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ABSTRACT:

Most methods for retrieving foliar content from hyperspectral data are well adapted either to remote-sensing scale, for which each

spectral measurement has a spatial resolution ranging from a few dozen centimeters to a few hundred meters, or to leaf scale, for which

an integrating sphere is required to collect the spectral data. In this study, we present a method for estimating leaf optical properties

from hyperspectral images having a spatial resolution of a few millimeters or centimeters. In presence of a single light source assumed

to be directional, it is shown that leaf hyperspectral measurements can be related to the directional hemispherical reflectance simulated

by the PROSPECT radiative transfer model using two other parameters. The first one is a multiplicative term that is related to local leaf

angle and illumination zenith angle. The second parameter is an additive specular-related term that models BRDF effects.

Our model was tested on visible and near infrared hyperspectral images of leaves of various species, that were acquired under laboratory

conditions. Introducing these two additional parameters into the inversion scheme leads to improved estimation results of PROSPECT

parameters when compared to original PROSPECT. In particular, the RMSE for local chlorophyll content estimation was reduced by

21% (resp. 32%) when tested on leaves placed in horizontal (resp. sloping) position. Furthermore, inverting this model provides

interesting information on local leaf angle, which is a crucial parameter in classical remote-sensing.

1. INTRODUCTION

For the last decades, hyperspectral remote-sensing has proven to

offer a great potential for extracting vegetation optical proper-

ties at different scales, ranging from leaf level to canopy level.

Such a non-destructive technique allows the assessment of spa-

tial and temporal variability of vegetation status, which is useful

for many environmental, ecological and agricultural applications

such as early detection of leaf diseases (Mahlein et al., 2013).

Because these optical properties affect the reflected and trans-

mitted incoming radiations, they can be retrieved from the spec-

tral shape of the measured signal under some conditions. In the

solar emission spectrum (i.e., between 400 and 2500 nm), var-

ious parameters are known to have an influence in some spe-

cific wavelength ranges. At leaf level, these parameters char-

acterize the leaf internal structure and biochemical composition

through absorption and scattering processes, e.g., chlorophyll,

water and dry matter contents (Curran, 1989; Jacquemoud and

Baret, 1990; Feret et al., 2008). They also describe leaf surface

properties (Bousquet et al., 2005). At canopy level, they charac-

terize the canopy structure, e.g., leaf area index or leaf inclination

distribution function (Knyazikhin et al., 2012; Latorre-Carmona

et al., 2014; Verhoef, 1984), thus resulting in complex relation-

ships with re-emitted light. In addition, depending on the study

scale, other factors have to considered, such as soil properties and

atmospheric conditions (Jacquemoud et al., 2009).

All these parameters determine the bi-directional reflectance dis-

tribution function (BRDF) that describes the angular patterns of

reflected light, as leaf-surface characteristics can make vegeta-

tion highly non-Lambertian (Comar et al., 2012). Because hyper-

spectral measurements are affected by BRDF effets, it is of great

importance to take into account all these sources of variability

to relate remote-sensing data to leaf physiological processes in a

proper way.

∗Corresponding author

A number of retrieval methods have been developed, each of

which has advantages and drawbacks as reviewed by Baret and

Buis (2008) and Dorigo et al. (2007). They can roughly be classi-

fied into two main classes, i.e., statistically- and physically-based

methods. Statistical methods aim at finding a statistical relation-

ship between the spectral signature and targeted variable(s) (Gi-

telson et al., 2005; Jay et al., 2014). Conversely, physically-based

methods lie in the use of radiative transfer models simulating

light propagation within the leaf and/or canopy, and therefore,

they do not require any training data base. At leaf level, these

models range from simple plate models to ray-tracing, radiosity

and stochastic models that are computationally more difficult to

invert directly (Dorigo et al., 2007). PROSPECT (Jacquemoud

and Baret, 1990) is one the most known plate models, probably

because of its suitability to retrieve leaf biochemical contents by

model inversion, its ease of use and its availability. At canopy

level, various radiative transfer models have also been developed

since SAIL, one of the earliest and most known models (Verhoef,

1984). Inversion of canopy models allows the estimation of pa-

rameters related to canopy structure, such as leaf area index or

leaf inclination distribution function. The combination of both

leaf-level and canopy-level models, e.g. PROSAIL (Jacquemoud

et al., 2009), therefore allows the estimation of leaf biochemical

parameters from remote-sensing observations.

