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Recording of Volume Bragg Gratings (VBGs) in Photo-Thermo-Refractive glass is limited to maximum refractive 
index change about 0.002. We discuss various saturation curves and their influence on amplitudes of recorded 
gratings. Special attention is given to multiplexed VBGs aimed at recording of several gratings in the same 
volume. The best shape of saturation curve for production of strongest gratings is the threshold-type curve. Two 
photon absorption as mechanism of recording also allows increasing the strength of multiplexed VBGs. 

OCIS codes:    (050.7330) Volume gratings; (090.4220) Multiplex holography. 
 

1. Introduction 
Volume Bragg Gratings (VBGs) [1, 2] recorded in Photo-Thermo-
Refractive (PTR) glass constitute new set of optical elements. 
They are used for spectral combining of high-power laser beams 
[3−5], for stretching and compression of ultra-short pulses [6, 7], 
for mode stabilization of diode lasers [8], for passive coherent 
beam combining [9], and for narrow band filtering in different 
fields of spectroscopy [10, 11]. Many of these elements are 
multiplexed VBGs, i.e. they contain several gratings with 
different spatial frequencies. Amplitudes of recorded gratings, 
both single and multiplexed ones, i.e. spatial Fourier-components 
of recorded 𝛿𝛿(𝐫), are limited due to the fact of saturation of 
refractive index change by value ∆𝑛max. In the case of PTR glass 
the value of |∆𝑛max| in the best condition of recording and 
thermal development of VGB is about |∆𝑛max| ≈ 0.002. 

Recording several volume holograms in the same volume has 
been studied theoretically and experimentally in [12−14] and 
numerous other works, with the purpose of data storage. Those 
studies were aimed to maximize the number of recorded 
holograms. The requirements to diffraction efficiency of each 
individual grating were not very stringent: diffracted wave had to 
be detectable at the level of rather weak noise. Most of those 
data-storage works were discussing and implementing 
multiplexed recording in electro-optic photorefractive crystals. 
Those crystals do not have strong response to the pedestal of 
recording beam intensity [15], therefore only small spatial period 
(spatial AC) components of illumination at recording were 
accounted for. As a result, the mean square average amplitude of 
spatial AC-modulation grows as √𝑁, where 𝑁 is the number of 
gratings with independent periods and independent phases [13]. 

The main application of PTR glass-based VBG, both single and 
multiplexed ones, is handling high-power beams, be they inside 
the laser cavity or outside it. Therefore the achievement of large 

diffraction efficiency via generating strong spatial Fourier-
component of refractive index modulation (RIM) is of essence. 
Exposure of the medium via single-photon absorption of 
interference patterns of pair of coherent waves with identical 
intensities and identical polarization is assumed to be: 

𝑈(𝒓) = 0.5𝑈1 ∙ |exp(𝑖𝐤𝐤) + exp[𝑖(𝐤 + 𝐪1)𝐫 + 𝑖𝜑1]|2 =
= 𝑈1[1 + cos(𝐪1𝐫 + 𝜑1)]. 

The main feature of PTR-VBG is that the pedestal part 
(spatially uniform), 𝑈1, of the exposure, counts with the same 
coefficient as the grating part (spatially periodic),  
𝑈1 cos(𝐪1𝐫 + 𝜑1). For large degree of multiplexing, 𝑁 ≳ 4 it is 
the saturation of recording response by sum of pedestals 
∑ 𝑈𝑗𝑗 ∼ 𝑈1𝑁, that is the crucial factor. Meanwhile, individual 
gratings, 𝑈𝑗 cos�𝐪𝑗𝐫 + 𝜑𝑗�, have random phases, and their r.m.s. 
amplitude grows as 𝑈1√𝑁. 

In this work we study theoretically the influence of saturation 
on recorded VBG with account of the following factors: 

1) Normalized shape 𝜌(𝑈) of the saturation curve, i.e. 
dependence of refractive index change upon total exposure 𝑈(𝐫): 
δ𝑛(𝐫) = Δ𝑛max ∙ 𝜌�𝑈(𝐫)�. 

