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Abstract The inherent computational cost of molec-

ular simulations limits their use to the study of nano-

metric systems with potentially strong size effects. In

the case of fracture mechanics, size effects due to yield-

ing at the crack tip can affect strongly the mechanical

response of small systems. In this paper we consider

two examples: a silica crystal for which yielding is lim-

ited to a few atoms at the crack tip, and a nanoporous

polymer for which the process zone is about one order

of magnitude larger. We perform molecular simulations

of fracture of those materials and investigate in partic-

ular the system and crack size effects. The simulated

systems are periodic with an initial crack. Quasi-static

loading is achieved by increasing the system size in the

direction orthogonal to the crack while maintaining a

constant temperature. As expected, the behaviors of
the two materials are significantly different. We show
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that the behavior of the silica crystal is reasonably well

described by the classical framework of Linear Elastic

Fracture Mechanics (LEFM). Therefore, one can easily

upscale engineering fracture properties from molecular

simulation results. In contrast, LEFM fails capturing

the behavior of the polymer and we propose an alter-

native analysis based on cohesive crack zone models.

We show that with a linear decreasing cohesive law,

this alternative approach captures well the behavior of

the polymer. Using this cohesive law, one can antici-

pate the mechanical behavior at larger scale and assess

engineering fracture properties. Thus, despite the large

yielding of the polymer at the scale of the molecular

simulation, the cohesive zone analysis offers a proper

upscaling methodology.

Keywords Molecular simulation · LEFM · large

yielding · cohesive zone

1 Introduction

A common issue in mechanical engineering is the ma-

terial fracture failure, which has to be accounted for

carefully for the safety of structures. It is well-known

in fracture mechanics that the presence of cracks in a

material induces stress concentrations that greatly af-

fect the maximum loading capacity of the material. Ac-

cording to Linear Elastic Fracture Mechanics (LEFM),

the stress field is singular at crack tips and its asymp-

totic form when approaching a tip is characterized by

the stress intensity factor. LEFM predicts that a crack

propagates when the stress intensity factor exceeds a

critical value, called toughness. LEFM was very success-

ful at predicting the failure of mechanical structures,

even though the physical existence of infinite stresses

at the tip is of course questionable and one expects
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yielding of the material close to the tip. Actually, as

long as the structure considered is much larger than

the process zone (small scale yielding assumption), the

approximation of LEFM is reasonably valid and this

theory predicts correctly the mechanical behavior (An-

derson, 2005). However, when the size of the process

zone is no more negligible compared to the size of the

structure, LEFM fails to predict the structure’s failure.

Theories were developed to capture the effect of yield-

ing at the crack tip, e.g., HRR singularity (Hutchinson,

1968) or cohesive zone models (Dugdale, 1960; Baren-

blatt, 1962), in which the criterion of crack propaga-

tion is no more the toughness (e.g., critical J-integral

or the crack tip opening displacement). Those theories

are equivalent to usual LEFM under the assumption of

small scale yielding, and all the failure criteria are thus

related.

The size of the process zone varies widely depending

on the material, from Angströms for cleavage fracture

of monocrystals to centimeters for concrete and rocks

(Bazant, 1984). Any measurement of the toughness of

a sample for which the process zone size is not negli-

gible should account for yielding effects. This is par-

ticularly true when considering molecular simulations

approaches since the studied system sizes barely ex-

ceed a few tens of nanometers. More fundamentally, a

question that arises at the nanoscale is whether con-

tinuum fracture mechanics still applies at this scale.

For instance, in their early work, Thomson et al (1971)

have shown that the discrete nature of matter at the

atomic scale leads to a lattice trapping of the crack, an

effect unknown in continuum fracture mechanics. Like-

wise, a great deal of research efforts was devoted to

various atomic scale peculiarities of fracture mechanics:

competition between crack propagation and dislocation

emissions (Rice and Thomson, 1974; deCelis et al, 1983;

Cheung and Yip, 1994), role of inter-atomic potentials

(Sinclair, 1975; Holian and Ravelo, 1995; Marder, 2004;

Buehler and Gao, 2006), role of phonons (Holian and

Ravelo, 1995; Zhou et al, 1996; Gumbsch et al, 1997),

crack velocity (Marder and Gross, 1995; Buehler and

Gao, 2006), dynamic instability (Marder and Gross,

1995; Abraham and Broughton, 1998; Buehler and Gao,

2006; Kermode et al, 2008), effects of crystal orienta-

tion and grain boundaries (Miller et al, 1998; Abra-

ham and Broughton, 1998; Pérez and Gumbsch, 2000),

effect of chemical environment and impurities (Lawn,

1983; Kermode et al, 2013). A long standing issue in

atomic scale studies is the size effect that may arise at

such small scales. Holland and Marder (1999) designed

a molecular simulation approach and analysis for silicon

that is scale insensitive, provided the simulated system

is large enough (strip at least 80 atoms high). Bouch-

binder et al (2010) discussed in detail various origins of

scale effects that cause deviations from LEFM theory,

such as non-linear elasticity and irreversibility at crack

tip, potential energy corrugation at the atomic scale,

energy flow near the tip. In all cases, LEFM limitations

arise from the assumption of continuum linear elasticity

at the crack tip. Apart from the intrinsic limitations of

continuum theories, material properties are also size de-

pendent when considering nanoscale systems. In partic-

ular, the high resistance to fracture of tough materials

involves processes that range from breaking of atomic

bonds to the nucleation of voids, crazing, crystal rota-

tions or microcracking on the micron and larger scales

(Bazant, 1984; Garrison Jr and Moody, 1987; Ander-

son, 2005; Ward and Sweeney, 2012). The toughness of

systems smaller than the range of those processes are

size dependent. For brittle crystals with process zones

a few atoms large, size effects appear for systems a

few nanometer large (Nazmus Sakib and Adnan, 2012);

whereas size effects are at the scale of civil engineering

structures for building materials (Bazant, 1984). The

toughness can also depend on the crack size because of

surface energy changes with strain, lattice trapping, and

non-linear mechanical behaviors (Mattoni et al, 2005;

Zhang et al, 2007). That is, the scale at which the effect

of crack size appears is very dependent on the nature

of the material.

Although molecular simulation approaches can cap-

ture the atomic details of fracture mechanisms, these

simulations do not exceed a few billions of atoms with

supercomputers and highly efficient implementation (Abra-

ham et al, 2002), which amounts to structures 0.1µm

large. Accordingly, effects due to small sizes are a recur-

ring issue when considering molecular simulation. For

fracture studies, the assumption of small scale yield-

ing often fails which is responsible for discrepancies be-

tween molecular simulation results and LEFM. In this

work, we present an approach to analyze molecular sim-

ulation results in order to capture the fracture tough-

ness of materials while accounting for large yielding.

This approach is based on cohesive zone models, de-

veloped originally by Dugdale (1960) and Barenblatt

(1962) to model plastic effect and suppress unphysi-

cal stress singularity at crack tips. Cohesive zone mod-

els are not the only approach to circumvent the stress

singularity of LEFM. Others exists such as the (equiva-

lent) dislocation-based approach (Bilby et al, 1963), the

non-local theory (Kröner, 1967) and some more recent

theories (Pugno and Ruoff, 2004; Oh et al, 2006). Since

cohesive zone models are known to be inadequate for

the modeling of dynamic fracture because of their inher-

ent mathematical formulation (Langer and Lobkovsky,

1998), we limit ourselves to quasi-static evolution in this
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work and disregard crack dynamics. The DBCS analy-

sis (’Dugdale-Bilby-Cottrell-Swinden’) of Mattoni et al

(2005) is relevant to the approach developed in this pa-

per. While Mattoni et al limited their study to the effect

of crack size and analyzed only the critical stress at fail-

ure, we consider in this work the system size effect and

analyze the complete loading curve.