However, these radiative transfer models are well adapted to spe-

cific resolution ranges and measurement setups. At leaf level, be-

cause PROSPECT models directional hemispherical reflectance

and transmittance, its inversion requires the use of integrating

spheres to collect the spectral data (Jacquemoud and Baret, 1990;

Feret et al., 2008). On the other hand, canopy reflectance models

such as PROSAIL must be applied to mixed pixels (containing

both soil and leaf materials), for which effects of leaf composi-

tion, canopy structure, soil properties and viewing/illumination

angles are integrated into a single spectrum. They are well suited

for airborne and satellite-borne hyperspectral measurements as

well as ground-based spectroradiometric measurements, for which
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the spatial resolution is generally coarser than a few dozen cen-

timeters (Zarco-Tejada et al., 2003; Schlemmer et al., 2013).

However, they cannot be applied to hyperspectral data having a

higher spatial resolution (down to centimeter or millimeter level)

because the assumption of mixed pixel does not hold any more.

Such close-range remote-sensing hyperspectral data allow more

detailed spatial and spectral descriptions of vegetation status, and

may become increasingly available with recent developments of

unmanned aerial vehicles (Duan et al., 2014; Verger et al., 2014).

Only few studies have dealt with such images (Vigneau et al.,

2011; Uto and Kosugi, 2013), perhaps because of the heterogene-

ity of illumination conditions that makes difficult the reflectance

correction process in every pixel. Indeed, the reference surface

used for reflectance correction is not submitted to the same illu-

mination conditions than vegetation pixels, e.g., because of shad-

ows or multiple scattering caused by nearby leaves.

Furthermore, the reflectance variations with respect to illumi-

nation and viewing angles (i.e., BRDF effets) have to be care-

fully addressed, as they can greatly affect the measured radiance

(Bousquet et al., 2005; Comar et al., 2012).

In this study, we address the estimation of both the foliar content

and leaf topography from such high-resolution hyperspectral data

in the visible and near-infrared range. We present a physically-

based radiance model that relates both leaf biochemistry and local

incident angle to the acquired signal in presence of a single light

source (e.g., under laboratory conditions). This model is derived

from the PROSPECT model and its inversion allows the simulta-

neous retrieval of PROSPECT parameters (e.g., chlorophyll and

carotenoid contents), leaf surface effects and leaf angle with re-

spect to the light source.

In this article, the whole theory is described in Section 2.. Ex-

periments and results are presented in Section 3., and we finally

draw some conclusions in Section 4..

2. THEORY

2.1 Radiometric definitions

Before going into further details, it is highly necessary to define

the main physical quantities that will be used in the following

article. These definitions and notations are based on the initial

terminology of Nicodemus et al. (1977) and have been recalled

by Schaepman-Strub et al. (2006).

The spectral radiance L is the radiant flux in a beam per unit

wavelength, per unit area and per unit solid angle, and is ex-

pressed in the SI unit [W.sr−1.m−2.nm−1]. This is the physical

quantity measured by a hyperspectral imaging sensor after spec-

tral calibration. Similarly, the spectral irradiance E is the radiant

flux in a beam per unit wavelength and per unit area and is ex-

pressed in [W.m−2.nm−1].

One of the main physical quantities used to describe angular pat-

terns of reflected light is the spectral bidirectional reflectance dis-

tribution function (BRDF) expressed in [sr−1]. It describes how

a parallel beam of incident light from one direction in the hemi-

sphere is reflected into another direction in the hemisphere:

fr(λ, θs; θv , ϕv) =
dLr(λ, θs; θv, ϕv)

dEi(λ, θs)
. (1)

Because it is the ratio of two infinitesimal quantities, it cannot

theoretically be measured. However, its integration over the cor-

responding solid angles allows the derivation of many other mea-

surable physical quantities.

Usually, the reflectance correction process does not consist in re-

trieving directly the reflectance (defined as the ratio of the leaving

radiant exitance to the incident irradiance), but rather follows the

definition of a reflectance factor. In the specific case of single

illumination and viewing directions, the bidirectional reflectance

factor (BRF) is given by the ratio of the radiant flux dLr reflected

from the area element dA to the radiant flux dLid
r reflected from

an ideal and diffuse surface of the same area dA under identical

illumination and viewing geometries. It is unitless and as devel-

oped by Schaepman-Strub et al. (2006), it is given by:

R(λ, θs; θv, ϕv) =
dLr(λ, θs; θv, ϕv)

dLid
r (λ, θs)

(2)

where dLid
r does not depend on viewing angles.