2) Number 𝑁 of individual gratings aimed to be recorded. 
3) Spatially-average exposure 〈𝑈〉 ≈ 𝑈1𝑁 due to pedestal. 
 

2. Shapes of saturation curve 𝝆�𝑼(𝐫)� = 𝛅𝒏(𝐫) 𝚫𝒏𝐦𝐦𝐦⁄  
Presented below seven different shapes 𝜌(𝑈) chosen for our 

study  are normalized in such a way that 𝜌(𝑈 → ∞) = 1. Besides 
that, first five curves under consideration have the property 
𝜌(𝑈 → 0) = 1 ∙ 𝑈. The latter condition just means the choice of 
units of exposure. Here are seven different shapes that we have 
considered: 

𝜌tanh(𝑈) = tanh(𝑈),  (1) 
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𝜌arctan(𝑈) = (2 𝜋⁄ ) arctan(𝜋𝜋 2⁄ ),                    (2) 
𝜌power(𝑈) = 𝑈 (1 + 𝑈)⁄ ,         (3) 
𝜌exp(𝑈) = 1 − exp(−𝑈),         (4) 

𝜌line 45(𝑈) = �𝑈 at   0 < 𝑈 < 1
1 at   𝑈 > 1          ,                  (5) 

𝜌line 60(𝑈) = �
0 at  0 <  𝑈 < 0.5

2(𝑈 − 0.5) at  0.5 < 𝑈 < 1 
1 at  𝑈 > 1            

,  (6) 

𝜌heaviside(𝑈) = �0 at 0 < 𝑈 < 0.5
1 at 𝑈 > 0.5         ,              (7) 

By saturation curve 𝜌(𝑈) we denote function 𝜌(𝑈) in the 
relationship, that we assume in our model: 

𝛿𝛿(𝐫) = 𝛥𝑛max ∙ 𝜌�𝑈(𝐫)�.  (8) 

Figure 1 shows the graphs of those seven functions; we put 
them into two different pictures to reduce the clutter. 

Fig. 1. Shapes of seven saturation curves under consideration. 

 
It should be emphasized that there is no experimental 

evidence that the recording in Photo-Thermo-Refractive Glass 
(PTRG) satisfies any particular saturation law. Some theoretical 
models of PTRG recording and development point to power law, 
Eq. (3), as rather plausible variant [2]. However, the purpose of 
this modeling work is to make predictions following from all 
seven hypotheses, Eqs. (1−7) with the aim of subsequent 
comparison with future detailed experiments. 

 
3. Models of exposure 

We assume that an individual grating is recorded via 
interference pattern of two coherent waves. Intensity in such 
interference pattern is 

𝑈𝑗�1 + cos�𝐪𝑗𝐫 + 𝜑𝑗��.  (9) 
For single-photon absorption, the exposure by 𝑁 sequential 

interference patterns is 

𝑈(𝐫) = ∑ 𝑈𝑗�1 + cos�𝐪𝑗𝐫 + 𝜑𝑗��𝑁
𝑗=1 .  (10) 

For definiteness we consider all 𝑁 intensities 𝑈𝑗 to be the same: 
𝑈𝑗 = 𝑈1. Meanwhile the wave vectors 𝐪𝑗 and phases 𝜑𝑗 are 
considered  statistically independent random quantities in our 
model. 

For two-photon absorption of recording pattern of interference 
we take 

𝑈𝑗2�1 + cos�𝐪𝑗𝐫 + 𝜑𝑗��
2 ≡ 

≡ 𝑈𝑗2 �1 + 2 cos�𝐪𝑗𝐫 + 𝜑𝑗� +
1
2 +

1
2 cos�2𝐪𝑗𝐫 + 2𝜑𝑗�� ≡ 

≡ 3
2
𝑈𝑗2 �1 + 4

3
cos�𝐪𝑗𝐫 + 𝜑𝑗� + 1

3
cos�2𝐪𝑗𝐫 + 2𝜑𝑗��.  (11) 

Note that relative modulation term at “right” spatial frequency 
has increased by factor 4/3. Besides that, second spatial 
harmonic appears in 𝑈(𝐫) for two-photon recording. 

