 represent vehicles and the symbol 0 an empty space. The vehicles move forward if the cell in front of them is empty and stay put otherwise. In this context, the rule #184 has been very well studied, especially in the case of initial Bernoulli measures [BF95, BF05]. We use this example mostly as a simple case to better understand the formalism, although our method has the advantage to hold for more general probability measures. Proof. We consider the chequerboard SFT Σ = { ∞ (01) ∞ , ∞ (10) ∞ }, which is 2-periodic and F 184invariant. Using the dislocation formalism, we dene the phases ϕ( ∞ (01) ∞ ) = 0 and ϕ( ∞ (10) ∞ ) = 1, obtaining a set of particles dened by their local phases {p 01 , p 10 }. The corresponding morphism of order r = 2 is dened by the local rule: 00 → p 01 11 → p 10 otherwise → 0 . Indeed, consider x ∈ A Z with a defect x 01 = 00. The phase of the 0 in position 0 is 0 and the phase of the 0 in position 1 is 1, so this corresponds to a particle p 01 . Changing the position of the defect would not change the particle since the local phase would be modied accordingly.

The update function is dened in the intuitive manner: with p 01 evolving at speed +1 and p 10 at speed -1 and both particles being sent to ∅ in case of collision.

∀x ∈ A Z , ∀k ∈ Z, φ(x, k) =    {k -1} if π(x) k = p 10 and π(x) k-2 = p 01 {k + 1} if π(x) k = p 01 and π(x) k+2 = p 10 ∅ otherwise (and in particular if π(x) k = 0)
We now check that the particle system satises all necessary conditions. To do that, one should verify that the update function is dened properly, that is: Disjunction: For k < k , to have φ(x, k) > φ(x, k ), the only way would be to have π(x) k = p 01 , π(x) k = p 10 and k = k + 1. In that case, by denition, φ(x, k) = φ(x, k ) = ∅.

∀x ∈ A Z , ∀k ∈ Z, π(F (x)) k-1 = p 10 ⇔ F (x) {k-1,k} = 11 ⇔ x [k-2,k+1] ∈ {1011, 0111, 1111} ⇔ π(x) k = p
Coalescence and speeds: Obvious by denition of φ.

Therefore we can apply Corollary 1 and only one type of particle remains in Λ µ (F 184 ).

Furthermore, since the collisions are of the form p 01 + p 10 → ∅, it is clear that for all x ∈ A Z , D p 01 (F 184 (x)) -D p 01 (x) = D p 10 (F 184 (x)) -D p 10 (x). Therefore, which particle remains is decided according to whether µ([00]) > µ([11]) or the opposite, both particles disappearing in case of equality. The third case follows from the fact that if 00, 11

/ ∈ L(Λ µ (F 184 )), then Λ µ (F 184 ) = { ∞ 01 ∞ , ∞ 10 ∞ } which support a unique measure δ 01 .

n-state cyclic automaton

The n-state cyclic automaton C n is a cellular automaton dened on the alphabet A = Z/nZ by the local rule

c n (x i-1 , x i , x i+1 ) = x i + 1 if x i-1 = x i + 1 or x i+1 = x i + 1; x i otherwise.
See Figure 1 for an example of space-time diagram.

This automaton was introduced by [START_REF] Fisch | The one-dimensional cyclic cellular automaton: a system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics[END_REF]. In this paper, the author shows that for all Bernoulli measure µ, the set

[i] 0 (for i ∈ A) is a µ-attractor i n ≥ 5: that is, µ({x ∈ A Z : ∃T ∈ N, ∀t ≥ T, F t x ∈ [i]}) > 0 for all i.
Simulations starting from a random conguration suggest the following: for n = 3 or 4, monochromatic regions keep increasing in size; for n ≥ 5, we observe the convergence to a xed point where small regions are delimited by vertical lines. We use the main result to explain this observation.

Proposition 3. Dene:

u + = {ab ∈ A 2 : (b -a) mod n = +1}; u -= {ab ∈ A 2 : (b -a) mod n = -1}; u 0 = {ab ∈ A 2 : (b -a) mod n / ∈ {-1, 0, 1}}.
Then, for any measure µ ∈ M σ-erg ((Z/nZ) Z ), only one of those three sets may intersect the language of Λ µ (C n ).

If furthermore µ is a Bernoulli measure, then the persisting set can only be u 0 .

Proof. We consider the interface defects relatively to the decomposition Σ = i∈A Σ i , where

Σ i = { ∞ i ∞ }. Σ is a C n -invariant SFT of radius r = 2
, and defects are exactly transitions between colours. Thus we dene P = {p ab : ab ∈ A 2 , a = b}. One cell is enough to distinguish the domains (α = 1) and we obtain a morphism π of radius 2 dened by the local rule:

A 2 → P ∪ {0} a • a → 0 a • b → p ab for all a, b ∈ A.
Simulations suggest that p ab evolves at constant speed +1 if ab ∈ u + , -1 if ab ∈ u -and 0 if ab ∈ u 0 . Particles progress at their assigned speed unless they meet another particle, in which case they interact according to the following chemistry:

• p ab + p ba → ∅ (if p ab has speed +1);

• p ab + p bc → p ac (if p ab and p bc have speeds (+1, 0) or (0, -1), only when n ≥ 4), or • p ab + p bc + p cd → p ad . (if p ab , p bc and p cd have speeds +1, 0, -1 respectively, which is only possible for n = 4). We group together the particles of same speed, writing p + = {p ab : ab ∈ u + } and p -and p 0 similarly. Formally, for x ∈ A Z and k ∈ Z the update function is dened as:

φ(x, k) =                {k + 1} if π(x) k ∈ p + and π(x) k+1 ∈ p + , or π(x) k+1 / ∈ P and π(x) k+2 / ∈ p - ; {k -1} if π(x) k ∈ p -and π(x) k-1 ∈ p -, or π(x) k-1 / ∈ P and π(x) k-2 / ∈ p + ; {k} if π(x) k ∈ p 0 and π(x) k+1 / ∈ p -and π(x) k-1 / ∈ p + ∅
otherwise (and in particular if π(x) k = 0).

As previously, we can check that the update function actually describes the dynamics of the particles.

For all x ∈ Z, we check that: ⇔ π(x) 0 ∈ p + and π(x) 1 / ∈ P and π(x) 2 / ∈ p -, or π(x) 1 ∈ p 0 and π(x) 2 ∈ p -with good chemistry (p a,a-2 + p a-2,a-1 → p a,a-1 ) and so on for other particle types, from which we deduce the hypotheses of Corollary 1. Since [p + ] = π([u + ]) and so on, we obtain the result.

π(F (x)) 1 ∈ p + ⇔ F (x) {1,2} = ab with a = b + 1 ⇔ x [0,3] ∈   
If µ is a Bernoulli measure: Consider the mirror map γ((a k ) k∈Z ) = (a -k ) k∈Z . γ is continuous, and thus measurable. We have µ(γ(

[u])) = µ([u -1 ]) = µ([u]), where (u 1 • • • u n ) -1 = u n • • • u 1 . But π(x) k ∈ p + ⇔ π(γ(x)) -k ∈ p -,
and conversely; since F • γ = γ • F , all measures F t * µ are γ-invariant, and thus no particle in p + or p -can persist in L(π(Λ µ (F ))) (since otherwise, the symmetrical particle would persist too).

