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Nonsmooth Convex Optimization for Structured

Illumination Microscopy Image Reconstruction

Jérôme Boulanger, Nelly Pustelnik, Laurent Condat, Lucie Sengmanivong and Tristan Piolot

In this paper, we propose a new approach for structured illumination microscopy image reconstruc-
tion. We first introduce the principles of this imaging modality and review its properties in various
conditions. We then propose the minimization of nonsmooth convex functionals for the recovery of
the unknown image and investigate several data–fitting and regularization terms in order to tackle re-
construction of noisy data. More specifically, we consider an original approach based on sparse local
patch dictionaries for the regularization of the estimate. We demonstrate the good performance of the
proposed approach on a test benchmark and perform some test experiments on images acquired on two
different microscopes.

1 Introduction

Super–resolution approaches allows to go beyond the resolution of standard wide-field fluorescence microscopy
therefore breaking the classical diffraction limit define by Abbe in 1873 [1]. They offer new opportunities for
investigating molecular mechnisms in cell biology and have already provided new insight of the living cell. While
not reaching the spatial resolution of electronic microscopy, their interest lies in their ability to provide functional
information by the use of fluorescent tags and, importantly, follow them over time.
Structured illumination microscopy (SIM) is one of the recently proposed optical super–resolution methods com-

patible with time lapse imaging of several labels. Based on the illumination of a sample by a set of interference
patterns it allows to typically increase the resolution of the microscope by a factor of two [2, 3]. The resulting
sinusoidal modulations of the fluorophore excitation signal lead to frequency shifts in the Fourier domain, which
bring inaccessible frequencies within the scope of the optical transfer function of the microscope. An example of
acquired raw data is depicted in Fig. 1. Once post–processed, the acquired images show an increased resolution,
as illustrated by Fig. 2, where an acquired image has been reconstructed using a linear method [3]. While this
approach is very flexible with respect to the use of fluorescent tag, it requires at least nine images to recover the
super–resolved image [2,3]. Indeed, we will see that three phase shifts for each of the three angles are necessary to
disentangle the three frequency components corresponding to a sinusoidal modulation. Several studies have inves-
tigated the properties of such reconstruction algorithms and provided solutions for the reduction of artifacts [4, 5].
However, like in many optical microscopy approaches, the photon counting process leads to noisy data compro-
mising the quality and the resolution of the final images. Therefore, the development of reconstruction methods
less sensitive to noise and able to deal with the specificity of the structure of the reconstruction problem is crucially
needed.
An elegant Bayesian approach was proposed for the reconstruction of SIM images [6]. This approach considers

SIM reconstruction as an inverse problem and allows incorporating the point spread function (PSF) of the optical
system in order to deconvolve and restore the image in a single step using the l2–norm of the Laplacian operator
as a regularizer. If this prior leads to rather smooth estimates, a noticeable advantage of this formulation is that the
number of phases is not constrained anymore and even more complex patterns can be considered. This idea was
actually investigated in [7–9], where the sample is illuminated using the speckle produced by a coherent light source
diffracted by a rough surface, at the cost of increasing the number of required images. Displacing this surface allows
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Figure 1: Example of real data. A Molecular Probe slide was imaged 9 times using a Nikon SIM microscope using a 100× oil objective. The
images represent a 256 × 256 region of 512 × 512 acquired images and display some labeled microtubules. The modulation pattern can be
observed as a slight Moiré e�ect on the object.

Figure 2: Reconstruction of the data displayed in Fig. 1. On the left the corresponding classical wide��eld microscopy is obtained from the
mean of the nine images. On the right, a linear least�squares reconstruction. The actual dimension of the image on the right is twice the
size of the image of the left.

to obtain a variation of the speckle and therefore of the random illumination pattern. A blind estimation procedure
is then used to recover both the modulations and the image.
Formulating the image reconstruction as an inverse problem often leads to a variational approach where a func-

tional defined as the sum of a data fitting term and a regularization term is minimized. The choice of these two
terms is application–dependent and is the object of a vast literature. Nonsmooth cost functions (e.g. [10]) have
been shown to display better performance in signal recovery than smooth penalty terms and this is specially true
for super resolution as linear methods are known to compromise the resolution. We can note that total variation
was shown to provide interesting results in the context of SIM image reconstruction in [11]. Recently two major
directions have been explored for regularizing inverse problems. On one hand, higher derivatives such as Hessian
matrix associated with the Schatten norm [12] have demonstrated very good performance in term of recovery and
have been applied to Poisson image debluring [13]. Following a similar idea, combined first and second order
approaches have been proposed for example in [14]. On the other hand, patch-based approaches have shown that a
data driven and low level features such as blocks of pixels can be directly used to enforce a regularity of the solu-
tion. From the examplar-based methods for super-resolution [15] to the successful nonlocal means algorithm [16]
for image denoising, patch–based approaches, though relatively simple, have shown to be very competitive. Their
extension to a larger class of inverse problems has also been investigated in a variational framework in [17] and as
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an extension of the total variation in [18–20]. The drawback of these approaches is the need of an oracle reference
image to pre-compute a set of nonlocal weights. Besides, another class of patch-based approach rather extend the
concept of image decomposition on a redundant frame basis learned from either a database of images or the image
itself. In [21] a two step approach involving an orthogonal matching pursuit for dictionary learning is applied to
image debluring. This approach has been extended to Poisson image deconvolution in the context of medical imag-
ing in [22] in combination with total variation regularization with very good results. In these approaches, the joint
estimation of the coefficients of the atoms and of the dictionary is not convex since the product of the two terms
is involved in the minimization. Finally, adaptive patch–based approach extracting a collection of patches in every
neighborhood of the image such as BM3D [23] have been also applied to inverse problem in e.g. [24]. Again the
local grouping of patches is non–linear and the overall problem is then non–convex.
Most of these techniques have been developed for inverse problems, where the inversion of the forward operator

can be done in Fourier space. In the case of structured illumination microscopy, such an approach is only possible
in a few cases (see Section 3). In this respect, we cannot follow directly the approach developed for deconvolution
problems especially when considering a Poisson noise model.
In this paper, after recalling the principle of SIM image reconstruction, we analyze the properties of the recon-