Figure 2 illustrates Eq. (1) and (3), and spatial profile of 
refractive index change for the case of 𝑁 = 16 independently 
recorded interference grating patterns with particular arbitrary 
values of qj and φj. Spatially average exposure was chosen 
𝑈1𝑁 = 2.25. 

Fig. 2. a) Two saturation curves Eq. (1) and Eq. (3); b) Spatial profile of 
refractive index change of recording 16 multiplexed gratings. 

 
4. Fourier-component to be calculated 

By Fourier component of VBG we denote the quantity 

𝐹𝑗 =
2
𝑉� cos�𝐪𝑗𝐫 + 𝜑𝑗�𝜌�𝑈(𝐫)� 𝑑3𝐫 .              (12) 

Here trivial factor ∆𝑛max is omitted. Normalization coefficient 
2 𝑉⁄ , with 𝑉 being integration volume, is chosen in such a way, 
that for first five curves of saturation 𝜌𝛼(𝑈) the value of 𝐹𝑗 is 
equal to 𝑈𝑗 at 𝑁𝑈1 ≪ 1. In actual calculations we used one-
dimensional integral over the interval length 𝐿, with 
normalization coefficient 2 𝐿⁄ : 

𝐹𝑗 =
2
𝐿�𝑐𝑐𝑐�𝑞𝑗𝑥 + 𝜑𝑗� 𝜌�𝑈(𝑥)�𝑑𝑑

𝐿

0

.             (13) 



The values of 𝑞𝑗𝐿 were around 100 radian and more, 𝑞𝑗 were 
chosen mutually non-commensurate, and phases 𝜑𝑗 were 
random within interval (0, 2𝜋). We successfully checked that if 
some particular component 𝑈𝑘[1 + cos(𝑞𝑘𝑥 + 𝜑𝑘)] was absent 
during recording, then the Fourier-component 𝐹𝑘 calculated by 
Eq. (13) was much smaller than those 𝐹𝑗, whose 
 𝑈𝑗�1 + cos�𝑞𝑗𝑥 + 𝜑𝑗�� were actually present at recording. 

 
5. Results for recording of single VBG 

Our first step was to find the dependence of Fourier component 
of 𝛿𝛿(𝐫) for recording of a single grating: 𝑁 = 1, on the value of 
exposure 𝑁𝑈1 ≡ 𝑈1. Figure 3 shows the dependence of 𝐹1 on 𝑈1 
for four out of seven studied curves of saturation: tanh(𝑈), 
(2/𝜋) arctan(𝜋𝜋 2⁄ ), straight linear between (𝑈 = 0,𝜌 = 0) and 
(𝑈 = 1,𝜌 = 1) and step-function from 0 to 1 at 𝑈 = 0.5. All 7 
studied laws of saturation have demonstrated a peak of 𝐹1 
around 𝑈1~1 and a decrease of 𝐹1 for large 𝑈1. To eliminate 
clutter on the graph, we depicted only four curves corresponding 
to Eqs. (1), (2), (5), (7).  The peak values of 𝐹1 peak and 
corresponding exposure 𝑈1 delivering that 𝐹1 peak for all seven 
saturation laws are presented in the first pair of lines of Table 1. 

Fig. 3. Dependence of Fourier amplitude 𝐹𝑗 of a single recorded grating on 
average exposure 𝑈1 for different laws of saturation in case of one-photon 

absorption. 

Fig. 4. Same graph as on Fig.3, but for the case of two-photon absorption. 

Qualitative conclusion is that sharper 𝜌(𝑈) curves yield larger 
values of 𝐹1,peak. However, difference between largest 𝐹1,peak for 
𝜌heaviside(𝑈) and smallest 𝐹1,peak for power law saturation 
constitutes only factor around 1.85. Curves at Figure 3 and data 
at Table 1 were produced for single-photon absorption model of 
recording. Corresponding data for two-photon absorption model 
of recording are presented at Figure 4 and Table 2. 