For small values of n or particular initial measures, this proposition can be rened in the following manner: n = 3: p 0 is empty. Given the combinatorics of collisions, where a particle in p + can only disappear by colliding with a particle in p -, we see that particles in p + persist if and only if π * µ([p + ]) > π * µ([p -]), and symmetrically. In the equality case (in particular, for any Bernoulli measure), no defect can persist in the µ-limit set, which means that Λ µ (F ) is a set of monochromatic congurations.

n = 4: If µ is a Bernoulli measure, the result of [START_REF] Fisch | The one-dimensional cyclic cellular automaton: a system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics[END_REF] shows that [i] 0 cannot be a µ-attractor for any i. In other words, for µ-almost all x, F t (x) does not converge, which means that particles in p + or p -cross the central column innitely often (even though their probability to appear tends to 0). This could not happen if particles in p 0 were persisting in π(Λ µ (F )), and thus Λ µ (F ) is a set of monochromatic congurations. n ≥ 5: If µ is a nondegenerate Bernoulli measure, the result of [START_REF] Fisch | The one-dimensional cyclic cellular automaton: a system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics[END_REF] shows that [i] 0 is a µ-attractor for all i. This means that some particles in p 0 persist in π(Λ µ (F )), and any conguration of Λ µ (F ) contains only homogeneous regions separated by vertical lines.

For n = 3 or 4, since Λ µ (F ) is a set of monochromatic congurations we deduce that the sequence (F n µ) n∈N converges to a convex combination of Dirac measures. However this method does not give any insight as to the coecient of each component. As shown in [START_REF] Hellouin De Menibus | Asymptotic behaviour of cellular automata: computation and randomness[END_REF], if µ is a Bernoulli measure then

C t 3 * µ -→ t→∞ µ([2]) δ 0 + µ([0]) δ 1 + µ([1]) δ 2 .
The problem is open for the 4-cyclic cellular automaton.

One-sided captive cellular automata

We consider the family of captive cellular automata F : A Z → A Z of neighbourhood {0, 1}, which means that the local rule f : A {0,1} → A satises f (a 0 a 1 ) ∈ {a 0 , a 1 }. See Figure 1 for an example of space-time diagram.

Proposition 4. Let F be a one-sided captive automaton and µ ∈ M σ-erg (A Z ). Dene:

u + = {ab ∈ A 2 : a = b, f (a, b) = a} u -= {ab ∈ A 2 : a = b, f (a, b) = b} Then either u + ∩ L(Λ µ (F )) = ∅ or u -∩ L(Λ µ (F )) = ∅.
If moreover, for all a, b ∈ A, the local rule satises f (ab) = f (ba) and µ is a Bernoulli measure, then Λ µ (F ) ⊆ { ∞ a ∞ : a ∈ A} (no particle remains).

Proof. We consider the interface defects relative to the decomposition Σ = i∈A Σ i where Σ i = { ∞ i ∞ } and obtain the same particles P and morphism π as the n-state cyclic automata. p ab evolve at speed -1 if f (a, b) = b and 0 if f (a, b) = a, and we dene p -1 and p 0 accordingly. The update function is dened as follows:

∀x ∈ A Z , ∀k ∈ Z, φ(x, k) =    {k} if π(x) k ∈ p 0 and π(x) k+1 / ∈ p -1 {k -1} if π(x) k ∈ p -1 and π(x) k-1 / ∈ p 0 ∅ otherwise
As in the two previous examples, we check by enumeration of cases that the update function describes the particle dynamics on all words of length 3:

∀x ∈ A Z , ∀k ∈ Z, F (x) k ∈ p 0 ⇔ F (x) [k,k+1] = ab where a = b and f (a, b) = a ⇔ x [k,k+1] = abc where b = c or f (b, c) = b ⇔ π(x) k ∈ p 0 and π(x) k+1 / ∈ p -1
and deduce the properties of locality, redistribution, disjunction, coalescence and speed from there. The main result implies the theorem.

If µ is a Bernoulli measure: Then µ is invariant under the mirror map γ and F • γ = γ • F by hypothesis. As in the previous example, we conclude that no particle can persist in Λ µ (F ).

An automaton performing random walks

Let F be dened on the alphabet A = (Z/2Z) 2 on the neighbourhood {-2, . . . , 2} by the local rule f dened as follows:

f : (a -2 , b -2 ), . . . , (a 2 , b 2 ) → (a -2 + a 2 , c) where c = 1 if (a -1 , b -1 ) = (1, 1) or (a 0 , b 0 ) = (0, 1); 0 otherwise.
Intuitively, the rst layer performs addition mod 2 at distance 2, while the ones on the second layer behave as particles, moving right if the rst layer contains a 1 and not moving if it contains a 0.

Two colliding particles simply merge.

Figure 6. Automaton performing random walks iterated on the uniform measure.

is a particle, while the second layer is represented by (0) or (1).

Proposition 5. Let ν ∈ M σ-erg ((Z/2Z) Z ) and µ = λ × ν, where λ is the uniform measure on

(Z/2Z) Z . Then F t * µ -→ t→∞ λ × δ 0 .
Proof. Pivato's formalism is not necessary here. Consider the set of particles P = {1} and the morphism π that is the projection on the second layer. The update function is dened as:

∀x ∈ A Z , ∀k ∈ Z, φ(x, k) =    {k + 1} if x k = (1, 1); {k} if x k = (0, 1); ∅ otherwise.
Checking locality, redistribution, disjunction and coalescence is trivial here. Intuitively, each particle performs a random walk with independent steps and bias 1 2 . Thus Corollary 1 is not sucient to conclude, and we need to use the general result of Theorem 1 by proving that {1} clashes with itself.

Writing (a t k , b t k ) = F t (x) k , we have a t k = t n=0
t n a 0 k-2t+4n mod 2 by straightforward induction. Now take some conguration x with a particle at position k and consider φ t (x, k) the walk performed by the particle. First we prove that the particle performs a random walk as claimed above. We have:

φ t+1 (x, k) -φ t (x, k) = a t φ t (x,k) = t n=0 n t a 0 φ t (x,k)-2t+4n mod 2 = a 0 φ t (x,k)-2t + t-1 n=1 n t a 0 φ t (x,k)-2t+4n + a 0 φ t (x,k)+2t
mod 2.

In the last line, we isolated the leftmost and rightmost term. Since φ t (x, k)-2t is strictly decreasing and φ t (x, k) + 2t is strictly increasing in t, these terms do not appear in any φ t +1 (x, k) -φ t (x, k) for t < t. Therefore, if x is drawn according to a Bernoulli measure, the value of a 0

φ t (x,k)±2t is independent of the value of all φ t +1 (x, k) -φ t (x, k) for t < t.
Formally, the behaviour of φ t (x, k) (for t ≤ t) only depends on the random variables {a 0 n :

φ t (x, k) -2t + 1 ≤ n ≤ φ t (x, k) + 2t -1}.
Let U be any event in the sigma-algebra generated by these variables. Then we have:

µ φ t+1 (x, k) -φ t (x, k) = 0 | U = µ a 0 φ t (x,k)-2t = 0 ∧ t n=1 n t a 0 φ t (x,k)-2t+4n = 0 | U + µ a 0 φ t (x,k)-2t = 1 ∧ t n=1 n t a 0 φ t (x,k)-2t+4n = 1 | U = µ a 0 φ t (x,k)-2t = 0 • µ t n=1 n t a 0 φ t (x,k)-2t+4n = 0 | U + µ a 0 φ t (x,k)-2t = 1 • µ t n=1 n t a 0 φ t (x,k)-2t+4n = 1 | U = 1 2 ,
where the second step is by independence of the leftmost term from all the other variables, and the third step uses µ a 0 φ t (x,k)-2t = 0 = 1 2 since µ is the uniform Bernoulli measure on the rst component. We proved that (φ t (x, k)) t∈N is a random walk with independent steps and bias 1 2 .

