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Abstract
Machine learning such as data based classification
is a diagnosis solution useful to monitor complex
systems when designing a model is a long and ex-
pensive process. When used for process monitor-
ing the processed data are available thanks to sen-
sors. But in many situations it is hard to get an ex-
act measure from these sensors. Indeed measure
is done with a lot of noise that can be caused by
the environment, a bad use of the sensor or even
the conversion from analogic to numerical mea-
sure. In this paper we propose a framework based
on a fuzzy logic classifier to model the uncertainty
on the data by the use of crisp (non fuzzy) or fuzzy
intervals. Our objective is to increase the num-
ber of good classification results in the presence
of noisy data. The classifier is named LAMDA
(Learning Algorithm for Multivariate Data Anal-
ysis) and can perform machine learning and clus-
tering on different kind of data like numerical val-
ues, symbols or interval values.

1 Introduction
Data classification is the process of dividing pattern space
using hard, fuzzy or probabilistic partitions into a number
of regions [1]. Classification algorithms are more and more
used nowadays in a world where it is not always simple to
get a model of complex process. On the opposite it is easier
to get data on systems by monitoring and store it. Differ-
ent types of classifiers can be used depending on the sit-
uation. The principal ones described in the literature are
artificial neural networks, k-nearest neighbors, support vec-
tor machine, decision trees, fuzzy classifiers and statistical
methods.

Most of the time, data are issued from sensor measure-
ments and are corrupted by noise. This noise can have dif-
ferent origins, for example environment disturbances, bad
use of the sensor, hysteresis effect or numerical conversion
and representation of the data. Many domains of applica-
tion have to deal with noise problems like medical diagno-
sis [2], biologic identifications [3] or image recognition [4].
Uncertainty can be understood in two ways: the first is the
uncertainty directly present in the data like noise and the
second can be assimilated as the reliability of a feature in-
side a class. In this paper we consider only the first case. To
avoid noise problems in classification some solutions have
been provided previously, for example the transformation of

data [5] [6] [7], the use of fuzzy logic type-1 or type-2 [3]
or statistical models.

Fuzzy logic is a multi-valued logic framework intro-
duced by Zadeh [8] that is known to be more efficient for
representating uncertainty and impreciseness than binary
logic. In previous work, a fuzzy classifier named Learning
Algorithm for Multivariate Data Analysis (LAMDA)
has been proposed by Aguilar [9]. This classifier can
originally process simultaneously two different types
of data: quantitative data and qualitative data. A real
number contains an infinite amount of precision whereas
human knowledge is finite and discrete, thus LAMDA is
interesting because there is no solution proposed in the
literature to process in a uniform way heterogeneous data
and to handle in a same problem quantitative data and
qualitative data is often a complex subject. A new type
of data, the interval, has been introduced by Hedjazi [10]
to model uncertainties by means of crisp intervals. In this
paper we propose an extention to fuzzy intervals in order to
improve its application to process noisy data measurements
but with the capacity to handle others features types like
“clean” data or qualitative features. Moreover the algorithm
should stay low cost in term of memory and computation
time to enable the method to be embedded on small systems.

In the first part of the paper the LAMDA algorithm is
shortly presented then in a second time a method to use the
algorithm to classify noisy data is introduced. This method
is in two parts: the first presents a general solution to model
uncertainty on data with crisp intervals based on confidence
intervals and the second shows an improvement to model
Gaussian noise with fuzzy intervals. In both cases examples
of application are introduced to show the improvement of
the method compared to the use of the data without trans-
formation.

2 LAMDA algorithm (Learning Algorithm
for Multivariate Data Analysis)

This section presents the principle of the LAMDA algo-
rithm.

2.1 General principle
LAMDA is a classification algorithm based on fuzzy logic
created on an original idea of Aguilar [9] and can achieve
machine learning and clustering on large data sets.

The algorithm takes as input a sample x made up of N
features. The first step is to compute for each feature of x, an



Figure 1: Summarized scheme of the LAMDA algorithm

adequacy degree to each class Cj , j = 1..J where J is the
total number of class. This is obtained by the use of a fuzzy
adequacy function. So J vectors of N adequacy degrees
are computed, these vectors are called Marginal Adequacy
Degree vectors (MAD). At this point, all the features are in
a common space. Then the second step is to take all the
MADs and aggregate them into one global adequacy degree
(GAD) by means of a fuzzy aggregation function. Thus the
J MAD vectors (composed of N MADs) become J scalar
GADs, the higher the GAD, the better the adequacy to the
class. The simplest way to assign the sample x to a class is
to keep as result the class with the biggest GAD.

All the process is summarized in Fig. 1.