 
6. Multiplexed VBG with 𝑵 = 𝟒,𝟖,𝟏𝟏,𝟑𝟑 and 𝟔𝟔 gratings 

Figure 5 shows the average Fourier component 〈𝐹𝑗〉  for 
j = 1,2,3,4 at single-photon recording of 𝑁 = 4 independent 
gratings, and Figure 7 shows same results for 𝑁 = 32 
independent gratings. Again, as on Figure 3, we tried not to 
overburden the graph keeping the curves for four laws of 
saturation only. Argument on horizontal axis is spatially-
averaged exposure 𝑈av = 𝑁𝑈1. Table 1 gives the peak values of 
average Fourier component 𝐹𝑗 (peak) and spatially average 
exposure 𝑁𝑈𝑗 ≡ 𝑁𝑈1 delivering that peak. Figures 6, 8 and Table 
2 provide similar information for model of two-photon absorption. 

Fig. 5. Dependence of Fourier amplitude 𝐹𝑗 of 𝑁 = 4 grating on average 
exposure 𝑁𝑈1 for various laws of saturation in case of one-photon 

absorption. 

Fig. 6. Same graph as on Fig.5, but for the case of two-photon absorption 

 



Fig. 7. Dependence of Fourier amplitude 𝐹𝑗 of 𝑁 = 32 gratings on average 
exposure 𝑁𝑈1 for different laws of saturation in case of one-photon 

absorption. 

Fig. 8. Same graph as on Fig.7, but for the case of two-photon absorption. 

 
7. Dependence of peak Fourier amplitude 𝑭𝒋 on 
multiplexity 𝑵: analytic calculations and numerical 
modeling 

Analytic calculations for a large number of individually 
recorded gratings may be done via decomposition 
 𝑈(𝐫) = 𝑁𝑈1 + ∑ 𝑈1 cos�𝐪𝑗𝐫 + 𝜑𝑗�𝑁

𝑗=1  for single-photon case, so 
that 

𝑛(𝑥) = ∆𝑛max �𝜌(𝜉) +
𝜕𝜕
𝜕𝜕 𝑈1 cos�𝑞𝑗𝑥 + 𝜑𝑗��  ,   𝜉 = 𝑁𝑈1, 

𝐹𝑗 = 𝜕𝜕
𝜕𝜕
𝑈𝑗 ≡

1
𝑁
𝜉 𝜕𝜕
𝜕𝜕

.  (14) 

The values of maximum of functions 𝜉 𝜕𝜕 𝜕𝜕⁄  are 
[𝜉 𝜕𝜕tanh 𝜕𝜕⁄ ]max = 0.448, [𝜉 𝜕𝜕arctan 𝜕𝜕⁄ ]max = 1 𝜋⁄ = 0.38, 
�𝜉 𝜕𝜕power 𝜕𝜕⁄ �

max
= 1 4⁄ = 0.25, �𝜉 𝜕𝜕exp 𝜕𝜕⁄ �

max
= 𝑒−1 =

0.368, [𝜉 𝜕𝜕line 45 𝜕𝜕⁄ ]max = 1,   [𝜉 𝜕𝜕line 60 𝜕𝜕⁄ ]max = 2  at 
𝜉tanh = 0.776, 𝜉arctan = 2 𝜋⁄ = 0.637,   𝜉power = 1, 𝜉exp = 1, 
𝜉line 45 = 1,   𝜉line 60 = 1, respectively. 

Results of numerical modeling yield at least for 𝑁 ≥ 4 
reasonable agreement with Eq. (14). 

Special attention should be paid to the case of Heaviside 
function, 𝜌heaviside(𝜉) at 𝜉 = 0.5. The optimal value of  
𝑁𝑈1 = 𝜉opt is evidently 𝜉opt,   heaviside = 0.5, so that 
𝑈1 opt,   heaviside = 0.5 𝑁⁄ . 