To apply the theorem, we now prove that the particle clashes with itself. Note that the random walks performed by dierent particles are not independent; however, we prove that they are pairwise independent.

Let k ∈ N. We prove that, when x is chosen according to µ k the conditional measure of µ relative to the event π(x) 0 = π(x) k = 1, φ t (x, k) -φ t (x, 0) performs an unbiased and independent random walk with a death condition on 0 (particle collision). Consider the evolution of φ t (x, k) -φ t (x, 0) at each step:

δ t (x) = (φ t+1 (x, k) -φ t (x, k)) -(φ t+1 (x, 0) -φ t (x, 0)) = t n=0 n t a 0 φ t (x,k)-2t+4n mod 2 T 1 - t n=0 n t a 0 φ t (x,0)-2t+4n mod 2 T 2
Note that the leftmost term of T1 is independent from T2 and all the past values of φ t+1 (x, k)φ t (x, k); similarly, the rightmost term of T2 is independent from T1 and all past values of φ t+1 (x, 0)φ t (x, 0). By the same argument as above, T1 and T2 are each worth 0 or 1 with probability 1 2 independently of each other and of all values of δ t for t < t. We conclude that δ t takes values -1, 0, +1 with probability 1 4 , 1 2 , 1 4 respectively independently of all values of δ t for t < t.

Therefore φ t (x, k) -φ t (x, 0) performs an unbiased and independent random walk. This implies that µ k ({x : ∀t, φ t (x, k) > φ t (x, 0)}) = 0 (standard result in one-dimensional random walks). Since particles cannot cross, they almost surely end up being in interaction, and therefore {1} clashes with itself µ-almost surely. Applying the theorem, we nd that no particle can remain in Λ µ (F ).

More precisely, if we write π i the morphism projecting on the i-th coordinate, π 2 * F t * µ → δ 0 . Since the addition mod 2 automaton is surjective, it leaves the uniform measure invariant. Therefore π 1 * F t * µ = λ, and we conclude that F t * µ → λ × δ 0 .

2.7. Probabilistic cellular automata

Adaptation of our formalism for probabilistic cellular automata

This approach can be adapted to non-deterministic cellular automata, and in particular probabilistic cellular automata. We use here a generalised version of the standard denition.

Denition 5. Let A be a nite alphabet and N ⊂ Z. We dene a map that applies a bi-innite sequence of local rules to a conguration componentwise:

Φ N : (A A N ) Z × A Z → A Z ((f i ) i∈Z , (x i ) i∈Z ) → (f i ((x i+r ) r∈N ) i∈Z .
Denition 6 (Generalised probabilistic cellular automata). A generalised probabilistic cellular automaton F on the alphabet A with neighbourhood N is dened by a measure on bi-innite sequence of local rules ν ∈ M σ ((A A N ) Z ).

For a conguration x ∈ A Z , F :

A Z → M σ (A Z ) is then dened as: For any Borel set U, F (x)(U ) = (A A N ) Z 1 U (Φ N (f, x))dν(f ).
A deterministic cellular automaton F dened by a local rule f corresponds in this formalism to a Dirac ν = δ f (in which case the image measure is a Dirac on the image conguration), and usual probabilistic cellular automata correspond to the case where ν is a Bernoulli measure; in other words, the local rule that applies at each coordinate is drawn independently among a nite set of local rules A N → A.

Denition 7 (Action on the space of measures). A generalised probabilistic cellular automaton dened by a measure ν ∈ M σ ((A A N ) Z ) extends naturally to an action F * :

M σ (A Z ) → M σ (A Z ) by dening F * µ(U ) = A Z (A A N ) Z 1 U (Φ N (f, x))dν(f )dµ(x).
The µ-limit measures set of F , V( F , µ), is the set of cluster points of the sequence ( F * t µ) t∈N , and the µ-limit set can be dened as

Λ µ ( F ) = η∈V( F ,µ) supp η.
The denitions of a particle system extend directly, except that the update function also depends on the choice of the local rules as well as on the conguration. Therefore we write φ(x, n, (f i )) instead of φ(x, n), where x ∈ A Z , n ∈ Z and (f i ) ∈ (A A N ) Z , and the composition notation is simplied as follows (inductively):

φ t x, n, (f k ) 0≤k<t = m∈φ(x,n,f 1 ) φ t-1 Φ N (f 1 , x), m, (f k ) 1≤k<t ,
where each f t ∈ (A A N ) Z is a bi-innite sequence of local rules.

A particle system is said to be coalescent ν-almost surely if the coalescence conditions hold for all x ∈ A Z and ν-almost every f ∈ (A A N ) Z , and a particle p ∈ P has speed v ν ∞ -almost surely if the speed conditions hold for ν ∞ -almost every sequence (f t ) t∈N , where ν ∞ is the product measure (i.e. each f t is drawn independently according to ν). The clashing conditions are extended similarly.

Theorem 2 (Qualitative result for probabilistic automata). Let F : A Z → M σ (A Z ) be a probabilistic cellular automaton dened by ν ∈ M σ ((A A N ) Z ), µ an initial σ-ergodic measure and (P, π, φ) a ν ∞ -almost surely coalescent particle system for F where P can be partitioned into sets P 1 . . . P n such that, for any i < j, P i clashes with P j µ, ν ∞ -almost surely.

Then all particles appearing in the µ-limit set belong to the same subset, i.e. there exists an i such that ∀p ∈ P, p ∈ L(π(Λ µ (F ))) ⇒ p ∈ P i .

If furthermore there exists a j such that P j clashes with itself µ, ν ∞ -almost surely, then this set of particles does not appear in the µ-limit set, i.e.

∀p ∈ P, p ∈ L(π(Λ µ (F ))) ⇒ p / ∈ P j .

Corollary 2 (Main result with speedy particles -probabilistic automata). Let F : A Z → A Z be a probabilistic cellular automaton dened by ν ∈ M σ ((A A N ) Z ), µ an initial σ-ergodic measure and (P, π, φ) a ν ∞ -almost surely coalescent particle system for F . Assume that each particle p ∈ P has speed v p ∈ R ν ∞ -almost surely, then there is a speed v ∈ R such that:

∀p ∈ P, p ∈ L(π(Λ µ (F ))) ⇒ v p = v.
The proof of these statements are exactly the same as the proofs of Theorem 1 and Corollary 1, except that every statement in the proof holds ν ∞ -almost surely.

