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Nonsmooth Convex Optimization for Structured
Illumination Microscopy Image Reconstruction

Jérôme Boulanger, Laurent Condat, Tristan Piolot, Lucie Sengmanivong, Nelly Pustelnik

Abstract—Our contribution is twofold: first, we investigate the
properties of a linear reconstruction method in SIM, discussing
its properties from an estimation point of view and its relationship
with variational approaches. Second, capitalizing on this formal-
ism, we adopt a variational approach taking into account the type
of noise, typically Poissonian, associated to convex nonsmooth
regularizing penalties, like the total variation, which have shown
their efficiency to solve many imaging inverse problems. We detail
the implementation of the proximal algorithm allowing to solve
the problems exactly.

Index Terms—Structured Illumination Microscopy (SIM),
imaging inverse problem, image restoration, deconvolution, Pois-
son noise, proximal algorithm, total variation

I. INTRODUCTION

Super–resolution approaches for fluorescence light mi-
croscopy are offering new opportunities for investigating
molecular mechnisms in cell biology. While not reaching the
spatial resolution of electronic microscopy, their interest lies
in their ability to provide functional information by the use of
fluorescent tag and to follow them over time [1].

Structured illumination microscopy (SIM) is one of the
optical super–resolution methods which have been recently
proposed [2], [3]. It is based on the illumination of the sample
by a set of interference patterns. These sinusoidal modulations
of the excitation of the fluorophores lead to frequency shifts
in the Fourier domain which bring inaccessible frequencies
within the scope of the optical transfer function leading to
the well know Moiré effect. An example of acquired raw
data is depicted in Fig. 1. Once post–processed, the acquired
images show an increased resolution by typically a factor two
as illustrated by Fig. 2 where an acquired image has been
reconstructed using a linear method [3]. If this approach is
very flexible with respect to the use of fluorescent tag, it
requires at least nine images to recover the super–resolved
image [2], [3]. Indeed, we will see that three phase shifts
for each of the three angles are necessary to disentangle the
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Fig. 1. Example of real data. A Molecular Probe slide was imaged 9 times
using a Nikon SIM microscope using a 100× oil objective. The images
represent a 256 × 256 region of 512 × 512 acquired images and display
some labeled microtubules. The modulation pattern can be observed as a
slight Moiré effect on the object.

Fig. 2. Reconstruction of the data displayed in Fig. 1. On the left the
corresponding classical wide–field microscopy is obtained from the mean of
the nine images. On the right, a linear least–squares reconstruction. The actual
dimension of the image on the right is twice the size of the image of the left.

three frequency components corresponding to a sinusoidal
modulation. Several studies have investigated the properties
of such reconstruction algorithms and provided solutions for
the reduction of artifacts [4], [5].

Recently an elegant Bayesian approach has been proposed
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for the reconstruction of SIM images [6]. This approach con-
sider the SIM reconstruction as an inverse problem and allows
the authors to incorporate the point spread function (PSF) of
the optical system in order to deconvolve and restore the image
in a single step using a `2–norm of the Laplacian operator
as a regularizer. A noticeable advantage of this approach is
that the number of phases is not constrained anymore and
even more complex patterns can be considered. This idea
was actually investigated in [7], [8], where the sample is
illuminated using the speckle produced by a coherent light
source diffracted by a rough surface. Displacing this surface
allows to obtain a variation of the speckle and therefore of
the random illumination pattern. A blind estimation procedure
is then used to recover both the modulations and the image.
Finally, a total variation constraint has also been explored in
[9].

Formulating the issue of image reconstruction as an in-
verse problem often leads to a variational approach, where
a functional defined as the sum of a data fitting term and
a regularization term is minimized. The choice of these two
terms is application–dependent and is the object of a vast
literature.

The contributions in this article are the following:

• We reformulate the least–squares estimator and discuss
its properties for different types of modulation patterns.

• We describe a regularized least–squares estimate.
• We apply a recent primal–dual approach for the mini-

mization of convex nonsmooth functionals to SIM image
reconstruction.

• We investigate the two-by-two combination of several
data terms and regularization terms for SIM image re-
construction and provide the implementation details.

• We propose a new regularization approach for inverse
problems based on the Schatten norm of a patch dictio-
nary.

• We evaluate the proposed approach on simulated and real
images.

This paper is organized as follow. We first propose in
Section III a comprehensive analysis of the properties of linear
least-squares reconstruction of SIM images in the case of
sinusoidal modulations. We also derive a regularized least–
squares approach in Section IV. We further consider in Sec-
tion V nonlinear reconstruction methods taking into account
the specificity of Poisson noise present in video–microscopy,
while exploring different regularization approaches. Finally, in
Section VI we test the proposed approaches on synthetic and
real data.

