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We study theoretically various definitions of laser beam width in a given cross-section. Quality of the beam is characterized by 

dimensionless Beam Propagation Products BPPs          , which are different for 21 definitions, but are close to 1. Six particular 

beams are studied. In the process we had to review the properties of Fourier transform of various modifications: Physical Fourier 

Transform (PFT), Mathematical Fourier Transform (MFT), Discrete Fourier Transform (DFT), and relationships between them. We 

found axially-symmetric self-MFT function, which may be useful for description of diffraction-quality beams. In Appendices we 

illustrate the thesis “Fourier lives on the singularities of original”. 
OCIS codes: (120.4800) Optical standards and testing, (070.2465) Finite analogs of Fourier transforms,  
(070.7345) Wave propagation 
 

1.Introduction 

Problem of characterizing and measuring transverse quality of 

a laser beam has long history of studies. It is worth mentioning 

specifically monograph [1] and papers, e.g. [2]. Most laser beams 

have very small angular divergence    (      rad). 

Transformation of such beams by lenses without aberrations 

may separately change      and the waist radius   . However, 

the product        (of dimension meters) is not changed by 

such transformation, and for almost-diffraction-quality beams is 

of the order of wavelength  . Particular dimensionless quantity 

         depends on the formal definition of    and     in 

theoretical discussions of the problem, and depends on the 

measuring procedures in experiment. 

One possible definition of    and     is root-mean-square and 

related to it dimensionless parameter   
 , adopted as ISO 

standard [3]: 

                                       
    

  
                                                   

Separate measurement of   
  and   

  is often necessitated 

by not quite axially-symmetric character of the beam, including 

possible astigmatism. Particular coefficient,   , is chosen in such 

a manner, that minimum value of   
  equals 1, and is achieved 

for ideal beam with perfect Gaussian profile. 

It is assumed in (1) that       is measured at the  -position of 

its minimum (in focal waist in the case of focused beam), while 

      is measured in the far field zone of the beam. Quite often 

in experiment the far-field zone with its angular distribution of 

intensity       is substituted by the profile                in 

the focal plane of a positive lens with focal distance  . This often 

leads to confusion, which parameter,       or       corresponds 

to near-field, and which one is related to the far-field. Luckily, 

this modest confusion in terminology does not result in the 

change of   
 , because as we have already mentioned, the 

product        is invariant under transformation by paraxial 

optical elements without aberrations. 

Many researchers have noted that the quantities               

and therefore   
                   put too much 

emphasis upon distant wings of distributions       and       , 
e.g. [47]. This includes an experimental paper by Lantigua et 
al., [7]. 

Our personal preference is the use of criterion “width of the 

slit, containing 85% of total power”, and ratio of Beam 

Propagation Product to the BPP for ideal Gaussian beam by the 

same criterion. The chosen fraction 85%, seems to be reasonable 

for energy-delivering applications of laser beams. Meanwhile the 

slit technology is relatively easy in implementation of field 

devices. 

Given field         in the near-field zone, one finds intensity 

profile there                  
 . Besides that, angular 

amplitude profile, i.e. amplitude profile in the far-field zone is 

proportional to 

           
 

  
          

                             

The resultant angular intensity profile is            
            

 
 . In        case              , and 

       
 

   
                                    

and                
 . Here and below wave number       , 

and   is wavelength in the medium of propagation path (typically 

in vacuum). 

For that reason in Section 2 we review three definitions of 

Fourier Transform (FT): Physical (PFT), Mathematical (MFT) 

and Discrete (DFT). In Section 2B we discuss 1-dimensional self-



MFT functions. In Section 2C we discuss DFT and its 

relationship to PFT and MFT. In Section 2D we introduce new 

axially-symmetric self-MFT function, based on 1D self MFT 

function              .  

In Section 3 we consider 21 quantitatively different definitions 

of the beam width, and calculate a table of those width for 6 

different smooth transverse profiles in the near field. We 

calculate also their far-field profiles. In this manner we were able 

to find Beam Propagation Products (BPP) for these beams 

according to the 21 different criteria. The tables of BPP are 

compiled in assumption that one and the same criterion of width 

(out of 21 considered) is taken both for near-field and for far-field. 

Meanwhile we provide the data of calculations, which allow to 

take one criterion in near-field and another in the far-field, and 

thus arrange for such a compound BPP. Section 4 summarizes 

the results of the work. In Appendix A we illustrate the thesis 

“Fourier transform lives on the singularities of original”. While 

this thesis is not scientifically new, we failed to find a 

mathematical textbook or a paper with its presentation. In 

Appendix B we apply DFT for the study of self-MFT functions. 