After that one should consider 𝑢(𝑥) ≈ 0.5 + 𝑟 + 𝑚(𝑥). Here 
𝑚(𝑥) = 𝑈1cos (𝑞1𝑥), and 𝑟 is random quantity, which is the 
result of adding all spatially-oscillating parts of all other 
remaining sinusoidal profiles of recording: so to say other 
recorded gratings.  Probability distribution 𝑊(𝑟)𝑑𝑑 , due to 
central limit theorem, is well approximated by Gaussian,  
𝑊(𝑟)𝑑𝑑 ≈ (2𝜋𝜎2)−0.5exp (−𝑟2/2𝜎2) 𝑑𝑑, where 𝜎2 ≈ 0.5𝑁𝑁𝑗2. 
With account of optimum 𝑈𝑗 = 0.5/𝑁,  square of standard 
deviation for 𝑟 becomes 𝜎2 ≈ 1/(8𝑁). It means that the value of 
𝜌st(0.5 + 𝑟 + 𝑚(𝑥)), averaged over fluctuations of 𝑟, 
approximately equals 𝑊(0)𝑚(𝑥) = 𝑚(𝑥)�4𝑁/𝜋. Further 
spatial averaging of  cos2(𝑞1𝑥) yields factor 0.5, and with account 
of 𝑈1 ≈ 0.5/𝑁 one gets the optimum multiplexed grating for 
Heaviside response of multiplexed VBG 𝐹𝑗 ≈ 1/√𝜋𝜋.  

This result is also in reasonable agreement with numerical 
modelling at 𝑁 ≫ 1. 

In case of two-photon recording the value of optimum 𝜉 for 
different 𝜌(𝑈) curves should be equalized to 𝑁 ∙ �3𝑈12 2⁄ � and 

𝐹𝑗 = 2𝑈12 �𝜉
𝑑𝑑
𝑑𝑑
�
opt

= 4
3
�𝜉opt

𝑑𝑑
𝑑𝑑
� 1
𝑁

,         𝑈12 = 2𝜉opt
3𝑁

. (16) 

And again, numerical modeling at 𝑁 ≫ 1 is in a reasonable 
agreement with this extra factor 4/3 for two-photon recording. 

Quite interesting is the problem of cross-modulation gratings. 
Namely, if recording profile contains, among others, the terms 
𝑈𝑗�1 + cos�𝑞𝑗𝑥 + 𝜑𝑗�� and 𝑈𝑘(1 + cos(𝑞𝑘𝑥 + 𝜑𝑘)), then a 

 

Table 1. Peak Fourier amplitudes for all seven functions for 𝑵 = 𝟏,𝟒,𝟖,𝟏𝟏,𝟑𝟑 and 𝟔𝟔 gratings in case of one-photon absorption. 
N  tanh arctan power exp line 45 line 60 heaviside 

1 𝐹1 peak 0.472 0.382 0.343 0.438 0.536 0.625 0.637 
𝑁 ∙ 𝑈1 for peak value 1.05 1.3 2.45 1.55 0.65 0.8 1 

4 𝐹1 peak 0.113 0.083 0.068 0.097 0.160 0.267 0.298 
𝑁 ∙ 𝑈1 for peak value 0.833 0.752 1.249 1.129 0.752 0.752 0.502 

8 𝐹1 peak 0.056 0.041 0.033 0.047 0.086 0.158 0.199 
𝑁 ∙ 𝑈1 for peak value 0.833 0.680 1.129 1.129 0.752 0.752 0.502 

16 𝐹1 peak 0.028 0.020 0.016 0.023 0.046 0.090 0.142 
𝑁 ∙ 𝑈1 for peak value 0.752 0.020 1.020 1.020 0.752 0.833 0.501 

32 𝐹1 peak 0.014 0.01 0.01 0.012 0.025 0.049 0.101 
𝑁 ∙ 𝑈1 for peak value 0.752 0.614 1.249 1.020 0.833 0.833 0.502 