In the sequel, IN denotes the identity operator/matrix of size
N×N ; when the size is not mentioned, it should be clear from
the context. · ∗ denotes the adjoint of an operator; when the
operator is assimilated to its representation matrix, with real
entries, · ∗ = ·T, the transpose operation. In the following,
⊗ denotes the Kronecker product and · †, the Moore–Penrose
pseudo–inverse. To conclude, we define the proximal operator
proxf : Rn → Rn of any closed proper convex function f :

Rn → R ∪ {∞} as:

proxf (x) = arg min
y∈Rn

(
1

2
‖x− y‖22 + f(y)

)
(1)

II. STRUCTURED ILLUMINATION MICROSCOPY MODEL

Let us consider a set of K noise free images ȳk with k =
1, . . . ,K:

ȳk = S0A0Mkx̄ (2)

where x̄ is the unknown two–dimensional image defined on a
regular grid of size N1 ×N2 and represented in a vectorized
form by a vector of size N = N1N2. Mk, A0 and S0 are
three linear operators represented by matrix multiplications
and corresponding to modulation, convolution and down–
sampling, respectively.

The modulation operator Mk performs a pixelwise mul-
tiplication by a pattern image mk, so that Mk = diag(mk).
Traditionally, modulations are the result of interfering coherent
laser beams and can be represented by a sinusoidal pattern
defined for each points of coordinates (n1,n2) ∈ N1×N2 as:

[mk]n1,n2 = 1 + αk cos(n1ω1,k + n2ω2,k + ϕk) (3)

where αk is the amplitude of the modulation, ω1,k and ω2,k are
the modulations frequencies and ϕk a phase. In the following,
we will stack all the modulations Mk in the matrix M =
[M1, · · · , MK ]

T

The convolution operator A0 models the point–spread func-
tion of the acquisition system, represented as a pseudo–
circulant N × N matrix. In the sequel, we will use the
notation A = IK ⊗ A0 to represent the convolution of
all modulated images. Moreover, when approximating the
optical microscope by a perfect diffraction limited 2D imaging
system, we can model the optical transfer function (OTF) in
wide–field microscopy by the auto–correlation of the pupil
function as [6], [10]:

A0(%) =


2
π

(
arccos

(
%

2%0

)
− %

2%0

√
1−

(
%

2%0

)2)
% ≤ %0

0 otherwise
(4)

where % =
√
ξ21 + ξ22 is the module of the frequencies in

polar coordinate and %0 the cut–off frequency. A profile of
the OTF A0(%) is depicted in dashed black in Fig. 3. We can
note that for any pair of signals whose spectrum only differs
for frequencies greater than %0, both signals will be equal
when viewed through the optical system. We therefore cannot
assume the operator A0 to be injective.

The down–sampling operator S0 represented by a matrix
of size L × N where typically L = N/4, leads to down–
sampling of a factor 2 in each dimensions. In the rest of the
text, down–sampling for the set of K images is represented
by the operator S = IK ⊗ S0.

We can now conveniently rewrite Eq. (2) as:

ȳ = SAMx̄. (5)

where ȳ = [ȳ1, · · · , ȳK ]T is the stack of noise–free images.
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Fig. 3. Principle of structured illumination microscopy illustrated in one
dimension. (a) Spectrum of x in blue and the optical transfer function A0 in
black (b) Spectrum of a modulated image xn · (1 + cos(ωn + ϕ)) (green)
as the sum of the three components 1, e±i(ωξ+ϕ) (resp. blue and red) (c)
Spectrum of the sum (green) and of the individual components (blue and
green) after being filtered by the OTF of the optical system (d) Reconstruction
of a super–resolved image obtained by shifting the modulated components
(red) and summing them (green). Finally, normalizing the components by
tacking into account the shape of the OTF results allows to recover the original
image (yellow).

The principle of SIM imaging in the case of sinusoidal
modulations is illustrated in Fig. 3. It depicts how the modu-
lations amount to a shift in the Fourier domain (Fig. 3.b) that
makes possible for the optical system to capture information
at frequencies above the cut–off frequency %0 (Fig. 3.c). By
shifting back these components individually, a high resolution
image is recovered. However, in order to obtain this highly
resolved image (Fig. 3.d yellow curve) a normalization step
equivalent to the ratio of the demodulated images (green curve)
with the shifted OTFs (purple curve) is necessary and at the
risk of amplifying the noise present in the acquired data.

Indeed, the acquired images are actually degraded by some
random noise due to the photo–electron counting process and
the thermal agitation of the electrons. To take into account
those degradations, a general noise model can be written
as [11]:

y = κ p + n (6)

where κ is the overall gain of the acquisition system, p is a
vector of Poisson distributed random variables of parameter
(ȳ−mDC)/κ and n a vector of Normally distributed random
variables of mean mDC and variance σ2

DC. This formulation
insures that limN`→∞

1
N`

∑N`

`=1(y)` → ȳ for N` different
realizations of the random vector (y)`. The resulting distri-
bution y is then the convolution of a Poisson distribution and
a Normal distribution. However, if the dynamic range of ȳ is
limited and the number of photons high enough (say, ≥ 30) the
additive Gaussian white noise model might be accurate enough
to capture the signal degradation. In the other hand, if the
electronic noise represented by n is negligible and assuming a
unit gain κ = 1, the Poisson noise model is valid. Note that the
use of a variance stabilization transform [12] would introduce

non–linearities which would have a significant impact on the
observation model (2) and make the reconstruction process
intractable.