 

2. Fourier Transforms (FT): Physical (PFT), 
Mathematical (MFT), Discrete (DFT). Self-MFT functions 

2.A. Physical Fourier Transform (PFT) 

 

 We start with Fourier Transform (FT) as it is used in Physics 

(PFT). Consider the function      of real variable   (for example, 

of dimensions of Cartesian coordinate,            ). This 

function may have real or complex values. We define new 

function      of new real argument   (of dimensions     
              ) by 

     
 

   
               

  

  

                           

where     is some constant. Then, as it is well known in 

mathematics, under certain (not very restrictive) conditions, 

original function      may be found by inverse Fourier 

transformation, 

     
 

    
                

  

  

                         

Traditional choices of constant   are, for example     
             , but any    , even a complex number, 

does the job. Formula (4) defines linear operator of Physical FT; 

its maps space of functions      of argument   onto the space of 

functions      of a different argument  , dimensions of   being 

inverse to the dimensions of  :          . Parseval’s theorem 

claims that 

               

  

  

           

  

  

                          

It looks especially elegant for    . 

2.B. Mathematical Fourier Transform (MFT) 

 

If one wants to discuss eigenfunctions of FT, then FT operator 

must map space functions      onto itself,     . In that case 

dimensions       coincides with dimensions        In other 

words, argument   of functions      for Mathematical FT (MFT) 

should be dimensionless. All this gives the justification to the 

following definition of MFT operator as 

               
 

   
                  

  

  

          

 Parseval’s theorem shows that MFT operator is unitary: 

                                                       

Inverse PFT (5) differs (at    ) from original PFT (4) only by 

the sign of phase in the exponential. It allows to conclude that 

application of MFT operator to a function      two times returns 

     : 

                                                          

From that one gets  

                                                             

i.e. 4-th power of MFT operator is unit operator. As a result, 

eigenvalues   of MFT operator satisfy condition     , 

                                                     

Thus there are only 4 possible eigenvalues of MFT:      
                 (or                ). 

Differentiation and integration by parts in MFT Eq. (7) allows 

to show that if      is an eigenfunction of MFT with eigenvalue 

  , i.e. if 

                                                   
then functions 

        
 

  
                     

 

  
                 

are also eigenfunctions of MFT, and 

                                                     

Function                  is a well-known eigenfunction 

of MFT, with eigenvalue      . Moreover, Hermite 

polynomials       multiplied by      , i.e.  

                                           

up to constant factors, can be produced from       by application 

of “creation operator”          sequentially   times. Therefore 

they are eigenfunctions of MFT, with eigenvalues      . 

Another function, 

                   
  

                               

is also an eigenfunction of MFT, with eigenvalue      . Main 

difference between       and       is in their asymptotic 

behavior at      :                  (exact); meanwhile 

                     . Functions              and 

            , normalized to             , have almost 100% 

overlapping integral: 

      
  

              
  

  
 
 

         
   

  

  
           

   
  

  
 
               

Property           allows to construct eigenfunctions of 

MFT out of an arbitrary function      of dimensionless 

argument. For example,  

                                        



                                                    

is an eigenfunction of MFT with eigenvalue     , where   is 

any integer number from 0 to 3. For the case with     , i.e. 

when     is considered, formula of the type Eq. (18) was 

suggested in [8, 9]. 

Curious examples of MFT eigenfunctions are 

         
 

    
               

 

   
 

 

    
                   

with respective eigenvalues                   However, 

each of them has logarithmically divergent normalization 

integral (both at       and at      ). 

 

2.C. Discrete Fourier Transform (DFT) properly. Approximation 

of PFT by DFT. 

 

Discrete Fourier Transform is usually introduced as an 

approximation for Physical FT. Consider function      at the 

interval        , and for definiteness let dimensions of   

be             . Let us characterize this function by its values 

at the set of   equidistant points              

                             

                                              

Here    is step of  -coordinate. It is convenient to assume that 

function      is continued outside the interval         in 

a periodic manner with period  , so that            . Then 

one can consider extra point                  with the 

value               , which is already accounted for by   . 

Corresponding vector    of  -dimensional linear space has 

components  

                                                 

Function      (i.e. PFT from (4)) may be approximated by 

trapezoid formula 

     
 

   
         

         
        

        

      
                     

                       

Periodicity assumption yields             . Evidently, there 

are only   linear independent values of function      defined by 

(22). To express this idea, we can choose to consider   discrete 

values of argument  : 

                                        

Periodicity condition in  -coordinate with period   may be 

satisfied, if the value of step    in  -space is chosen as         

(of dimensions [radian/meter]). In that case           
           

    
      , and trapezoid approximation for      becomes 

               
  

 
   

 
   

    
       

  

 
           

   

 
 

   

   

              

Vector    of  -dimensional linear space is called Discrete 

Fourier Transform (DFT) of vector    from the same space, if its 

components are defined by 

             
 

  
          

   

 
 

   

   

           

Operator of DFT is implemented in every widely used 

mathematical software package like Mathcad, MatLab, Maple, 

Mathematica etc. What we were able to formulate here is that 

Physical FT      from Eq. (4) may be approximated by 

     
   

 
         

  

 
 

   

    
                  

Intuitively it is clear that Discrete FT Eq. (25) is a certain 

approximation of Physical FT. What is important is the 

particular   -dependent coefficient in Eq. (26) expressing PFT 

via DFT. 