This Theorem and Corollary can be applied for dierent probabilistic cellular automata, for example when we mix two one sided captive CA (see Figure 7). We are going to detail two examples from the literature and obtain new information about its limit measures (Section 2.7.2 and 2.7.3).

Example: Majority-trac PCA

For any real p ∈ [0, 1], consider the probabilistic automaton F on the alphabet {0, 1} dened on the neighbourhood N = {-1, 0, 1} by local rules drawn independently between the trac rule (rule #184 dened in Section 2.6.1) with probability p and the majority rule (rule #232 where F (x) i = 1 if and only if x -1 + x 0 + x 1 ≥ 2) with probability 1 -p. This corresponds to the case where ν is a Bernoulli measure. This automaton was introduced by Fatès in [START_REF] Fatès | Stochastic cellular automata solutions to the density classication problem[END_REF] as a candidate to solve the density classication problem.

In [START_REF] Bu²i¢ | Density classication on innite lattices and trees[END_REF], the authors completely describe the invariant measures of this PCA. In the continuity of the rest of the article, we are interested in the convergence properties of all σ-ergodic initial measure. None of these two results imply the other.

Proposition 6 (Prop. 5.5 in [START_REF] Bu²i¢ | Density classication on innite lattices and trees[END_REF]). For any p in [0, 1], the set of F -invariant measures is the set of convex combinations of δ 0 , δ 1 and δ 01 .

Proposition 7. Let µ ∈ M σ-erg (A Z ) and p be a real in [0, 1].

Then Λ µ ( F ) ⊂ { ∞ 0 ∞ , ∞ 1 ∞ , ∞ (01) ∞ , ∞ (10) ∞ }.
As a consequence, any µ-limit measure of ( F t * µ) t∈N is a convex combination of δ 0 , δ 1 and δ 01 .

Proof. The cases p = 0, 1 correspond to deterministic automata and can be treated easily.

The visual intuition suggests to consider interface defects according to the decomposition Σ 0

Σ 1 Σ 2 , where Σ 0 = { ∞ 0 ∞ }, Σ 1 = { ∞ 1 ∞ } (monochromatic subshifts) and Σ 2 = { ∞ (01) ∞ , ∞ (10) ∞ }
(chequerboard subshift), since those SFTs are invariant under the action of both rules. The set of particles would be P = {p i,j : i = j ∈ {0, 1, 2}}.

However, as Figure 9 shows, the particle p 10 can explode and give birth to two particles p 12 and p 20 , contradicting the condition of coalescence. To solve this problem, we tweak the particle system by replacing each particle p 10 by one particle p 12 and one particle p 20 . The corresponding morphism π is dened on the neighbourhood {0, . . . , 3} by the local rule:

0011 → p 01 110_ → p 12 0010 → p 02 100_ → p 20 1011 → p 21 otherwise → 0
where the wildcards _ can take both values.

Empirically, the particle behaviour without interactions is as follows. Regardless of the rule that is applied, p 01 , p 02 and p 21 move at a constant speed 0, +1 and -1 respectively. A particle p 12 moves at speed -1 if rule #184 is applied at its position and at speed +1 otherwise (independent random walk with bias 1 -2p), except if a particle p 20 prevents its movement to the right, in which case it does not move. The particle p 20 behaves symmetrically. As an abuse of notation, we denote for easier reading π(x) 0 = p - 12 if π(x) 0 = p 12 and f k = #184 and so on. Particle interactions are of the form p ij + p ji → ∅, p ij + p jk + p ki → ∅, or p ij + p jk → p ik , although some of these can not happen. Interactions involve particles at distance at most 3. Assume p ≥ 1 2 . We show that no particle can remain asymptotically by applying the main result on the sets (P i ) 0≤i≤4 : {p 02 }, {p 20 }, {p 01 }, {p 12 } and {p 21 }. We need only to show the clashes relative to the second and fourth sets since all other clashes are consequences of the speed of these particles.

Let k ∈ N and x be such that π(x) 0 = p 02 and π(x) k ∈ {p 12 , p 20 }. Since p 02 progresses at speed 1, the distance φ t (x, k) -φ t (x, 0) cannot increase, and it decreases by at least one with probability p (respectively 1 -p). It is clear that the particles end up in interaction ν ∞ -almost surely. Showing that p 12 and p 20 clash with p 21 is symmetric.

Let x be such that π(x) 0 = p 20 and π(x) k = p 01 . As long as there are no interactions, the distance φ t (x, k) -φ t (x, 0) = -φ t (x, 0) performs an independent random walk of bias 2p -1, where a increasing step is sometimes replaced by a constant step. Such a random walk reaches 0 ν ∞almost surely, which shows that the particles end up in interaction. The clashes between p 01 and p 12 , and between {p 20 } and {p 12 }, are proved in a similar manner. The same proof holds for p ≤ 1 2 by exchanging the roles of p 20 and p 12 .

Applying Theorem 2, we conclude that only one particle p ij can remain in the µ-limit set. This result can be improved further: consider V k = {x ∈ Λ µ (F ) : π(x) k = p ij }. Congurations in V k are of the form y • z, where y ∈ A ]-∞,k] is admissible for Σ i and z ∈ A [k+1,+∞[ is admissible for Σ j ; in particular, they contain only one particle. For any measure η ∈ V( F , µ), η(V k ) is independent from k by σ-invariance, and η

( k V k ) = k η(V k ) ≤ 1 by disjunction of the (V k ) k∈Z . Consequently, η(V k ) = 0, which means V k /
∈ supp(η). We conclude that no particle remain in the µ-limit set, or in other words, Λ µ (F ) ⊂ Σ 0 ∪ Σ 1 ∪ Σ 2 .

Example: Approximation of a line

A nite word of {0, 1} * can be seen as a nite curve in Z 2 taking its origin in (0, 0), moving right on a 0 and up on a 1. In [START_REF] Regnault | Lost in self-stabilization[END_REF], the authors introduce for any α ∈ Q ∩ [0, 1] a random process that, starting from a nite word w ∈ {0, 1} * whose frequency of symbols 1 is α, organises bits through local ips to obtain asymptotically a discrete segment of slope α.

We adapt these processes so that the ips are performed in parallel and on an innite conguration, which gives a probabilistic cellular automaton for every slope α ∈ Q ∩ [0, 1]. We consider the action of this PCA on any initial σ-ergodic measure satisfying µ([1]) = α. Using Theorem 2, we show that the sequence of measures converges towards the measure supported by a periodic conguration representing a discrete line of slope α. To simplify the presentation, we consider here that α = 1 2 ; the method can be easily generalised to other slopes.

Dene the following local rules:

• i is the identity;

• r(x -2 , x -1 , x 0 , x 1 ) =

x 0 if x -2 x -1 x 0 x 1 = 0101 or 1010, x -1 otherwise;

• (x -1 , x 0 , x 1 , x 2 ) = x 0 if x -1 x 0 x 1 x 2 = 0101 or 1010, x 1 otherwise.
Let Fline be a probabilistic cellular automaton (represented in Figure 10) dened by a σ-ergodic measure ν ∈ M σ ({g 0 , g 1 , g -1 } Z ) whose support is the subshift of nite type dened by the set of forbidden patterns {ir, , i, rr, r }.