As case studies, two materials are considered for

molecular simulations of fracture. The first one, a sil-

ica crystal, is a brittle material for which the process

zone is expected to be a few atoms large. The second

one, a molecular reconstruction of a saccharose coke,

is a highly cross-linked nanoporous polymer which ex-

hibits a significantly larger process zone. Accordingly,

the yielding effects should be limited in the first mate-

rial, but significant in the second, thus providing two

complementary cases. For each material, we investigate

the effect of system and crack sizes on the fracture be-

havior, e.g., the critical stress at failure. The molecular

simulation results serve as a basis to challenge theo-

ries. We identify LEFM strong shortcomings as soon

as yielding becomes significant, whereas cohesive zone

models proves much more versatile and universal with

respect to yielding effect.

In part 2 of this paper, we present the molecular sim-

ulations of the two materials considered and illustrate

some typical results. In part 3, we propose an analysis

that captures the yielding effects by mean of cohesive

zone models, and apply it to the two case studies.

2 Molecular simulations

2.1 Simulation details

The design of a molecular simulation is key when con-

sidering the simulation of fracture. In particular, major

fracture properties such as brittle to ductile transition,

crack tip blunting, or crack velocity are very sensitive

to small details of the simulation such as the inflection

of the attractive part of the inter-atomic potential (Be-

lytschko et al, 2002), the way to handle emitted phonon

and dislocations at boundaries (Cheung and Yip, 1994),

and the loading technique (Holian and Ravelo, 1995).

With the restriction to quasi-static behaviors, we dis-

regard crack dynamics, and, accordingly, precautions

regarding phonon propagation or loading technique are

not critical in this work. However, the accuracy of the

inter-atomic potential, the choice of boundary condi-

tions and the control of dissipated energy (temperature)

are still important issues. Regarding the inter-atomic

potential, we use the ReaxFF potential (Van Duin et al,

2001). ReaxFF is a reactive potential trained on experi-

mental data or quantum calculations results. It has the

ability to adapt to various atomic configuration, e.g.,

for carbon sp, sp2 or sp3 bonds. Therefore, it is able

to predict the complex molecular rearrangements that

occur in fracture simulations (bond breaking, bond for-

mation, charge transfer etc.). The original version of

ReaxFF was parameterized for the simulation of poly-

mers and organic matter. In this work, we use a pa-

rameterization of ReaxFF extended to the simulation

of silica (Van Duin et al, 2003; Chenoweth et al, 2005)

which is suitable for the two materials we consider in

this work. Previous studies on the fracture of silicon

have used ReaxFF successfully (Buehler et al, 2006,

2007), and the potential formulation does not seem to

exhibit spurious features that would strongly affect the

fracture behavior such as the force peak in the REBO

reactive potential (Belytschko et al, 2002). In our simu-

lations, the fracture behavior simulated with reaxFF is

consistent with the expected materials behaviors: brit-

tle fracture but without cleavage for the silica (Swiler,

1994; Swiler et al, 1995), and chain elongation and scis-

sion of the nanoporous carbon (Rottler, 2009).

In the literature, various boundary conditions are

used to model fracture, from clamped boundaries (fixed

displacement) (Abraham and Broughton, 1998) to pre-

scribed forces on boundary atoms (fixed stress often

coupled with continuum mechanics) (deCelis et al, 1983)

and atoms insertions/removals to follow steady state

dynamics (Holland and Marder, 1998). A recurring is-

sue is that artificial manipulation of the atom dynamics

at the boundary (either by imposing positions or by im-

posing forces coming from a ’smooth’ continuum field)

leads to unphysical molecular dynamics in the vicin-

ity of the boundary. When simulating materials near

0K, which is most often the case in the literature, this

issue is of little importance. But in the present work,

we consider finite temperatures (a key parameter espe-

cially for the polymer fracture behavior) and large scale

yielding potentially affected by the boundary. Accord-

ingly, spurious effects due to artificial manipulation of

boundary atoms are an important issue in this work.

To avoid it, we use periodic boundary conditions and

control the periodic box size to impose a mechanical

loading to the system (see Fig. 1). Periodic boundary

conditions mimic an infinite body, do not require to ar-

tificially manipulate boundary atoms and avoid surface

tensions that arise in non-periodic systems. However,

the behavior of a periodic body is not always represen-

tative of that of an infinite body (e.g., discrete number

of phonon modes). Regarding fracture simulation a rec-

ognized issue is the interactions between a crack and its

periodic replicas: from a dynamical point of view, the

vibrational waves emitted from a crack propagate to the

replicas and alter the crack propagation; from a static
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Fig. 1 Schematic representation of the simulated systems.
We consider periodic boundary condition and increase the
box size to load the system until complete failure. The overall
stress Σ is computed.

point of view, the stress intensity at a crack tip is af-

fected by the presence of periodic replicas of the crack.

Since we disregard crack dynamics in this work, we are

only concerned with the second issue. We properly ad-

dress this issue in the analysis part.

As mentioned, we perform molecular simulations at

room temperature (300 K). Temperature is associated

with atom’s velocities at the molecular scale, also re-

ferred to as ’thermal agitation’, which is known to af-

fect the fracture behavior. For instance, the velocity

gap phenomenon vanishes upon temperature increase

because thermal agitation, on the order of the atomic

corrugation of the energy landscape, overcomes the lat-

tice trapping effect (Holland and Marder, 1999). Like-

wise, temperature increase can induce brittle to ductile

transition by favoring blunting, dislocation nucleation,

or creep (Cheung and Yip, 1994). In the present work,

temperature is an essential parameter since it strongly

affects the mechanics and failure properties of poly-

mers (Rottler, 2009; Ward and Sweeney, 2012). As an

illustration, the strength of the nanoporous polymer we

study is two times smaller at room temperature than

at 0 K. We use a Nose-Hoover thermostat to impose a

temperature of 300 K in our molecular simulation, with

a damping parameter of 10 fs (time step of integration

0.1 fs) (Frenkel and Smit, 2002). Since the energy dis-

sipation during fracture generates heat, we systemati-

cally wait for thermal equilibration after each loading

step before acquiring physical observables. Doing so our

results can be considered quasi-static.

2.2 Simulation of silica

The first material we consider is α-cristobalite, a silica

crystal. Previous molecular simulation studies have in-

System C 
System D 

System H 

Fig. 2 Three of the systems simulated for α-cristobalite.

vestigated the failure behavior of this crystal (Swiler,

1994; Swiler et al, 1995). While α-cristobalite is known

to exhibit a brittle behavior, cracking does not occur

along a specific cleavage plane. Instead, fracture sur-

faces exhibit fractal character which is typical of sili-

con oxides (Nakano et al, 1994). We performed molec-

ular simulations of fracture of α-cristobalite by initi-

ating an elliptic crack (aspect ratio 1/5) in the (001)

direction of the crystal and by increasing progressively

the box size in the direction orthogonal to the cracks.

To prepare the initial atomic configurations, we con-

sidered the unit cell from Downs and Palmer (1994)

(4.9717× 4.9717× 6.9223 Å
3
). We considered a total of

24 different situations with various system sizes and ini-

tial crack sizes, as listed in Table 1. We display in Figure

2 some of the systems simulated. The smallest system

considered is 29.8 × 20.8 × 5.0 Å
3

large (209 atoms),

and the largest 99.4 × 83.1 × 19.9 Å
3

large (11 324

atoms). The smallest crack considered is 7.5 Å long (18

atoms removed) and the largest 50 Å long (548 atoms

removed).