Remarkable mathematical facts about operator DFT defined 

by (25), are the following: 1) DFT is unitary operator in  -

dimensional linear space; 2) Inverse DFT operator (IDFT) looks 

also as approximation of Eq. (5) of inverse PFT, but is actually 

exact inverse operator with respect to DFT: 

               
 

  
           

   

 
 

   

   

              

The proof of this fact uses formula for the sum of geometrical 

progression: 

   

   

   

                                            

with account of                  . 
Additional problem to be covered is that physically both 

positive and negative values of              in (4), (5) are 

important. At first glance,               with    
          , cover positive values of   only. This difficulty is 

resolved rather simply. For values           exponential 

factors                                 oscillate versus   

as               . This is a manifestation of the failure of 

discretization of      into         . In other words, we expect 

PFT of our function      to be negligibly small at    with 

     . On the other hand, subtracting         from any 

of    does not change exponential factors in DFT. Indeed, 

                                          
            . But                           Therefore 

one can subtract         from any    without changing the 

resultant DFT. We can introduce function  

         
                                 

                       
                              

so that                         represent positive   in the 

range         and negative         in the range 

         . 

 

2. D. Generation of eigenfunctions of 2D MFT (Mathematical 

Fourier Transform) via eigenfunctions of 1D MFT. 

 

The definition of Mathematical Fourier Transform for 

functions of two dimensionless variables     is a trivial 

generalization of 1D case 

               
 

  
                           

 

  

         



Consider two eigenfunctions of 1D MFT:       and      , with 

eigenvalues          and         , respectively. Functions 

      and       may be identical; in that case       . Besides 

that       and       may be different eigenfunctions of MFT 

with the same or with different eigenvalues    and    . In any of 

these cases factorized function of two dimensionless variables 

                                                       

is an eigenfunction of unitary 2D MFT operator (30), and 

              . The proof of this simple statement is based on 

factorization of exponential kernel in 2D MFT (30): 

            
       

       
                                  

Besides that the scalar product                in that 

kernel is invariant with respect to simultaneous rotation of 

coordinates by arbitrary angle  : 

                                            

    
        

         
                                  

Therefore another function, 

                              

                                           

which generally is not factorized into            , is still an 

eigenfunction of 2D MFT with            . Linearity of 2D 

MFT operator guarantees that any superposition of such 

functions with  -dependent weight     , 

              

is still an eigenfunction of 2D MFT. Using polar coordinates 

                in    -plane, one can transform this 

superposition to 

                        

                                  

  

 

       

Let us assume that function      is periodic with period   , 

i.e.             . Introducing new variable      , 

one transforms integral (36) up to a factor (  ) into 

                                        

  

 

      

A minor problem may arise, if the integral in the right-hand-

side of Eq. (37) turns out, for some or other symmetry reason, to 

be exactly zero. Then one gets function equal to zero identically, 

which is not interesting, albeit may formally be considered as an 

eigenfunction of any linear operator. 

Special interest is presented by the case when       
                , to elucidate the rotation symmetry in 
     -plane. Then  

                       

      
 

  
              

  

 

                      

We are especially interested in the case of completely axially-

symmetric       self 2D MFT functions 

      
 

  
          

  

 

                                

If                       , then axially symmetric result is 

trivial,                 . 
We were lucky to find another example of completely 

symmetric self 2D MFT function, with eigenvalue     : 

       
 

  
          

  

 

                                

where                    . Graph of this new function is 

presented on Fig 1.  

Fig. 1. Self-Fourier transform function       . 

 

Behavior of this function at small and large   (remember that 

  is dimensionless) is as follows: 

         
 

 
                       

Normalized (by            
 

 
) function        is mostly very 

similar to normalized axially-symmetric function        
           . Indeed, 

                 
 

 
 
 

         
    

 

 
          

    
 

 

                    

However, the asymptotic behavior of        at     is 

radically different from that of Gaussian function. In this respect 

       is a better approximation of the radial profile of a single-

mode step-profile dielectric fiber with low V-number.  