struction process in a unified inverse problem framework and we show how standard SIM reconstruction methods
can be formulated as suboptimal, particular instances of this setting. In order to better handle noisy data, we then
consider convex non–linear variational approaches for SIM. Within a single primal–dual optimization framework
able to deal with nonsmooth terms, we study the combination of different data fitting and regularization functionals.
We also introduce a new patch–based approach involving the Schatten norm of a patch extraction operator leading
to a convex nonsmooth patch-based approach for image restoration. We can note that this work is an extension of
the contribution described in a conference proceeding [25].
The text of this article is organized as follows. We first propose in Section 3 a comprehensive analysis of the

properties of linear least–squares reconstruction of SIM images in the case of sinusoidal modulations. This anal-
ysis also aims at being an introduction to structured illumination microscopy, for the reader unfamiliar with this
modality. We also introduce a regularized least–squares approach in Section 4, which includes the approaches used
for instance in commercial microscopes. We further consider in Section 5 nonlinear reconstruction methods taking
into account the specificity of Poisson noise present in video–microscopy, while exploring different regularization
approaches allowing to not compromise the image sharpness. Finally, in Section 6 we test the described approaches
on synthetic and real data.
In the sequel, IN denotes the identity operator/matrix of sizeN ×N ; when the size is not mentioned, it should be

clear from the context. · ∗ denotes the adjoint of an operator; when the operator is assimilated to its representation
matrix, with real entries, · ∗ = · T, the transpose operation. In the following,⊗ denotes the Kronecker product and
· †, the Moore–Penrose pseudo–inverse. We finally define the proximity operator proxf ∶ ℝn → ℝn of any closed
proper convex function f ∶ ℝn → ℝ ∪ {∞} ∀x ∈ ℝn as :

proxf (x) = argmin
y∈ℝn

(1
2
‖x − y‖22 + f (y)

)

(1)

2 Structured Illumination Microscopy Model

Let us consider a set of K noise free images ȳk with k = 1,… , K:
ȳk = S0A0Mkx̄ (2)

where x̄ is the unknown two–dimensional image defined on a regular grid of size N1 × N2 and represented in a
vectorized form by a vector of size N = N1N2. Mk, A0 and S0 are three linear operators represented by matrix
multiplications and corresponding to modulation, convolution and down–sampling, respectively.
The modulation operatorMk performs a pixelwise multiplication by a pattern imagemk, so thatMk = diag(mk).

Traditionally, modulations are the result of interfering coherent laser beams and can be represented by a sinusoidal
pattern defined for each points of coordinates (n1, n2) ∈ N1 ×N2 as:

[mk]n1,n2 = 1 + �k cos(n1!1,k + n2!2,k + 'k) (3)
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Table 1: Notations

n index of the component of a vector (e.g. x)
k index for modulations
q index of cost term (integer)
r iteration of the algorithm
N number of pixels of x
L number of pixel of y
K number of modulations
Q number of cost term
R number of iterations
T number of translation (NLTV)
% radial frequency
�1, �2 frequencies
� camera gain
�DC dark current noise mean offset
�2DC dark current noise variance
!k pulsation 2�� of the modulation
'k phases of the modulation
�, �, � algorithm parameters
x̄ “true” value for x
x unknown image (vector)
yk mesurements (vector)
z the image of Tqx (vector)
IK identity matrix

IK K ×K identity matrix
Mk modulations (diagonal matrix)
A0 point spread function (matrix)
S0 dowsampling (matrix)
y mesurements (stacked vector)
M stacked modulations
A stacked point spread function
S dowsampling (stacked matrix)
W diagonal weigth matrix
p number of photo electrons (stacked vector)
n Gaussian white noise (stacked vector)
�k phase matrix
� stacked phases matrix

 stacked frequencies matrix
L Operator for linear regularized least–squares
D1 finite difference operator
D211 seconde order finite difference operator
Tq generic operator in the cost term
T Stacked gradient operator
T Laplacian operator
T Stacked Hessian operator
T Patch extraction operator
fq function in the cost term

where �k is the amplitude of the modulation, !1,k and !2,k are the modulations frequencies and 'k a phase. In the
following, we will stack all the modulationsMk in the matrixM =

[

M1,⋯ ,MK
]T

The convolution operatorA0models the point–spread function of the acquisition system, represented as a pseudo–
circulant N ×N matrix. In the sequel, we will use the notation A = IK ⊗ A0 to represent the convolution of all
modulated images. Moreover, when approximating the optical microscope by a perfect diffraction limited 2D imag-
ing system, we can model the optical transfer function (OTF) in wide–field microscopy by the auto–correlation of
the pupil function as [6, 26]:

0(%) =

⎧

⎪

⎨

⎪

⎩

2
�

(

arccos
(

%
2%0

)

− %
2%0

√

1 −
(

%
2%0

)2
)

% ≤ %0

0 otherwise
(4)

where % =
√

�21 + �
2
2 is the module of the frequencies in polar coordinate and %0 the cut–off frequency. A profile

of the OTF 0(%) is depicted in dashed black in Fig. 3. We can note that for any pair of signals whose spectrum
only differs for frequencies greater than %0, both signals will be equal when viewed through the optical system. We
therefore cannot assume the operator A0 to be injective.
The down–sampling operator S0 represented by a matrix of size L × N , where typically L = N∕4, leads to

down–sampling of a factor 2 in each dimensions. In the rest of the text, down–sampling for the set of K images is
represented by the operator S = IK ⊗ S0.
We can now conveniently rewrite Eq. (1) as:

ȳ = SAMx̄. (5)
where ȳ = [ȳ1,⋯ , ȳK ]T is the stack of noise–free images.
The principle of SIM imaging in the case of sinusoidal modulations is illustrated in Fig. 3. It depicts how

the modulations amount to a shift in the Fourier domain (Fig. 3.b) that makes possible for the optical system to
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Figure 3: Principle of structured illumination microscopy illustrated in one dimension. (a) Spectrum of x in blue and the optical transfer
function 0 in black (b) Spectrum of a modulated image xn · (1 + cos(!n + ')) (green) as the sum of the three components 1, e±i(!�+')
(resp. blue and red) (c) Spectrum of the sum (green) and of the individual components (blue and green) after being �ltered by the OTF of
the optical system (d) Reconstruction of a super�resolved image obtained by shifting the modulated components (red) and summing them
(green). Finally, normalizing the components by tacking into account the shape of the OTF (purple) allows to recover the original image
(yellow).

capture information at frequencies above the cut–off frequency %0 (Fig. 3.c). By shifting back these components
individually, a high resolution image is recovered. However, in order to obtain this highly resolved image (Fig. 3.d
yellow curve) a normalization step equivalent to the ratio of the demodulated images (green curve) with the shifted
OTFs (purple curve) is necessary and at the risk of amplifying the noise present in the acquired data.
Indeed, the acquired images are actually degraded by some random noise due to the photo–electron counting

process and the thermal agitation of the electrons. To take into account those degradations, a general noise model
can be written as [27]:

y = � p + n (6)
where � is the overall gain of the acquisition system, p is a vector of Poisson distributed random variables of pa-
rameter (ȳ − mDC)∕� and n a vector of Normally distributed random variables of mean mDC and variance �2DCcharacterizing the dark current and readout noise level. The offset term mDC accounts for the baseline gray level
that are characteristic of most CCD camera, while the variance of the additive Gaussian white noise summa-
rizes several intensity independent noise such as dark current and readout noise. This formulation ensures that
limNl→∞

1
Nl

∑Nl
l=1(y)l → ȳ for Nl different realizations of the random vector (y)l. The resulting distribution y

is then the convolution of a Poisson distribution and a Normal distribution. However, if the dynamic range of ȳ
is limited and the number of photons large enough (say, ≥ 30) the additive Gaussian white noise model might be
accurate enough to capture the signal degradation. In the other hand, if the electronic noise represented by n is
negligible and assuming a unit gain � = 1, the Poisson noise model is valid. Note that the use of a variance stabi-
lization transform [28] would introduce nonlinearities, which would have a significant impact on the observation
model (1) and make the reconstruction process intractable.

3 Least�squares Solution

3.1 General Case

Let us start by considering the additive Gaussian white noise approximation. In the following we assume that the
offset component mDC has been substracted from the data. In this case, maximum–likelihood estimation of x̄ given
the observed data y amounts to solve the least–squares problem:

x̂ ∈ Argmin
x

‖y − SAMx‖2. (7)
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Hence,
x̂ = (SAM)†y. (8)

If we recall the fact that the operator SAM is not injective for microscopy data then the least–squares solution
is not unique. However, for the sake of the demonstration, let’s assume that this is the case in this section (e.g. by
assuming that the operator A0 is a Gaussian blur). Therefore, we can write:

x̂ = (M∗A∗S∗SAM)−1M∗A∗S∗y. (9)
We have

M∗A∗S∗y =M∗[(A∗0S
∗
0y
T
1 )
T ⋯ (A∗0S

∗
0y
T
K )
T]T (10)

=
∑K
k=1M

∗
kA

∗
0S0 yk. (11)

Thus, we can notice that least–squares estimation reverts to applying the inverse operator (M∗A∗S∗SAM)−1 to a
single image, which is simply the sum of the yk, after they have been up–sampled, re–filtered and re–modulated.
Moreover, A∗S∗SA = (IK⊗A∗0S∗0)(IK⊗S0A0) = IK⊗A∗0S∗0S0A0 is a block–diagonal matrix whose action is to

apply the filterA∗0S∗0S0A0 to every image in the stack ofK images. So, (M∗A∗S∗ASM)−1 =
(

∑K
k=1M

∗
kA

∗
0S
∗
0S0A0Mk

)−1.
In general, this inverse operator cannot be further simplified. It can be applied numerically using an iterative algo-
rithm like the conjugate gradient (see [6]). In the remainder of this section, we discuss cases in which a decompo-
sition is possible.

3.2 Case of annihilating modulations

Let us assume that S0A0 = IN . This would have little interest in practice as the resolution is not degraded given
that no low pass filtering is considered. However, we will see that it can help us formalizing the reconstruction
algorithm proposed in [3]. In this specific case,

x̂ =M†y =
(

K
∑

k=1
M∗
kMk

)−1( K
∑

k=1
M∗
kyk

)

. (12)

The operator (∑K
k=1M

∗
kMk)−1 is a simple pixelwise division by the sum of the squared pixel values of the K

modulation patternsmk. In the case where the modulation operatorM is injective, then the division is well defined
and the estimator exists. Moreover, considering sinusoidal modulation as defined by Eq. (3) and the specific case
where the phase shift are defined as 'k = �k∕K and the amplitudes are equal such that �K = � for k ∈ [1,⋯ , K] ,
then we have∑K

k=1M
∗
kMk = (1+�2∕2)K . Therefore the reconstruction amounts to simply modulating the acquired

images and normalizing by this constant. However, this ideal case is never encountered in practice.

3.3 Case of separable modulations with no blur operator

Further on, let us consider the case where the modulation matrix can be decomposed as:
M = P1�P2
 (13)

where matrices P1 and P2 are KN ×KN permutation matrices, � a full column rank matrix and 
 a tight frame
such that 
∗
 = cIKN . Then, the estimate x̂ can be obtained as:

x̂ = (P1�P2
)†y =
1
c

∗P∗2�

†P2y (14)
Indeed, using the properties of the permutation matrices we have P∗1P1 = IKN and since by definition, we have
�†� = IKN as well, it follows that:

(

1
c

∗P∗2�

†P∗1
)

(

P1�P2

)

= 1
c

∗
 = IKN (15)
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using the tight frame property of 
.
This decomposition of the operatorM is particularly well suited to describe the set of sinusoidal modulation for

a single pattern frequency pair (!1,k, !2,k) = (!1, !2) but with several phases shifts 'k as defined by Eq. (3). In
this context, the matrix 
 is a of size N × 3 with the following shape: 
 = [a, c, s] where the two vectors c and s
are defined for n = (n1, n2) ∈ N1 ×N2 by:

⎧

⎪

⎨

⎪

⎩

an1,n2 = 1
cn1,n2 = cos(n1!1 + n2!2)
sn1,n2 = sin(n1!1 + n2!2)

(16)

The corresponding� matrix is then of the form IK ⊗�0 with:

�0 =
⎡

⎢

⎢

⎣

1 �1 cos('1) −�1 sin('1)
⋮ ⋮ ⋮
1 �K cos('K ) −�K sin('K )

⎤

⎥

⎥

⎦

(17)

and we have in this case the relationship: �† = IN ⊗�†
0. Finally, the least–squares estimate can be rewritten as:

x̂ = 1
c

∗P∗2

(

IK ⊗�
†
0

)

P2y (18)

3.4 Case of separable modulation with blur operator

Now in order to understand the effect of the point spread function A0 on the reconstruction, we consider the case
where we can write:

y = P1�P2SA
x (19)
where again the matrices P1 and P2 are KN × KN permutation matrices, � a full column rank matrix and 
 a
tight frame such that
∗
 = cIKN . The permutation of the operator� and SA is possible when the matrix� only
operates on different images and not on pixels (see [4]). This is the case for sinusoidal modulations used in SIM
and we have then:

x̂ = (SA
)†P1(IK ⊗�
†
0)P2 (20)

which leads to the least–squares solution:
x̂ = (SA

∗A∗S∗)−1
∗A∗S∗P1(IK ⊗�

†
0)P2 (21)

where the operator SA

∗A∗S∗ can be inverted in Fourier space and corresponds to the deconvolution by sum of
the modulated point spread function. Note that this direct solution is only valid for a limited type of modulations
and it corresponds to the steps described in e.g. [3,4,29] where the modulation components are separated using the
phase information by inverting the matrix �0 and the resulting components are modulated (corresponding to the
action of 
∗) in order to shift back the frequencies components as described in Fig. 3.

4 Regularized Least�Squares Solution

In the previous section, we assumed that the operator SAM was injective, but we know from Section 2 that this
assumption is not valid in microscopy. Moreover, even if the operator would be injective, this one would probably
remain badly conditionned and themaximum likelihood estimator would amplify the noise leading to a non valuable
estimate. A common approach is to regularize the problem by adding a constraint on the solution:

x̂ = Argmin
x

1
2‖y − SAMx‖

2 + �‖Lx‖2, (22)

for some linear operator L and regularization parameter � ∈ ℝ. Different operators L correspond to different well
known regularization methods. In particular, when L = IN then Eq. (22) corresponds to Wiener regularization,
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choosing L = [D1,D2]T as the forward finite difference of x will ensure that the solution belong to the Sobolev
space1 and finally, using the L = D211 +D222 as the Laplacian was proposed in [6] for SIM image reconstruction
with D11 and D22 the second order derivatives along the horizontal and vertical directions.

We saw that, in general, no closed form exists for the least–squares solution. This remains true for regularized
least–squares and minimization algorithms such as the conjugate gradient are needed, as proposed in [6, 7]. How-
ever, in the specific case of separable sinusoidal modulations that is whenM as in (13), we can obtain a closed form
for the estimation of the SIM image:

x† = (SA

∗A∗S∗ + �L∗L)−1
∗A∗S∗P1(IK ⊗�
†
0)P2 (23)

This approach is related to the original reconstruction proposed by [3] when using L as the identity. However,
an apodisation term defined in the Fourier domain is often used in order to reduce high frequency noise. In the
following section, we propose to explore an alternative approach to handle the presence of Poisson and Poisson–
Gaussian noise via variational approaches involving nonsmooth and non–necessarily finite criterion.

5 Nonsmooth Regularization

In order to explore non–finite data fidelity and nonsmooth regularization terms, we formulate the estimation pro-
cedure as a minimization involving a sum of Q cost terms defined by:

x̂ ∈ Argmin
x∈C

Q
∑

q=1
fq(Tqx) (24)

where fq are convex, closed and proper functions fromℝMq → ℝ ∪ {+∞}, C is a nonempty closed convex subset
of ℝN and Tq operators represented as matrices of size Mq × N . The cost terms fq(Tqx) corresponding either
to a data fidelity term or a regularization term. For instance, the least-square criterion (22) is a particular case of
Eq. (24) with Q = 2, f1 = f2 = ‖ · ‖2, T1 = SAM and T2 = L. A usual choice for C is a constraint insuring non
negativity.
When the involved functions are non-necessarily smooth, two main classes of algorithms can be derived to

solve (24) and have been largely employed for solving inverse problems during the last decade: the alternating
directions of multipliers method (ADMM) [30] or primal-dual proximal algorithms [31–35]. Both strategies have
in common to split the processing of the (fq)1≤q≤Q and the (Tq)1≤q≤Q and to rely on the computation of the proximity
operator [36] of each fq. The definition of proximity operator is provided in (1) and it is important to notice that
a large number of closed form expression is known in the literature [37]. Some of them, useful for the study,
will be provided below. The major difference between both strategies comes from the processing of the operators
(Tq)1≤q≤Q. ADMM requires to compute (∑Q

q=1 T
∗
qTq)

−1 while primal-dual strategies avoid such a step. Note that
since in general the operator associated to SIM imaging is not directly invertible (cf. to Sections 3 and 4), ADMM
would require an inner minimization procedure for the inversion of this operator. Consequently, we solve Eq. (24)
using a primal–dual proximal algorithm from [31–35] (see Fig. 4) and consider several cases corresponding to the
combination of function fq and operator Tq.

We will explicit now the list of cost term fq(Tqx) corresponding either to a data fidelity term or a regularization
term. We will give the expression for each case of the function fq and its proximity operator [36]. We will also
describe the operator Tq and its ajoints when needed. As a convention, we denote z = Tqx the vector of lengthMq
in the image space of Tq. In practice we will later consider only the combination of one data–term along with one
regularization term while C will denote the non–negativity constraint and it is enforced directly on the iterate at
step 8 of Fig. 4. Therefore, we can write x̂ ∈ Argminx≥0f1(T1x) + �f2(T2x) with � the regularization parameter.