III. LEAST–SQUARES SOLUTION

A. General Case

Let us start by considering the additive Gaussian white noise
approximation. In this case, maximum–likelihood estimation
of x̄ given the observed data y amounts to solve the least–
squares problem:

x̂ ∈ Arg min
x

‖y − SAMx‖2. (7)

Hence,
x̂ = (SAM)†y. (8)

If we recall the fact that the operator SAM is not injective
for microscopy data then the least–squares solution is not
unique. However, for the sake of the demonstration, let’s
assume that this is the case in this section (e.g. by assuming
that the operator A0 is a Gaussian blur). Therefore, we can
write:

x̂ = (M∗A∗S∗SAM)−1M∗A∗S∗y. (9)

We have

M∗A∗S∗y = M∗[(A∗0S
∗
0y

T
1 )T · · · (A∗0S

∗
0y

T
K)T]T (10)

=

K∑
k=1

M∗
kA
∗
0S0 yk. (11)

Thus, it is remarkable that least–squares estimation reverts to
applying the inverse operator (M∗A∗S∗SAM)−1 to a single
image, which is simply the sum of the yk, after they have
been up–sampled, re–filtered and re–modulated.

Moreover, A∗S∗SA = (IK ⊗ A∗0S
∗
0)(IK ⊗ S0A0) =

IK ⊗ A∗0S
∗
0S0A0 is a block–diagonal matrix whose ac-

tion is to apply the filter A∗0S
∗
0S0A0 to every image

in the stack of K images. So, (M∗A∗S∗ASM)−1 =(∑K
k=1 M∗

kA
∗
0S
∗
0S0A0Mk

)−1
. In general, this inverse oper-

ator cannot be further simplified. It can be applied numerically
using an iterative algorithm like the conjugate gradient (see
[6]). In the remainder of this section, we discuss cases in which
a decomposition is possible.

B. Case of annihilating modulations

Let us assume that S0A0 = IN . This would have little
interest in practice as the resolution is not degraded given that
no low pass filtering is considered. However, we will see that it
can help us formalizing the reconstruction algorithm proposed
in [3]. In this specific case,

x̂ = M†y =
( K∑
k=1

M∗
kMk

)−1( K∑
k=1

M∗
kyk

)
. (12)

The operator (
∑K
k=1 M∗

kMk)−1 is a simple pixelwise division
by the sum of the squared pixel values of the K modulation
patterns mk. In the case where the modulation operator
M is injective, then the division is well defined and the
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estimator exists. Moreover, considering sinusoidal modulation
as defined by Eq. (3) and the specific case where the phases
are defined as ϕk = πk/K and the amplitudes are equal
such that αK = α for k ∈ [1, · · · ,K] , then we have∑K
k=1 M∗

kMk = (1 + α2/2)K. Therefore the reconstruction
amounts to simply modulating the acquired images and nor-
malizing by this constant. However, this ideal case is never
perfectly encountered in practice.

C. Case of separable modulations with no blur operator

Further on, let us consider the case where the modulation
matrix can be decomposed as:

M = P1ΦP2Ω (13)

where matrices P1 and P2 are KN × KN permutation
matrices, Φ a full column rank matrix and Ω a tight frame
such that Ω∗Ω = cIKN . Then, the estimate x̂ can be obtained
as:

x̂ = (P1ΦP2Ω)†y = 1
cΩ
∗P∗2Φ

†P2y (14)

Indeed, using the properties of the permutation matrices we
have P∗1P1 = IKN and since by definition, we have Φ†Φ =
IKN as well, it follows that:(

1
cΩ
∗P∗2Φ

†P∗1
)

(P1ΦP2Ω) = 1
cΩ
∗Ω = IKN (15)

using the tight frame property of Ω.
This decomposition of the operator M is particularly well

suited to describe the set of sinusoidal modulation for a single
pattern frequency pair (ω1,k,ω2,k) = (ω1,ω2) but with several
phases shifts ϕk as defined by Eq. (3). In this context, the
matrix Ω is a of size N × 3 with the following shape: Ω =
[a, c, s] where the two vectors c and s are defined for n =
(n1,n2) ∈ N1 ×N2 by: an1,n2 = 1

cn1,n2 = cos(n1ω1 + n2ω2)
sn1,n2

= sin(n1ω1 + n2ω2)
(16)

The corresponding Φ matrix is then of the form IK⊗Φ0 with:

Φ0 =

1 α1 cos(ϕ1) −α1 sin(ϕ1)
...