In particular, consider the axially symmetric mode         of a 

single-mode fiber with core radius   and  -number 

               
           

  
   

 

being      : well below the threshold       of single-mode 

operation. Our new 2D SMFT function            has the 

best overlapping with       normalized mode         at 

          and is equal to 

   
                      

 

 
 
 

                 
 

 
           

    
 

 

         

                                                          



Meanwhile the same mode has optimum overlapping integral 

with Gaussian function                         at 

         ; that square of overlapping equals 

   
                      

 

 
 
 

                 
 

 
           

    
 

 

         

                                                    

At       (threshold value of  , below which single mode 

exists only) Gaussian function        has some advantage over 

      : 

                        ,                            

However, both approximations are pretty good. Detailed study 

of approximation for fundamental modes of a fiber by Gaussian 

function was done by D. Marcuse in [10], where he considered a 

variety of smoothed profiles of fiber refractive index. 

 

3. Calculation of data for Beam Propagation Product 
(BPP) according to 21 possible criteria for 6 particular 
high-quality beams. 

 

We consider numerous possible criteria of the beam width, be 

it in the near field waist (in units of meters), or in the far field (in 

units of radians). Here is the list of 21 criteria covered, 

formulated for quantity of dimensions [meters]. Similar 

definitions are to be taken for    or for      
    

  
   

 of 

dimensions [radian]. 

1.    (HWHIM): Half Width at the level Half of the 

Intensity at Maximum. 

2.    (HW   IM): Half Width at the level           of 

the Intensity at Maximum. 

3.    (HW   IM): Half Width at the level           of 

the Intensity at Maximum 

4.    (HW    IM): Half Width at the level      of the 

Intensity at Maximum 

5.   (PIB      ): radius of a circle containing fraction 

      of total Power In the Bucket of that radius. 

6.   (PIB       ): radius of a circle containing fraction 

       of total Power In the Bucket of that radius. 

7.   (PIB        ): radius of a circle containing fraction 

              of total Power In the Bucket of that 

radius. 

8.   (PIB      ): radius of a circle containing fraction 

      of total Power In the Bucket of that radius. 

9.   (PIB       ): radius of a circle containing fraction 

       of total Power In the Bucket of that radius. 

10.   (PIB        ): radius of a circle containing fraction 

        of total Power In the Bucket of that radius. 

11.   (PIB       ): radius of a circle containing fraction 

       of total Power In the Bucket of that radius. 

12.   (PIS      ): half width of the minimum width of the 

slit, containing fraction       of total Power In that Slit 

of total width   . 

13.   (PIS       ): half width of the minimum width of the 

slit, containing fraction        of total Power In that 

Slit of total width   . 

14.   (PIS        ): half width of the minimum width of the 

slit, containing fraction         of total Power In that 

Slit of total width   . 

15.   (PIS      ): half width of the minimum width of the 

slit, containing fraction       of total Power In that Slit 

of total width   . 

16.   (PIS       ): half width of the minimum width of the 

slit, containing fraction        of total Power In that 

Slit of total width   . 

17.   (PIS        ): half width of the minimum width of the 

slit, containing fraction         of total Power In that 

Slit of total width   . 

18.   (PIS       ): half width of the minimum width of the 

slit, containing fraction        of total Power In that 

Slit of total width   . 

19.                , root mean square of variation of x-

coordinate. 

20.            , average modulus of variation of x-

coordinate. 

21.                   
 
, square of average of square root of 

the modulus of coordinate variation. 

 

We calculated the data for six different profiles of the field in 

the near-field zone: 1) Gaussian                        , 
2) Super-Gaussian                         , 3) axially-

symmetric 2D sech profile: Self-Fourier Transform profile found 

in this work,                       ; 4) profile of 

axially-symmetric mode of a single-mode fiber with       and 

of core radius  ,                      ; 5) Round Top 

Hat profile          at         ,          otherwise; 

6) Factorized Hyperbolic secant profile,             
             ,                    . They are presented 

in Table 1. 

Since the table contains dimensionless numbers, clarification 

should be made, in what units of dimensions of meters those data 

are given. For Gaussian and Super-Gaussian beams, 1 and 2, the 

data are given in units of traditional notations of  , where 

             . For new self-Fourier-Transform function 

                      , defined by eq. (40), coordinate 

width is given units  . The parameter   in 

                coincides with the                of 

the said beam, so that                   , while        
      . 

 For the mode of step-profile fiber with V-number       the 

data are given in units of core radius  . Finally, for factorized 

hyperbolic-secant                          ,       
              parameter   may be considered as 

              . 
As for the angular profile corresponding to those beams, their 

parameters, like   [radians] are expressed in units       for 1) 

Gaussian, 2) Super-Gaussian and 5) Round Top Hat beams; in 

units       for 3) axially-symmetric sech-beam and for 6) 

factorized sech-beam; for 4)     -mode of a fiber with  -nubmer 

      angular width is expressed in units      
Round top Hat beam #5 has well-known angular distribution 

of amplitude and intensity: 

          
 
       

     

 
 

 

   
   

 
    

    
         

so that 1-st zero of intensity of so-called “Airy disk” corresponds to 

   
    

  
   

         . Power-in-the-bucket fraction for the 

intensities profile (46) is given by: 

           
    

 
  

 

     
    

 
                    



Here and in Eq. (46)    and    are Bessel functions. Fraction of 

power in the bucket of the radius                  is 

                   ; numerically it is equal to     

            
 
       . Intensity wings of this angular 

distribution yield logarithmically divergent    
  . Finite value of

the    
   for that table is calculated by truncation of integral for 

   
   at value           . 