5.1 Possible choices for the data term f1◦T1
Least�squares SIM (LS) When considering an additiveGaussianwhite noisemodel, the negative log–likelihood
leads to a least–squares approach. The least–squares data term for SIM imaging is defined by 1

2‖y − SAMx‖
2
2 cor-

responding to the combination of the function fLS = 1
2‖ · −y‖22 and the linear operatorTLS = SAM. The proximity

operator [36] associated to fLS is then [37] : ∀ > 0,∀z ∈ ℝLK , proxfLS(z) = (z +  y)∕(1 + ).
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Require: x0 ∈ ℝN×N , � > 0, � > 0, � > 0
1: z0 = 0, v0,q = x0, q ∈ 1,… , Q
2: for r ∈ 1,… , R do
3: for q ∈ 1,… , Q do
4: ur,q = vr,q + � Tq(2zr − xr)
5: pr,q = ur,q − � proxfq∕�(ur,q∕�)6: vr,q = � pr,q + (1 − �) vr,q
7: end for
8: zr = PC

(

xr −
∑Q
q=1 �T

∗
qvr,q

)

9: xr+1 = � zr + (1 − �) xr
10: end for

Figure 4: The primal dual minimization algorithm proposed in [34] allows to minimize the energy functional de�ned by Eq. (24) given that
the proximity operator of the function fq and the operator Tq and its adjoint T∗q are de�ned. We can notice that this algorithm does not

require the direct inversion of these operators.

Kullback�Leibler divergence (KLD) Under a Poisson noise model assumption for the acquired data y, the
negative log–likelihood is given by the Kullback–Leilbler (KL) divergence [38]. The resulting function is the KL
divergence defined as, for every z = (zn)1≤n≤LK , fKL(z) = ∑LK

n=1 f
(n)
KL(zn) where the component–wise function is

defined by [39] ∀zn ∈ ℝ:

f (n)KL(zn) =
⎧

⎪

⎨

⎪

⎩

zn − yn log zn, zn, yn > 0
zn, zn > 0 and yn = 0
∞, otherwise

(25)

In this configuration, the linear operator is TKL = SAM. The proximity operator is given component-wise for
n ∈ [1, LK] by ∀zn ∈ ℝ:

proxDKL(zn) =
1
2

(

zn −  +
√

(zn − )2 + 4yn
)

(26)

and the proximity operator proxfKL(z) =
(

prox(n)fKL(zn)
)

1≤n≤LK is obtained by applying Eq. (26) for each compo-
nent of for the vector z.
Often collected data show an offset and a gain such as described by Eq. (6). In the case where the variance of

the Gaussian noise n is �DC = 0, we can do a variable change in order to take into account the sensor gain � and
offset mDC such that the proximity operator becomes ∀zn ∈ ℝ:

proxDKL(zn) =
1
2

(

zn − mDC − � +
1
�

√

(zn − mDC − �)2 + 4�(yn − mDC )
)

(27)

Weighted least�squares (WLS) As an approximation of the Poisson-Gaussian noise model, a weighted least–
squares data term can be used to take into account the dependency between the variance of the noise level and the
intensity of the signal. The weighted least–squares can be written as

(∀z ∈ ℝLK ) fWLS(z) =
1
2
(z − y)TW−1(z − y), (28)

whereW is a diagonal variance matrix with elements (wn)1≤n≤LK . This relationship is linear for most CCD and
CMOS sensors and can be estimated using a linear regression of the variance of the noise versus the intensity
(see [40] for more details):

Var[yn] = �E[yn] + �2DC − � mDC (29)
using the model introduced in equation (6) and with E[yn] and Var[yn] the expectation and variance of the random
variable yn. The variance of the noise Var[yn] is estimated locally using a maximum of absolute deviation filter
(MAD) computed on the pseudo–residuals (normalized Laplacian 1

√

20
(D211y+D

2
22y)) of the image while the mean

is estimated using a median filter. The linear regression allows then to estimate the gain � and the noise variance at

9



the origin eDC = �2DC − � mDC . The variance-covariance matrix Q can then be approximated by a diagonal matrix
whose elements are given by:

wn = �ȳn + eDC (30)
with ȳi ≈ E[yi] is the given by the estimation of the intensity by the median filter. The proximity operator associated
to fWLS is then

(∀ > 0)(∀z ∈ ℝLK ) proxfWLS(z) =
(

(zn +  wnyn)∕(1 + wn)
)

1≤n≤LK
. (31)

5.2 Possible choices for the regularization term f2◦T2
Gradient squared l2�norm (‖∇‖2) While more efficient algorithms exist for minimizing the squared l2-
norm of the gradients of x especially combined with a least–squares data term (See Section 4), we may still use
the proposed approach. In this case, the operator is defined by the two first order derivative along the horizontal
D1 and vertical D2 directions stacked together T = [D1,D2]T. The adjoint of this operator is then the divergence
operator defined as T∗ = DT1z1 + D

T
2z2 where z1 and z2 are the gradient components. The gradient D1 and are

D2 computed using a forward finite difference scheme and their adjoints DT1 and DT2 are backward finite differencewith in both cases Neumann boundary conditions. For Tikhonov regularization, the associated function is then the
squared l2–norm, i.e. f = ‖ · ‖2 whose proximity operator in this case is given by proxf(z) = z∕(1 + ) forevery z ∈ ℝ2N .

Laplacian squared l2�norm (‖Δ‖2) A Laplacian squared l2–norm regularization was introduced in [6] for
SIM image reconstruction. We can consider this regularization using the proposed minimization algorithm by
combining the squared l2–norm with the Laplacian operator T = D211 + D

2
22 where D211 and D222 are the secondorder derivatives in the horizontal and vertical directions. Note that the Laplacian operator is self–adjoint. Fur-

thermore, we can use here the same function f = ‖ · ‖2 and the associated proximity operator than for Tikhonov
regularization. Note that in the context of this study, unlike in [6], we do not consider the posterior mean estimate
but only a maximum a posteriori (MAP) estimate.

Total variation (TV) The total variation seminorm can be defined as the l1–norm of the gradients of x [10].
Therefore, we can use this time the same operator T than for Tikhonov regularization but with a different function
f . Indeed, in order to achieve an isotropic total variation a vectorial form of the l1–norm denoted fTV = ‖ · ‖1,2
should be applied by considering the two gradient components as a vector [37]:

(∀z = [z⊤1 , z
⊤
2 ]
⊤) ∈ ℝ2N ‖z‖1,2 =

∑N
n=1

√

[z1]2n + [z2]2n. (32)
Then the proximity operator is applied component–wise for n ∈ [1, N] as:

(∀zn ∈ ℝ2) prox
‖ · ‖1,2(zn) =

⎧

⎪

⎨

⎪

⎩

1 − zn
√

[z1]2n+[z2]2n
,

√

[z1]2n + [z2]2n ≥ 

0 otherwise.
(33)

Schatten norm of the Hessian operator (p(T)) Recently a new regularization based on the Schatten norm
of the Hessian operator has been proposed [12]. This approach has been developed in order to reduce the staircase
artifacts observed with total variation regularization.
In order to include this regularization constraint, we consider the Hessian operator defined at each location

n ∈ {1,… , N} as:
[Tx]n =

[

[D211x]n [D212x]n
[D212x]n [D222x]n

]

(34)
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and composed of the second order derivative along horizontal, diagonal and vertical direction denoted respectively
D211, D212 and D222. The adjoint of this operator is defined by:

T∗z = D
2∗
11z11 + D

2∗
12(z12 + z21) + D

2∗
22z22 (35)

for every
z =

[

z11 z12
z21 z22

]

where z11, z12 = z21 and z22 represent the four components of the Hessian operator, each of size ℝN .
The Schatten norm p of zn ∈ ℝ2×2 is defined as the lp–norm of the diagonal matrix�n such that zn = Un�nVTn .Then, the associated proximity operator is given by [20]:

(∀zn ∈ ℝ2×2) proxp(zn) = Unprox‖ · ‖p(�n)VTn . (36)

Nonlocal total variation (NLTV) The nonlocal total variation (NLTV) penalization was introduced in [18] and
extended to various inverse problems in [19,41] by considering differential operator defined on the graph associated
to the sites of the image. It was also recently extended to multi–spectral images in [20]. The operator associated to
the NLTV regularization can be described as weighted non–local gradients defined as [42]:

[TNLx]n =
⎡

⎢

⎢

⎣

[

W1(F1x − x)
]

n
⋮

[

WT (FT x − x)
]

n

⎤

⎥

⎥

⎦

(37)

where for t ∈ 1,… , T , we define some diagonal weight matrices as function of the distance between patches
Wt = diag

(

exp
(

−1
�
B(Ftx̃ − x̃)2

))

with Ft a translation operator and B a convolution by a low pass filter such as
a box–filter or a Gaussian filter and � a positive scalar. The image x̃ can be obtained by minimizing the classical
total variation for example. Note that the computation of the convolution could be done using a separable recursive
filters as proposed in [43]. However, since the estimation of the weights is performed only once this step is not
critical in term of computation time. The T translations Ft are chosen so that they describe a square neighborhood
of sizeNw ×Nw while the operator B corresponding to an image patch whose sizeNp ×Np is given by the width
of the support of the filter in the case of a box–filter. The adjoint of the operator TNL is defined by:

(∀z ∈ ℝTN ) T∗NLz =
T
∑

t=1
Wt(F∗t − I)zt (38)

where F∗t with t ∈ 1,… , T are the translation with the corresponding opposite directions. The function associated
to the NLTV regularization is a l1,2–norm defined by:

(∀z ∈ ℝTN ) ‖z‖1,2 =
N
∑

n=1

( T
∑

t=1
z2n,t

)

1
2

. (39)

The associated proximity operator is then defined by:

(∀zn ∈ ℝT ) prox‖ · ‖1,2(zn) =
⎧

⎪

⎨

⎪

⎩

1 − zn
√

∑T
t=1 [zt]2n

,
√

∑T
t=1 [zt]2n ≥ 

0 otherwise.
(40)

Local patch dictionaries (p(T )) In [44] an adaptive patch dictionary learning was proposed to denoised
images based on the principal component analysis (PCA) of patches lying in a window. Patch dictionaries were also
exploited in an off–line fashion with great success in the context of image denoising in e.g., [45] as well as online
[23] andmore recently in [24] and [22] for the deconvolution of respectively natual andmedical images. We propose

11



here to adapt the idea of online sparse local patch dictionary learning in the context of inverse problem regularization
by combining a patch extraction operatorT and the Schatten norm. Indeed, with some approximation the Schatten
normp with p = 0 of the local patch dictionary is equivalent to the PCA of the patch dictionary. We consider in this
paper the Schatten norm with p = 1 which can be seen as a relaxed version of the case p = 0 [46]. The associated
proximity operator is then the same than the one defined for the Hessian based regularization (see above). However,
we consider now an operator T mapping all theNp ×Np patches in neighborhoods of dimensionNw ×Nw into a
matrices of dimensionN2

p ×N
2
w. The adjoint of this operator is the projection of the patches onto the image. Note

that the operator T does not depends on the content of x but is only defined by the windows and patches. As an
illustration let us consider the case of a 4 × 4 image and patches of size 2 × 2. Then the operator is:

Tx =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 x2 x5 x6
x2 x3 x6 x7
x3 x4 x7 x8
x5 x6 x9 x10
x6 x7 x10 x11
x7 x8 x11 x12
x9 x10 x13 x14
x10 x11 x14 x15
x11 x12 x15 x16

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

and corresponds to the 9 possible translations of the patch of 4 elements picking values within an image represented
as a vector of 16 elements. The patch dictionaries highly redundant and for computational efficiency, only a fraction
of the possible neighborhoods can be considered by shifting the patch extraction window from its half in both
directions. As an exmaple, for a 512 × 512 images, the operator will map to a 128 × 128 field of 16 × 25 matrices
corresponding to dictionaries of patches of size 4 × 4 extracted from neighborhoods of size 8 × 8.