64 𝐹1 peak 0.007 0.006 0.004 0.007 0.013 0.026 0.072 
𝑁 ∙ 𝑈1 for peak value 0.462 0.566 0.502 0.752 0.833 0.833 0.502 



Table 2. Peak Fourier amplitudes for all seven functions for 𝑵 = 𝟏,𝟒,𝟖,𝟏𝟏,𝟑𝟑 and 𝟔𝟔 gratings in case of two-photon absorption. 
N  tanh arctan power exp line 45 line 60 heaviside 

1 𝐹1 peak 0.574 0.505 0.476 0.556 0.597 0.633 0.637 
𝑁 ∙ 𝑈1 for peak value 0.81 1.44 2.89 1.21 0.563 0.723 0.49 

4 𝐹1 peak 0.145 0.110 0.092 0.127 0.186 0.272 0.292 
𝑁 ∙ 𝑈1 for peak value 0.585 0.585 0.878 0.717 0.478 0.478 0.390 

8 𝐹1 peak 0.074 0.054 0.044 0.062 0.104 0.173 0.198 
𝑁 ∙ 𝑈1 for peak value 0.537 0.476 0.658 0.658 0.476 0.537 0.358 

16 𝐹1 peak 0.037 0.028 0.021 0.030 0.056 0.104 0.139 
𝑁 ∙ 𝑈1 for peak value 0.514 0.343 0.711 0.437 0.514 0.514 0.343 

32 𝐹1 peak 0.018 0.013 0.011 0.015 0.030 0.060 0.099 
𝑁 ∙ 𝑈1 for peak value 0.555 0.453 0.680 0.680 0.555 0.555 0.328 

64 𝐹1 peak 0.009 0.006 0.005 0.008 0.016 0.033 0.069 
𝑁 ∙ 𝑈1 for peak value 0.510 0.434 0.706 0.706 0.553 0.553 0.327 

 
grating 

𝛿𝛿(𝑥) = ∆𝑛max ∙ 𝐹𝑗𝑗 ∙ �cos��𝑞𝑗 + 𝑞𝑘�𝑥 + 𝜑𝑗 + 𝜑𝑘� + 

+ cos��𝑞𝑗 − 𝑞𝑘�𝑥 + 𝜑𝑗 − 𝜑𝑘�� 

is recorded. Again, at 𝑁 ≳ 4 analytic expansion of 𝜌(𝑈) around 
〈𝑈〉 = 𝑁𝑈1 allows to predict 

𝐹𝑗𝑗 ≈
1

2𝑁2 �𝑈2 𝑑
2𝜌(𝑈)
𝑑𝑈2

�
𝑈=〈𝑈〉=𝑁𝑈1

. (17) 

So the amplitude of “parasitic” cross-modulation gratings 
decreases as 1/𝑁2, if spatial average exposure 𝑈1𝑁 is chosen to 
optimize the amplitudes of main gratings. Our numerical 
modelling with random phases 𝜑𝑗 and 𝜑𝑘 is in a good agreement 
with analytical expression (17). 

 
8. Conclusion 

We have studied theoretically the recording of multiplexed 
Volume Bragg Gratings with account of seven possible shapes of 
saturation curves. Optimum values of spatially averaged total 
exposure were found for each of those saturation curves, and the 
corresponding Fourier amplitudes of individual gratings. For 
relatively large multiplicity, number of gratings 𝑁 ≳ 4, analytical 
formulae (14−16) derived by us, are in a good correspondence 
with the results of numerical modeling. In particular, best 
amplitude of individual Fourier component goes down as 
const/𝑁, and values of that const are determined for each 
normalized  saturation curve 𝜌(𝑈) on exposure U. 

Qualitative conclusion is that sharper profiles of saturation 
curve 𝜌(𝑈) yield larger Fourier amplitudes at optimum exposure. 
Especially good would be threshold-like profile 𝜌(𝑈) of Heaviside 
function. Similar beneficial effect shows at sharper saturation 
due to two-photon recording. However, the price one should pay 
for this sharpness-provided advantage is the necessity of more 
precise adjustment of spatially-averaged exposure/development. 
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