...
...

1 αK cos(ϕK) −αK sin(ϕK)

 (17)

and we have in this case the relationship: Φ† = IN ⊗ Φ†0.
Finally, the least–squares estimate can be rewritten as:

x̂ = 1
cΩ
∗P∗2

(
IK ⊗Φ†0

)
P2y (18)

D. Case of separable modulation with blur operator

Now in order to understand the effect of the point spread
function A0 on the reconstruction, we consider the case where
we can write:

y = P1ΦP2SAΩx (19)

where again the matrices P1 and P2 are KN×KN permuta-
tion matrices, Φ a full column rank matrix and Ω a tight frame
such that Ω∗Ω = cIKN . The permutation of the operator
Φ and SA is possible when the matrix Φ only operates on

different images and not on pixels (see [4]). This is the case
for sinusoidal modulations used in SIM and we have then:

x̂ = (SAΩ)†P1(IK ⊗Φ†0)P2 (20)

which leads to the least–squares solution:

x̂ = (SAΩΩ∗A∗S∗)−1Ω∗A∗S∗P1(IK ⊗Φ†0)P2 (21)

where the operator SAΩΩ∗A∗S∗ can be inverted in Fourier
space and corresponds to the deconvolution by sum of the
modulated point spread function. Note that this direct so-
lution is only valid for a limited type of modulations and
it corresponds to the steps described in e.g. [3], [4], [13]
where the modulation components are separated using the
phase information by inverting the matrix Φ0 and the resulting
components are modulated (corresponding to the action of Ω∗)
in order to shift back the frequencies components as described
in Fig. 3.

IV. REGULARIZED LEAST–SQUARES SOLUTION

In the previous section, we assumed that the operator
SAM was injective, but we know from Section II that this
assumption is not valid in microscopy. Moreover, even if the
operator would be injective, this one would probably remain
badly conditionned and the maximum likelihood estimator
would amplify the noise leading to a non valuable estimate.
A common approach is to regularize the problem by adding a
constraint on the solution:

x̂ = arg min
x

1
2‖y − SAMx‖2 + λ‖Lx‖2, (22)

for some linear operator L and regularization parameter λ ∈ R.
Different operators L correspond to different well known
regularization methods. In particular, when L = IN then
Eq. (22) corresponds to Wiener regularization, choosing L =
[D1, D2]T as the forward finite difference of x leads to the
Tikhonov regularization and finally, using the L = D2

11 +D2
22

as the Laplacian was proposed in [6] for SIM image recon-
struction with D11 and D22 the second order derivatives along
the horizontal and vertical directions.

We saw that, in general, no closed form exists for the
least–squares solution. This remains true for regularized least–
squares and minimization algorithms such as the conjugate
gradient are needed, as proposed in [6], [7].

However, in the specific case of separable sinusoidal mod-
ulations, we can obtain a closed form for estimation of the
SIM image:

x† = (SAΩΩ∗A∗S∗ + λL∗L)−1Ω∗A∗S∗P1(IK ⊗Φ†0)P2

(23)
This approach is related to the original reconstruction proposed
by [3] when using L as the identity. However, an apodisation
term defined in the Fourier domain is often used in order
to reduce high frequency noise. In the following section, we
propose to explore an alternative approach to handle the pres-
ence of Poisson and Poisson–Gaussian noise via variational
appraoches involving nonsmooth and non–necessarily finite
criterion.
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Require: x0 ∈ RN×N , τ > 0, σ > 0, ρ > 0
1: z0 = 0, v0,q = x0, q ∈ 1, . . . ,Q
2: for r ∈ 1, . . . ,R do
3: for q ∈ 1, . . . ,Q do
4: ur,q = vr,q + σ Tq(2zr − xr)
5: pr,q = ur,q − σ proxfq/σ(ur,q/σ)
6: vr,q = ρ pr,q + (1− ρ) vr,q
7: end for
8: zr = xr −

∑Q
q=1 τT

∗
qvr,q

9: xr+1 = ρ zr + (1− ρ) xr
10: end for

Fig. 4. The primal dual minimization algorithm proposed in [16] allows to
minimize the energy functional defined by Eq. (24) given that the proximal
operator of the function fq and the operator Tq and its adjoint T∗

q are defined.
We can notice that this algorithm does not require the direct inversion of these
operators.