To load the system we performed small increments

of length of the system in the direction orthogonal to

the crack. In a first series of simulations, we increased

the length by 1% every 10 ps, i.e., an equivalent strain

rate of 0.001 ps−1. To avoid rate effects, this strain rate

is two orders of magnitude smaller than the strain rate

at which the failure of silica becomes strain rate depen-

dent (Swiler et al, 1995). The average tensile stress in

the vertical direction (Σ) was computed every 1 fs after

a period of relaxation of the system of 5 ps after each

increment. Σ can be interpreted as the average stress on

the top and bottom boundary of the periodic cell (Fig.

1) and was computed with the virial equation (Allen

and Tildesley, 1989). In a second series of simulations,

we optimized the loading procedure to reduce the com-

putation time. We considered larger increments (2.5%)

performed more frequently (every 2 ps), corresponding

to a strain rate of 0.0125 ps−1, still small enough to

prevent any rate effects. Σ was computed every 1 fs

after a period of equilibration of 1 ps after each incre-

ment. These values were chosen as a good compromise
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Table 1 Systems considered for simulation of fracture in the
(001) plane of α-cristobalite

System
Lx

(Å)

Ly

(Å)

Lz

(Å)

Initial crack

size (Å)

Critical stress

Σcr (GPa)

A† 49.72 55.38 14.92 10 19.97
B† 49.72 55.38 14.92 20 15.73
C† 49.72 55.38 14.92 30 10.84
D† 74.58 69.22 24.86 20 14.99
E† 74.58 69.22 24.86 30 11.90
F† 74.58 69.22 24.86 40 9.77
G† 99.43 83.07 19.89 30 12.99
H† 99.43 83.07 19.89 40 10.84
I† 99.43 83.07 19.89 50 7.65
J† 99.43 69.22 4.97 30 12.21

K‡ 99.43 69.22 4.97 30 15.92
L‡ 89.49 62.30 4.97 30 11.20
M‡ 74.58 55.38 4.97 30 10.49
N‡ 59.66 41.53 4.97 20 14.24
O‡ 49.72 34.61 4.97 20 17.28
P‡ 39.77 27.69 4.97 15 15.78
Q‡ 29.83 20.77 4.97 12 20.77
R‡ 29.83 20.77 14.92 7.46 25.35
S‡ 29.83 27.69 14.92 7.46 24.66
T‡ 29.83 34.61 14.92 7.46 25.40
U‡ 29.83 41.53 14.92 7.46 24.64
V‡ 44.75 34.61 14.92 7.46 20.17
W‡ 59.66 27.69 14.92 7.46 24.06
X‡ 59.66 41.53 14.92 7.46 22.90
† Loading procedure: increments of Ly of 1% every 10 ps and
computation of Σ every 1 fs after a period of equilibration of 5 ps.
‡ Loading procedure: increments of Ly of 2.5% every 2 ps and
computation of Σ every 1 fs after a period of equilibration of 1 ps.

between computational cost and accuracy. All the sim-

ulations were performed with the LAMMPS software

(Plimpton, 1995) (http://lammps.sandia.gov).

In Table 1, we list the critical stress at the on-

set of failure for all studied systems. In Figure 3 the

full loading curve for the three systems displayed in

Figure 2 are shown. The chart represents the evolu-

tion of the average stress Σ as a function of the strain

Ly/Ly0 − 1 during the loading procedure up to com-

plete failure (Ly0 is the initial size of the system). The

non-zero stress in the initial state is due to the sur-

face tension induced by the initiated crack and to the

reaxFF potential for which the ground state of the ma-

terial is not exactly that of the initial atomic structure

(unit cell from Downs and Palmer (1994)). We also dis-

play on the same figure a few snapshots of the molec-

ular structure for system H that illustrate the different

steps of failure. As expected, the mechanical behavior

of α-cristobalite is nearly linear elastic up to the on-

set of crack propagation. The material failure is brit-

tle with unstable cracking through the whole periodic

cell under displacement-controlled loading, leaving be-

hind a rough crack surface. As expected, the critical

stress and strain at the onset of failure depend on the
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Fig. 3 Results of the molecular simulations for three of the
α-cristobalite systems studied. The average tensile stress Σ
in the loading direction is represented as a function of the
strain imposed to the systems. The snapshots of molecular
configurations illustrate the case of system H.

crack and system size. In particular, smaller cracks lead

to higher critical stresses. The highest critical stress of

25 GPa is obtained for the systems with the smallest

crack only 6 atoms long (systems R to X). This value

however is still much lower than the yield stress of α-

cristobalite (35 GPa, estimated from molecular simu-

lations of bulk α-cristobalite). Therefore, the process

zone remains small, typically the size of a few atoms.

2.3 Simulation of nanoporous polymer

The second material we consider is CS1000, a molecu-

lar reconstruction of a saccharose-based heat-activated

carbon (CS) obtained by Hybrid Reverse Monte Carlo

method (Jain et al, 2006). CS1000 is a glassy nanoporous

material composed of a highly cross-linked polymeric

network (Fig. 4). Fracture mechanisms of polymers are

peculiar because of their underlying molecular structure

made of chains: chain elongation in the process zone

leads to the formation of fibrils bridging the crack faces

separated by voids (crazing phenomenon) (Kramer and

Berger, 1990; Ward and Sweeney, 2012). The crazing

phenomenon is a strong toughening mechanism: glassy

polymers can exhibit fracture energy release rates or-

ders of magnitude larger than their surface energy. Fib-

rils are typically a few nanometers large and can be

studied by molecular simulations; see, for instance, Rot-

tler et al (2002). In the particular case of CS1000, the

high degree of cross-linking strongly limits crazing, since

important cross-linking is known to increase the brit-

tleness of polymers (Sauer and Hara, 1990). With a

high degree of cross-linking, the linear chain structure

of polymers is turned into a three-dimensional network

which strongly limits the chain mobility, and, therefore,

reduces the plastic behavior while increasing the stiff-

ness. Thus, a highly cross-linked polymer exhibits lit-
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tle or no crazing and chain scission is the main failure

mechanism. By molecular simulation of bulk CS1000,

we estimated the yield strength of the flaw-less matrix

to be σY S = 19 GPa (high value because of the absence

of flaws). We anticipate a toughness of CS1000 in the

range of toughness commonly observed for glassy solid

polymers, i.e., from 0.5 to 5 MPa.
√

m (Ashby, 2005).

Assuming a toughness of KIc = 2 MPa.
√

m, we an-

ticipate a process zone size of rp = 4 nm at the crack

tip (following the Dugdale-Barenblatt estimate (Ander-

son, 2005): rp = π
8

(
KIc
σY S

)2

). This is a small process

zone with respect to polymers in general since process

zones associated with crazing can be tens of microm-

eters large. While the CS1000 process zone is limited

in size, it is still about one order of magnitude larger

than in the case of silica, which should strongly affect

the fracture behavior in our simulation with significant

size effects.

An additional complexity of polymer mechanics is

the dependency on both temperature and loading rate.

When temperature is raised or when loading rate is de-

creased, amorphous polymers change from glass-like to

rubber-like behavior (Ward and Sweeney, 2012). In the

glassy state, atoms vibrate close to their equilibrium

position, whereas in the rubbery state, polymer chains

are quite flexible and can adopt a variety of conforma-

tions. As a consequence, rubbery polymers, dominated

by entropy, are compliant and viscoelastic; while glassy

polymers are stiff and elastic. The transition from one

regime to another is quite sharp around the glass transi-

tion temperature (for a given loading rate). According

to the time-temperature equivalence, the viscoelastic

behaviour at a temperature is related to the behav-

ior at another temperature by a change in the loading

rate only. Following this equivalence, a single master

curve fully characterizes the dependence of a polymer

mechanical property on both temperature and loading

rate. These concepts apply to polymer mechanical fail-

ure as well, and master curves for failure properties

can be drawn (Smith, 1958). In the present case, at

room temperature (300 K), CS1000 is well below its

glass transition temperature since the heat activation

of saccharose at 1000 K removed the most flexible part

of the polymer. In addition, the loading rate we con-

sider in this study is high (0.0125 ps−1) because of the

time scale accessible by molecular simulation. Interest-

ingly, at low temperatures / high loading rates, as is

the case here, the time-temperature equivalence mas-

ter curves are nearly constant, i.e., the properties are

temperature and rate independent. Nevertheless, in this

work, to avoid any mis-interpretation due to tempera-

ture and rate effects, we applied the same temperature

System B’ 
System H’ System N’ 

Fig. 4 Three of the systems simulated for CS1000.

and the same loading rate to all CS1000 systems. For

one of the systems, we repeated the calculation with a

loading rate about one order of magnitude smaller to

investigate if significant rate effect could occur.

A series of 15 systems of various sizes constructed

from the CS1000 model, with an elliptic crack of various

length, but constant aspect ratio (1/5), was considered

(detailed characteristics of the systems are listed in Ta-

ble 2). Three of these systems are displayed in Figure 4.

The systems were loaded by increasing their length or-

thogonal to the crack by 2.5% every 2 ps (strain rate of

0.0125 ps−1). The average tensile stress (Σ) in the di-

rection orthogonal to the crack was computed every 1 fs

after a period of equilibration of 1 ps after each incre-

ment. In addition, we repeated the molecular simulation

for system C’ but with a much smaller loading rate of

0.001 ps−1 (System P’). The systems were loaded un-

til complete failure was achieved. We report in Table

2 the critical stress at the onset of failure for all the

systems simulated, and display in Figure 5 the average

tensile stress Σ as a function of the strain, Ly/Ly0− 1,

for the three systems displayed in Figure 4. In addi-

tion, we include in Figure 5 a few snapshots of molec-

ular configuration for system N’ to illustrate the steps

of CS1000 failure. Contrary to α-cristobalite, CS1000

failure is stable upon displacement-controlled loading.

One can clearly observe significant yield at the crack

tips. As for α-cristobalite, the critical stress and strain

at the onset of failure depend on the crack and system

size. That is, as expected, the smaller the crack the

larger the critical stress. But, in the case of CS1000,

the maximum critical stress (15.53 GPa, system A’) is

quite close to the yield strength (19 GPa). in fact, for

this system, the yielding of the crack plane is almost

complete since the uncracked area for this system rep-

resents 80% of the cross section in the crack plane.

3 Mechanical analysis

3.1 LEFM analysis

We first consider the strict application of LEFM to the

present situation. LEFM assumes linear elasticity even
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Table 2 Systems considered for simulations of fracture in
CS1000

System
Lx

(Å)

Ly

(Å)

Lz

(Å)

Initial crack

size (Å)

Critical stress

Σcr (GPa)

A’† 50 50 25 10 15.53
B’† 50 50 25 15 14.15
C’† 50 50 25 20 13.83
D’† 50 50 25 25 10.89
E’† 50 50 25 30 9.44
F’† 75 75 25 20 13.52
G’† 75 75 25 25 13.49
H’† 75 75 25 30 11.43
I’† 75 75 25 35 10.63
J’† 75 75 25 40 8.94
K’† 100 75 25 30 12.41
L’† 100 75 25 35 12.57
M’† 100 75 25 40 11.99
N’† 100 75 25 45 9.59
O’† 100 75 25 50 9.31

P’‡ 50 50 25 20 12.79
† Loading procedure: increments of Ly of 2.5% every 2 ps and
computation of Σ every 1 fs after a period of equilibration of 1 ps.
‡ Loading procedure: increments of Ly of 1% every 10 ps and
computation of Σ every 1 fs after a period of equilibration of 5 ps.
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Fig. 5 Results of the molecular simulations for three of the
CS1000 systems studied. The average tensile stress Σ in the
loading direction is represented as a function of the strain
imposed to the systems. The snapshots of molecular configu-
rations illustrate the case of system N’.

at the crack tips, a consequence of which is the stress

singularity at the tips (σ ∝ 1/
√
r, where r is the dis-

tance from the crack tip). The stress intensity KI in

mode I loading, as is the case here, is defined as KI =

limx→0+

√
2πxσyy (y = 0) for a crack orthogonal to the

y direction and for a crack tip located at (x = 0; y = 0).

The stress intensity characterizes the singularity of the

stress at the crack tip and depends on the geometry

and loading conditions of the system. For instance, for a

crack of size 2a in an infinite body subjected to a remote

stress Σ orthogonal to the crack, the stress intensity is

KI = Σ
√
πa. Failure occurs when the stress intensity

reaches the fracture toughness, KIc. Therefore, for the

finite crack in an infinite body, the critical stress at fail-

ure is a function of the crack size Σcr = KIc/
√
πa. For

the periodic geometry we consider in this work (Fig. 1),

the situation is more complex, since the stress intensity

at a crack tip is affected by the presence of the periodic

replicas of the crack. By dimensional analysis, the di-

mensionless reduced stress intensity KI/ (Σ
√
πa) also

depends on the dimensionless quantities characterizing

the periodic geometry, i.e., Ly/Lx and 2a/Lx:

KI

Σ
√
πa

= CKI

(
2a

Lx
,
Ly
Lx

)
(1)

This specific periodic geometry has been studied

within the framework of LEFM (Watanabe and Atsumi,

1972; Isida et al, 1981; Karihaloo et al, 1996; Karihaloo

and Wang, 1997). While there exists no analytical for-

mulation of CKI (2a/Lx, Ly/Lx), one can quantify it

numerically. In this work, we followed the numerical ap-

proach proposed by Karihaloo et al (1996), which con-

sists in a pseudo-traction method based on the solution

of a single periodic array of collinear cracks (Tada et al,

2000). The problem of an infinite body with a doubly

periodic array of crack submitted to a remote loading Σ

is first decomposed into a homogeneous crack-free prob-

lem submitted to the remote loading and a subsidiary

problem in which the system is submitted to the loading

on the crack faces instead. The subsidiary problem is

further decomposed into an infinite number of identical

sub-problems where a body with a single row of peri-

odic collinear crack is submitted to pseudo-tractions σp

on the crack faces. For the second decomposition to be

valid, the pseudo-tractions must satisfy the consistency

equation:

σp (x)− 2

+∞∑
j=1

∫ a

0

Kσj (x, u)σp (u) du = Σ (2)

where the kernel Kσj (x, u) represents the stress in-

duced by the pseudo-traction σp (u) in the sub-problem

with collinear periodic cracks at y = −jLy at the lo-

cation of the pseudo-traction σp (x) in the sub-problem

with the collinear periodic cracks at y = 0. It is read-

ily obtained from the analytic solution for an infinite

body with periodic collinear cracks (Tada et al, 2000):

Kσj (x, u) = Re (Z (x+ i (jLy) , u))+jLyIm (Z ′ (x+ i (jLy) , u)),

with Z ′ = dZ
dz and Z the Westergaard stress function

below for collinear periodic cracks problem:
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Z (z, u) =
2

Lx

cos
(
πu
Lx

)
((

sin
(
πz
Lx

))2

−
(

sin
(
πu
Lx

))2
)

×

√√√√√√
(

sin
(
πa
Lx

))2

−
(

sin
(
πu
Lx

))2

1−
(

sin
(
πa
Lx

)
/ sin

(
πz
Lx

))2 (3)

Karihaloo et al (1996) solved Equation 2 by means

of a Gauss-Legendre quadrature method in which pseudo-

tractions σp (x) are discretized at the integration points.

Once the pseudo-tractions are known, one can easily

access any quantity of interest. For instance, the stress

intensity results from the pseudo tractions of a single

sub-problem (only one sub-problem leads to a singular

stress):

KI =

∫ a

0

KKI (u)σp (u) du (4)

with

KKI (u) =
2

Lx

cos
(
πu
Lx

)√
Lx tan

(
πa
Lx

)
√(

sin
(
πa
Lx

))2

−
(

sin
(
πu
Lx

))2
(5)

Likewise, the deformation of the periodic cell is ob-

tained by the superposition of the deformations in the

homogeneous problem and in all the sub-problems. The

displacement ∆ of the periodic boundary at y = Ly/2

is:

∆ =
Ly
2

Σ

E′
+

+∞∑
j=−∞

∫ a

0

K∆j (u)σp (u) du (6)

whereK∆j (u) = (2/E′) Im
(
Z
(
i
(
j + 1

2

)
Ly, u

)
− Z (i (jLy) , u)

)
and Z = dZ/dz. E′ is the elastic modulus in plane

strain, which is the case here: E′ = E/
(
1− ν2

)
, with

E the Young’s modulus and ν the Poisson’s ratio.

We applied the approach of Karihaloo et al (1996)

to account for the interactions between periodic cracks.

The values of the correction factor CKI in Equation 1

are generally greater than 1, i.e., the influence of the

periodic replicas of a crack leads to higher stress in-

tensities than for an infinite body; up to 20% increase

for the geometries we consider in this work. But, for

some geometries, e.g. Ly/Lx < 0.6 and 2a/Lx < 0.45,

the stress intensity is moderately lower than in the in-

finite body (CKI < 1) which leads to a toughening of

the material. Thus, the effect of the doubly periodic ar-

ray of crack can be counter-intuitive and needs to be

accounted for carefully.

Like the stress intensity, the deformation of the pe-

riodic cell is affected by the presence of periodic cracks.

The ratio between the dimensionless deformation ∆∗ =

2∆/Ly and dimensionless stress Σ∗ = Σ/E′ is a func-

tion of the dimensionless quantities Ly/Lx and 2a/Lx
characterizing the periodic geometry, and can be com-

puted from Equation 6:

2∆/Ly
Σ/E′

= C∆

(
2a

Lx
,
Ly
Lx

)
(7)

With these corrections, one can fully characterize

the failure behavior as predicted by LEFM. Before fail-

ure, the mechanical behavior is linear elastic and fol-

lows Equation 7. Failure occurs when the stress inten-

sity reaches the toughness. The critical stress at the

onset of failure is

Σcr =
KIc

√
πaCKI

(
2a
Lx
,
Ly
Lx

) (8)

Then, in the quasi-static limit, the stress intensity is

equal to the toughness all along the crack propagation.

Therefore, for any crack length larger than the initial

length a > a0, the stress can be obtained from Equa-

tion 8 and the corresponding strain from Equation 7.

We summarize the loading and failure of the periodic

system as follows:

∣∣∣∣∣∣∣∣∣∣∣

Before failure, for a = a0

∆∗

K∗Ic
= C∆

(
2a0
Lx
,
Ly
Lx

)
Σ∗

K∗Ic
with Σ∗

K∗Ic
<
(
CKI

(
2a0
Lx
,
Ly
Lx

))−1

Then, for a > a0

∆∗

K∗Ic
= C∆

(
2a
Lx
,
Ly
Lx

)
Σ∗

K∗Ic
with Σ∗

K∗Ic
=
(√

a
a0
CKI

(
2a
Lx
,
Ly
Lx

))−1

(9)

where we introduced the dimensionless reduced strain

∆∗/K∗Ic and the dimensionless reduced stress Σ∗/K∗Ic
with K∗Ic = KIc/

(
E′
√
πa0

)
. Note that after failure the

control variable is the crack length a that increases from

a0 to Lx/2.

Figure 6 displays the mechanical behavior of the pe-

riodic system as predicted by LEFM. It highlights that

the behavior depends on the dimension ratios 2a/Lx
and Ly/Lx. The behavior is linear elastic until the on-

set of failure, with an elasticity depending on the ge-

ometric ratios. Then, failure is almost always unstable

upon both stress-controlled loading and displacement-

controlled loading. That is, we almost always have dΣ∗

da <
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Fig. 6 Loading curves as predicted by LEFM for various
crack sizes and periodic cell elongations. We display the di-
mensionless reduced stress Σ∗/K∗Ic as a function of the di-
mensionless reduced strain ∆∗/K∗Ic. The behavior is linear

elastic until KI = KIc, i.e., Σ∗/K∗Ic = CKI

(
a0

Lx
,
Ly
Lx

)
. Then,

cracking occurs until complete propagation through the peri-
odic box.

0 and d∆∗

da < 0. This is a peculiarity of the periodic

system. In the periodic geometry, when the crack prop-

agates, the tips come closer to their periodic replicas

which enhances stress intensity and favors instability.
Failure is stable upon displacement loading if ∂KI

∂a

∣∣
∆
<

0. For the periodic system, this criterion is verified only

for quite elongated systems (Ly/Lx small) and the range

of crack length for which failure is stable is limited. The

systems we considered are all close to a square geome-

try. Therefore, we expect unstable failure in our case.

The critical stress at failure (Eq. 8) also differs from

the case of an infinite body, because of the correction

term CKI . Equation 8 can be rewritten in the following

dimensionless form:

Σ∗cr√
G∗c

=

(√
π

2a

Lx
CKI

(
2a

Lx
,
Ly
Lx

))−1

(10)

where we introduced the dimensionless reduced fail-

ure stress Σ∗cr/
√
G∗c , with Σ∗cr = Σcr/E

′ and G∗c =

Gc/
(
Lx
2 E

′). Gc is the critical energy release rate and is

related to the toughness KIc according to Irwin’s for-

mula (Anderson, 2005): Gc = (KIc)
2
/E′. We display
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Σ
∗ cr
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∗ c
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Fig. 7 LEFM prediction of the critical stress at the onset
of failure. We display the dimensionless reduced failure stress
Σ∗cr/

√
G∗c as a function of the crack size 2a/Lx for differ-

ent elongations Ly/Lx of the periodic cell. We also display
the case of a finite crack in an infinite body: Σ∗cr/

√
G∗c =

1/
√
π 2a
Lx

. When 2a/Lx → 0 one recovers the critical stress

of an infinite body. In contrast, significant deviations appears
for larger crack sizes, especially for 2a/Lx > 0.5.

in Figure 7 the dependence of Σ∗cr/
√
G∗c on the geo-

metric ratios 2a/Lx and Ly/Lx. For small crack sizes

(2a/Lx → 0), we recover the critical stress of a finite

crack in an infinite body. However, for moderate and

large crack sizes (2a/Lx > 0.2), the critical stress of a

periodic system deviates from that of an infinite system.

Particularly large deviations appear for 2a/Lx > 0.5.

In the limit of 2a/Lx → 1 the crack tips merge at the

periodic boundary, and, accordingly, the critical stress

converges to 0. For the systems we simulated, the ratio

2a0/Lx ranges from 0.13 to 0.60. Therefore, account-

ing for the correction CKI is necessary in our work to

analyze the critical stresses.