Because the BRDF of an ideal and diffuse surface is (1/π), the

BRF of any surface is therefore given by:

R(λ, θs; θv, ϕv) = πfr(λ, θs; θv, ϕv). (3)

Lastly, is it worth defining the directional-hemispherical reflectance

(DHR) as the integration of BRDF over the whole viewing hemi-

sphere. The DHR is unitless and is given by:

ρ(λ, θs; 2π) =

∫ 2π

0

∫ π/2

0

fr(λ, θs; θv, ϕv) cos θv sin θvdθvdϕv.

(4)

In the following, the spectral dependence will be omitted for more

clarity in notation. Similarly, spectral radiance and spectral irra-

diance will be simply referred to as radiance and irradiance.

2.2 Relations with hyperspectral measurement

Generally, sensor measurements allow the retrieval of a biconical

reflectance factor because the solid angles corresponding to inci-

dent and reflected light are never purely directional (Schaepman-

Strub et al., 2006). The cone sizes can vary from nearly zero for

directional light source and/or small sensor FOV, to 2π for hemi-

spherical illumination (e.g. under outdoor conditions) and/or view-

ing.

However, in the following, we assume that, under laboratory con-

ditions, hyperspectral imaging sensors can allow the retrieval of

BRF measurements. To better meet this assumption, one should

use a collimated beam to illuminate the imaged line (see Sec-

tion 3.1), and the pixel FOV has to be very small (which is usu-

ally the case for most hyperspectral cameras).

The leaf BRF R is thus approximated as follows:

R(θs; θv, ϕv) ≈
Lr(θs; θv, ϕv)

Lid
r (θs)

(5)

where Lr and Lid
r are the radiances measured on the leaf and ref-

erence surface respectively.

Importantly, Eq. 5 requires the leaf and reference surface to be

under identical illumination and viewing geometries (i.e., same

θs values). But, at the pixel level, variable leaf position and leaf

surface topography can make the irradiances received by the leaf

and reference surface highly different. Indeed, in presence of a

directional light source, the irradiance received by an area ele-

ment is proportional to the cosine of the incident angle, i.e., the

angle θi between the light source and the normal to this element,

i.e.:

Ei(θi) = E0 cos(θi) (6)

where E0 is the irradiance received by an area element perpendic-

ular to the light source axis, and cos θi = cos θs cos θl + sin θs sin θl cosϕl

(Bousquet et al., 2005; Comar et al., 2014).

Therefore, we define two illumination geometries, each of which

corresponds to either the leaf or reference surface. The irradiance
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received by the leaf is:

El
i(θ

l
i) = E0 cos(θ

l
i) (7)

whereas the one received by the reference surface is:

Eid
i (θidi ) = E0 cos(θ

id
i ). (8)

Usually, the reference surface is horizontal so, in the following,

we simply note θidi = θs and θli = θi.
Similarly to Eq. 5, in each pixel, the physical quantity Rhyp re-

trieved using a hyperspectral camera is given by:

Rhyp(θs, θi; θv, ϕv) ≈
Lr(θi; θv, ϕv)

Lid
r (θs)

. (9)

Assuming the light source is directional and the pixel FOV is

small, combining Eq. 1 and Eq. 9 leads to the following equation:

Rhyp(θs, θi; θv, ϕv) ≈
fr(θi; θv, ϕv)E

l
i(θi)

(1/π)Eid
i (θs)

. (10)

Using Eq. 7 and Eq. 8, Rhyp can finally be expressed as follows:

Rhyp(θs, θi; θv, ϕv) ≈ R(θi; θv, ϕv)
cos θi
cos θs

. (11)

Eq. 11 reveals that the physical reflectance quantity retrieved from

a small FOV sensor in presence of a directional light source is not

directly the leaf BRF if the leaf and reference surface are differ-

ently tilted toward the light source. We denote it as a leaf pseudo

BRF, i.e., the leaf BRF weighted by the ratio of the cosine of the

angle between the light source and the normal to the leaf, to the

cosine of illumination zenith angle.

Therefore, Eq. 11 relates the measured pseudo BRF to the (lo-

cal) incident angle and leaf BRF. To relate the latter to the foliar

content, it is then necessary to take into account leaf surface prop-

erties as described in the next section.

2.3 A PROSPECT-based leaf radiance model

At leaf level, the PROSPECT model has been widely used to

model the relationship between the DHR of various monocotyle-

don and dicotyledon species and their biochemical content and

leaf structure. The original version developed by Jacquemoud

and Baret (1990) has been successively improved over the years

to take into account other biochemical components and larger

spectral ranges (Jacquemoud et al., 1996; Baret and Fourty, 1997;

Jacquemoud et al., 2000; Feret et al., 2008; Gerber et al., 2011).