V. NONSMOOTH REGULARIZATION

In order to explore non–finite data fidelity and nonsmooth
regularization terms, we formulate the estimation procedure as
a sum of Q cost terms defined by:

x̂ ∈ Arg min
x

Q∑
q=1

fq(Tqx) (24)

where fq are functions from RMq → R ∪ {+∞} and
Tq operators represented as matrices of size Mq × N . We
minimize this criterion using a primal–dual proximal algo-
rithm from [14]–[17] (see Fig. 4) and consider several cases
corresponding to the combination of function fq and operator
Tq . Note that since in general the operator associated to
SIM imaging is not directly invertible, primal approaches such
as PPXA+ [18] and ADMM [19] would require an iterative
minimization procedure for the inversion of this operator.
The minimization procedure requires the specification of the
proximal operators proxfq associated to the functions fq and
defined by Eq. (2). We will explicit now the list of cost
term fq(Tqx) corresponding either to a data fidelity term or
a regularization term. We will give the expression for each
case of the function fq and its proximal operator. We will
also describe the operator Tq and its ajoints when needed.
As a convention, we denote z = Tqx the vector of length
Mq in the image space of Tq . In practice we will later
consider only the combination of one data–term along with
one regularization term while the non–negativity constraint is
enforced directly on the iterate at step 9 of Fig. 4. Therefore,
we can write x̂ ∈ Arg minx≥0 f1(T1x) + λf2(T2x) with λ
the regularization parameter.

a) Least–squares SIM data term: When considering
an additive Gaussian white noise model, the negative log–
likelihood leads to a least–squares approach. The least–squares
data term for SIM imaging is defined by 1

2‖y − SAMx‖22
corresponding to the combination of the function fLS(z) =
1
2‖z − y‖22 and the linear operator SAM. The proximal
operator associated to fLS is then [20] : ∀γ > 0, proxγfLS

(z) =
(z + γ y)/(1 + γ) with z = SAMx.

b) Kullback–Leibler divergence SIM data term: Under
a Poisson noise model assumption for the acquired data y,
the negative log–likelihood is given by the Kullback–Leilbler
(KL) divergence [21]. The KL divergence between y and z =
SAMx is defined component–wise for n ∈ [1,LK] by [22]:

DKL(zn) =

 zn − yn log zn, zn, yn > 0
zn, zn > 0 and yn = 0
∞, otherwise

(25)
The function associated to the KL divergence for the vec-
tor z is then the sum over the component fKL(z) =∑LK
n=1DKL(zn). The proximal operator is given component-

wise for n ∈ 1, . . . ,LK by:

proxγDKL
(zn) =

1

2

(
zn − γ +

√
(zn − γ)2 + 4γyn

)
(26)

and the proximal operator proxγfKL
(z) if obtained by applying

Eq. (26) for each component of for the vector z.
c) Weighted least–squares: As an approximation of the

Poisson-Gaussian noise model, a weighted least–squares data
term can be used to take into account the dependency between
the variance of the noise level and the intensity of the signal.
The weighted least–squares can be written as

fWLS(x) =
1

2
(z− y)TQ−1(z− y),

where Q is a diagonal variance matrix. This relationship is
linear for most CCD and CMOS sensors and can be estimated
using a linear regression of the variance of the noise versus
the intensity (see [23] for more details):

Var[yi] = κE[yi] + σ2
DC − κmDC

using the model introduced in equation (6) and with E[yi]
and Var[yi] the expectation and variance of the random
variable yi. The variance of the noise Var[yi] is estimated
locally using a maximum of absolute deviation filter (MAD)
computed on the pseudo–residuals (normalized Laplacian
1√
20

(D2
11y+D2

22y)) of the image while the mean is estimated
using a median filter. The linear regression allows then to
estimate the gain κ and the noise variance at the origin
eDC = σ2

DC − κmDC . The variance-covariance matrix Q can
then be approximated by a diagonal matrix whose elements
are given by:

Qii = κȳi + eDC

with ȳi ≈ E[yi] is the given by the estimation of the intensity
by the median filter.

d) Tikhonov regularization: While more efficient algo-
rithms exist for minimizing the squared `2-norm of the gradi-
ents of x especially combined with a least–squares data term
(See Section IV), it is possible to consider Tikhonov regular-
ization in this framework. In this case, the operator is defined
by the two first order derivative along the horizontal D1 and
vertical D2 directions stacked together TD = [D1, D2]T. The
adjoint of this operator is then the divergence operator defined
as T∗D = DT

1 z1 + DT
2 z2 where z1 and z2 are the gradient

components. The gradient D1 and are D2 computed using
a forward finite difference scheme and their adjoints DT

1 and
DT

2 are backward finite difference with in both cases Neumann
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boundary conditions. For Tikhonov regularization, the associ-
ated function is then the squared `2–norm whose proximal
operator in this case is given by proxγ‖ · ‖22(z) = z/(1 + γ)

with z = [D1, D2]Tx.
e) Laplacian squared `2–norm regularization: A Lapla-

cian squared `2–norm regularization was introduced in [6] for
SIM image reconstruction. We can consider this regularization
using the proposed minimization algorithm by combining the
squared `2–norm with the Laplacian operator TL = D2

11 +
D2

22 where D2
11 and D2

22 are the second order derivatives in
the horizontal and vertical directions. Note that the Laplacian
operator is self–adjoint. Furthermore, we can use here the same
function fγ‖ · ‖22 and the associated proximal operator than for
Tikhonov regularization but this time with z = (D2

11+D2
22)x.