Table 2 contains the values of Beam Propagation Products (BPP) 

for those 6 beams:         or       . In these BPP we 

assumed one and the same criterion (out of 21) for coordinate size 
          and for angular size           . In principle one can 

compile 21x21x6=2646 products, if different criteria are used for 

near field and for far field; Table 1 contains all the necessary 

data. Table 3 follows the ideology form Lantigua et al. [7]: to 

divide BPP of measured beam by BPP of Gaussian beam, taken 

by the same criteria. In Lantigua et. al. authors used 

experimentally measured coordinate and angular width taken by 

particular criterion PIS        (which is very close to our 

           ).  

Table 1: Calculation of individual widths of various beams according to various criteria, see text. 
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   HWHIM, [       ] 0.5887 0.7677 0.6930 0.6840 1 0.7032 

   HW   IM, [       ] 0.7070 0.8409 0.8476 0.8052 1 0.8657 

   HW   IM, [       ] 1 1 1.2685 1.0699 1 1.3225 

   HW    IM, [       ] 1.5170 1.2318 2.1956 1.6923 1 2.3882 

   HWHIM,             0.1874 0.2447 0.1099 0.1493 0.2572 0.1119 

   HW   IM,             0.2250 0.2913 0.1345 0.1825 0.3048 0.1378 

   HW   IM,             0.3183 0.3993 0.2012 0.2724 0.4112 0.2105 

   HW    IM,             0.4829 0.5499 0.3483 0.4518 0.5442 0.3801 

  PIB f=0.5, [       ] 0.5887 0.5807 0.7830 0.6394 0.7070 0.7848 

  PIB f=0.75, [       ] 0.8326 0.7584 1.1551 0.8893 0.8660 1.1591 

  PIB f=0.865, [       ] 1.0006 0.8641 1.4370 1.0699 0.9299 1.4450 

  PIB f=0.9, [       ] 1.0730 0.9069 1.5677 1.1574 0.9487 1.5765 

  PIB f=0.95, [       ] 1.2239 0.99 1.8547 1.3573 0.9747 1.8686 

  PIB f=0.975, [       ] 1.3581 1.0586 2.1304 1.5559 0.9874 2.1509 

  PIB f=0.99, [       ] 1.5174 1.1349 2.4842 1.8161 0.9950 2.5158 

  PIB f=0.5,             0.1874 0.2327 0.1246 0.1654 0.2654 0.1249 

  PIB f=0.75,             0.2650 0.3237 0.1838 0.2414 0.3917 0.1845 

  PIB f=0.865,             0.3185 0.3838 0.2287 0.2963 0.7766 0.2300 

  PIB f=0.9,             0.3415 0.4095 0.2495 0.3208 0.9063 0.2509 

  PIB f=0.95,             0.3896 0.4638 0.2952 0.3720 1.7802 0.2974 

  PIB f=0.975,             0.4323 0.5203 0.3391 0.4175 2.9031 0.3423 

  PIB f=0.99,             0.4830 0.8080 0.3954 0.4705 5.1887 0.4004 

  PIS f=0.5, [       ] 0.3372 0.3357 0.4488 0.3684 0.4040 0.4383 

  PIS f=0.75, [       ] 0.5752 0.5423 0.7864 0.6220 0.6347 0.7763 

  PIS f=0.865, [       ] 0.7467 0.6727 1.0498 0.8031 0.7607 1.0465 

  PIS f=0.9, [       ] 0.8224 0.7257 1.1724 0.8845 0.8054 1.1747 

  PIS f=0.95, [       ] 0.9800 0.8283 1.4425 1.0652 0.8783 1.4615 

  PIS f=0.975, [       ] 1.1207 0.9121 1.7024 1.2463 0.9237 1.7431 

  PIS f=0.99, [       ] 1.2880 1.0037 2.0371 1.4860 0.9587 2.1117 

   PIS f=0.5,             0.1073 0.1335 0.0714 0.0946 0.1590 0.0697 

   PIS f=0.75,             0.1831 0.2257 0.1252 0.1647 0.2838 0.1235 

   PIS f=0.865,             0.2377 0.2907 0.1671 0.2179 0.4194 0.1665 

   PIS f=0.9,             0.2618 0.3190 0.1866 0.2420 0.6093 0.1869 

   PIS f=0.95,             0.3119 0.3782 0.2296 0.2935 1.1172 0.2326 

   PIS f=0.975,             0.3567 0.4343 0.2709 0.3403 1.9249 0.2774 

   PIS f=0.99,             0.4100 0.5308 0.3242 0.3966 3.7706 0.3361 

    
 