Because it simulates the sum of both specular and diffuse re-

flected fluxes over the whole hemisphere, its inversion requires

the use of integrating spheres to collect the reflected flux. As

a result, it cannot directly be applied to hyperspectral remote-

sensing observations of vegetation that are affected by BRDF ef-

fects. An important prerequisite before using PROSPECT in a

remote-sensing context, is therefore to relate the leaf DHR to the

leaf BRDF.

First, it is generally admitted that the leaf BRDF is the sum of

a diffuse component fr,diff and a directional component fr,spec
(Comar et al., 2014; Bousquet et al., 2005):

fr(θi; θv, ϕv) = fr,spec(θi; θv, ϕv)+fr,diff (θi; θv, ϕv). (12)

The diffuse component fr,diff characterizes absorption and scat-

tering processes within the leaf volume and thus depends on optically-

active biochemical compounds. The directional component fr,spec
characterizes leaf surface properties and describes how light is

reflected at the surface. In the visible and near-infrared range,

fr,spec is assumed to be wavelength-independent, whereas fr,diff

highly varies with the wavelength (Comar et al., 2014; Bousquet

et al., 2005).

Bousquet et al. (2005) have developed a leaf BRDF model for

both fr,spec and fr,diff . The modeled directional component de-

pends on illumination and viewing geometries as well as on the

wax refraction index and a roughness parameter. The modeled

diffuse component is given by the Lambert coefficient kl divided

by π.

However, a more accurate way to take into account the two-layer

leaf structure (i.e. composed of an upper wax layer and a bottom

leaf mesophyll layer) is to consider the fraction of light that is re-

flected by the first layer and that does not reach the bottom layer

(Stuckens et al., 2009; Ashikmin et al., 2000). The diffuse com-

ponent is then expressed as a function of leaf mesophyll Lambert

coefficient kl and wax DHR ρspec as follows (Stuckens et al.,

2009):

fr,diff (θi; θv, ϕv) =
kl
π
(1− ρspec(θi; 2π)). (13)

Combining Eq. 4, Eq. 12 and Eq. 13 leads to the following ex-

pression for total DHR :

ρ(θi; 2π) =

∫ 2π

0

∫ π/2

0

fr,spec(θi; θv, ϕv) cos θv sin θvdθvdϕv

+
kl
π
(1− ρspec(θi; 2π))

∫ 2π

0

∫ π/2

0

cos θv sin θvdθvdϕv.

(14)

This equation can be rewritten as follows:

ρ(θi; 2π) = ρspec(θi; 2π) + kl(1− ρspec(θi; 2π)). (15)

Because PROSPECT models the relationship between leaf DHR

for nadir illumination ρ(0; 2π) and leaf biochemical content char-

acterized by the vector of PROSPECT input parameters ϑprospect,

the modeled Lambert coefficient can be expressed as a function

of ρspec(0; 2π) and PROSPECT DHR ρprospect using Eq. 15 as

follows:

kl,mod(ϑprospect) =
ρprospect(ϑprospect)− ρspec(0; 2π)

1− ρspec(0; 2π)
.

(16)

Subsequently, the leaf BRDF can be modeled as a function of

PROSPECT parameters using Eq. 12, Eq. 13 and Eq. 16:

fr,mod(ϑprospect, θi; θv, ϕv) = fr,spec(θi; θv, ϕv)

+
1

π

(
1− ρspec(θi; 2π)

1− ρspec(0; 2π)

)
(ρprospect(ϑprospect)−ρspec(0; 2π)).

(17)

In order to estimate ϑprospect from the pseudo BRF Rhyp mea-

sured by a hyperspectral camera, Eq. 2, Eq. 11 and Eq. 17 are

combined to lead to the following leaf pseudo BRF model:

Rhyp,mod(ϑprospect, θs, θi; θv, ϕv) =
(
cos θi
cos θs

)(
1− ρspec(θi; 2π)

1− ρspec(0; 2π)

)
ρprospect(ϑprospect)

+

(
cos θi
cos θs

)[
πfr,spec(θi; θv, ϕv)

−ρspec(0; 2π)

(
1− ρspec(θi; 2π)

1− ρspec(0; 2π)

)]
(18)

that has been splitted into a wavelength-dependent term and wavelength-

independent term. In this expression, fr,spec and ρspec could po-

tentially be replaced using the BRDF model developed by Bous-
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quet et al. (2005), thus being parameterized as a function of θi,
θv , ϕv , the wax refraction index n and roughness parameter σ.

Unfortunately, such a model is over-parameterized so its inver-

sion is a degenerate problem and leads to poor estimation results

(not shown here). However, because the second term does not

depend on wavelength, Eq. 18 can be simplified as follows:

Rhyp,mod(ϑprospect, θs, θi, bspec) =
(
cos θi
cos θs

)(
1− ρspec(θi; 2π)

1− ρspec(0; 2π)

)
ρprospect(ϑprospect)

+

(
cos θi
cos θs

)
bspec (19)

where bspec = bspec(θi; θv, ϕv) = πfr,spec(θi; θv, ϕv) −

ρspec(0; 2π)
(

1−ρspec(θi;2π)

1−ρspec(0;2π)

)
. Furthermore, if we assume that,

for low θi values, the fraction
1−ρspec(θi;2π)

1−ρspec(0;2π)
is nearly one, Eq. 19

can finally be approximated by the following leaf pseudo BRF

model:

Rhyp,mod(ϑprospect, θs, θi, bspec) =
(
cos θi
cos θs

)
ρprospect(ϑprospect) +

(
cos θi
cos θs

)
bspec. (20)

This model relates the pseudo BRF to the incident angle θi, foliar

content through the PROSPECT parameters ϑprospect and leaf

surface effect bspec. Importantly, this model is only well suited

for low incident angles so further investigation will be necessary

for higher angles.

Lastly, because the hyperspectral camera acquires radiance val-

ues, Eq. 9 is used to transform the above pseudo BRF model into

a radiance model as follows:

Lr,mod(ϑprospect, θs, θi; θv, ϕv) =
[(

cos θi
cos θs

)
ρprospect(ϑprospect)

+

(
cos θi
cos θs

)
bspec(θi; θv , ϕv)

]
Lid

r (θs). (21)

where Lid
r (θs) is estimated on the reference surface. Perform-

ing the inversion directly on acquired radiance values instead of

retrieved pseudo BRF values is more stable and accurate.

3. EXPERIMENTS AND RESULTS

3.1 Data acquisition

To test our methods, close-range remote-sensing hyperspectral

images have been collected in laboratory conditions. A Hyspex

push-broom hyperspectral camera (Norsk Elektro Optikk, Nor-

way) was facing towards nadir at thirty centimeters above the

leaves. It acquired successive lines of 1600 pixels and 160 spec-

tral bands ranging from 410 to 1000 nm with a 3.7 nm spectral

sampling interval. The pixel FOV was 0.18 and 0.36 mrad across

and along track respectively. The lighting was provided by a col-

limated halogen source placed close to the camera with an illu-

mination angle θs = 20o. This source was illuminating the same

line than that imaged by the camera. The incoming halogen ir-

radiance was estimated by using a reference surface (Spectralon,

Labsphere) horizontally placed next to the imaged leaf. After ac-

quisition, each image was calibrated to spectral radiance.

Leaves from six species (bamboo, bramble, ivy, Viburnum tinus,

laurel and holly) were imaged in three positions corresponding to

Figure 1: Cab estimation results: (a) flat leaves, and (b) tilted

leaves. For each method, the R2 and RMSE are indicated in

brackets.

average incident angles θi = 0o, θi = 20o and θi = 40o. Subse-

quently, for each leaf, several leaf discs (from two to seven discs

depending on leaf size) were sampled using a cork borer and a

Dualex (Force-A, Orsay, France) was used to measure Cab in ev-

ery disc. The leaf was then photographed to record disc positions.

3.2 Inversion implementation

In this article, we used the version 5b of PROSPECT originally

developed by Feret et al. (2008). This model takes into account

the leaf structure parameter N , the chlorophyll a+b content Cab,

the total carotenoid content Ccx, the brown pigment content Cbp,

the equivalent water thickness Cw and the dry matter content Cm.

Because water absorption is weak between 410 and 1000 nm and

only occurs around 970 nm (Curran, 1989), the spectral range was

restricted to 410-900 nm and Cw was fixed to Cw = 0.01 m−1

so as to lower the estimation uncertainty. Therefore, the vector of

parameters to estimate ϑ is given by ϑ = [N,Cab, Ccx, Cbp, Cm, bspec, θi]
t
.