2.2 Fuzzy membership computation
During the learning step, the algorithm creates prototype
data for each class and for each feature. These data are
called classe descriptors or prototypes; they can be for ex-
ample means or variances. We define as Cj,n the class pro-
totype of the n-th feature for the class j.

As previously mentioned the first step of the algorithm
is a comparison between the sample vector x and all the
Cj,n. This operation is performed with membership func-
tions and gives as result a membership adequacy degree.
Thus MADj,n is the MAD for the j-th class and the n-
th feature. As the framework is based on fuzzy logic, all
memberships are numbers in the [0,1] interval. The general
membership function is:

MADj,n = f(Cj,n, xn) (1)
The class prototype Cj,n depends on two things: the type

of data and the function used. Some functions may require
only one data into Cj,n whereas others need a list of param-
eters.

In the following section, some examples of membership
functions are presented.
• Quantitative data:

Many functions are available for this kind of data. For
example the Gaussian:

f(xn) = e
−

(xn − ρj,n)2

2σ2
j,n (2)

or the binomial function:

f(xn) = ρxn
j,n.(1− ρj,n)1−xn (3)

Where xn is the n-th feature of the sample x, ρj,n is
the mean of the n-th feature for the class j and σj,n is
the standard deviation of the n-th feature for the class j.

• Qualitative data:

Qualitative can take values in a set of modalities. The
membership function of qualitative data returns the fre-
quency of modality taken by the feature into the class
during the learning phase. We introduce a qualitative
variable with K modality {Q1, ..., QK} and the fre-
quency Φk

j of the modality Qk for the class j. The
membership is described by:

f(xn) = (Φ1
j,n)q1 ∗ ... ∗ (ΦK

j,n)qK (4)

with
{
qk = 0 if xn 6= Qk

qk = 1 if xn = Qk

• Intervals:

The membership function for interval data is a function
which tests the similarity between two fuzzy intervals.
In this case similarity is defined by two components:
the distance between the intervals and the surface that
these intervals have in common. Indeed the class pro-
totype for crisp interval data is a mean interval. The
similarity function is:

S(A,B) =
1

2
(

∫
V
µA∩B(ξ)dξ∫

V
µA∪B(ξ)dξ

+ 1− ∂[A,B]

$[V ]
) (5)

where µX(x) is the value of x in the fuzzy set X ,
∂[A,B] is the distance between intervals A = [a−, a+]
and B = [b−, b+]and $[X] is the size of a fuzzy set
into a V universe. This is described by:

$[X] =

∫
V

µX(ξ)dξ (6)

In the case of crisp intervals and in a universe between
0 and 1:

S(A,B) =
1

2
(
$[A ∩B]

$[A ∪B]
+ 1− ∂[A,B]) (7)

where $[X] in this case can be replaced by the length
of the interval:

$[X] = upperbound(X)-lowerbound(X) (8)

and distance ∂[A,B] is defined as:
∂[A,B] = max[0,max(a−, b−)−min(a+, b+)] (9)

In the case where an interval feature is used the pro-
totype for a class j is given by [ρn−j , ρn+j ] where ρn−j ,
respectively ρn+j represents the mean value of lower
bounds (respectively upper bounds) of all the elements
belonging to class j for this feature.
Once the MAD are computed whatever the feature
type, it is possible to perform any type of processing
as described on Fig. 2



Figure 2: Projection principle for heterogeneous feature
types

2.3 Marginal adequacy degree merging
Once all the features are grouped into the membership space
the next step of the algorithm is to transform the MAD vec-
tors into a set of single value which depicts the global mem-
bership of the sample to a class. These values were intro-
duced in section 2.1 and are called GAD. To perform this
transformation a fuzzy aggregation function Ψ is used.

The aggregation function is the following:

Ψ(MAD) = α.γ(MAD) + (1− α).β(MAD) (10)

where γ is a fuzzy T-norm and β is a fuzzy T-conorm.
α parameter is called exigency indicator. It enables to give
more or less significance to the union operation and the in-
tersection operation. Two fuzzy T-norm and T-conorm are
currently implemented in the algorithm, the min-max and
the probabilistic. For example if min-max is used, (10) be-
comes:

Ψ(MAD) = α.min(MAD)+(1−α).max(MAD) (11)

When all GAD are computed they give the membership
of the data x to each class. The final result depends on the
application but the simplest way to give a result is to class
the sample in the class which has the highest GAD. A limit
membership can also be fixed: if no GAD is higher than the
limit, the sample is defined as unclassifiable.

3 Uncertainty modeled with crisp intervals
3.1 Method presentation
Every data measurement is performed with noise. In some
cases noise has enough bad effect to increase the error of
classification. Thus the point is to model the imprecision of
the data to decrease the number of bad classifications.