To put it more simply, any time the local rules in two consecutive cells are and r (which happens with positive probability), the probabilistic CA permutes these two letters, except if they are at the centre of a four-letter words 1010 or 0101. In any other situation, it acts as the identity.

Proposition 8. Let µ ∈ M σ-erg (A Z ). Then:

µ([00]) > µ([11]) ⇒ 11 / ∈ Λ µ ( Fline ); µ([00]) < µ([11]) ⇒ 00 / ∈ Λ µ ( Fline ); µ([00]) = µ([11]) ⇒ F t line µ → δ 01 .
Proof. We consider the dislocation defects with regards to the chequerboard SFT Σ = { ∞ (01) ∞ , ∞ (10) ∞ }.

As in Section 2.6.1, we obtain the particles 11 → p 01 and 00 → p 10 . A particle p 10 at position 0 moves at speed +2 if is applied at position 1, at speed -2 if is applied on position -1, and at speed 0 otherwise. The particle p 01 is symmetrical and they annihilate on contact. Indeed, we check by straightforward case enumeration that: 

π( Fline (x)) 0 = p 10 ⇔ Fline (x) [0,1] = 00 ⇔    x [0,1] = 00 and f -1 , x -1 = ( , 1), (f 1 , x 2 ) = ( , 1) x [-2,-1] = 00 and f -1 = , x 1 = 0 x [2,3] = 00 and f 1 = , x 0 = 0 ⇔    π ( 
patterns {f 0 f -1 , f 1 f 1 , f 1 f 0 , f -1 f -1 , f -1 f 1 }.

Particle-based organisation: quantitative results

For some cellular automata with simple defect dynamics, the previous results can be rened with a quantitative approach: that is, to determine the asymptotic distribution of random variables related to the particles. In [START_REF] Petr | Asymptotic distribution of entry times in a cellular automaton with annihilating particles[END_REF], P. K•rka, E. Formenti and A. Dennunzio considered T n (x), the entry time after time n on the initial conguration x, which is the waiting time before a particle appears in a given position after time n. They restricted their study to a gliders automaton, which is a cellular automaton on 3 states: a background state and two particles evolving at speeds 0 and -1 that annihilate on contact. Thus, we have one entry time for each type of particle (T + n (x) and T - n (x)). When the initial conguration is drawn according to the Bernoulli measure of parameters ( 1 2 , 0, 1 2 ), which means that each cell contains, independently, a particle of each type with probability 1 2 , they proved that:

∀α ∈ R + , µ T - n (x) n ≤ α -→ n→∞ 2 π arctan √ α.
They also suggested to develop formal tools in order to be able to handle more complex automata, starting with the (-1, 1) symmetric case. In Section 3.2, we extend this result to allow arbitrary values for the particle speeds v -and v + , and relax the conditions on the initial measure to some mixing conditions. Then, when v -< 0 and v + ≥ 0, we have:

∀α ∈ R + , µ T - n (x) n ≤ α -→ n→∞ 2 π arctan -v -α v + -v -+ v + α ,
and symmetrically if we exchange + and -. The proof relies on the fact that the behaviour of gliders automata can be characterised by some random walk process; this idea was introduced by V. Belitsky and P. Ferrari in [START_REF] Belitsky | Ballistic annihilation and deterministic surface growth[END_REF] and was already used in [START_REF] Rka | Limit sets of cellular automata associated to probability measures[END_REF] and [START_REF] Petr | Asymptotic distribution of entry times in a cellular automaton with annihilating particles[END_REF]. In our case, a particle appearing in a position corresponds to a minimum between two concurrent random walks.

The new tool here is that under α-mixing conditions, we rescale this process and approximate it with a Brownian motion. Thus we obtain the explicit asymptotic distribution of entry times.

This method, consisting in associating a random walk to each gliders automata and studying this random walk using scale invariance, is not limited to this particular conjecture concerning entry times. Indeed, we see in the next two sections that it can be used to study the asymptotic behaviour of two other, arguably more natural, parameters: the particle density at time t and the rate of convergence to the limit measure. However, we obtain only an upper bound instead of an explicit asymptotic distribution. There is no doubt this method can be adapted to other parameters in a similar way.

Furthermore, these results can be extended to other automata with similar behaviour, such as those in Figure 1, by factorising them onto a gliders automaton. This point is discussed in Section 3.6. This method is more dicult to generalise when there is birth of particle, even in a simple case such as the 4-cyclic cellular automaton. 

f (x -v + . . . x -v -) =    +1 if x -v + = +1 and ∀N ≤ -v -, N n=-v + +1 x n ≥ 0 -1 if x -v -= -1 and ∀N ≥ -v + , -v --1 n=N x n ≤ 0 0 otherwise.
In all the following, A = {-1, 0, +1} and the diagrams are represented with the convention = 0, = +1, = -1. Our results apply on automata with simple defects dynamics, namely, automata admitting a particle system with P = {±1} and whose update function corresponds to a gliders automaton. We rst prove our results for gliders automata before generalising them in Section 3.6. Let us introduce some tools that turn the study of the dynamics of a gliders automaton into the study of some random walk. Lemma 3. Let G be the (v -, v + )-gliders automaton. For all j ∈ Z and k ≥ 0,

G t (x) j = -1 ⇐⇒ j -v -t + 1 = argmin [j-v + t, j-v -t+1] S x G t (x) j = +1 ⇐⇒ j -v + t = argmin [j-v + t, j-v -t+1] S x .
This is illustrated in Figure 12. Proof. By induction on t, proving only the rst equivalence at each step:

S x j -k + 1 j + k a k j G k (x) j
Base case (t = 0): By denition of S x , S x (j + 1) < S x (j) ⇔ x j = -1. Induction: Assume that both equivalences hold for a given time t. By applying the induction

hypothesis on G(x), G t+1 (x) j = -1 ⇔ j -v -t + 1 = argmin [j-v + t, j-v -t+1]
S G(x) and we conclude by applying Lemma 2.

Entry times

The main result of Section 2 implies that, for any σ-ergodic initial measure µ, Λ G (µ) contains at most one kind of particle, which one depending on whether µ(

[+1]) > µ([-1]) or the opposite. When µ([+1]) = µ([-1]), Λ G ( 
µ) only contains the particle-free conguration ∞ 0 ∞ . In other words, G t * µ → δ 0 , which means that the probability of seeing a particle in any xed nite window tends to 0 as t → ∞. The size of the considered window is such that any particle passing through the column 0 appears in this window exactly once (See Figure 13). Of course entry times for particles of speed 0 make no sense. From now on, we only consider T -for simplicity, all the results being valid for T + .

Denition 11 (Entry times)

. Let v -< 0 ≤ v + ∈ Z, G the (v -, v + )-GA and x ∈ {-1, 0, 1} Z . We dene: T - n (x) = min{k ∈ N : ∃i ∈ [0, |v -| -1], G k+n (x) i = -1}, with T - n (x) = ∞ if
As a consequence of Birkho 's ergodic theorem, when µ([-1]) > µ([+1]), -1 particles persist µ-almost surely and their density converges to a positive number. Therefore: In the same article, they conjectured that this result could be extended to any initial Bernoulli measure of parameters (p, 1-2p, p) for 0 ≤ p ≤ 1 2 by replacing the right-hand term by 2 π arctan √ 2pα.