 ,         0.5 0.4465 0.7193 0.5509 0.5 0.7236 

              0.3989 0.3701 0.5564 0.4363 0.4244 0.5530 

        
 

,         0.3380 0.3205 0.4641 0.3693 0.3723 0.4586 

   
  

 

 ,             0.1591 0.2011 0.1145 0.1474 0.7182 0.1152 

      ,             0.1270 0.1581 0.0885 0.1154 0.3148 0.0880 



         
 
,             0.1076 0.1336 0.0739 0.0968 0.2093 0.0730 

Table 2. Beam propagation products for various near-field profiles       ; see text. 
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HWHIM 0.1103 0.1878 0.0764 0.1021 0.2572 0.0787 

HW   IM 0.1591 0.2450 0.1143 0.1469 0.3048 0.1193 

HW   IM 0.3183 0.3993 0.2561 0.2915 0.4112 0.2783 

HW    IM 0.7329 0.6774 0.7672 0.7645 0.5443 0.9078 

PIB       0.1103 0.1351 0.0976 0.1058 0.1877 0.0980 

PIB        0.2206 0.2455 0.2123 0.2147 0.3392 0.2138 

PIB         0.3183 0.3316 0.3286 0.3170 0.7221 0.3323 

PIB       0.3665 0.3714 0.3911 0.3713 0.8598 0.3955 

PIB        0.4768 0.4591 0.5475 0.505 1.7352 0.5557 

PIB         0.5871 0.5508 0.7223 0.6496 2.8666 0.7363 

PIB        0.7329 0.9169 0.9822 0.8544 5.1627 1.0073 

PIS       0.0362 0.0448 0.0320 0.0348 0.0642 0.0306 

PIS        0.1053 0.1224 0.0985 0.1025 0.1801 0.0959 

PIS         0.1775 0.1955 0.1754 0.1750 0.3191 0.1743 

PIS       0.2153 0.2315 0.2188 0.2141 0.4907 0.2196 

PIS        0.3057 0.3133 0.3312 0.3126 0.9812 0.3400 

PIS         0.3998 0.3962 0.4613 0.4241 1.7781 0.4836 

PIS        0.5280 0.5327 0.6605 0.5893 3.6150 0.7097 

  
                  

   1 
      

=1.1281 
1.0349 1.0182 4.5771 ( ) 1.0472 

                      0.6366 0.7349 0.6192 0.6326 1.6784 0.6117 

                         
  0.4569 0.5381 0.4308 0.4493 0.9787 0.4206 

Table 3. The ratios of beam propagation products for the beams under study to those of Gaussian beam. We have highlighted the 

particular cells of that table where those ratios are smaller than 1. We see that completely symmetric self-Fourier-Transformed beam 

       based on hyperbolic secant functions (Eq. (40)) yields certain advantage over the Gaussian beam, albeit for a limited number of 

criteria. Actually, that advantage is rather modest, about 4% to 30%, depending on particular criterion. 
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HWHIM 1 1.7026 0.6927 0.9257 2.3318 0.7135 

HW   IM 1 1.5399 0.7184 0.9233 1.9158 0.7497 

HW   IM 1 1.2545 0.8046 0.9158 1.2919 0.8744 

HW    IM 1 0.9243 1.0468 1.0431 0.7427 1.2392 

PIB       1 1.2248 0.8849 0.9592 1.7017 0.8887 

PIB        1 1.1129 0.9624 0.9733 1.5376 0.9693 

PIB         1 1.0418 1.0324 0.9959 2.2686 1.0440 

PIB       1 1.0134 1.0671 1.0131 2.346 1.0793 

PIB        1 0.9629 1.1483 1.0591 3.6393 1.1655 

PIB         1 0.9382 1.2303 1.1065 4.8826 1.2541 

PIB        1 1.2511 1.3402 1.1658 7.0442 1.3744 

PIS       1 1.2376 0.884 0.9613 1.7735 0.8445 

PIS        1 1.1624 0.9354 0.9734 1.7104 0.9108 

PIS         1 1.1014 0.9882 0.9859 1.7977 0.9820 

PIS       1 1.0752 1.0163 0.9944 2.2791 1.0200 

PIS        1 1.0249 1.0834 1.0226 3.2097 1.1121 

PIS         1 0.991 1.1538 1.0608 4.4475 1.2095 

PIS        1 1.0089 1.2509 1.1161 6.8466 1.3440 

  
                  

   1 1.1281 1.0349 1.0182 4.5771 ( ) 1.0472 



                      1 1.1544 0.9727 0.9937 2.6365 0.9609 

                         
  1 1.1777 0.9429 0.9834 2.142 0.9205 

The results depicted in Table 3 disprove a deeply entrenched 

myth that Gaussian field profile has the best BPP. This myth is 

definitely valid for r.m.s. criterion (i.e.   
  criterion), but not 

necessarily for other criteria. Particular boxes where other beams 

show BPP smaller than Gaussian are highlighted. However that 

“advantage” of other beams is not very strong. 