3.2 Application of the LEFM analysis to molecular

simulation results

We apply the LEFM analysis to the molecular simu-

lation results of α-cristobalite and CS1000. Regarding

loading curve shape and failure stability, it is clear that

CS1000 results are in contradiction with LEFM predic-

tion: CS1000 failure is stable upon displacement load-

ing, and the loading curves (Fig. 5) exhibit significant

ductility with an ultimate strain at the end of failure

about twice the critical strain at the onset of failure.

In contrast, the α-cristobalite results (Fig. 3) are con-

sistent with LEFM: the behavior is almost linear and

failure is unstable since stresses fall to zero right after

the onset of failure. In our molecular simulations, it is

not possible to follow the instable branches that appear

in Figure 6. Instead, the stress drops to zero at failure.

A quantitative comparison with LEFM theory can

be achieved by plotting the critical stress at failure as
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a function of the effective crack half length aeff =

a
(
CKI

(
2a
Lx
,
Ly
Lx

))2

. If LEFM theory was respected, fol-

lowing Equation 8, we would observe that the critical

stress is proportional to the inverse of the square root of

the effective crack length: Σcr = KIc/
√
πaeff . By fit-

ting the curve, one can recover the fracture toughness

KIc characterizing the material. We display in Figure

8 the critical stresses obtained for molecular simula-

tions as a function of aeff for all simulated systems.

On the same Figure we display the fitted inverse square

root dependency according to LEFM theory. For α-

cristobalite, the results seem consistent with LEFM.

In the Figure, we distinguish between the two load-

ing rates (see Table 1). We do not observe any rate

effects, but it appears that the long simulation pro-

cedure (smallest rate) provides more accurate results

than the short procedure (largest rate) for which the

results are significantly more dispersed. Despite the dis-

persion, the results are quite consistent with LEFM

theory. The fitting leads to a fracture toughness KIc =

0.87 MPa.
√

m. This value is consistent with experimen-

tal values of toughness of silica. Indeed, Lucas et al

(1995) reported KIc = 0.82 ± 0.07 MPa.m1/2. In con-

trast to α-cristobalite, the results of CS1000 exhibit

a rather linear trend with the effective crack length,

which is in contradiction with the inverse square root

dependency predicted by LEFM. Any tentative appli-

cation of LEFM to the results for CS1000 leads to

serious discrepancies between theory and observation.

A tentative application is displayed in Figure 8 with

large discrepancies at low crack lengths; the correspond-

ing toughness is the same as for α-cristobalite (KIc =

0.87 MPa.
√

m).

As an alternative to critical stress, one can focus

on the energy released during failure. The critical en-

ergy release rate Gc is the energy released during the

fracture per unit area of crack surface created. Fracture

occurs when the system can release enough mechanical

energy P upon cracking, with Gc defining this thresh-

old. Formally, Gc is the variation of mechanical energy

−dP due to a small advance of the crack (increment

of crack area dA): Gc = − ∂P
∂A

∣∣
T,loading

. Together, Gc
and P are the two forms of energy for a system ex-

posed to mechanical loading whose response is limited

to deformation or fracture. In isothermal conditions, as

is the case here, the balance of Helmholtz free energy

F is: dF = dP + GcdA. The average stress Σ is the

derivative of the Helmholtz free energy F with respect

to the periodic cell size Ly: Σ = 1
LxLz

∂F
∂Ly

∣∣∣
T,Lx,Lz

. Ac-

cordingly, integrating Σ with respect to Ly provides a

way to calculate the variation of free energy. In particu-

lar the integration of the complete loading curves (Fig.
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Fig. 8 Critical stress Σcr obtained from molecular simula-
tion for α-cristobalite (top) and CS1000 (bottom) as a func-
tion of the effective half length of the crack aeff . The re-
sults for α-cristobalite respect LEFM theory, whereas the re-
sults for CS1000 differ significantly from LEFM at low crack
lengths.

6) leads to the critical energy release rate. Indeed, at

the beginning of the loading curve, the system is un-

stressed, i.e., P = 0; at the end of the loading curve,

the system is also unstressed and P = 0. Therefore, all

the mechanical energy accumulated during the loading
was converted into fracture energy at the end of the

loading. Accordingly, the change of Helmholtz free en-

ergy calculated from the integration LxLz
∫

loading
ΣdLy

is equal to the total increase in fracture energy Gc∆A,

where ∆A = Lz (Lx − 2a0) is the total area of crack

created:

Gc =
LxLz
∆A

∫
loading

ΣdLy (11)

The critical energy release rate Gc, as obtained from

Equation 11, can be converted into fracture toughness

KIc following Irwin’s formula (Anderson, 2005): Gc =

(KIc)
2
/E′. We applied this thermodynamic integra-

tion to compute the toughness of α-cristobalite and

CS1000 from the molecular simulation results. For α-

cristobalite, we obtained an average toughness of 1.13±
0.09 MPa.

√
m, which is somewhat higher than the value

of 0.87 MPa.
√

m derived from the critical stress. This

discrepancy arises from the fact that integrating the
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curves of Figure 3 only provide an overestimation of

the critical energy release rate because of instability.

Indeed, proper integration should follow the unstable

branch that recede to smaller strains when the crack

advances (such as in Figure 6). But, our molecular simu-

lations are unable to follow the unstable branch and in-

stead the stress drops to zero. As a consequence, the in-

tegration of stress (area delimited by the loading curve)

overestimates the critical energy release rates. For CS1000,

the same restriction does not apply since failure is sta-

ble. The integration of the loading curves for CS1000

leads to an average toughness of 1.49± 0.14 MPa.
√

m,

i.e., almost twice the value estimates from the criti-

cal stress and LEFM. With this toughness, the critical

stresses predicted by LEFM would be twice that ob-

tained by molecular simulations. This further confirms

that LEFM is invalid for CS1000.

To illustrate the application of LEFM to α-cristobalite,

we display in Figure 9 the loading curves from molecu-

lar simulations along with that derived from LEFM, for

the three systems of Figure 2. LEFM captures satisfac-

torily the elastic behavior and predicts the onset of fail-

ure with a reasonable accuracy given the inherent vari-

abilities of the simulations (in particular thermal agi-

tation and variable crack tip initial configuration). The

failure branches differ significantly as already discussed

above. Figure 9 illustrates well the overestimation of

the toughness when performing a thermodynamic inte-

gration on the molecular simulation results.

3.3 Cohesive zone analysis

LEFM does not capture the behavior of CS1000 in

our molecular simulation. This is due to the impor-

tant yielding at the scale of our molecular simulations.

LEFM is valid only in the limit of small scale yielding,

which is clearly not the case for the CS1000 systems we

simulated. As a consequence, CS1000 response is duc-

tile without instability at failure and the critical stresses

obtained are much smaller than expected from LEFM

because of the inherent physical limit of CS1000 yield

stress. We propose here to introduce a cohesive zone

approach in the mechanical modeling of the periodic

system in order to capture the behavior of CS1000. Co-

hesive zones are a simple modeling of the yield zone at

crack tips originally introduced by Dugdale (1960) and

Barenblatt (1962) to suppress the unphysical stress sin-

gularities at crack tips. The approach is illustrated in

Figure 10. Behind the crack tips, the crack faces are

cohesive, i.e., an attractive force p between the faces

opposes the opening of the crack. In the original for-

mulation, the cohesive force is constant (plastic stress)

and vanishes at a critical opening δcr of the crack. More
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Fig. 9 Loading curves from molecular simulations compared
with LEFM predictions for the three systems of Figure 2.

generally, the cohesive force p is a function of the open-

ing δ, called the cohesive law. The negative stress in-

tensity at the crack tip due to the cohesive forces can-

cels out the stress intensity from the external loading

so that stress singularity is suppressed. This condition

is used to determine the length of the cohesive zone.