• µ(T + n (x) = ∞) -→ n→∞ 1; • ∀α > 0, µ T - n (x) n ≤ α -→ n→∞ 1,
We will prove that this conjecture is actually incorrect.

To state our result, we introduce two particular subclasses of M σ (A Z ). We introduce α-mixing coecients of a measure µ ∈ M σ (A Z ):

α µ (n) = sup{|µ(A ∩ B) -µ(A)µ(B)| : A ∈ B ]-∞,0] , B ∈ B [n,+∞[ }.
where B [a,b] is the Borel σ-algebra generated by the random variables (X i ) a≤i≤b .

Dene:

• Ber = the set of Bernoulli measures on {-1, 0, +1} Z and parameters (p, 1 -2p, p) for some 0 < p ≤ 1 2 ;

• Mix the set of measures µ ∈ M σ ({-1, 0, +1} Z ) satisfying:

A Z x 0 dµ(x) = 0, i.e., µ([-1]) = µ([+1]); ∞ k=0 A Z x 0 • x k dµ(x) converges absolutely to a real σ 2 µ > 0 (asymptotic variance); ∃ε > 0, n≥0 α µ (n)

1 4 -ε < ∞.
In particular, Ber = ⊂ Mix.
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Theorem 4 (Quantitative result for entry time). For any (v -, v + )-GA with v -< 0 and v + ≥ 0 and any initial measure µ ∈ Mix,

∀α > 0, µ T - n (x) n ≤ α -→ n→∞ 2 π arctan -v -α v + -v -+ v + α .
Notice that this limit is independent from µ (as long as µ ∈ Mix), disproving the conjecture when µ ∈ Ber = .

Brownian motion and proof of the main result

The third hypothesis for Mix is chosen so that the large-scale behaviour of the partial sums S x (t) can be approximated by a Brownian motion. This invariance principle is the core of our proofs.

The rst and second conditions ensure that the Brownian motion obtained this way have no bias and nonzero variance, respectively.

Denition 12 (Brownian motion). A Brownian motion (or Wiener process ) B of mean 0 and variance σ 2 is a continuous time stochastic process taking values in R such that: B(0) = 0, t → B(t) is almost surely continuous, B(t 2 ) -B(t 1 ) follow the normal law of mean 0 and variance (t 2 -t 1 )σ 2 ; For t 1 < t 2 ≤ t 1 < t 2 , increments B(t 2 ) -B(t 1 ) and B(t 2 ) -B(t 1 ) are independent.

See [START_REF] Mörters | Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] for a general introduction to Brownian motion.

Proposition 9 (Rescaling property). Let B be a Brownian motion. Then, for any k > 0, t → 1 √ k B(kt) is a Brownian motion with same mean and variance.

We now state some invariance principles, which consists in approximating rescaled random walks by Brownian motion. We use a strong version, which guarantees an almost sure convergence by considering a copy of the process in a richer probability space.

Theorem 5 ([ZC96], Corollary 9.3.1). Let X = (X i ) i∈N be a family of random variables taking values in {-1, 0, 1}. We denote by α X (n) its α-mixing coecients dened as: Assume that:

(1) ∀i, E(X i ) = 0;

(2) 1 t E t i,j=1 X i • X j converges absolutely to some positive real σ 2 ;

(3) ∃ε > 0, ∞ n=1 α X (n)

1 4 +ε .
Then we can dene two processes X = (X i ) i∈N and B on a richer probability space (Ω, P) such that:

(1) X and X have the same distribution;

(2) B is a Brownian motion of mean 0, variance σ 2 ;

(3) for any ε > 0, From there the upper bound can be obtained as in the original proof.

3-state cyclic automaton: Let A = Z/3Z and C 3 be the 3-state cyclic automaton. We consider the factor π dened in Section 2.6:

ab → +1 if a = b + 1 mod 3 ab → -1 if a = b -1 mod 3 ab → 0 if a = b
If µ is such that π * µ ∈ Mix, then Theorem 6 applies. This is true in particular when µ is any 2-step Markov measure dened by a matrix (p ij ) 1≤i,j≤3 satisfying p 01 + p 12 + p 20 = p 10 + p 21 + p 02 , all of these values being nonzero, with (µ i ) 1≤i≤3 its only eigenvector. This includes any nondegenerate Bernoulli measure. However, even when the limit measure is known (e.g. starting from the uniform measure), Theorem 7 does not apply directly.

One-sided captive automata: Let F be any one-sided captive cellular automaton dened by a local rule f . As explained in Section 2.6, F factorises onto the (-1, 0)-gliders automaton with a factor dened by:

ab → +1 if a = b, f (a, b) = a ab → -1 if a = b, f (a, b) = b ab → 0 if a = b
For an initial measure µ, if π * µ ∈ Mix, then Theorem 4 and the rst point of Theorem 6 apply.

Notice that this class of automata contains the identity (∀a, b ∈ A, f (a, b) = b) and the shift σ (∀a, b ∈ A, f (a, b) = a). However, since we have in each case π -1 (+1) = ∅ or π -1 (-1) = ∅, it is impossible to nd an initial measure that weighs evenly each kind of particle, and so π * µ cannot belong in Mix. The limit measure, however, depends on the exact rule, and Theorem 7 does not apply directly.

Counter-example:

Product automaton: Let A = Z/2Z and F 128 be the CA of neighbourhood {-1, 0, 1} dened by the local rule f (x -1 , x 0 , x 1 ) = x -1 • x 0 • x 1 . Using the formalism from Section 2.5, we can see that F 128 factorises onto the (-1, 1)-GA by the factor π :

   01 → +1 10 → -1 otherwise → 0
If µ is any Bernoulli measure, then π * µ satises all conditions of Mix except that σ µ = 0; indeed, we can check that for π * µ-almost all congurations, the particles +1 and -1 alternate. Hence, only one particle can cross any given column after time 0, and therefore ∀α > 0, µ Tn (x) n ≤ α -→ n→∞ 0. Furthermore, any particle survives up to time t only if it is the border of a initial cluster of black cells larger than 2t cells, which happens with a probability µ([1]) 2t decreasing exponentially in t.

Even though we showed that the asymptotic distributions of entry times are known for some class of cellular automata and a large class of measures, this covers only very specic dynamics. It is not known how these results extend for more than 2 particles and/or other kinds of particle interaction.

In particular, there is no obvious stochastic process characterising the behaviour of such automata that would play the role of S x in our proofs.

  1. Denition of symbolic systemsGiven a nite alphabet A, a word is a nite sequence of elements of A. Denote by A * = n A n the set of all words where A 0 is the empty word ε. An innite sequence indexed by Z is called a conguration. The set of congurations A Z is a compact set for the product topology. For a word u ∈ A * the cylinder[u] is the set of congurations where u appears at the position 0, and for U ⊂ A * we have [U ] = u∈U[u]. Cylinders are a clopen basis of the topology.

Furthermore, by

  locality, ∀x ∈ A Z , ∀n ∈ N, Part(F (x)) ∩ B n ⊆ k∈Part(x)∩B n+r φ(x, k) ⊆ k∈Prog(x)∩B n+r φ(x, k) k∈Inter(x)∩B n+r φ(x, k), where denotes a disjoint union. The second line is obtained by coalescence: since Part(x) = Prog(x) Inter(x), particles in F (x) are either images of progressing particles or of interacting particles. By disjunction:

Figure 3 .