6 Numerical experiments

In this section, we will test the described methods on synthetic and real data set. For synthetic data sets, we propose
to use the peak signal to noise ratio (PNSR) defined by:

PSNR(x, x̄) = 20 log10
√

N‖x̄‖∞
‖x − x̄‖2

(42)

6.1 Generation of synthetic data

In order to generate a synthetic dataset, we use a 512 × 512 “barbara” and “cameraman” standard test image and
a synthetic 512 × 512 “tubules” image generated by simulating several smoothed random walks originating from
the center of the image. The three test images are displayed on Fig. 5. For each of these two test images the SAM
operator is applied with a down–sampling of factor 2 for S0 and a cut–off frequency of %0 = 1.53 pixel−1 for A0
as defined in Eq. (4). The modulations are composed of 3 equi–spaced phases and 3 equi–spaced angles with a
frequency of 0.9 pixel−1. We simulate a Poisson noise on the resulting 9 images whose original dynamic range is
in the interval [0, 128]. The obtained data set is displayed in Fig. 6.
In order to evaluate the gain of the SIM modality versus the standard wide–field imaging, we can compute the

image that would have been observed by a standard “wide-field” microscope by taking the average of these images.
We can also applied the regularized (Wiener) least–squares approach as proposed in the literature [3]. We can see
on Fig. 7 the extended resolution provided by the SIM imaging which also translates into a gain of PSNR in this
simulation.

6.2 Algorithm and parameters

In our experiments, we use a single algorithm (described in Fig. 4) with the same parameters to minimized all
the cost functions. It is clear that in some cases, this approach is sub-optimal. This is particularly true for linear

12



Barbara Cameraman Tubules

Figure 5: Test images used for the synthetic dataset.

Figure 6: Set of nine 256 × 256 simulated SIM images from the standard �barbara� test image. We can observe that the modulations pattern
produces a Moiré e�ect revealing the underlying high frequencies.
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Wide-�eld (average) Regularized least�squares (Wiener)

Figure 7: In the �rst column, a 512 × 512 wide��eld image is obtained from the images displayed in Fig. 6 by computing an average of the
images and up�sampling the result by Fourier padding. In the second column, a regularized (Wiener) least�squares estimate is displayed
showing an improved resolution. The PSNR of the wide��eld image is 23.13dB while the PSNR of the SIM reconstruction is 23.94dB. Note
that the regularization parameter has been selected to maximize the PSNR.
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Figure 8: Evolution of the PNSR with respect to the regularization parameter for the �Barbara� test image and gain � = 1.

cost functions. The parameters used for the algorithm are 500 iterations with no stopping criterion, � = 10 and
� = 0.75. The parameter � is defined as � = 1∕(�L2) where L2 = ‖T1‖2 + ‖T2‖2. Those parameters were chosen
to provide a reasonable compromise across all cost functions in term of convergence speed and stability.

6.3 Evaluation of data �tting term and regularization term

In order to evaluate the different pairwise combinations of the 3 data fitting and 6 regularization terms, we propose
to reconstruct the three test images (“Barbara”, “Cameraman” and “Tubules”) for 3 different gain value � ∈ [1, 2, 5]
by minimizing the 18 resulting functionals using the described minimization algorithm (see Fig. 4). The “Tubules”
image was generated by drawing smooth splines in order to emulate microtubules in a cell. The images were
corrupted with noise as described in Eq. (6) with mDC = 100 and �2DC = 2. For each run, we use 500 iterations andwe tested 20 values logarithmically spaced in the interval [0.05, 50] for the regularization parameters. We used the
PSNR as a criterion in order to select the best image among the 20 results. All the implementation has been done
using the Matlab programming language.
In Fig. 8, as an example, the PSNR values obtained for each regularization parameter are displayed for the

“Barbara” test image with � = 1 test image. We can notice that those curves are relatively smooth indicating a
good behavior of the optimization method for each of the functional given that each run corresponds to a different
noise realization. We can already see on this particular example that the local patch dictionary regularization term
p(T ) shows a significant improvement.

In Fig. 9, the centered crop of the images corresponding to the best PSNR values from the curves shown in Fig. 8
are displayed along with the PSNR, the regularization parameter and the computation time. The stripe pattern have
very high frequency and provide an insight on the potential gain in term of resolution provided by each of the 18
functionals. In correlation with the PSNR value, these stripes are much more better reconstructed with the local
patch dictionary (pT ) regularization term while the least square (LS) data term shows the best PSNR out of
the three tested data terms in this case. Note this is not always the case for the other regularization terms in this
experiment. Finally, the computation time, which is deterministic as the number of iteration is the same for each
test, is much more important for the local patch dictionary functional.

Table 2 summarizes the best PSNR values for 18 functionals obtained for each of the 9 test cases (3 images × 3
gain values). In each cases, the local patch dictionary (p(R )) term consistently outperforms the other regular-
ization terms. In most cases, we can notice that when the gain increases, the KLD data term tends to perform better
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Figure 9: Results for the image �Barbara� with � = 1 and each of the 18 functionals. A center region of each estimate is displayed to better
appreciate the details of the reconstruction. 16



Table 2: Performance results in term of PSNR for 18 functionnals tested on 3 test images.