Failure occurs when the opening at the end of the co-

hesive zone exceeds the critical opening at which the

cohesive force vanishes. Application of the J-integral to

a contour following the boundary of the cohesive zone

shows that the critical energy release rate is obtained

by integration of the cohesive law (Anderson, 2005):

Gc =

∫ δcr

0

p (δ) dδ (12)

Thus, one can easily relate the cohesive zone model

to usual LEFM. For small scale yielding, the cohesive

zone is extremely small compared to the dimensions

of the system, in particular the size of the crack. In
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Fig. 10 Schematic representation of the cohesive zone
model. Cohesive zones develop behind crack crack tips in
which a force is transmitted across the crack, depending on
the crack opening. The cohesive zone suppresses the stress
singularity at the crack tip. At large openings, the cohesive
forces vanish and the crack is unbridged. Loading proceeds
in three phases: 1) the cohesive zone grows until the opening
at the end of the zone reaches the critical opening, 2) the
unbridged crack propagates, 3) the cohesive zones coalesce
at the periodic boundaries. In the third phase, the mechani-
cal problem is that of an infinite plate submitted to periodic
traction loads on its faces.

that case, cohesive zone models and LEFM are strictly

equivalent and the two approaches are related by Equa-

tion 12. When yielding becomes significant, cohesive

zone predictions differ from that of LEFM. In particu-

lar, the stresses cannot exceed the yield stress, the main

physical contradiction of LEFM.

Even though cohesive zone models are an idealiza-

tion of the process zone, they are quite versatile and

have been used to model very different failure processes

from metal plasticity (Dugdale, 1960) to biocomposites

damage (Gao, 2006) and fracture in concrete (Hiller-

borg et al, 1976). We propose here to apply it to the

periodic geometry of our molecular simulations and in-

vestigate if it can capture the behavior of CS1000.

The cohesive zone modeling introduces bridging forces

between the crack faces that depend on the opening of

the crack. The loading of the system takes place as fol-

lows (see Fig. 10). Prior to loading, in the initial state,

there is no cohesive zone. Then, at the beginning of the

loading, the crack tip starts to move ahead and the co-

hesive zone develops. When the opening at the end of

the cohesive zone exceeds the maximum opening of the

cohesive law, the unbridged crack starts to move ahead

as well. Finally, when the crack tip coalesce at the pe-

riodic boundary, the cohesive zones keep transmitting

stress across the crack until the unbridged crack coa-

lesce. For the first regime before crack tip coalescence,

the mechanical problem can be solved by introducing

bridging forces in the periodic crack problem treated in

the LEFM approach. For the second regime after coa-

lescence, the mechanical problem is that of an elastic

plate submitted to symmetric periodic tractions on its

faces. This second mechanical problem can be solved in

the Fourier space. We present both solutions hereafter.

We first consider the system before crack tip coales-

cence. The cohesive zone introduces bridging forces p

behind the crack tip as a function of the opening δ (x)

at position x. These bridging forces modify the pseudo-

traction consistency Equation 2 as follows:

σp (x)− 2

+∞∑
j=1

∫ a

0

Kσj (x, u)σp (u) du+ p (δ (x)) = Σ

(13)

The crack opening δ (x) can be computed from the

pseudo-tractions. Since the displacement discontinuity

that leads to the crack opening is due to one of the sub-

problems only, we can use of the analytic formulation

for a row of periodic collinear cracks (Tada et al, 2000).

We have:

δ (x) =

∫ a

0

Kδ (x, u)σp (u) du (14)

with

Kδ (x, u) =
8
πE′ tanh−1

(√
1−(cos( πaLx )/ cos( πuLx ))

2

1−(cos( πaLx )/ cos( πxLx ))
2

)
if |x| ≤ u

8
πE′ coth−1

(√
1−(cos( πaLx )/ cos( πuLx ))

2

1−(cos( πaLx )/ cos( πxLx ))
2

)
if u < |x| ≤ a

(15)

Accordingly, the cohesive force distribution p (δ (x))

in Equation 13 is a function of the pseudo-tractions

σp (x). Solving for the pseudo-tractions in Equation 13,

one can then access any quantity of interest (displace-

ment / deformation, stress intensity etc.). As before, we

followed the approach of Karihaloo et al (1996) (Gauss-

Legendre quadrature method with σp (x) discretized

at the integration points). However, the problem is no

more linear because of the cohesive law p (δ). We used

an iterative Newton-Raphson method to solve the non-

linear problem. In addition, special attention must be

paid to discretization with respect to the discontinuities

of bridging forces to avoid integration and convergence

errors. At each loading step, the length of the cohesive

zone is adjusted so that the total stress intensity at the

crack tip is zero.

After crack tip coalescence at the periodic bound-

aries, the mechanical problem becomes that of stacked

periodic plates separated by cohesive zones which ex-

ert a load function of the distance between consecutive
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plates (Fig. 10). By symmetry, the stress and strain

fields are even about the center of the unbridged crack.

To solve this new mechanical problem, we consider the

solution of Sneddon (1951) for an infinite plate loaded

by even forces on its faces. The solution of Sneddon con-

sists in solving the mechanical problem in the Fourier

space. Applying a cosine Fourier transform to the equa-

tions of mechanical equilibrium in the absence of body

forces gives:

(
∂2

∂y2
− ξ2

)
G = 0 (16)

with G (ξ, y) =

∫ ∞
0

χ (x, y) cos (ξx) dx

where χ is the Airy stress function. The function G

replaces χ in the Fourier space and fully determines the

stress, strain and displacement fields. In particular, the

normal component of the stress in the vertical direction,

the shear stress and the displacement in the vertical

direction are:

σy (x, y) = − 2

π

∫ ∞
0

ξ2G cos (ξx) dξ (17)

τxy (x, y) =
2

π

∫ ∞
0

ξ
∂G

∂y
sin (ξx) dξ (18)

uy (x, y) =
2

π

∫ ∞
0

1 + ν

E

(
1− ν
ξ2

∂3G

∂y3
(19)

− (2− ν)
∂G

∂y

)
cos (ξx) dξ

In the particular case of a plate, the solutions of Equa-

tion 16 take the form:

G (ξ, y) = (A+Bξy) cosh (ξy) + (C +Dξy) sinh (ξy)

(20)

where A, B, C and D are constants that depend on

the boundary conditions. We consider a plate submit-

ted to an even vertical traction load p (x) on its upper

and lower faces (y = Ly/2 and y = −Ly/2, consid-

ering the middle of the plate as the origin). Introduc-

ing these boundary conditions in Equations 17 and 18

leads to the following values for the constants: A =

− ξLy cosh(ξLy/2)+2 sinh(ξLy/2)
ξLy+sinh(ξLy)

p̃(ξ)
ξ2 , B = C = 0 and D =

2 sinh(ξLy/2)
ξLy+sinh(ξLy)

p̃(ξ)
ξ2 where p̃ (ξ) =

∫∞
0
p (x) cos (ξx) dx is

the cosine Fourier transform of the load p. The inverse

transform is p (x) = 2
π

∫∞
0
p̃ (ξ) cos (ξx) dξ. Introducing

the values of the constants into the expression of G (Eq.

16), we obtain the expression of the vertical displace-

ment ufacesy (x) = uy (x, y = b) = −uy (x, y = −b) (Eq.

