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Metric for the Measurement of the Quality of Complex Beams. Theoretical Study

We study theoretically various definitions of laser beam width in a given cross-section. Quality of the beam is characterized by dimensionless Beam Propagation Products BPPs , which are different for 21 definitions, but are close to 1. Six particular beams are studied. In the process we had to review the properties of Fourier transform of various modifications: Physical Fourier Transform (PFT), Mathematical Fourier Transform (MFT), Discrete Fourier Transform (DFT), and relationships between them. We found axially-symmetric self-MFT function, which may be useful for description of diffraction-quality beams. In Appendices we illustrate the thesis "Fourier lives on the singularities of original".

1.Introduction

Problem of characterizing and measuring transverse quality of a laser beam has long history of studies. It is worth mentioning specifically monograph [START_REF] Siegman | Lasers[END_REF] and papers, e.g. [START_REF] Siegman | How to (maybe) measure laser beam quality[END_REF]. Most laser beams have very small angular divergence ( rad). Transformation of such beams by lenses without aberrations may separately change and the waist radius . However, the product (of dimension meters) is not changed by such transformation, and for almost-diffraction-quality beams is of the order of wavelength . Particular dimensionless quantity depends on the formal definition of and in theoretical discussions of the problem, and depends on the measuring procedures in experiment.

One possible definition of and is root-mean-square and related to it dimensionless parameter , adopted as ISO standard [START_REF]Lasers and laser-related equipment -Test methods for laser beam widths, divergence angles and beam propagation ratios[END_REF]:

Separate measurement of and is often necessitated by not quite axially-symmetric character of the beam, including possible astigmatism. Particular coefficient, , is chosen in such a manner, that minimum value of equals 1, and is achieved for ideal beam with perfect Gaussian profile.

It is assumed in [START_REF] Siegman | Lasers[END_REF] that is measured at the -position of its minimum (in focal waist in the case of focused beam), while is measured in the far field zone of the beam. Quite often in experiment the far-field zone with its angular distribution of intensity is substituted by the profile in the focal plane of a positive lens with focal distance . This often leads to confusion, which parameter, or corresponds to near-field, and which one is related to the far-field. Luckily, this modest confusion in terminology does not result in the change of , because as we have already mentioned, the product is invariant under transformation by paraxial optical elements without aberrations.

Many researchers have noted that the quantities and therefore put too much emphasis upon distant wings of distributions and , e.g. [47]. This includes an experimental paper by Lantigua et al., [START_REF] Lantigua | New metric for the measurement of the quality of complex beams[END_REF].

Our personal preference is the use of criterion "width of the slit, containing 85% of total power", and ratio of Beam Propagation Product to the BPP for ideal Gaussian beam by the same criterion. The chosen fraction 85%, seems to be reasonable for energy-delivering applications of laser beams. Meanwhile the slit technology is relatively easy in implementation of field devices.

Given field in the near-field zone, one finds intensity profile there . Besides that, angular amplitude profile, i.e. amplitude profile in the far-field zone is proportional to

The resultant angular intensity profile is . In case , and and . Here and below wave number , and is wavelength in the medium of propagation path (typically in vacuum).

For that reason in Section 2 we review three definitions of Fourier Transform (FT): Physical (PFT), Mathematical (MFT) and Discrete (DFT). In Section 2B we discuss 1-dimensional self-MFT functions. In Section 2C we discuss DFT and its relationship to PFT and MFT. In Section 2D we introduce new axially-symmetric self-MFT function, based on 1D self MFT function . In Section 3 we consider 21 quantitatively different definitions of the beam width, and calculate a table of those width for 6 different smooth transverse profiles in the near field. We calculate also their far-field profiles. In this manner we were able to find Beam Propagation Products (BPP) for these beams according to the 21 different criteria. The tables of BPP are compiled in assumption that one and the same criterion of width (out of 21 considered) is taken both for near-field and for far-field. Meanwhile we provide the data of calculations, which allow to take one criterion in near-field and another in the far-field, and thus arrange for such a compound BPP. Section 4 summarizes the results of the work. In Appendix A we illustrate the thesis "Fourier transform lives on the singularities of original". While this thesis is not scientifically new, we failed to find a mathematical textbook or a paper with its presentation. In Appendix B we apply DFT for the study of self-MFT functions. , where is any integer number from 0 to 3. For the case with , i.e. when is considered, formula of the type Eq. ( 18) was suggested in [START_REF] Lohmann | Self-Fourier objects and other self-transform objects[END_REF][START_REF] Caola | Self-Fourier functions[END_REF].