 3 Figure 3. Interfaces between monochromatic domains, marked by slanted patterns.

Figure 4 .

 4 Figure 4. Dislocations in the chequerboard subshift (P = 2), marked by slanted patterns. Red lines show the visual intuition of a change of phase, with the surrounding local phases.

Figure 5 .

 5 Figure 5. Particle system for the trac automaton.

  10 and π(x) k+2 = p 01 , and similarly for p 01 . This type of proof can become tedious due to the high number of cases but can be automated by straightforward enumeration, here of all patterns of length 4. The dierent conditions follow from this property:Locality: Obvious by denition of φ. Redistribution: The claim can be restated as π(F (x)) k+1 = p 10 ⇔ π(x) k = p 10 and φ(x, k) = {k+1}, and similarly for p 01 . The rst condition follows. Since φ(x, k) = ∅ when k / ∈ Part(x) by denition of φ, the second condition follows.

abbc

  abbc where c = a abc_ where b = c + 1 dacb where d = a + 1 and c = b -1

Figure 7 .Figure 8 .

 78 Figure 7. Example of probabilistic cellular automata where the update of each cell is chosen between two one sided captive CA.

Figure 9 .

 9 Figure 9. Fatès' trac-majority probabilistic automaton, with p = 3 4 .

Formally, we prove

  through exhaustive case enumeration of all patterns of length 7 and possible local rules that: π(F (x)) 0 = p 01 ⇐⇒ (π(x) 0 = p 01 and π(x) -1 = p + 20 and π(x) 2 = p - 12 ) p 01 moves at speed 0 or (π(x) -1 = p 02 and π(x) 1 = p 21 ) p 02 + p 21 → p 01 π(F (x)) 0 = p 02 ⇐⇒ (π(x) -1 = p 02 and π(x) 1 / ∈ {p 21 , p - 20 }) p 02 moves at speed +1 or (π(x) 0 = p 01 and π(x) 2 = p - 12 and π(x) -1 = p + 20 ) p 01 + p 12 → p 02 π(F (x)) 0 = p 12 ⇐⇒ (π(x) -1 = p + 12 and π(x) 0 / ∈ {p 21 , p - 20 }) p + 12 moves at speed +1 or (π(x) 0 = p + 12 and π(x) 1 = p - 20 ) p + 12 is blocked or (π(x) 1 = p - 12 and π(x) -1 = p 01 ) p - 12 moves at speed -1 π(F (x)) 0 = p 20 ⇐⇒ (π(x) -1 = p + 20 and π(x) 1 = p 01 ) p + 20 moves at speed +1 or (π(x) 0 = p - 20 and π(x) -1 = p + 12 ) p - 20 is blocked or (π(x) 1 = p 20 -and π(x) -1 = p 02 and π(x) 0 = p + 12 ) p - 20 moves at speed -1 π(F (x)) 0 = p 21 ⇐⇒ (π(x) 1 = p 21 and π(x) -1 = p 02 and π(x) 0 = p + 12 ) p 21 moves at speed -1 or (π(x) -1 = p + 20 and π(x) 0 = p 01 and π(x) 2 = p - 12 ) p 20 + p 01 → p 21 π(F (x)) 0 = 0 in all other cases (including other possible interactions) Using this statement, it is straightforward though tedious to dene formally the update function, and the various conditions of locality, disjunction, particle control, surjectivity and coalescence are proved similarly to the previous examples.

  x) 0 = p 10 at speed 0 π(x) -2 = p 10 at speed + 2 and π(x) 0 = p 10 π(x) 2 = p 10 at speed -2 and π(x) 0 = p 10 , and similarly for p 01 . From this we deduce the various hypotheses of theorem, including ν ∞ -almost sure clashing which stems from the fact that particles perform random walks. The exact statement of the proposition follows through the same arguments as in Section 2.6.1; in particular, the third case corresponds to the discrete line of slope 1 2 .

Figure 10 .

 10 Figure 10. Example of a space-time diagram of Fline , where ν is the Markov measure maximising the entropy of the subshift of nite type dened by the forbidden

3. 1 .

 1 Gliders automata and random walksIn this section we give the denition and the rst properties of the class of gliders automata.Denition 8 (Gliders automata). Let v -< v + ∈ Z. The (v -, v + )-gliders automaton (or GA) G is the cellular automaton of neighbourhood [-v + , -v -] dened on the alphabet A = {-1, 0, +1} by the local rule:

Figure 11 .

 11 Figure 11. Space-time diagram of the (-1, 0)-gliders automaton on a random initial conguration.

Figure 12 .

 12 Figure 12. Illustration of Lemma 3. A strict minimum is reached on j -k + 1.

Figure 13 .

 13 Figure 13. An entry time for the (-3,1)-gliders automaton.

  and symmetrically. This is why we only consider the case µ([-1]) = µ([+1]). K•rka and al.proved the following result: Theorem 3 ([START_REF] Petr | Asymptotic distribution of entry times in a cellular automaton with annihilating particles[END_REF]). For the (-1, 0)-GA (Asymmetric gliders) with an initial measure µ

  α X (n) = sup{|P (A ∩ B) -P (A)P (B)| : t ∈ N, A ∈ B [0,t] , B ∈ B [t+n,+∞[ },where again B [a,b] is the sigma-algebra generated by (X a , . . . , X b ).

X

  i -B(t) = O t 1 4 +ε P-almost surely.

Figure 14 .

 14 Figure 14. The 3-state cyclic CA, a one-sided captive CA and the product CA.
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Denition 9 (Random walk associated with a conguration). Let x ∈ {-1, 0, 1} Z . Dene the partial sums S x by: S x (0) = 0 and ∀k ∈ Z, S x (k + 1) -S x (k) = x k .

We extend S x to R by piecewise linear interpolation: S x (t) = ( t -t)S x ( t ) + (t -t )S x ( t ) for t ∈ R\Z. We also introduce the rescaled process S k x : t → Sx(kt) √ k .

This random walk is simpler to study than the space-time diagram of the gliders automaton, and actually contains the same amount of information, as shown by the following technical lemmas.

Denition 10. Let f : R → R and U ⊂ R. We dene argmin U f by:

In other words, t realises the strict minimum of f on U ; this point is not always dened.

Lemma 2. Let G be the (v -, v + )-gliders automaton. For all j ∈ Z and n ≥ 1,

Proof. We prove those equivalences by induction on n. At each step, we prove only the rst equivalence, the other one being symmetric.

Base case:

Induction: Assume both equivalences hold for some n ≥ 1.

S G(x) , and by induction hypothesis

S x . We distinguish two cases:

S x and we conclude;

• otherwise, this means that S x (j + n -v -+ 1) = S x (j -v + ) (the walk can decrease by at most one at each step), and thus

By induction hypothesis,

and in particular S G(x) (j + n + 1) < S G(x) (j + 1). Therefore S G(x) (j + n + 1) ≤ S G(x) (j), a contradiction with the rst assumption.

The converse is proved in a similar manner.