The models of Eq. 20 and Eq. 21 were inverted in each pixel us-

ing least square optimization implemented in Matlab. To do so,
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Figure 2: Estimated maps obtained with the radiance model and on the same leaf in flat (a-d) and 40o tilted (e-h) positions: (a) and (e)

RGB images, (b) and (f) Cab estimated maps, (c) and (g) bspec estimated maps, (d) and (h) θi estimated maps.

the following cost function was used (for Eq. 21):

ϑ̂ = argmin
ϑ

∑

λi

[Lr(λi)− Lr,mod(λi,ϑ)]
2

(22)

where Lr(λi) is the measured spectral radiance.

3.3 Estimation results

In Fig. 1, we compare the Cab estimation results obtained by orig-

inal PROSPECT, the pseudo-BRF model of Eq. 20 (noted BRF)

and the radiance model of Eq. 21 (noted BRF RAD). Only leaves

in flat (resp. tilted) position are used in Fig. 1a (resp. Fig. 1b).

For flat leaves, PROSPECT led to a lower estimation accuracy

(R2 = 0.84, RMSE = 5.94 µg.cm−2) than the pseudo-BRF model

(R2 = 0.86, RMSE = 5.47 µg.cm−2) and the radiance model

(R2 = 0.90, RMSE = 4.72 µg.cm−2. Similarly, for tilted leaves,

the radiance model gave the better results with a R2 of 0.88 and a

RMSE of 5.95 µg.cm−2).

The improvement observed for flat leaves is mainly related to

the modeling of the specular term. Interestingly, this is well il-

lustrated by the point corresponding to an actual Cab value of

60 µg.cm−2: while both the radiance and pseudo-BRF models

led to reasonable Cab estimates, PROSPECT inversion largely

underestimated Cab. This was due to a local BRDF effect that had

caused an overestimation of reflectance beforehand. For tilted

leaves, the improvement was even greater (the RMSE was re-

duced by 32% for tilted leaves, while it was reduced by 21% for

flat leaves) because of the effect of variable leaf angles.

Lastly, the interest of using directly spectral radiance measure-

ments instead of transformed pseudo-BRF values is clearly demon-

strated through these two figures since the RMSE was reduced by

at least 14%.

Based on Cab estimation, Fig. 1 shows that BRDF effects and

variable leaf angles are properly taken into account within the

proposed radiance model. To illustrate how the specular-related

parameter and incident angle are retrieved, in Fig. 2, we display

the estimated maps of Cab, bspec and θi for two different leaf

positions (flat and tilted with an average incident angle of 40o).

First, Fig. 2b and Fig. 2f show similar Cab spatial distributions

with values ranging from 30 to 45 µg.cm−2, i.e., Cab was higher

in the left-hand side than in the right-hand side (except in the left

leaf tip). As observed in Fig. 2a, there were many BRDF effects

within the flat leaf, where illumination and viewing angles rela-

tive to the leaf normal were similar. These surface effects were

well retrieved by the bspec parameter as seen in Fig. 2c. Such ef-

fects were increasing the reflectance up to 0.14 in this case, thus

showing the importance of taking this phenomenon into account,

especially for glossy non-Lambertian leaves such as ivy ones.

Lastly, the retrieval of incident angle that gives some information

on leaf topography is illustrated in Fig. 2d and Fig. 2h. For the

flat leaf, the estimated incident angle was similar in the whole

leaf, with an average value of 15o that is close to the illumination

zenith angle (θs = 20o). In Fig. 2d, the highly tilted right-hand

side of the leaf observed in Fig. 2e was well retrieved, with θi
values ranging from 35 to 60o. However, further investigation is

needed in case of high incident angles because, as mentioned in

Section 2.3, the proposed radiance model was only well suited for

low incident angles. In these cases, one should take into account

the difference in fluxes reaching the upper wax layer and bottom

mesophyll layer.

4. CONCLUSIONS

In this study, the PROSPECT model for leaf directional hemi-

spherical reflectance has been adapted to the close-range remote-

sensing case by adding two parameters describing the specular

component and incident angle, which is related to leaf angle and

illumination zenith angle. Therefore, inverting this leaf pseudo-

BRF model allows the estimation of PROSPECT input param-

eters such as chlorophyll content, as well as leaf local topog-

raphy. Compared to classical PROSPECT inversion, inverting

this model does not require spectral measurements acquired us-

ing an integrating sphere. Moreover, model inversion applied on

spatially-resolved information provided by hyperspectral imag-

ing allows the high-resolution mapping of foliar content, which

can be very useful for early detection of leaf diseases.
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