Curious examples of MFT eigenfunctions are with respective eigenvalues However, each of them has logarithmically divergent normalization integral (both at and at ). Periodicity condition in -coordinate with period may be satisfied, if the value of step in -space is chosen as (of dimensions [radian/meter]). In that case , and trapezoid approximation for becomes Vector of -dimensional linear space is called Discrete Fourier Transform (DFT) of vector from the same space, if its components are defined by Operator of DFT is implemented in every widely used mathematical software package like Mathcad, MatLab, Maple, Mathematica etc. What we were able to formulate here is that Physical FT from Eq. ( 4) may be approximated by Intuitively it is clear that Discrete FT Eq. ( 25) is a certain approximation of Physical FT. What is important is the particular -dependent coefficient in Eq. ( 26) expressing PFT via DFT.

2.C. Discrete

Remarkable mathematical facts about operator DFT defined by (25), are the following: 1) DFT is unitary operator indimensional linear space; 2) Inverse DFT operator (IDFT) looks also as approximation of Eq. ( 5) of inverse PFT, but is actually exact inverse operator with respect to DFT:

The proof of this fact uses formula for the sum of geometrical progression: with account of . Additional problem to be covered is that physically both positive and negative values of in (4), [START_REF] Ruschin | Gaussian content as a laser beam quality parameter[END_REF] . Introducing new variable , one transforms integral (36) up to a factor ( ) into A minor problem may arise, if the integral in the right-handside of Eq. (37) turns out, for some or other symmetry reason, to be exactly zero. Then one gets function equal to zero identically, which is not interesting, albeit may formally be considered as an eigenfunction of any linear operator.

Special interest is presented by the case when , to elucidate the rotation symmetry in -plane. Then

We are especially interested in the case of completely axiallysymmetric self 2D MFT functions Behavior of this function at small and large (remember that is dimensionless) is as follows:

Normalized (by ) function is mostly very similar to normalized axially-symmetric function . Indeed, However, the asymptotic behavior of at is radically different from that of Gaussian function. In this respect is a better approximation of the radial profile of a singlemode step-profile dielectric fiber with low V-number.

In particular, consider the axially symmetric mode of a single-mode fiber with core radius and -number being : well below the threshold of single-mode operation. Our new 2D SMFT function has the best overlapping with normalized mode at and is equal to Meanwhile the same mode has optimum overlapping integral with Gaussian function at ; that square of overlapping equals At (threshold value of , below which single mode exists only) Gaussian function has some advantage over : , However, both approximations are pretty good. Detailed study of approximation for fundamental modes of a fiber by Gaussian function was done by D. Marcuse in [START_REF] Marcuse | Gaussian approximation of the fundamental modes of graded-index fiber[END_REF], where he considered a variety of smoothed profiles of fiber refractive index.

3. Calculation of data for Beam Propagation Product (BPP) according to 21 possible criteria for 6 particular high-quality beams.

We consider numerous possible criteria of the beam width, be it in the near field waist (in units of meters), or in the far field (in units of radians). Here is the list of 21 criteria covered, formulated for quantity of dimensions [ , root mean square of variation of xcoordinate. 20.

, average modulus of variation of xcoordinate. 21.

, square of average of square root of the modulus of coordinate variation.