Note that in the context of this study, unlike in [6], we do not
consider the posterior mean estimate but only a maximum a
posteriori (MAP) estimate.

f) Total variation regularization: The total variation
seminorm can be defined as the `1–norm of the gradients of
x [24]. Therefore, we can use this time the same operator TD
than for Tikhonov regularization but with a different function
f . Indeed, in order to achieve an isotropic total variation
a vectorial form of the `1–norm denoted ‖ · ‖1,2 should be
applied by considering the two gradient components as a
vector [25]:

‖z‖1,2 =
∑N
n=1

√
[z1]2n + [z2]2n (27)

with z1 = D1x and z2 = D2x. Then the proximal operator
is applied component–wise for n ∈ [1,N ] as:

prox‖ · ‖1,2(zn) =

{
1− γzn√

[z1]2n+[z2]2n
,
√

[z1]2n + [z2]2n ≥ γ
0 otherwise.

(28)
g) Schatten norm of the Hessian operator: Recently a

new regularization based on the Schatten norm of the Hessian
operator has been proposed [26]. This approach has been
developed in order to reduce the staircase artifacts observed
with total variation regularization.

In order to include this regularization constraint, we con-
sider the Hessian operator defined at each location n ∈
1, . . . ,N as:

[THx]n =

[
[D2

11x]n [D2
12x]n

[D2
12x]n [D2

22x]n

]
(29)

and composed of the second order derivative along horizontal,
diagonal and vertical direction denoted respectively D2

11, D2
12

and D2
22. The adjoint of this operator is defined by:

T∗Hz = D2∗
11z11 + D2∗

12(z12 + z21) + D2∗
22z22 (30)

where z11, z12 = z21 and z22 represent the four components
of the Hessian operator.

The Schatten norm Sp of the [THx]n is defined as the `p–
norm of the diagonal matrix Λn such that zn = [THx]n =
UnΛnVT

n . Then, the associated proximal operator is given by
[27]:

proxγSp(zn) = Unproxγ‖ · ‖p(Λn)VT
n . (31)

h) Non-local total variation: The non–local total varia-
tion (NLTV) penalization was introduced in [28] and extended
to various inverse problems in [29], [30] by considering
differential operator defined on the graph associated to the
sites of the image. It was also recently extended to multi–
spectral images in [27]. The operator associated to the NLTV
regularization can be described as weighted non–local gradi-
ents defined as [31]:

[TNLx]n =

 [W1(F1x− x)]n
...

[WT (FTx− x)]n

 (32)

where for t ∈ 1, . . . ,T , we define some diagonal weight
matrices as function of the distance between patches Wt =

diag
(

exp
(
− 1
ηB(Ftx̃− x̃)2

))
with Ft a translation operator

and B a convolution by a low pass filter such as a box–filter
or a Gaussian filter and η a positive scalar. The image x̃ can
be obtained by minimizing the classical total variation for
example. Note that the computation of the convolution could
be done using a separable recursive filters as proposed in [32].
However, since the estimation of the weights is performed
only once this step is not critical in term of computation
time. The T translations Ft are chosen so that they describe
a square neighborhood of size Nw × Nw while the operator
B corresponding to an image patch whose size Np × Np is
given by the width of the support of the filter in the case of a
box–filter. The adjoint of the operator TNL is defined by:

T∗NLz =

T∑
t=1

Wt(F
∗
t − I)zt (33)

where F∗t with t ∈ 1, . . . ,T are the translation with the
corresponding opposite directions.

The function associated to the NLTV regularization is a
vectorial `1–norm defined by:

‖z‖1,T =

N∑
n=1

(
T∑
t=1

z2n,t

) 1
2

(34)

with zn,t = [Wt(Ftx− x)]n.
The associated proximal operator is then defined by:

proxγ‖ · ‖1,T (zn) =

 1− γzn√∑T
t=1 [zt]2n

,
√∑T

t=1 [zt]2n ≥ γ
0 otherwise.

(35)
i) Local patch dictionaries: In [33] an adaptive patch

dictionary learning was proposed to denoised images based
on the principal component analysis (PCA) of patches lying
in a window. Patch dictionaries were also exploited in an off–
line fashion with great success in e.g., [34] as well as online
[35]. We propose here to adapt the idea of online sparse local
patch dictionary learning in the context of inverse problem
regularization by combining a patch extraction operator TP
and the Schatten norm. Indeed with some approximation the
Schatten norm Sp with p = 0 of the local patch dictionary
is equivalent to the PCA of the dictionary. The operator TP
maps all the Np×Np patches in neighborhoods of dimension
Nw×Nw into a matrices of dimension N2

p ×N2
w. The adjoint
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of this operator is the projection of the patches onto the image.
Note that the operator TP does not depends on the content
of x but is only defined by the windows and patches. As an
illustration let us consider the case of a 4×4 image and patches
of size 2× 2. Then the operator is:

TPx =



x1 x2 x5 x6
x2 x3 x6 x7
x3 x4 x7 x8
x5 x6 x9 x10
x6 x7 x10 x11
x7 x8 x11 x12
x9 x10 x13 x14
x10 x11 x14 x15
x11 x12 x15 x16


and corresponds to the 9 possible translations of the patch
of 4 elements picking values within an image represented as
a vector of 16 elements. For computational efficiency, only
a fraction of the possible neighborhoods can be considered
by shifting the patch extraction window from its half in both
directions.