A technique used in several fields of application is the
use of intervals to symbolize data uncertainty [11] [12]. So
we are suggesting a framework where numerical data are
transformed into intervals to model imprecision.

In a situation where the probability law followed by the
noise on a variable is unknown, it may be possible to ob-
tain a confidence interval. It is an interval in which the
real value of the measure is present with a certain amount

of confidence (for example a confidence interval of 95% is
an interval in which the exact value of the measure can be
found with a probability of 95%). Introducing x̂ the mea-
sured value and l the length of a centered on zero confi-
dence interval based on the measurement error, the interval
used by the algorithm is calculated: X = [x̂− l

2 ; x̂+ l
2 ].

The main aim of the transformation is to improve the clas-
sification on the transition zones where data is really sensi-
tive to noise and a small change can modify the output of the
classifier. The use of intervals to model uncertainty is effec-
tive only if the “clean” data is relevant for the classification
problem. If it is not the case a better solution is to remove
the irrelevant feature. It will in most cases provide better
output results. This expresses the fact that if the “clean”
data is difficult to classify it is not improved by using confi-
dence intervals.

3.2 Experiments
A set of data has been created for an application test which
can be interpreted as sensors time evolution of a continuous
process. This set of data is composed by three quantitative
(numerical) features of 101 samples that are shown on the
Fig. 3. Three classes are specified and used as targets for
the classifier. These classes are chosen arbitrarily to repre-
sent different behaviors of a system that could be healthy
or failure modes. Nevertheless the classes are built to make
all the data relevant for the system monitoring which means
the three features do not have a global negative impact on
the classification results.

The three features x, y and z are defined by the following
time functions:

• x = e
−t
2

• y = 1
2 · e

t
4 − 1

• z = tanh(t− 5)

Figure 3: Data used to test the intervals method

This example is used to measure the improvement in the
classification results in the case of all data are noisy. Artifi-
cial noise is added by the following: x is the ideal variable
without noise and x̂ the noisy variable, x̂ = x + Y with



Figure 4: An example of data corrupted with a noise in the
interval [-0.5 ; 0.5]

Y a random variable following a uniform distribution on an
interval I .

The experiment has been performed with these condi-
tions: α parameter of (10) is set at 0.8 with the [min,max]
functions to compute the fuzzy aggregation and the mem-
bership function used for quantitative data is the bino-
mial.[min, max] aggregation is chosen because experiments
on the algorithm showed that this kind of aggregation pro-
vides better results on noisy data that the probabilistic one.
A first classification without any noise gives a result of 91%
of good classification. Then the experiment is repeated a
great many times to avoid statistical mistakes. In this case,
the experiment has been run fifty thousand times, x̂ is re-
computed at each new run. Results are given on table 1.

Interval for ran-
dom data

[-0.3 ; 0.3] [-0.5 ; 0.5] [-2 ; 2]

Mean success
percentage
with binomial
function

89.9% 84.7% 79.6%

Mean success
percentage with
interval function

91.9% 89.8% 70.3%

Table 1: Table of results for the crisp intervals method

As it can be seen, this method provides an improvement
on the results in the two first cases where noise deteriorates
the classification with the quantitative method but when the
data is still globally consistent. In these cases, the intervals
method gives better results than binomial method 82% of
the time. But when noise amplitude is much higher than the
data like in the [−2; +2] error interval, the interval method
does worse in general than the binomial function.

Figure 5: Example of approximation of a Gaussian fuzzy
interval by a triangular fuzzy interval

4 Modeling Gaussian noise with fuzzy
intervals

4.1 Fuzzy interval method presentation
Most of the time, noise on physical measure follows a Gaus-
sian distribution centered on the real value. Thus it is inter-
esting to model this specific kind of uncertainty. Neverthe-
less, it is difficult to handle fuzzy intervals with an exact
Gaussian shape. That is why we suggest approximating the
Gaussian with a triangular fuzzy interval. This interval is
described with a lower boundary x− and an upper boundary
x+: X = [x−;x+] which leads to a similar description as
crisp intervals. So:
µX(x−) = 0 and µX(x+) = 0 and µX(x++x−

2 ) = 1

with µX(x) the fuzzy value of x into the fuzzy set X . As
a Gaussian of ρ mean is centered on the true measure value
the maximum fuzzy value of the triangle x++x−

2 is equal to
ρ. To compute x− and x+ we propose to use the full width
at half maximum (FWHM) that can be calculated this way:

FWHM = 2
√

2ln(2) · σ (12)
with σ that is the standard deviation of the measure.

Thus for a Gaussian function that has a mean value ρ and a
standard deviation σ the approximated interval X is defined
by X = [ρ− 2

√
2ln(2) ·σ; ρ+ 2

√
2ln(2) ·σ]. An example

of this approximation is given on Fig. 5.