We calculated the data for six different profiles of the field in the near-field zone: 1) Gaussian , 2) Super-Gaussian , 3) axiallysymmetric 2D sech profile: Self-Fourier Transform profile found in this work, ; 4) profile of axially-symmetric mode of a single-mode fiber with and of core radius , ; 5) Round Top Hat profile at , otherwise; 6) Factorized Hyperbolic secant profile, , . They are presented in Table 1.

Since the table contains dimensionless numbers, clarification should be made, in what units of dimensions of meters those data are given. For Gaussian and Super-Gaussian beams, 1 and 2, the data are given in units of traditional notations of , where

. For new self-Fourier-Transform function , defined by eq. ( 40), coordinate width is given units . The parameter in coincides with the of the said beam, so that , while . For the mode of step-profile fiber with V-number the data are given in units of core radius . Finally, for factorized hyperbolic-secant , parameter may be considered as . As for the angular profile corresponding to those beams, their parameters, like [radians] are expressed in units for 1) Gaussian, 2) Super-Gaussian and 5) Round Top Hat beams; in units for 3) axially-symmetric sech-beam and for 6) factorized sech-beam; for 4) -mode of a fiber with -nubmer angular width is expressed in units Round top Hat beam #5 has well-known angular distribution of amplitude and intensity: so that 1-st zero of intensity of so-called "Airy disk" corresponds to . Power-in-the-bucket fraction for the intensities profile (46) is given by: Here and in Eq. ( 46 Table 3. The ratios of beam propagation products for the beams under study to those of Gaussian beam. We have highlighted the particular cells of that table where those ratios are smaller than 1. We see that completely symmetric self-Fourier-Transformed beam based on hyperbolic secant functions (Eq. ( 40)) yields certain advantage over the Gaussian beam, albeit for a limited number of criteria. Actually, that advantage is rather modest, about 4% to 30%, depending on particular criterion. The results depicted in Table 3 disprove a deeply entrenched myth that Gaussian field profile has the best BPP. This myth is definitely valid for r.m.s. criterion (i.e. criterion), but not necessarily for other criteria. Particular boxes where other beams show BPP smaller than Gaussian are highlighted. However that "advantage" of other beams is not very strong.

Observing the data from Tables 1, 2 and 3, we see that 6 beams of essentially diffraction quality all have BPP about 1. Therefore particular choice of criteria should depend on the task for which the beam is intended in a particular application.

Experimental work by Lantigua et. al. used (PIS ) criteria both for near field and for far field zones. Power-In-the-Slit is easier to measure in experiment than PIB, Power In the circular Bucket. On the other hand, PIB may be more important in a number of applications of laser beams.

Conclusion

We discussed 21 different criteria of width of the laser beam. Those criteria are applicable both for near-field waist, where the width or has dimensions [meters], and for far field zone, where width or has dimensions of [radians]. Since field amplitude in the far-field zone is a Fourier Transform (FT) (2) or (3) of the profile of the field in the waist, we provide the necessary information about properties of FT in Physical approach (PFT), Eq. ( 4), in Mathematical one (MFT), Eq. ( 7) and computationally convenient Discrete Fourier Transform (DFT), Eq. (25). We established simple quantitative relationships between PFT, MFT and DFT.

That information has allowed us to find axially-symmetric eigenfunction of MFT Eq. (40).

Using Fourier Transformation, we were able to find the values of and (or and ) according to 21 criteria for slightly different beams of almost diffraction quality.

In our opinion, the use of particular criterion "width of the slit, containing 85% of total power", constitutes a reasonable compromise between following the energy budget of the beam, on one hand, and suppression of unimportant wings of intensity distribution and measurement noise, on the other hand. Such technique has been demonstrated in recent physical experiments [START_REF] Lantigua | New metric for the measurement of the quality of complex beams[END_REF]. Dividing beam propagation product to that of ideal Gaussian beam provides, quality parameter, which is close to well-known -criterion, but without the drawbacks of the latter. Results of our theoretical work show that taking some other diffraction-quality beam as etalon for comparison (instead of Gaussian) does not introduce much of a change.

In Appendices A and B we further illustrate important properties of PFT, and connection between DFT and MFT.

  is an eigenfunction of unitary 2D MFT operator (30), and . The proof of this simple statement is based on factorization of exponential kernel in 2D MFT (30): Besides that the scalar product in that kernel is invariant with respect to simultaneous rotation of coordinates by arbitrary angle : Therefore another function, which generally is not factorized into , is still an eigenfunction of 2D MFT with . Linearity of 2D MFT operator guarantees that any superposition of such functions with -dependent weight , is still an eigenfunction of 2D MFT. Using polar coordinates in -plane, one can transform this superposition to Let us assume that function is periodic with period , i.e.

If , then axially

  symmetric result is trivial, . We were lucky to find another example of completely symmetric self 2D MFT function, with eigenvalue : where . Graph of this new function is presented on Fig 1.
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 1 Fig. 1. Self-Fourier transform function .

  Fourier Transform (DFT) properly. Approximation of PFT by DFT.

	Discrete Fourier Transform is usually introduced as an
	approximation for Physical FT. Consider function	at the
	interval			, and for definiteness let dimensions of
	be	. Let us characterize this function by its values
	at the set of equidistant points
	Here	is step of -coordinate. It is convenient to assume that
	function	is continued outside the interval	in
	a periodic manner with period , so that	. Then
	one can consider extra point	with the
	value			, which is already accounted for by .
	Corresponding vector	of -dimensional linear space has
	components	
	Function	(i.e. PFT from (4)) may be approximated by
	trapezoid formula	
	Periodicity assumption yields	. Evidently, there
	are only linear independent values of function	defined by
	(22). To express this idea, we can choose to consider discrete
	values of argument :

Table 1 :

 1 Table 1 contains all the necessary data. Table 3 follows the ideology form Lantigua et al. [7]: to divide BPP of measured beam by BPP of Gaussian beam, taken by the same criteria. In Lantigua et. al. authors used Calculation of individual widths of various beams according to various criteria, see text.