VI. NUMERICAL EXPERIMENTS

In this section we will test the described methods on
synthetic and real data set. For synthetic data sets, we propose
to use the peak signal to noise ratio (PNSR) defined by:

PSNR(x, x̄) = 20 log10

√
N‖x̄‖∞
‖x− x̄‖2

(36)

A. Generation of synthetic data

In order to generate a synthetic dataset, we use a 512×512
“barbara” and “cameraman” standard test image and a syn-
thetic 512 × 512 “tubule” image generated by simulating
several smoothed random walks originating from the center
of the image. For each of these two test images the SAM
operator is applied with a down–sampling of factor 2 for S0

and a cut–off frequency of %0 = 1.53 pixel−1 for A0 as
defined in Eq. (4). The modulations are composed of 3 equi–
spaced phases and 3 equi–spaced angles with a frequency of
0.9 pixel−1. We simulate a Poisson noise on the resulting 9
images whose original dynamic range is in the interval [0, 128].
The obtained data set is displayed in Fig. 5.

In order to evaluate the gain of the SIM modality versus
the standard wide–field imaging, we can compute the image
that would have been observed by a standard “wide-field”
microscope by taking the average of these images. We can
also applied the regularized (Wiener) least–squares approach
as proposed in the literature [3]. We can see on Fig. 6 the
extended resolution provided by the SIM imaging which also
translates into a gain of PSNR in this simulation.

B. Evaluation of data fitting term and regularization term

In order to evaluate the different pairwise combinations of
the 3 data fitting and 6 regularization terms, we propose to re-
construct the three test images by minimizing the 18 resulting
functionals using the described minimization algorithm (see

Fig. 5. Set of nine 256 × 256 simulated SIM images from the standard
“barbara” test image. We can observe that the modulations pattern produces
a Moiré effect revealing the underlying high frequencies.

Wide-field (average) Regularized least–squares (Wiener)

Fig. 6. In the first column, a 512×512 wide–field image is obtained from the
images displayed in Fig. 5 by computing an average of the images and up–
sampling the result by Fourier padding. In the second column, a regularized
(Wiener) least–squares estimate is displayed showing an improved resolution.
The PSNR of the wide–field image is 23.13dB while the PSNR of the SIM
reconstruction is 23.94dB. Note that the regularization parameter has been
selected to maximize the PSNR.
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Fig. 7. Evolution of the PNSR with respect to the regularization parameter
for the “tubules” synthetic test image.

Fig. 4). We use a maximum of 500 iterations and stop the
algorithm if the relative norm of two consecutive estimates is
below 10−5. All the implementation has been done using the
Matlab programming language. Results are summarized from
Fig. 8 and 9 as well as on Table I, these one were obtained
by maximizing the PSNR over a range of 20 values in the
interval [0.01, 10]. In Fig. 7, the PSNR values obtained for
each regularization parameter are displayed for the “tubules”
test image. We can observe that for each data term, the PSNR
tends toward the same value when the regularization parameter
tends to 0, as expected.

We have tested 3 data terms against the Poisson noise
model. The PSNR obtained using a Kullback–Leibler diver-
gence was performing better in 14 cases out of 18. The
“cameraman” image displays a large constrast between the
coat of the character and the sky and grass leading to large
variation of noise level was particularly penalizing more the
two other approximations and the Poisson noise model gave
better results for all regularization terms.

On the other hand, the local patch dictionnary outperforms
all other reguarization approaches in term of PSNR as the cost
of higher computation times. We can also observe that the
NLTV improves over the TV in 7 cases over 9. However, it is
possible that better tuning of the η parameter could probably
“rescue” these two particular cases. We can also compare
the two methods based on second order derivatives: the `2–
norm of the Laplacian operator and the Schatten norm of the
Hessian operator. The later performed better for the standard
test images but not for the “tubules” synthetic image. The
full Hessian matrix allowing probably to better capture the
higher complexity of the natural images. Note that in [26]
the minimization of the Hessian Schatten norm is shown to
outperform other very competitive regularization terms such
as the `1–norm of wavelet coefficients.

C. Reconstruction of acquired data

We have tested the proposed approached on acquired data.
For this purpose, we used two commercial systems: the
N–SIM from Nikon and the OMX from General Electrics.
Both microscopes use a similar approach for performing SIM
imaging and rely on the use of a diffraction grating which is
optically conjugated with the object plane.