Until now all the implementations of the LAMDA algo-
rithm were using only crisp intervals despite the fact that
the general method was introduced. The class prototype is
now a triangle interval computed with the means of upper
and lower boundaries of the data used to train the algorithm.
Thus the membership function is still a similarity measure
between two fuzzy intervals like in (5) but it is necessary to
redefine the distance function between the intervals. A solu-
tion has been proposed to measure a distance with the center
of gravity of triangular fuzzy intervals [13]. In the present
situation:

∂[A,B] = |a+ + a−
2

− b+ + b−
2

| (13)



with A = [a−; a+] and B = [b−; b+], A and B being
triangular fuzzy intervals like described in this section.

The intersectionA∩B needed in (5) is calculated with an
analytical solution based on geometry and trigonometry. It
avoids numerical integration that could be less precise and
longer to compute.

4.2 Experiments
As we did previously with the crisp method, a test is per-
formed with a Gaussian noise on the same data set (Fig. 3).
The test is done in the same conditions as in the previous
section. The difference is on the construction of the noisy
data x̂ = x+ Y . Y is now a random variable that follows a
normal distribution of standard deviation σ and centered on
0. Results of the simulation are given on the table 2.

σ 0.2 0.5 0.7 1
Mean success
percentage
with binomial
function

83.2% 79.8% 79.8% 79.6%

Mean success
percentage with
crisp interval
function

86.8% 82.5% 77.2% 71.3%

Mean success
percentage with
fuzzy interval
function

93.1% 84.5% 79.3% 74.8%

Table 2: Table of results for the fuzzy intervals method

Similarly to the previous test, the interval method in-
creases the rate of good classifications until the standard de-
viation σ becomes too high and the binomial function pro-
vides better results. This point is reached here for σ = 0.7
which corresponds to a signal to noise ratio (SNR) of 6 dB
for the signal with the smallest amplitude. Also it is im-
portant to notify that in all cases the fuzzy interval provides
better results than the crisp interval method.

4.3 Experiments on iris dataset
As a second example we use the classical iris dataset[14].
This dataset contains four features: sepal length in cm,
sepal width in cm, petals length in cm and petal width
in cm. All these features are measured for three types of
flower: iris Setosa, iris Versicolour and iris Virginica which
constitute three classes. It is easy to classify without any
error the iris dataset by using only the petals information
that are in general most relevant that the sepals ones. Thus
only the sepal sizes are kept in this test to simulate the
noise. The figure 6 shows the repartition of the data in the
2D space of the sepal features.

We assume that the data follow a normal distribution
centered on a mean µj,n and with a standard-deviation σj,n.
This hypothesis can be verified by using a statistical test.
The Kolmogorov-Smirnov test has been used for each class
with a 5% significance level, it shows that the hypothesis is
true for the iris Setosa and the iris Versicolour but not for
the iris Virginica. Nevertheless all the data are processed as
if they follow a normal distribution.

Figure 6: Representation of iris data by class

The classifications are performed using the cross-
validation method. The percentages of well classified data
for the two methods are:

• using binomial function (scalar): 81.3%

• using fuzzy triangular intervals: 94.0%

Once again the classification rate is increased by the use
of the fuzzy interval method instead of the binomial one.

5 Conclusion
We presented in this article two methods to model uncer-
tainty for classification applications. An example showed
that these methods can improve classification results even
when the signal to noise ratio is high. The second method
based on fuzzy intervals demonstrated that try to model
more precisely the probability law of the noise can pro-
vide better results than use confidence intervals modelled
by crisp intervals. However this process to model uncer-
tainty reveals limits when the SNR reaches a low level. A
future important work is to limit the classification error of
the interval method at the level of the numerical method.

These methods will now be tested on data out coming
from a real industrial process.

Another way to manage uncertainty on classifiers like
LAMDA could be to use type-2 fuzzy functions [15]. This
is an expansion of classical fuzzy logic where the member-
ship functions give in output a fuzzy interval which can be
used to model variance of the data.

To provide a better solution to manage uncertainty in the
LAMDA classifier it can be useful to extend the problem to
the qualitative features. It is often difficult to determine if a
qualitative element is close to another, for example the color
"orange" is closer to "red" than "blue". But on small training
dataset consider this kind of information can improve final
classification results. This could be done by using similarity
matrix which are already used in some artificial intelligence
problems.

LAMDA algorithm can work with a feature selection al-
gorithm named MEMBAS (Membership Margin Based Fea-
ture Selection) [16]. This algorithm uses LAMDA classes
definitions and its membership functions to provide an ana-
lytical solution for the feature selection. A future work will
be to measure the impact of the interval use on MEMBAS
algorithm to perform selection on noisy data.
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