Observing the data from Tables 1, 2 and 3, we see that 6 

beams of essentially diffraction quality all have BPP about 1. 

Therefore particular choice of criteria should depend on the task 

for which the beam is intended in a particular application. 

Experimental work by Lantigua et. al. used (PIS       ) 

criteria both for near field and for far field zones. Power-In-the-

Slit is easier to measure in experiment than PIB, Power In the 

circular Bucket. On the other hand, PIB may be more important 

in a number of applications of laser beams. 

 

4. Conclusion 

 

We discussed 21 different criteria of width of the laser beam. 

Those criteria are applicable both for near-field waist, where the 

width    or   has dimensions [meters], and for far field zone, 

where width     or   has dimensions of [radians]. Since field 

amplitude in the far-field zone is a Fourier Transform (FT) (2) or 

(3) of the profile of the field in the waist, we provide the necessary 

information about properties of FT in Physical approach (PFT), 

Eq. (4), in Mathematical one (MFT), Eq. (7) and computationally 

convenient Discrete Fourier Transform (DFT), Eq. (25). We 

established simple quantitative relationships between PFT, MFT 

and DFT. 

That information has allowed us to find axially-symmetric 

eigenfunction of MFT Eq. (40). 

Using Fourier Transformation, we were able to find the values 

of    and     (or   and  ) according to 21 criteria for slightly 

different beams of almost diffraction quality.  

In our opinion, the use of particular criterion “width of the slit, 

containing 85% of total power”, constitutes a reasonable 

compromise between following the energy budget of the beam, on 

one hand, and suppression of unimportant wings of intensity 

distribution and measurement noise, on the other hand. Such 

technique has been demonstrated in recent physical experiments 

[7]. Dividing beam propagation product to that of ideal Gaussian 

beam provides, quality parameter, which is close to well-known 

  
 -criterion, but without the drawbacks of the latter. 

Results of our theoretical work show that taking some other 

diffraction-quality beam as etalon for comparison (instead of 

Gaussian) does not introduce much of a change. 

In Appendices A and B we further illustrate important 

properties of PFT, and connection between DFT and MFT. 

Acknowledgments. The work was supported by Navy Contract 

N68335-12-C-0239 and HEL JTO, ARO contract W911NF-10-1-

0441. 

 

Appendix A. Notion of edge waves: asymptotic behavior of 
Fourier-transform at large “ ”. 

 

Fraunhofer zone, i.e. far-field amplitude may be presented  in 

the following form (see Goodman [11,12] and Gbur [13]) 

         
 

    
                     

                                              

Here                                        , and we 

assume           time dependence. 

It means that the angular-dependent diffraction amplitude is 

2D-Fourier transform of the original field. This Appendix A is 

devoted to discussion of the properties of 1D-Fourier transform,  

                                   

  

  

         

Here 

             

  

  

                                  

We assume that                      .  Consider the 

question of asymptotic behavior of diffraction amplitude, i.e. 1D-

Fourier transformation (A2) at large values of      [actual small 

parameter of this asymptotic expansion is          ]. With this 

aim in mind, one can identically transform      from (A2) to 

     
 

 
     

 

  
           

  

  

                     

Integration of this formula by parts, with account of 

                     , yields: 

      
 

 
          

 

  
      

  

  

                  

If function       contains several discrete steps at points 

     ,      , with the magnitude of steps      

                ,     , etc., then the function 

      contains corresponding number of  -functions 

  

  
                          

  

  
 
         

      

Here                  denotes the part of         function 

with extracted              terms. As a result,      takes the 

form 

      
 

 
     

         
         

 
 

 
       

  

  
 
         

  

  

  

                         

Under application of the same procedure several times to 
                , one gets the asymptotic expansion of Fourier 

transform amplitude      in the form 

       
 

 
      

         
         

   
 

 
 
 

   
  

  
 
 
        

  

  
 
 
          



   
 

 
 
 

   
   

    
 

        
   

    
 

                 

Surprisingly, we have not seen analog of expansion (A8) in any 

mathematical textbook, albeit qualified people definitely do know 

this result. Citing Professor M. V. Berry and late Professor 

V. I. Arnold, “This result is well known to those, who know well”; 

though they used this phrase on another occasion. 