		) and are Bessel functions. Fraction of			. Intensity wings of this angular
	power in the bucket of the radius		is	distribution yield logarithmically divergent	. Finite value of
		; numerically it is equal to					
	the Table 2 contains the values of Beam Propagation Products (BPP) for that table is calculated by truncation of integral for at value . for those 6 beams: or . In these BPP we assumed one and the same criterion (out of 21) for coordinate size	near field and for far field; experimentally measured coordinate and angular width taken by
	and for angular size	. In principle one can	particular criterion PIS	(which is very close to our
	compile 21x21x6=2646 products, if different criteria are used for		).		
				Gauss,	Super Gauss,	2D sech	Fiber mode	Top Hat of radius	Round	hyperbolic secant	Factorized 1D
	HWHIM, [	]	0.5887	0.7677		0.6930	0.6840	1	0.7032
	HW IM, [	]	0.7070	0.8409		0.8476	0.8052	1	0.8657
	HW IM, [	]	1	1		1.2685	1.0699	1	1.3225
	HW	IM, [	]	1.5170	1.2318		2.1956	1.6923	1	2.3882
	HWHIM,		0.1874	0.2447		0.1099	0.1493	0.2572	0.1119
	HW IM,		0.2250	0.2913		0.1345	0.1825	0.3048	0.1378
	HW IM,		0.3183	0.3993		0.2012	0.2724	0.4112	0.2105
	HW	IM,		0.4829	0.5499		0.3483	0.4518	0.5442	0.3801
	PIB f=0.5, [	]	0.5887	0.5807		0.7830	0.6394	0.7070	0.7848
	PIB f=0.75, [	]	0.8326	0.7584		1.1551	0.8893	0.8660	1.1591
	PIB f=0.865, [	]	1.0006	0.8641		1.4370	1.0699	0.9299	1.4450
	PIB f=0.9, [	]	1.0730	0.9069		1.5677	1.1574	0.9487	1.5765
	PIB f=0.95, [	]	1.2239	0.99		1.8547	1.3573	0.9747	1.8686
	PIB f=0.975, [	]	1.3581	1.0586		2.1304	1.5559	0.9874	2.1509
	PIB f=0.99, [	]	1.5174	1.1349		2.4842	1.8161	0.9950	2.5158
	PIB f=0.5,		0.1874	0.2327		0.1246	0.1654	0.2654	0.1249
	PIB f=0.75,		0.2650	0.3237		0.1838	0.2414	0.3917	0.1845
	PIB f=0.865,		0.3185	0.3838		0.2287	0.2963	0.7766	0.2300
	PIB f=0.9,		0.3415	0.4095		0.2495	0.3208	0.9063	0.2509
	PIB f=0.95,		0.3896	0.4638		0.2952	0.3720	1.7802	0.2974
	PIB f=0.975,		0.4323	0.5203		0.3391	0.4175	2.9031	0.3423
	PIB f=0.99,		0.4830	0.8080		0.3954	0.4705	5.1887	0.4004
	PIS f=0.5, [	]	0.3372	0.3357		0.4488	0.3684	0.4040	0.4383
	PIS f=0.75, [	]	0.5752	0.5423		0.7864	0.6220	0.6347	0.7763
	PIS f=0.865, [	]	0.7467	0.6727		1.0498	0.8031	0.7607	1.0465
	PIS f=0.9, [	]	0.8224	0.7257		1.1724	0.8845	0.8054	1.1747
	PIS f=0.95, [	]	0.9800	0.8283		1.4425	1.0652	0.8783	1.4615
	PIS f=0.975, [	]	1.1207	0.9121		1.7024	1.2463	0.9237	1.7431
	PIS f=0.99, [	]	1.2880	1.0037		2.0371	1.4860	0.9587	2.1117
	PIS f=0.5,		0.1073	0.1335		0.0714	0.0946	0.1590	0.0697
	PIS f=0.75,		0.1831	0.2257		0.1252	0.1647	0.2838	0.1235
	PIS f=0.865,		0.2377	0.2907		0.1671	0.2179	0.4194	0.1665
	PIS f=0.9,		0.2618	0.3190		0.1866	0.2420	0.6093	0.1869
	PIS f=0.95,		0.3119	0.3782		0.2296	0.2935	1.1172	0.2326
	PIS f=0.975,		0.3567	0.4343		0.2709	0.3403	1.9249	0.2774
	PIS f=0.99,		0.4100	0.5308		0.3242	0.3966	3.7706	0.3361
		,		0.5	0.4465		0.7193	0.5509	0.5	0.7236
				0.3989	0.3701		0.5564	0.4363	0.4244	0.5530
		,		0.3380	0.3205		0.4641	0.3693	0.3723	0.4586
	,			0.1591	0.2011		0.1145	0.1474	0.7182	0.1152
	,			0.1270	0.1581		0.0885	0.1154	0.3148	0.0880

Table 2 .

 2 Beam propagation products for various near-field profiles ; see text.

		, ,	Gauss,	Super Gauss,	2D sech	Fiber mode	Round Top Hat	hyperbolic secant	Factorized 1D
	HWHIM	0.1103	0.1878	0.0764	0.1021	0.2572	0.0787
	HW IM	0.1591	0.2450	0.1143	0.1469	0.3048	0.1193
	HW IM	0.3183	0.3993	0.2561	0.2915	0.4112	0.2783
	HW	IM	0.7329	0.6774	0.7672	0.7645	0.5443	0.9078
	PIB		0.1103	0.1351	0.0976	0.1058	0.1877	0.0980
	PIB		0.2206	0.2455	0.2123	0.2147	0.3392	0.2138
	PIB		0.3183	0.3316	0.3286	0.3170	0.7221	0.3323
	PIB		0.3665	0.3714	0.3911	0.3713	0.8598	0.3955
	PIB		0.4768	0.4591	0.5475	0.505	1.7352	0.5557
	PIB		0.5871	0.5508	0.7223	0.6496	2.8666	0.7363
	PIB		0.7329	0.9169	0.9822	0.8544	5.1627	1.0073
	PIS		0.0362	0.0448	0.0320	0.0348	0.0642	0.0306
	PIS		0.1053	0.1224	0.0985	0.1025	0.1801	0.0959
	PIS		0.1775	0.1955	0.1754	0.1750	0.3191	0.1743
	PIS		0.2153	0.2315	0.2188	0.2141	0.4907	0.2196
	PIS		0.3057	0.3133	0.3312	0.3126	0.9812	0.3400
	PIS		0.3998	0.3962	0.4613	0.4241	1.7781	0.4836
	PIS		0.5280	0.5327	0.6605	0.5893	3.6150	0.7097
			1	=1.1281	1.0349	1.0182	4.5771 ( )	1.0472
			0.6366	0.7349	0.6192	0.6326	1.6784	0.6117
			0.4569	0.5381	0.4308	0.4493	0.9787	0.4206
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Appendix A. Notion of edge waves: asymptotic behavior of Fourier-transform at large " ".

Fraunhofer zone, i.e. far-field amplitude may be presented in the following form (see Goodman [START_REF] Goodman | Introduction to Fourier Optics[END_REF][START_REF] Goodman | Speckle Phenomena in Optics[END_REF] Gbur [START_REF] Gbur | Mathematical Methods for Optical Physics and Engineering[END_REF])

Here

, and we assume time dependence. It means that the angular-dependent diffraction amplitude is 2D-Fourier transform of the original field. This Appendix A is devoted to discussion of the properties of 1D-Fourier transform,

Here

We assume that  . Consider the question of asymptotic behavior of diffraction amplitude, i. There are several separate corollaries of the result (A8). Consider the function which has zero limits at itself, and all its derivates have the same property. Then 1) If has finite number of steps (discontinuities), then i.e.

decreases as at , with particular coefficient given by (A9). Graphs Fig. 2 illustrate qualitatively the structure of functions , , as if were real function. In actual applications may be complexvalued.

2) If is continuous by itself, but has several discrete steps of derivative, then Physical reason for amplitude to have discontinuity at integration plane is the presence of sharp dark edges of aperture, these edges limit the passage of the beam. The corresponding terms in are "edge waves", emitted in the process of diffraction of incident wave upon that edge; compare to exact theory of Fresnel diffraction by semi-infinite plane, [START_REF] Landau | Electrodynamics of Continuous Media[END_REF]. Contribution of steps of field derivative may be considered as resulting from diffraction by the edge of the transparent refractive prism or as a contribution from a sharp corner in an aperture.

Consider an interesting example of the function



. It is continuous by itself, but has step of derivative, and as a result In this way one can write So, the summation of asymptotic series (A8) yields exact Lorentzian profile of . The general statement "Fourier transform lives on the singularities of original"  is valid even for infinitely smooth Lorentzian original, if one is allowed to consider singularities , and  in complex plane . Indeed, for this function contour integration in complex plane is elementary, and yields i.e.  which 1) is exact result and 2) is in agreement with the general ideology of eq. (A8): "Fourier transform lives on the singularities of original".

Similar observation can be made for , with singularities at , . Indeed, in that case and asymptotic behavior of at large is  due to contributions of those poles of original, which are closest to real axis ), in complete accord with ideology of eq. (A8). Moreover, the traditional way of exact calculating Fourier transform for from (A16) is to elucidate the contribution of those two poles.

We also were able to find a function with the following curious asymptotic behavior of MFT at . Its MFT decreases faster than any power of , but slower than with any . To possess such unusual property, must have singularity (or several of them) on real axis in complex plane, . However, this singularity should not have discontinuity of or of any derivative of finite order . Here is an example of such function:

By itself is not an eigenfunction of MFT. However we were able to check numerically that application of procedure Eq. ( 18) from the main text to transforms it to an MFT eigenfunction, while preserving property However, the resultant self-MFT function at had oscillations (changes of sign