Barbara (� = 1)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 25.53 25.46 25.42 26.03 25.66 27.72

KLD 25.02 25.16 25.45 26.05 25.69 27.68
WLS 25.41 25.39 25.26 25.85 25.51 27.49

Barbara (� = 2)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 24.67 24.60 24.59 24.97 25.00 26.52

KLD 24.70 24.66 24.68 25.06 25.07 26.58
WLS 24.58 24.52 24.44 24.79 24.84 26.21

Barbara (� = 5)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 23.84 23.73 23.72 23.93 24.37 24.90

KLD 23.89 23.78 23.86 24.09 24.46 25.10
WLS 23.76 23.66 23.66 23.78 24.17 24.61

Cameraman (� = 1)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 34.60 34.87 34.49 36.58 34.08 36.59

KLD 34.59 34.84 34.30 36.34 33.44 36.56
WLS 34.21 34.50 34.19 36.15 33.61 36.03

Cameraman (� = 2)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 33.23 33.47 33.49 35.07 33.23 35.27

KLD 33.43 33.70 33.49 35.28 32.77 35.60
WLS 32.75 33.12 33.17 34.59 32.62 34.75

Cameraman (� = 5)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 31.26 31.53 32.06 33.01 31.41 33.49

KLD 31.66 31.93 32.26 33.41 31.51 33.95
WLS 30.86 31.17 31.65 32.59 31.19 32.79

Tubules (� = 1)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 30.86 30.85 30.52 31.51 31.56 31.60

KLD 30.55 30.65 30.32 31.28 31.16 31.30
WLS 30.78 30.82 30.36 31.38 31.33 31.42

Tubules (� = 2)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 29.93 29.94 29.67 30.51 30.40 30.64

KLD 29.70 29.81 29.62 30.43 30.23 30.53
WLS 29.90 29.89 29.58 30.36 30.24 30.44

Tubules (� = 5)
‖∇‖2 ‖Δ‖2 TV p(T ) NLTV p(T )LS 28.74 28.71 28.54 29.15 28.71 29.36

KLD 28.61 28.65 28.51 29.10 28.14 29.31
WLS 28.67 28.68 28.40 29.04 28.64 29.14
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than the least square (LS) data term. The latter providing the best results for small gains � = 1. This is particularly
noticeable with the “Cameraman” standard test image which exhibits high contrasts between the subject (dark) and
the scene (bright) while in the other cases, the optimizing the regularization parameters allows to adapt to the noise
level which is more uniform in the image. Note that in [12] the minimization of the Schatten norm of the Hessian
operator (p(T )) is shown to be superior to other very competitive regularization terms such as the l1–norm of
wavelet coefficients. And this experiment is comforting the idea that local patch dictionary regularization term is
very effective at recovering structure of interest in images.

6.4 Reconstruction of acquired data

We have tested the proposed approached on acquired data. For this purpose, we used two commercial systems: the
N–SIM from Nikon and the OMX from General Electrics. Both microscopes use a similar approach for performing
SIM imaging and rely on the use of a diffraction grating which is optically conjugated with the object plane.
The N–SIM is equipped with a 100× (1.49N.A.) objective and a 2.5× lense is set on the camera port. A Xion Ul-

tra 897 EMCCD camera from Andor Technology Ltd was on the detection path leading to a pixel–size of ∼ 64 nm
in the final image. A FluoCell prepared slide #2 with BPAE cells with Mouse Anti-�-tubulin was imaged and the
results obtained with the linear and the convex nonsmooth reconstruction with a Poisson data term and a local patch
dictionary regularization are shown in Fig. 10 along, with the “wide–field” image obtained by averaging the nine
acquired images. On this image, we can notice that filaments appear much thinner on the nonsmooth estimate than
on the linear one. We can also observe that the power spectrum seems to have a larger support.
The OMX microscope is equiped with a 100× (1.4 N.A.) objective coupled with a 2× lense on the camera

port. This time a Evolve 512 from Photometrics was used and the final pixel–size in the image is ∼ 80 nm. A
FluoCell prepared slide #1 with BPAEC cells with F-actin stained with Alexa fluor 488 phalloidin. Once again,
both linear and the proposed nonsmooth convex reconstruction methods reveal an increased resolution. Varying the
regularization parameter for the linear method does not allow to reduce noise without inducing a loss of resolution.
The proposed method allows to achieve a much better compromise in this respect and clearly outperforms the linear
approach.

6.5 Modulation pattern

As described in [6], one advantage of considering the SIM image reconstruction as an inverse problem lies in the
ability to reduce the number of acquired images. As an example, we can consider a set of 3 images with different
modulation orientation but no phase shifts. This allow to effectively reduce the imaging speed and photo-toxicity
which are both limiting factors in fluorescence lightmicroscopy. This is a nonideal case as the sum of themodulation
is not a uniform image and that therefore the noise is not spatially uniform. Nonetheless the results displayed in
Fig. 12 show that the sample is successfully recovered with PSNR of 26.75dB and that high frequency details are
well estimated as shown on the powerspectrum on the second row.

7 Conclusion

In this paper, we have proposed an analysis of linear reconstruction methods for structured illumination microscopy
and proposed a novel nonlinear approach based on the minimization of a nonsmooth convex functional. She have
considered a very flexible framework and showed that it could accommodate the specificity of SIM image recon-
struction. We have described the implementation details and extensively tested the derived functionals on synthetic
and real data sets. The results show that the proposed approach leads to a significant improvement in terms of PSNR,
especially when minimizing the Schatten norm of a local patch dictionary. Being able to better handle the noise
perturbation allows to improve the resolution and the sensitivity of SIM images. We did not address the problem
of the modulation parameter estimation, which is directly impacting the quality of the reconstructed images [47];
we leave this study for future work.

18



Wide–field SIM (Wiener) SIM (KLD-Sp(TP ))

4.1 µm

Figure 10: Reconstruction of acquired �uorescently labelled tubuline cell with the NSIM system. The structured illumination microscopy
allow to reveal the crossing of �bers with more details than the wide-�eld image. The proposed approach allows to handle the noise and
reduce the artifacts observed in the linear reconstruction. On the second row, the power spectrum is displayed as reveal the increased support
in the frequency domain. The blue circle correspond to the resolution 110 µm.
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Wide–field SIM (Wiener) SIM (KLD-Sp(TP ))

5.1 µm

Figure 11: Reconstruction of acquired F-actine �uorescently labelled cell with the OMX setup. The �ne and dense network structure of the
actin cytosqueleton is better resolved when using the proposed approach.

Original Wide field SIM (KLD-Sp(TP))

20.38dB 26.74dB

Figure 12: Reconstruction of a simulated 3 SIM images with a reduced number of images using only 3 modulation orientation and no phase
shifts. The second row displays the corresponding powerspectrums.
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