Corollary 3. Let µ ∈ Mix. For any xed constants q < r ∈ R, we can dene a process X = (X i ) i∈Z and a family of processes (t → B n (t)) n∈N on a richer probability space (Ω, P) such that:

(1) X has distribution µ;

(2) every B n is a Brownian motion of mean 0 and variance σ 2 µ > 0;

(3) for any ε > 0, denoting by S X the piecewise linear function dened by S X (0) = 0 and S

Proof. We apply Theorem 5 on (X i ) i∈N , where (X i ) i∈Z is distributed according to µ. Because µ is σ-invariant, this is a stationary process. The rst and third conditions are satised by denition of Mix. For the second condition,

by reordering the sum

by stationarity and the equivalence criterion for positive series. We obtain two processes X 1 = (X 1 i ) i∈N and B 1 on a richer probability space (Ω, P) such that X 1 has the same distribution as x, B 1 is a Brownian motion of mean 0, variance σ 2 µ , and:

Since the variables X 1 i take value in {-1, 0, 1}, we have for any t t i=1 X 1 i -S X 1 (t) < 1 (a staircase and piecewise linear function having the same values on N). Therefore:

For any r ∈ R 2 + , taking the sup for t ∈ [0, r], we obtain:

√ n is a Brownian motion of same mean and variance as B 1 .

To extend the result to negative values, we apply the theorem again to (x -i-1 ) i∈N , obtaining a process X 2 and a Brownian motion B 2 satisfying the same asymptotic bound on t → -∞. Joining both parts, we can see that the process X

For a survey of invariance principles under dierent assumptions, see [START_REF] Merlévède | Strong approximations of partial sums under dependence conditions with applications to dynamical systems[END_REF].

We now prove the main theorem.

Proof of Theorem 4. For any x ∈ {-1, 0, 1} Z , Lemma 3 applied on the column 0 gives:

Note that if this last condition is reached on k ∈ N, since S x is piecewise linear, it is attained for t as soon as t > k -1 and reciprocally. Thus:

Replacing j by 0 in this expression adds to the inmum a value comprised between 0 and -v --1 -v - (remember v -< 0). Since the inmum is necessarily an integer, we compensate by taking the integer part:

Dividing the previous expression by n, using the fact that t -

We now bound the left-hand term of (1a) from below and the right-hand term of (1b) from above.

Using Corollary 3, we build a process X and a family of processes (B n ) n∈N on a richer probability space (Ω, P) such that X is distributed according to µ and the B n are Brownian motions.

∀n ∈ N, sup

] and [0, -v -α], respectively. Consequently, for any ε > 0 and n large enough:

µ min

and a symmetrical upper bound for (1b):

µ min

We now evaluate the right-hand expression in (2a).

For any Brownian motion B and b > 0, we have by rescaling P min 

(see [START_REF] Mörters | Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]). This means that for any y, z > 0:

(i) by using the law of the minimum of a Brownian motion, (ii) by passing in polar variables. For ε > 0, a similar calculation gives:

Using (3) and (4), we see that the right-hand term in (2a) converges to

as ε → 0. The left-hand term in (2b) can be bounded from above by the same method. We apply this result to (1a) and (1b) by taking ε = 3 √ n (resp.

√ n

), and the theorem follows. In all the following, any result on d -also holds for d + by symmetry.

Theorem 6 (Decrease rate of the particle density). Let G be a (v -, v + )-GA with initial measure µ ∈ Mix. Then:

Proof. When µ ∈ Mix, it is in particular σ-ergodic, and so are its images G t * µ. By Birkho 's ergodic theorem, one has d -

We rst prove the theorem when G is the (-1, 0)-gliders automaton. By Lemma 3,

Equivalence (µ ∈ Ber = ): By symmetry,

which is the probability that the random walk starting from 0 remains strictly positive during t steps, also known as its probability of survival. According to [START_REF] Redner | A Guide to First-Passage Processes[END_REF], when the random walk is symmetric and the steps are independent, we have the equivalence µ(G t (x

Upper bound:

x .

Using Corollary 3, we have:

4 +ε P-almost surely, and where the third line is obtained by symmetry of the Brownian motion.

Furthermore P min

To conclude, it is enough to see that the particle density is σ-invariant and decreasing under the action of G.

Rate of convergence

In this section, we estimate the rate of convergence to the limit measure. For that we x a distance on the space M σ (A Z ) of σ-invariant measures, which induces the weak * topology:

Theorem 7 (Rate of convergence to the limit measure). Let G be the (v -, v + )-GA with initial measure µ ∈ Mix. Then:

Proof. We rst prove the theorem when G is the (-1, 0)-gliders automaton. By dening 0 ∈ A the word containing only zeroes, the distance can be rewritten:

Lower bound when µ ∈ Ber

. We conclude with Theorem 6.

Upper bound: We give an upper bound for

Therefore:

By Corollary 3, using the same notations as in the previous proofs:

for any ε > 0, following the same calculations as in Section 3.4. The case of -1 particles is symmetrical, and we conclude.

General case:Apply the same method as in the previous section, considering that d M and all considered measures are σ-invariant and that any CA is Lipschitz w.r.t d M .

3.6. Extension to other cellular automata Denition 14. Let F 1 , F 2 be two CAs on A Z and B Z , respectively. We say that F 1 factorises onto F 2 if there exists a factor π :

In particular, if F 2 admits a particle system (P, π 2 , φ), then F 1 admits a particle system with (P, π • π 2 , φ).

In this section, we extend the Theorems 4 and 6 to automata that factorise onto a gliders automaton, and discuss conditions for the extension of Theorem 7. In Section 2.5, we exhibited a general method to nd such a factor using experimental intuition when such a factor is not obvious.

In other words, we extend our results to automata that admit a particle system (P, π, φ), where P = {-1, +1} and φ updates the particle positions similarly to a gliders automaton.

In order to extend the theorem to such CAs, starting from an initial measure µ, we must rst ensure that π * µ ∈ Mix. We show that the third condition in the denition of Mix is invariant under morphism.

Proposition 10. Let π : A Z → B Z be a morphism, µ ∈ M σ (A Z ) and k > 0 any real such that

Proof. We keep the notations from the denition of α µ (n). π is dened by a local rule with neighbourhood N ⊂ [-r, r] for some r > 0.

By σ-invariance, we have for all n α π * µ (n) < α µ (n -2r), and the result follows.

Hence, if µ ∈ Mix, we only have to prove that π * µ weighs evenly the sets of particles -1 and +1, and that the corresponding asymptotic variance is not zero. Under these assumptions, we can extend some of the previous results with the forbidden patterns playing the role of the particles.

Corollary 4. Let F : A Z → A Z be a CA and µ ∈ M σ (A Z ). Suppose that F factorises onto a (v -, v + )-GA via a factor π such that π * µ ∈ Mix.

Then Theorem 4 and the rst point of Theorem 6 hold if we replace x k = ±1 by π(x) k = ±1.

Even if µ is a simple, e.g. Bernoulli measure, π * µ can fail to satisfy the rst and second condition of Mix. We provide a counterexample at the end of this section.

Examples:

Trac automaton: Let A = {0, 1} and F 184 be the elementary CA corresponding to rule #184 as dened in Section 2.6.1. F 184 factorises on the (-1, +1)-gliders automaton, using the factor introduced in that section: