Member, IEEE Adrian Basarab 
email: adrian.basarab@irit.fr
  
George Tzagkarakis 
  
Member, IEEE Panagiotis Tsakalides 
email: tsakalid@ics.forth.gr
  
Member, IEEE Denis Kouamé 
email: denis.kouame@irit.fr
  
A Achim 
email: alin.achim@bristol.ac.uk
  
  
  
  
  
Reconstruction of Ultrasound RF Echoes Modeled as Stable Random Variables
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This paper introduces a new technique for reconstruction of biomedical ultrasound images from simulated compressive measurements, based on modeling data with stable distributions. The proposed algorithm exploits two types of prior information: on one hand, our proposed approach is based on the observation that ultrasound RF echoes are best characterized statistically by alpha-stable distributions. On the other hand, through knowledge of the acquisition process, the support of the RF echoes in the Fourier domain can be easily inferred. Together, these two facts form the basis of an p minimization approach that employs the iteratively reweighted least squares (IRLS) algorithm, but in which the parameter p is judiciously chosen, by relating it to the characteristic exponent of the underlying alpha-stable distributed data. We demonstrate, through Monte Carlo simulations, that the optimal value of the parameter p is just below that of the characteristic exponent α, which we estimate from the data. Our reconstruction results show that the proposed algorithm outperforms previously proposed reconstruction techniques, both visually and in terms of two objective evaluation measures.

I. INTRODUCTION

U LTRASOUND imaging is arguably the most widely used cross-sectional medical imaging modality worldwide. Indeed, ultrasound has a number of potential advantages over other medical imaging modalities, because it is non-invasive, portable and versatile, it does not use ionizing radiation, and it is relatively low-cost [START_REF] Szabo | Diagnostic Ultrasound Imaging: Inside Out[END_REF].

The general principle of ultrasound image formation involves the transmission of an ultrasound beam from an array of transducers (the probe) towards the medium being scanned [START_REF] Szabo | Diagnostic Ultrasound Imaging: Inside Out[END_REF]. The returning echoes are then analyzed in order to construct an image that displays their location and amplitude. Image compression is needed in order to reduce the data volume and to achieve a low bit rate, ideally without any perceived loss of image quality. The need for transmission bandwidth and storage space in the digital radiology environment, especially in telemedicine applications, and the continuous diversification of ultrasound applications keep placing new demands on the capabilities of existing systems [START_REF] Szabo | Diagnostic Ultrasound Imaging: Inside Out[END_REF]. Introduction of new technologies, potentially entailing orders of magnitude greater requirements for data transfer, processing, and storage, impose even greater demands and act to encourage the development of effective data reduction techniques. Recent developments in medical ultrasound (US) imaging have led to commercial systems with the capability of acquiring Real-Time 3D (RT3D) or 4D image data sets. However, typical scanners can only produce a few volume images per second, which is fast enough to see a fetus smile but not fast enough to see heart valves moving. To address this issue, several techniques were proposed recently for increasing the acquisition frame rates and these include multiline transmit imaging, plane-/diverging wave imaging or retrospective gating [START_REF] Cikes | Ultrafast cardiac ultrasound imaging: Technical principles, applications, and clinical benefits[END_REF]. Nevertheless, the disadvantage of acquiring data at such high frame rates is a reduction in image quality [START_REF] Cikes | Ultrafast cardiac ultrasound imaging: Technical principles, applications, and clinical benefits[END_REF], [START_REF] Tanter | Ultrafast imaging in biomedical ultrasound[END_REF].

Traditionally, statistical signal processing has been centred in its formulation on the hypotheses of Gaussianity and stationarity. This is justified by the central limit theorem and leads to classical least squares approaches for solving various estimation problems. The introduction of various sparsifying transforms starting with the penultimate decade of the last century, together with the adoption of various statistical models that are able to model various degrees of non-Gaussianity and heavy-tails, have led to a progressive paradigm shift [START_REF] Unser | A unified formulation of Gaussian versus sparse stochastic processes-Part I: Continuous-domain theory[END_REF]. At the core of modern signal processing methodology sits the concept of sparsity. The key idea is that many naturally occurring signals and images can be faithfully reconstructed from a lower number of transform coefficients than the original number of samples (i.e. acquired according to Nyquist theorem) [START_REF] Candes | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]. In this context, compressive sensing (CS) could prove to be a powerful solution to enhance US images frame rate by decreasing the amount of acquired data. In terms of reconstruction, most CS methods rely on 1 norm minimization using a linearprogramming algorithm. All these approaches do not exploit the true statistical distribution of the data and are motivated by the inability of the classical least-squares approach to estimate the reconstructed signal.

In the last four years, a few research groups worked specifically on the feasibility of compressive sampling in US imaging and several attempts of applying the CS theory may be found in the recent literature (for an overview see e.g. [START_REF] Liebgott | Compressive sensing in medical ultrasound[END_REF]). In particular, in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF], we have introduced a novel framework for CS of biomedical ultrasonic signals based on modeling data with symmetric alpha-stable (SαS) distributions. Then, we proposed an p -based minimization approach that employed the iteratively reweighted least squares (IRLS) algorithm, but in which the parameter p was conjectured to be related to the characteristic exponent of the underlying alpha-stable distributed data. The results showed a significant increase of the reconstruction quality when compared with previous 1 minimization algorithms. On the other hand, the effect of the random sampling pattern on the reconstruction quality, when working in the frequency domain (k-space) was studied in [START_REF] Quinsac | Compressed sensing of ultrasound images: Sampling of spatial and frequency domains[END_REF]. This was further exploited in [START_REF] Basarab | Medical ultrasound image reconstruction using compressive sampling and lp norm minimization[END_REF] for the design of a US reconstruction technique similar to [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF] but operating in the Fourier domain.

In this paper, we further extend our techniques described in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF], [START_REF] Basarab | Medical ultrasound image reconstruction using compressive sampling and lp norm minimization[END_REF], [START_REF] Achim | Reconstruction of compressively sampled ultrasound images using dual prior information[END_REF] by supplementing the prior information available to an p minimization algorithm with the support of the RF echoes in the frequency domain and showing via Monte Carlo simulations how to optimally choose the parameter p. In ultrasound applications the support can be easily inferred through knowledge of the ultrasound scanner specifications and transducer bandwidth. Hence, we describe this new approach as exploiting dual prior information. The contributions of this paper can be thus summarized in the following two essential points: (i) we propose an approach to ultrasound RF echoes reconstruction based on p minimization that uses dual prior information and (ii) we show, through Monte Carlo simulations, that choosing to perform the minimization with the parameter p just under the value of the characteristic exponent, α, leads to optimal reconstruction performance. The actual acquisition of medical ultrasound data using compressive sensing has been addressed in other works, e.g. [START_REF] Wagner | Compressed beamforming in ultrasound imaging[END_REF], but is beyond the scope of this paper.

The rest of this manuscript is structured as follows: In the following section, we provide a brief, necessary overview of the compressive sensing theory and of the heavy-tailed model that we employ for ultrasound data. In Section III-A we describe the IRLS based method for p minimization that exploits dual prior information. Section IV justifies the use of p with the parameter p close to the characteristic exponent α and illustrates the proposed algorithm reconstruction performance. Finally, Section V concludes the paper and draws future work directions.

II. BACKGROUND

A. Compressive sensing

Compressive sensing is based on measuring a significantly reduced number of samples than what is dictated by the Nyquist theorem. Given a correlated image, the traditional transform-based compression method performs the following steps: i) acquires all N samples of the signal, (ii) computes a complete set of transform coefficients (e.g., DCT or wavelet), (iii) selectively quantizes and encodes only the K << N most significant coefficients. This procedure is inefficient, since a significant proportion of the output of the analogue-to-digital conversion process ends up being discarded.

Compressive sensing is concerned with sampling signals more parsimoniously, acquiring only the relevant signal information, rather than sampling followed by compression. The main hallmark of this methodology is that, given a compressible signal, a small number of linear projections, directly acquired before sampling, contain sufficient information to effectively perform the processing of interest (signal reconstruction, detection, classification, etc).

In terms of signal approximation, Candés et. al [START_REF] Candes | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] and Donoho [START_REF] Donoho | Compressed sensing[END_REF] have demonstrated that if a signal is K-sparse in one basis (meaning that the signal is exactly or approximately represented by K elements of this basis), then it can be recovered from M = c • K • log(N/K) << N fixed (non-adaptive) linear projections onto a second basis, called the measurement basis, which is incoherent with the sparsity basis, and where c > 1 is a small overmeasuring constant. The measurement model is

y = Φx, (1) 
where x is the N × 1 discrete-time signal, y is the M × 1 vector containing the compressive measurements, and Φ is the M × N measurement matrix.

In this work, we simulate compressive measurements starting from real RF ultrasound images by projecting the RF signals onto random matrices. Designing a real compressive ultrasound imaging system is beyond the scope of this work. In fact, most existing attempts at applying compressive sensing principles in ultrasonography proceed in the same way. Nevertheless, a few groups have started to show the feasibility of this type of systems in real-world scanners. These include applications to compressed beamforming in cardiac imaging [START_REF] Chernyakova | Fourier-domain beamforming: The path to compressed ultrasound imaging[END_REF], plane-wave imaging [START_REF] Schiffner | Compressed sensing for fast image acquisition in pulse-echo ultrasound[END_REF], and duplex Doppler [START_REF] Richy | Blood velocity estimation using compressive sensing[END_REF].

In terms of reconstruction, using the M measurements in the first basis and given the K-sparsity property in the other basis, the original signal can be recovered by taking a number of different approaches. The majority of these approaches solve constrained optimization problems. Commonly used approaches are based on convex relaxation (Basis Pursuit [START_REF] Candes | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF]), non-convex optimization (Re-weighted p minimization [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sensing[END_REF]) or greedy strategies (Orthogonal Matching Pursuit (OMP) [START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF]). In the context of this work, our interest lies in non-convex optimization (re-weighted p minimization [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sensing[END_REF], [START_REF] Miosso | Compressive sensing reconstruction with prior information by iteratively reweighted least squares[END_REF]) strategies.

B. α-stable distributions as models for RF echoes

The ultrasound image formation theory has been long time dominated by the assumption of Gaussianity for the return RF echoes. However, the authors in [START_REF] Kutay | On modeling biomedical ultrasound RF echoes using a power-law shot noise model[END_REF] have shown that ultrasound RF echoes can be accurately modelled using a power-law shot noise model, which in [START_REF] Petropulu | Power-law shot noise and its relationship to long-memory alpha-stable processes[END_REF] has been in turn shown to be related to α-stable distributions. The same result has also been obtained by [START_REF] Pereyra | Modeling ultrasound echoes in skin tissues using symmetric α-stable processes[END_REF] but starting directly from the generalized central limit theorem. The appearance of stable models in the context of ultrasound images has also been noticed in [START_REF] Achim | Novel Bayesian multiscale method for speckle removal in medical ultrasound images[END_REF] but they were used to model their wavelet decomposition coefficients rather than the RF echoes.

By definition, a random variable is called symmetric α-stable (SαS) if its characteristic function is of the form: where α is the characteristic exponent, taking values

ϕ(ω) = exp(jδω -γ|ω| α ), (2) 
0 < α ≤ 2, δ (-∞ < δ < ∞) is the location parameter, and γ (γ > 0)
is the dispersion of the distribution. For values of α in the interval (1, 2], the location parameter δ corresponds to the mean of the SαS distribution, while for 0 < α ≤ 1, δ corresponds to its median. The dispersion parameter γ determines the spread of the distribution around its location parameter δ, similar to the variance of the Gaussian distribution. Fig. 1 shows the probability density functions (PDF) of several densities including the Cauchy and the Gaussian. Note the tail behaviour of SαS densities as a function of α: the lower the characteristic exponent, α, the heavier the corresponding density tail (asymptotically power laws).

1) Model parameter estimation for SαS distributions:

The α-stable tail power law provided one of the earliest approaches in estimating the stability index of real measurements [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance[END_REF]. The empirical distribution of the data, plotted on a log-log scale, should approach a straight line with slope α if the data is stable. Maximum likelihood methods developed by various authors are asymptotically efficient and have become amenable to fast implementations [START_REF] Nolan | Maximum likelihood estimation of stable parameters[END_REF]. More recently, based on Mellin Transform [START_REF] Zolotarev | Mellin-Stieltjes transforms in probability theory[END_REF], Nicolas [START_REF] Nicolas | Introduction aux statistiques de deuxième espèce: Applications des log-moments et des log-cumulants à l'analyse des lois d'images radar[END_REF] proposed the second-kind statistics theory, by analogy with the way in which common statistics are deducted based on Fourier Transform. The corresponding Method of Log-Cumulants (MoLC) is based on equating sample log-cumulants to their theoretical counterparts for a particular model and then solving the resulting system, much in the same way as in the classical method of moments.

In particular, the Mellin transform of SαS densities is given in (3). Interestingly, the expression for the Mellin transform of the SαS density is the same as that for its fractional lower order moments [START_REF] Shao | Signal processing with fractional lower order moments: Stable processes and their applications[END_REF], by letting s = p + 1, where p is the moment order and s is the complex variable of the transform

Φ SαS (s) = γ s-1 α 2 s Γ s 2 Γ -s-1 α α √ πΓ -s-1 2 . ( 3 
)
By taking the limit as s → 1 of the first and second derivatives of the logarithm of Φ SαS (s), we obtain the following results

for the second-kind cumulants of the SαS model [START_REF] Achim | Statistical modelling for wavelet-domain image fusion[END_REF] 

k1 = α -1 α ψ(1) + log γ α k2 = π 2 12 α 2 + 2 α 2 (4)
where ψ is the Digamma function and ψ(r, •) is the Polygamma function, i.e., the r-th derivative of the Digamma function.

The first two sample second-kind cumulants can be estimated empirically from N samples y i as follows

k1 = 1 N N i=1 [log(|y i |)] k2 = 1 N N i=1 [(log(|y i |) -k1 ) 2 ]. (5) 
The estimation process simply involves solving (4) for α and γ.

In Fig. 2 we show an example of an ultrasound RF echo modelled using SαS density functions both in time and in frequency domain.

III. SIGNAL RECONSTRUCTION VIA p MINIMIZATION

Ideally, our aim in this Section should be to reconstruct a sparse vector x, the ultrasound echo in our case, with the smallest number of non-zero components, that is, with the smallest 0 pseudo-norm. Although the problem of finding such an x is NP-hard, there exist several sub-optimal strategies which are used in practice. Most of them solve a constrained optimization problem by employing the 1 norm. On the other hand, CS reconstruction methods were developed in recent work (e.g., [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sensing[END_REF], [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF], [START_REF] Tsaig | Extensions of compressed sensing[END_REF]) by employing p with p < 1, with the goal of approximating the ideal 0 case. Specifically, the problem consists in finding the vector x with the minimum p by minimizing x = min x p subject to Φx = y.

(

However, very few authors attempt to devise a principled strategy for choosing the optimal p or to relate the p minimization to the actual statistics of the signal to reconstruct. Indeed, for alpha-stable signals, which do not possess finite second-or higher-order moments, the minimum dispersion criterion [START_REF] Shao | Signal processing with fractional lower order moments: Stable processes and their applications[END_REF], [START_REF] Kuruoglu | Nonlinear least lp-norm filters for nonlinear autoregressive α-stable processes[END_REF] can be defined as an alternative to the classical minimum mean square error for Gaussian signals. This leads naturally to a least p estimation problem, an approach that can enhance the reconstruction of heavy-tailed signals from their measurement projections [START_REF] Donoho | Compressed sensing[END_REF]. Although finding a global minimizer of ( 6) is NP-hard, many algorithms with polynomial time have been proposed to find a local minimizer [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sensing[END_REF], [START_REF] Daubechies | Iteratively reweighted least squares minimization for sparse recovery[END_REF]. Denote by X ∈ R N ×J an US RF image formed by J RF signals of length N , x 1 , x 2 , . . . x J . One possible approach to p minimization, first introduced in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF], relies on the iteratively reweighted least squares method (IRLS) [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sensing[END_REF] but is modified to incorporate the assumption of SαS distributed signals. The hallmark of the IRLS algorithm is to replace the p objective 

As shown in [START_REF] Chartrand | Iteratively reweighted algorithms for compressive sensing[END_REF] and references therein, the solution to ( 7) is given explicitly as the next iterate x(n)

x(n) = Q n Φ T ΦQ n Φ T -1 y, ( 8 
)
where Q n is a diagonal matrix with entries 1

w k = |x (n-1) k | 2-p
. This solution is obtained using a direct method by solving the Euler-Lagrange equation in [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF].

The whole algorithm is provided in pseudo-code below. For better readability, we drop the index j for the time being, but keep in mind that the algorithm is applied to each RF line j, j ∈ {1, 2, . . . J}. Algorithm 1. SαS -IRLS algorithm 1) Initialization (n = 0): x(0) = min y -Φx 2 . Set the damping factor ε = 1. 2) Estimate α from y using (4). 3) Determine p as p = α -0.01. 4) while ε is greater than a pre-defined value do (a) n = n + 1 (b) Find the weights w k = ((x

(n-1) k ) 2 + ε) p 2 -1
(c) Form a diagonal matrix Q n whose entries are 1 wi (d) Form the solution to [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF] as in ( 8) (e) if the norm of the residual, x(n) -x(n-1) 2 , was reduced by a certain factor, then decrease . (f) x(n-1) = x(n)

In the table above, the damping factor, , is used to regularize the optimization problem in situations where the weights, w k , are undefined because x (n-1) k = 0. Note that in theory, since the measurements y are merely linear combinations of the elements of x, by employing the stability property for stable random variable [START_REF] Shao | Signal processing with fractional lower order moments: Stable processes and their applications[END_REF], one can use y to estimate directly the parameter α of x (step 2 in the algorithm above). In practice however, because of our use of Gaussian measurement matrices, we find sometimes the estimated parameter α to be attracted in the vicinity of 2 (y is also a linear combination of elements of Φ). We circumvent this problem by employing a block of many adjacent RF lines and assuming that neighbouring RF lines are characterized by the same characteristic exponent. This is not an unreasonable assumption since we have already shown [START_REF] Tzagkarakis | Joint reconstruction of compressively sensed ultrasound RF echoes by exploiting temporal correlations[END_REF] that there are advantages to be had by exploiting temporal correlations between distinct RF echoes. Our measurement model can then be written as

Y = ΦX
where X is now N × L, Y is M × L and L is the number of RF lines used in the estimation. Each line of Y is now a linear combination of elements x and hence provides the estimate α corresponding to x.

Finally, let us note that the actual estimation method used can be any of the existing techniques for SαS parameter estimation, only applied on the compressive measurements, y. Consequently, its accuracy is not peculiar to this application. In Section II-B1 we have described the estimation method based on the method of log-cumulants but any existing approach would have been an equally valid choice.

A. IRLS with dual prior information

Our new approach to RF signal reconstruction still relies on SαS-IRLS [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF] but is implemented in the frequency domain as in [START_REF] Basarab | Medical ultrasound image reconstruction using compressive sampling and lp norm minimization[END_REF] and modified (following [START_REF] Achim | Reconstruction of compressively sampled ultrasound images using dual prior information[END_REF], [START_REF] Miosso | Compressive sensing reconstruction with prior information by iteratively reweighted least squares[END_REF]) to incorporate information on the support of RF signals. Implementing the SαS-IRLS algorithm in the Fourier domain is motivated by the higher degree of compressibility exhibited by ultrasound echoes in the frequency domain. This can be clearly deduced by observing the shape of the histograms in Fig. 2, which shows the distribution of a single RF line from an ultrasound image being more heavy-tailed in the frequency domain. The more heavy-tailed a distribution is, the sparser (more compressible) the data modeled by that distribution. To further support this idea, in Fig. 3, we show graphs demonstrating that the characteristic exponent, α, is consistently lower in the frequency domain. Specifically, for the same ultrasound image, for each line in a block of 128 RF signals, we estimate α directly from the data, in both time and frequency domains. The resulting traces, plotted in Fig. 3, show clearly α being consistently smaller in the Fourier domain than in time domain. Note that this behaviour is observed due to the non-random nature of RF signals, which have a structure determined by acoustic reflections from inside the tissue being imaged. In the case of a purely random alpha-stable distributed signal, applying the Fourier transform would determine a higher value of the characteristic exponent in the frequency domain.

In addition, in the Fourier domain, it is also easier to infer the support of ultrasound signals, through knowledge of the transducer bandwidth. Indeed, the bandwidth, that directly influences the axial resolution, depends mostly on the transducer characteristics. It is inversely proportional to the length of the emitted pulse, also known as the spatial pulse length. The latter is calculated as the product between the wavelength (a function of the central frequency of the probe and known in practice) and the number of cycles within the pulse (also known a priori). Thus, for a given scanner, the bandwidth depends on known parameters and may be calculated theoretically.

Several two-dimensional transforms have been considered in existing approaches, such as 2D Fourier, wavelets or waveatoms. Our own work showed that by exploiting temporal correlations between distinct RF echoes (which exist in the spatial domain [START_REF] Tzagkarakis | Joint reconstruction of compressively sensed ultrasound RF echoes by exploiting temporal correlations[END_REF] as well as in the frequency domain [START_REF] Basarab | Medical ultrasound image reconstruction using distributed compressive sampling[END_REF]), one can take advantage of block sparsity and that can lead to improved reconstruction results. Nevertheless, processing the reconstruction RF line by RF line (image column by image column) is a natural choice in US imaging. Indeed, acquisition and standard post-processing techniques such as beamforming or demodulation are already done sequentially line by line. In this work, we restrict our investigations to the 1D Fourier transform.

The 1D Fourier transforms of all individual RF echoes x j can be written as

ξ j = Fx j , j ∈ {1, 2, . . . J}, ( 9 
)
where F ∈ C N ×N is the 1D Fourier matrix. In the frequency domain, the measurement model becomes

m j = Φ j ξ j = Φ j Fx j , j ∈ {1, 2, . . . , J}, ( 10 
)
where Φ j are Gaussian matrices of size M × N (M N ) and m j ∈ C M ×1 . Now denote by Θ j the subset of points in {1, 2, . . . N} that defines the support of ξ j :

ξj,k = 0, ∀k ∈ Θ j , j ∈ {1, 2, . . . , J}. ( 11 
)
Following the arguments in [START_REF] Miosso | Compressive sensing reconstruction with prior information by iteratively reweighted least squares[END_REF], the information represented by ( 11) can be added to the IRLS algorithm for the minimization of the l p by solving the following problem instead of ( 6) (or its frequency domain equivalent)

min ξ 1 2 N k=1 k / ∈Θ | ξj,k | p subject to Φ j ξ j = m j , j ∈ {1, 2, . . . , J}. (12) 
Intuitively, (12) will offer a better solution than ( 7) because it will attempt to minimize the number of nonzero elements in ξ only outside the set Θ.

To solve [START_REF] Donoho | Compressed sensing[END_REF] we use the modified IRLS algorithm proposed in [START_REF] Miosso | Compressive sensing reconstruction with prior information by iteratively reweighted least squares[END_REF]. Specifically, a solution can be obtained by solving iteratively

min ξ 1 2 N k=1 k / ∈Θ w k ξ2 k , subject to Φ ξ = m (13) 
so that w k ξ2 k is sufficiently close to | ξk | p ∀k / ∈ Θ and as before, for simplicity we have dropped the index j.

Since w k = 0, ∀k ∈ Θ j and w k must approach ξk for k / ∈ Θ j , we can define the weights to be used in the algorithm as

w k = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ξ(n-1) k 2 + ε p 2 -1 , if k / ∈ Θ τ 2-p ξ(n-1) k 2 + ε p 2 -1 , otherwise (14) 
where τ is a small positive constant necessary to obtain a closed solution to [START_REF] Chernyakova | Fourier-domain beamforming: The path to compressed ultrasound imaging[END_REF]. Following the suggestion in [START_REF] Miosso | Compressive sensing reconstruction with prior information by iteratively reweighted least squares[END_REF], in our implementation we used τ 2-p = 10 -3 . As for SαS-IRLS, the parameter p is set equal to α -0.01, where α is obtained by fitting an alpha-stable distribution to the data. With the newly defined weights, w k , the IRLS with dual prior information (IRLS-DP) can be implemented using the same pseudo-code as for the SαS-IRLS algorithm. Finally, the reconstructed RF lines are obtained by inverting the corresponding Fourier transforms: 

xj = F -1 ξj , j ∈ {1, 2, . . . , J}. (15) 

IV. SIMULATION RESULTS

In this section, we first present results of Monte-Carlo simulations performed in order to demonstrate that in designing an p minimization algorithm, the choice of p should be driven by the value of the characteristic exponent of the signal to be reconstructed. The second part of this section presents actual reconstruction experiments conducted using real data corresponding to a number of ultrasound images of thyroid glands.

A. Monte-Carlo experiments for p parameter estimation

The proposed l p minimization algorithms for ultrasound image reconstruction rely on specifying the parameter p, whose optimal value is related to the characteristic exponent, α. A method for choosing the optimum value of p has been proposed in [START_REF] Tzagkarakis | Bayesian compressed sensing using alpha-stable distributions[END_REF], which was based on minimising the standard deviation of a FLOM-based covariation estimator. Other authors suggest the optimal p should be as close to zero as possible, in order to approximate the ideal l 0 case.

Here, we show through Monte Carlo simulations that the best reconstruction results are obtained when p is chosen to be lower but as close as possible to the value of α, which is estimated from compressive measurements. For this purpose, CS measurements were generated by projecting alpha-stable vectors on M = 256 Gaussian random vectors. For each value of α, the value of γ used for simulating SαS vectors was set to 1.

Twenty simulations were performed for each value of α, by generating for each run a new random measurement matrix. The normalized root mean square errors between the true and reconstructed vectors, for α ∈ [0.5 : 0.05 : 1.6], were computed and averaged for each simulation. To ensure that simulation results were not biased, we used a high number of iterations (10,000) in the IRLS algorithm. The average errors are presented in Fig. 4. We observe that the best choice for p is a value slightly smaller than that of α. Moreover, we observe that for α < 1 (which is the case in US imaging when performing the reconstruction in the Fourier domain), the choice of p is not too restrictive, the errors being similar for a relatively large range of values p < α.

As noted above, although lower values of p would theoretically increase the chance of finding the sparsest signal that explains the measurements [START_REF] Miosso | Compressive sensing reconstruction with prior information by iteratively reweighted least squares[END_REF], for the analyzed ultrasound data we considered, p should be linked to the true degree of sparsity of the data in order to favor correct reconstruction based on the information about the distribution. The more heavy-tailed a distribution is, the sparser (more compressible) the data modelled by that distribution. In other words, a higher value of α corresponds to a less compressible dataset and does not justify the use of a smaller p.

B. Reconstruction Results

In this section we present reconstruction experiments conducted using real data corresponding to in vivo healthy thyroid glands. The images were acquired with a Siemens Sonoline Elegra scanner using a 7.5 MHz linear probe and a sampling frequency of 50 MHz. The spectral support was estimated to be between 4 and 11 MHz. Various sections of the original images were cropped and patches of size 256 × 512 were obtained. These patches were then sampled line by line using linear projections of random Gaussian bases at two levels. The two levels correspond to the number of samples taken from the original signal (the echo lines); these are 33% and 50% (i.e. M = 0.33N and M = 0.5N ). Let us emphasise here, that while we have used this strategy to simulate compressively sampled ultrasound signals, we do not imply that this is the strategy that needs to be adopted by a real compressive scanner. Readers may refer to [START_REF] Quinsac | Frequency domain compressive sampling for ultrasound imaging[END_REF] for discussion on alternative sampling schemes. On the other hand, the generality of our approach is not in any way reduced through the adoption of this strategy. Reconstruction of the samples was achieved by using the proposed p minimization scheme (as described in Section III-A) and for comparison, reconstructions using p minimization with SαS -IRLS [START_REF] Achim | Compressive sensing for ultrasound RF echoes using α-stable distributions[END_REF] and SαS-IRLS in the Fourier domain (FD-SαS-IRLS) [START_REF] Basarab | Medical ultrasound image reconstruction using compressive sampling and lp norm minimization[END_REF] are shown (Table I) along with reconstruction results obtained through l 1 norm minimization via Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. The values of α for each line and so that of p (which is derived from α), were estimated directly from the ultrasound RF signal while for our new approach (IRLS-DP) the support was inferred through knowledge of the frequency of acquisition and transducer bandpass as detailed above.

An analysis of the results was undertaken in terms of reconstruction quality, which was measured by means of the structural similarity index (SSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] and normalized root mean squared error (NRMSE) of the reconstructed echoes ensemble compared with the original ensemble. SSIM resembles more closely the human visual perception, and as such, it is often preferred to the commonly used MSE-based metrics. For a given image I and its reconstruction Î the SSIM is defined by: SSIM

= (2μ I μ Î + c 1 )(2σ I Î + c 2 ) (μ 2 I + μ 2 Î + c 1 )(σ 2 I + σ 2 Î + c 2 ) (16) 
where μ I , σ I are the mean and standard deviation of I (similarly for Î), σ I Î denotes the correlation coefficient of the two images, and c 1 , c 2 stabilize the division with a weak denominator. In particular, when SSIM equals 0 the two images are completely distinct, while when the two images are matched perfectly SSIM is equal to 1.

It can be seen in Table I that according to both metrics employed, the best results are obtained using the proposed reconstruction algorithm, which exploits two types of prior information. The results support the fact that reconstructing ultrasound RF echoes in the Fourier domain produces better results than directly in time domain. We attribute this to the more compressible representations that can be achieved for RF lines in the Fourier domain, which can also be ascertained by comparing Fig. 2 (a) and(b). Taking into account prior information of the signal in the form of its support is also confirmed to optimise reconstruction. We should note however that, unlike the observation made in [START_REF] Miosso | Compressive sensing reconstruction with prior information by iteratively reweighted least squares[END_REF], reducing further the order p leads actually to worse reconstruction results. This observation is consistent with the conclusions drawn based on the Monte Carlo simulations.

For a qualitative analysis, reconstruction results obtained with the three schemes discussed in this paper, with M = 0.33N measurements are also presented in Fig. 5 and Fig. 6. Visually, it can be seen that the IRLS-DP reconstruction introduces the least distortion, clearly producing the best result compared to the original and confirming the results indicated by the NRMSE and SSIM values obtained. 

V. CONCLUSIONS

In this paper, we extended our previously proposed framework for ultrasound image reconstruction from compressive measurements. We have shown through simulations that RF echoes can be best reconstructed by driving an p minimization problem with dual prior information: the value of the characteristic exponent of the RF line and its sparse support in the frequency domain. The latter plays certainly a central role in allowing a significant reduction in both the number of required measurements and computational cost. Nevertheless, our experiments strongly suggest that the optimal value of p in a p minimization procedure shouldn't be arbitrarily small but rather close to the characteristic exponent of the underlying alphastable distribution of the data. We have devised a principled strategy for choosing the optimal p by relating the p minimization to the actual SαS statistics of the RF signals. We achieved that by observing that for alpha-stable signals, which do not possess finite second-or higher-order moments, the minimum dispersion criterion [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance[END_REF] can be defined as an alternative to the classical minimum mean square error for Gaussian signals.

Our current research focusses on developing algorithms and architectures for the actual acquisition of ultrasound images in a compressive fashion. Results will be reported in a future communication.

Fig. 1 .

 1 Fig. 1. Example SαS probability density functions for α = 1 (Cauchy, dashdot), 1.5 (dash), and 2 (Gaussian). The dispersion parameter is kept constant at γ = 1.

Fig. 2 .

 2 Fig. 2. Example RF signal modeling with SαS distributions. (a) An RF signal in time domain (α = 1.36). (b) The real part of its 1D Fourier transform (α = 0.71). The SαS model offers a very accurate fit in both cases but the distribution in the Fourier domain has heavier tails, which correspond to a much lower value of α.

Fig. 3 .

 3 Fig. 3. Characteristic exponent, α, estimated both in time and in frequency for successive RF lines of an ultrasound image.

Fig. 4 .

 4 Fig. 4. Monte Carlo simulations demonstrating that, in general, reconstruction errors are minimized when the value of p is just below α.

Fig. 5 .

 5 Fig. 5. Reconstruction results for a thyroid ultrasound image using 33% of the number of samples in the original. (a) B-mode ultrasound image. (b) Reconstruction with Lasso. (c) SαS-IRLS reconstruction. (d) SαS-IRLS in the Fourier domain. (e) Fourier domain IRLS with dual prior.

Fig. 6 .

 6 Fig.6. Reconstruction errors for one RF line sampled at 33%. Top to bottom: original signal and reconstructed using Lasso, SαS-IRLS, SαS-IRLS in the Fourier domain, and IRLS with dual prior respectively. Left column: RF lines; right column: the corresponding errors.

  

TABLE I OBJECTIVE

 I EVALUATION OF FOUR RECONSTRUCTION METHODS FOR ULTRASOUND IMAGES FROM RF FRAMES WITH SAMPLING RATES OF 33% AND 50% RELATIVE TO THE ORIGINAL