There are several separate corollaries of the result (A8). 

Consider the function       which has zero limits at      itself, 

and all its derivates have the same property. Then 

1) If      has finite number of steps (discontinuities), then 

       
 

 
      

         
          

 

 
          

i.e.      decreases as       at      ,  with particular coefficient 

given by (A9). Graphs Fig. 2 illustrate qualitatively the structure 

of functions      ,                             , as if      
were real function. In actual applications      may be complex-

valued. 

2) If       is continuous by itself, but has several discrete steps 

of derivative, then 

       
 

 
 
 

   
  

  
 
 
          

  

  
 
 
                 

3) If the function      and its derivatives: 1st, 2nd, …, up to 

the (N1)st including, are continuous, then 

       
 

 
 
   

   
      

    
 

                        

4) If the function      and all its derivatives are continuous, 

then      at       goes down faster than any power of    . 
 

Fig. 2. Example of function possessing steps and  derivative of that 

function with  -type singularities. 

Physical reason for amplitude      to have discontinuity at 

integration plane is the presence of sharp dark edges of aperture, 

these edges limit the passage of the beam. The corresponding 

terms in      are “edge waves”, emitted in the process of 

diffraction of incident wave upon that edge; compare to exact 

theory of Fresnel diffraction by semi-infinite plane, [14]. 

Contribution of steps of field derivative may be considered as 

resulting from diffraction by the edge of the transparent 

refractive prism or as a contribution from a sharp corner in an 

aperture. 

Consider an interesting example of the function       
             .  It is continuous by itself, but has step of 

derivative, and as a result 

  

  
  

 

 

 

   
         

   

     
 

 
        

 

 
 
 

              

In this way one can write 

    

      
 

 
      

 

       
 

 
 
  

      

           
 

     
 
  

   

 
  

       
                  

So, the summation of asymptotic series (A8) yields exact 

Lorentzian profile of     . 
The general statement 

“Fourier transform lives on the singularities of original”  

 is valid even for infinitely smooth Lorentzian original, 

     
 

        
                                    

if one is allowed to consider singularities     , and      in 

complex plane               . Indeed, for this function 

     contour integration in complex plane is elementary, and 

yields 

      
                                
                                

   

i.e. 

                                                   

which 1) is exact result and 2) is in agreement with the general 

ideology of eq. (A8): 

“Fourier transform lives on the singularities of original”. 

Similar observation can be made for                 , 

with singularities at                 ,           . Indeed, 

in that case 

     
 

         
          

  

           
             

and asymptotic behavior of      at large     is 

                                              

due to contributions of those poles                of 

original, which are closest to real axis        ), in complete 

accord with ideology of eq. (A8). Moreover, the traditional way of 

exact calculating Fourier transform for      from (A16) is to 

elucidate the contribution of those two poles. 

We also were able to find a function       with the following 

curious asymptotic behavior of MFT at      . Its MFT 

decreases faster than any power of      , but slower than 

           with any    . To possess such unusual property, 



      must have singularity (or several of them) on real axis in 

complex plane,                . However, this singularity 

should not have discontinuity of       or of any derivative 

        of finite order  . Here is an example of such function:  

              
 

   
              

 
                   

By itself       is not an eigenfunction of MFT. However we 

were able to check numerically that application of procedure Eq. 

(18) from the main text to       transforms it to an MFT 

eigenfunction, while preserving property  

                   
 
                                     

However, the resultant self-MFT function at       had 

oscillations (changes of sign). 

 

Appendix B 

Study of eigenfunctions of MFT via DFT. 

 

The discussion of eigenfunctions of MFT operator acting upon 

functions of dimensionless argument   requires large symmetric 

interval           , i.e.       , and   is also 

dimensionless. Using DFT as approximation of MFT means that 

step in  -coordinate is same as step in  -coordinate. Recalling 

that        and        , we got from the requirement 

      the relationship         , that is 

                                             

So the length   of the  -interval            is 

dimensionless number in that application of DFT, and it grows 

as      with the growth of  . For example            

yields interval of dimensionless length     , and step    
       ; and for                 one gets          , 

                Larger   yields better approximation of 

MFT by DFT. In its turn, approximation of 

               
 

   
                              

via DFT is made by the following formulae: 

                     
 

 
          

                                                 

Difference between      and                           

characterizes error in hypothetical relationship 

        
 

   
                 

  

  

                      

We verified this procedure with functions        
           ,                    , both corresponding to 

eigenvalue     , function                         
       , corresponding to eigenvalue      . Even for very 

small  ,     ,     ,      , maximum modulus of error 

under that procedure was       for      ,   
    for        and 

     for      . For      ,     ,        maximum 

modulus of error was less or about       for all of these three 

functions. 
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