TABLE I
PERFORMANCE RESULTS IN TERM OF PSNR FOR 18 FUNCTIONNALS

TESTED ON 3 TEST IMAGES.

Barbara
Tikhonov Laplacian TV Hessian NLTV Patch

Gaussian 24.13 24.07 24.22 24.20 24.26 24.39
Poisson 24.15 24.07 24.26 24.22 24.30 24.40
Weighted 24.14 24.07 24.24 24.24 24.26 24.46

Cameraman
Tikhonov Laplacian TV Hessian NLTV Patch

Gaussian 31.91 32.12 33.56 33.86 33.67 33.97
Poisson 32.12 32.35 33.84 33.99 34.06 34.27
Weighted 32.07 32.26 33.63 33.88 34.48 34.19

Tubules
Tikhonov Laplacian TV Hessian NLTV Patch

Gaussian 34.03 34.22 33.77 34.18 33.86 34.35
Poisson 34.29 34.37 33.72 34.34 33.59 34.58
Weighted 34.14 34.22 33.51 34.17 33.26 34.45

The N–SIM is equipped with a 100× (1.49 N.A.) objective
and a 2.5× lense is set on the camera port. A Xion Ultra 897
EMCCD camera from Andor Technology Ltd was on the
detection path leading to a pixel–size of ∼ 64 nm in the final
image. A FluoCell prepared slide #2 with BPAE cells with
Mouse Anti-α-tubulin was imaged and the results obtained
with the linear and the convex nonsmooth reconstruction with
a Poisson data term and a local patch dictionnary regulariza-
tion are shown in Fig. 10 along with the “wide–field” image
obtained by averageing the nine acquired images. On this
image we can notice that the filament appear much thinner
on the nonsmooth estimate than on the linear one. We can
also observe that the power spectrum seems to have a larger
support.

The OMX microscope is equiped with a 100× (1.4 N.A.)
objective coupled with a 2× lense on the camera port. This
time a Evolve 512 from Photometrics was used and the final
pixel–size in the image is ∼ 80 nm. A FluoCell prepared
slide #1 with BPAEC cells with F-actin stained with Alexa
fluor 488 phalloidin. Once again, both linear and the proposed
nonsmooth convex reconstruction methods reveal an increased
resolution. Varying the regularization parameter for the linear
method does not allow to reduce noise without inducing a loss
of resolution. The proposed method allows to achieve a much
better compromise in this respect and clearly outperform the
linear approach.

VII. CONCLUSION

In this paper, we have proposed an analysis of linear
reconstruction methods for structured illumination microscopy
and proposed a novel approach based on the minimization
of nonsmooth convex functionals. We have described the
implementation details and tested the resulting functionals on
synthetic and real data sets. The results show that the proposed
approach especially when minimizing the Schatten norm of a
patch dictionnary lead to a significative improvement in term
of PSNR. Able to better handle the noise perturbation allows
to improve the resolution and the sensitivity of SIM images.
Finally, we believe that the proposed approach could be useful
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Gaussian Tikhonov
−1.37, 128, 106s, 24.13dB

Gaussian Laplacian
−0.58, 112, 89s, 24.07dB

Gaussian TV
−0.58, 217, 163s, 24.22dB

Poisson Tikhonov
−1.68, 197, 147s, 24.15dB

Poisson Laplacian
−0.89, 232, 195s, 24.07dB

Poisson TV
−0.89, 276, 201s, 24.26dB

WeightedL2 Tikhonov
−1.21, 110, 68s, 24.14dB

WeightedL2 Laplacian
−0.42, 102, 75s, 24.07dB

WeightedL2 TV
−0.42, 210, 170s, 24.24dB

Fig. 8. Comparison of 18 functionals on the “barbara” standard test images. For each case, the regularization parameter (in a log10 basis), the number
of iterations and the computation times and the PNSR are indicated. The displayed image and values correspond to the maximum PSNR on a range of
regularization parameters with in the interval [log10(−2), log10(1)].
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Gaussian Hessian Schatten
−0.89, 209, 192s, 24.20dB

Gaussian NLTV
−0.58, 265, 289s, 24.26dB

Gaussian Patch Schatten
0.37, 207, 2909s, 24.39dB

Poisson Hessian Schatten
−1.21, 247, 206s, 24.22dB

Poisson NLTV
−0.89, 299, 360s, 24.30dB

Poisson Patch Schatten
0.05, 304, 3742s, 24.40dB

WeightedL2 Hessian Schatten
−0.74, 196, 194s, 24.24dB

WeightedL2 NLTV
−0.58, 245, 347s, 24.26dB

WeightedL2 Patch Schatten
0.53, 179, 2226s, 24.46dB

Fig. 9. Figure 8 continued.

to solve inverse problems where the forward operator cannot
be easily inverted.
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