19) on the upper and lower faces:

ufacesy =
8

πE′

∫ ∞
0

(sinh (ξLy/2))
2

ξLy + sinh (ξLy)
p̃ (ξ)

cos (ξx)

ξ
dξ

(21)

In our case, the load p is a periodic function of pe-

riod Lx. Therefore, the cosine Fourier transforms can

be replaced with Fourier series with the Fourier coef-

ficients p̃k = 2
Lx

∫ Lx
2

0
p (x) cos

(
2πk
Lx
x
)
dx. Equation 21

becomes:

ufacesy =
8

πE′

∞∑
k=0

(
sinh

(
πk

Ly
Lx

))2

2πk
Ly
Lx

+ sinh
(

2πk
Ly
Lx

) p̃k cos
(

2πk
Lx
x
)

2πk
Lx

(22)

Equation 22 gives the deformed configuration of a

linear elastic plate under the action of an even sym-

metric periodic load on its faces. Owing to the cohe-

sive law, the load p is a function of the opening δ of

the crack, that is of the distance between two consecu-

tive plates. The opening δ and the displacement of the

boundaries uy (±b) are related according to: δ (x) =

δ0 − 2 ·
(
ufacesy (x)− ufacesy (0)

)
, where δ0 is a parame-

ter representing the opening at x = 0. The mechanical

problem can be formulated in terms of a consistency

equation that must be satisfied by the opening δ:

δ (x) = δ0 −
16

πE′

×
∞∑
k=0

(
sinh

(
πk

Ly
Lx

))2

2πk
Ly
Lx

+ sinh
(

2πk
Ly
Lx

) p̃k cos
(

2πk
Lx
x
)
− 1

2πk
Lx

(23)

where p̃k = 2
Lx

∫ Lx
2

0
p (δ (x)) cos

(
2πk
Lx
x
)
dx and p (δ (x))

is the cohesive law. The opening function δ (x), which

is the solution of Equation 23, fully characterizes the

mechanics of the system since one can then derive from

it the full stress, strain and displacement fields. Except

for linear cohesive laws, the problem of Equation 23 is

non linear and no simple analytic solution exists. In our

work, we solve Equation 23 by adopting a similar ap-

proach as was done previously for computing the dou-

bly periodic crack problem with cohesive zones. That

is, we use Gauss-Legendre method for integration of the

Fourier coefficients p̃k while the opening δ is discretized

at the integration points. We solve Equation 23 itera-

tively with a Newton-Raphson method. Doing so, we

can solve the mechanical problem for a wide variety of
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cohesive laws, but the discretization must be adapted

carefully from one law to another to avoid integration

and convergence errors (due to discontinuities in the

law for instance).

The relationship between the dimensionless strain

∆∗ = 2∆/Ly and stress Σ∗ = Σ/E′ depends not only

on the geometric ratios 2a/Lx and Ly/Lx as in Equa-

tion 7, but also on the cohesive law. As an example, we

display in Figure 11 the case of a plastic cohesive law,

i.e., p (δ) = σY S for δ < δcr with σY S the yield stress

of the material. In Figure 11, we show how the loading

curve changes with the dimensionless ratio δ∗cr/σ
∗
Y S =

(2δcr/Lx) / (σY S/E
′) which quantifies the degree of duc-

tility of the plastic cohesive law. Alternatively, we can

also relate this quantity to the ratio between the criti-

cal stress for an infinite body (K∗Ic) and the yield stress

(σ∗Y S) as follows: δ∗cr/σ
∗
Y S = (2πa/Lx)·(K∗Ic/σ∗Y S)

2
. Ac-

cordingly, we expect a significant difference with LEFM

at large values of δ∗cr/σ
∗
Y S . This is well illustrated in

Figure 11. For δ∗cr/σ
∗
Y S → 0, the plastic cohesive zone

model predicts the same loading curve as LEFM. But

with increasing ductility ratio, the cohesive zone model

introduces non linearity and ultimately a plastic plateau,

so that the shape of the loading curve significantly differ

from the LEFM prediction.

In Figure 11, we also show how the ductility ratio

δ∗cr/σ
∗
Y S affects the critical stress at failure. We display

the dimensionless reduced failure stress Σ∗cr/
√
G∗c =

Σ∗cr/
√
δ∗crσ

∗
Y S as a function of the crack size 2a/Lx for

Ly/Lx = 1. The cohesive zone approach suppresses the

stress singularity, and, accordingly, at low 2a/Lx, the

critical stress converges to a finite value Σcr = σY S , i.e.,

Σ∗cr/
√
G∗c = 1/

√
δ∗cr/σ

∗
Y S . As for the loading curve,

the predictions of the cohesive zone model converge to

LEFM predictions for δ∗cr/σ
∗
Y S → 0. But, significant

discrepancy appears with increasing ductility. In partic-

ular, the usual trend in 1/
√
a gradually evolves toward

a linear trend. The limit case is when the cohesive zone

extends over the whole uncracked body:

Σcr
σY S

= 1− 2a

Lx
⇒ Σ∗cr√

G∗c
=

(
1− 2a

Lx

)
1√

δ∗cr/σ
∗
Y S

(24)

3.4 Application of the cohesive zone analysis to

molecular simulation results

We have shown in the previous section that cohesive

zone models lead to significant changes in the loading

curve and critical stress of the periodic system. The

plastic cohesive zone illustrated in Figure 11 is an ex-

ample, but it does not captures the shape of the load-

ing curve we obtained for the nanoporous polymer (Fig.
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Fig. 11 Loading curves and critical as predicted with a plas-
tic cohesive zone model for various ductility ratios δ∗cr/σ

∗
Y S .

For the loading curves (top), we display the dimensionless
reduced stress Σ∗/K∗Ic as a function of the dimensionless re-
duced strain ∆∗/K∗Ic (with the geometrical ratios 2a/Lx =
0.5 and Ly/Lx = 1). The loading curve from LEFM is dis-
played for comparison. The cohesive zone model introduces
non linearity and the loading curves deviates from LEFM pre-
dictions. Deviation from LEFM increases with ductility and
a plateau appears that is characteristic of the plastic cohesive
law. For the critical stress (bottom), we display the dimen-
sionless reduced failure stress Σ∗cr/

√
G∗c as a function of the

crack size 2a/Lx (with the geometric ratio Ly/Lx = 1). For
comparison, we also display the prediction of LEFM for the
same periodic geometry and for a finite crack in an infinite
body. The usual trend in 1/

√
a gradually evolves toward a

linear trend with increasing ductility.

5). To capture the behavior of the nanoporous polymer,

we considered a linear decreasing cohesive law instead:

p (δ) = σY S (1− δ/δcr) for δ < δcr. We display in Fig-

ure 12 the loading curves and critical stress trend pre-

dicted with this cohesive law for various ductility ratios

δ∗cr/σ
∗
Y S . The quantities displayed in Figure 12 are the

same as in Figure 11. Note, however, that we consider

a higher range of values for the ductility ratio δ∗cr/σ
∗
Y S

since the linear cohesive law dissipates two times less

energy than the plastic cohesive law (G∗c = δ∗crσ
∗
Y S/2).

As a consequence, based on energy equivalence, the duc-

tility ratios of Figure 12 are scaled by a factor of two

compared to the ratios in Figure 11, whence the higher

values.
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Fig. 12 Loading curves and critical as predicted with a linear
cohesive zone model for various ductility ratios δ∗cr/σ

∗
Y S . The

notations are the same as in Figure 11. The loading curves
deviates from LEFM prediction with increasing ductility and
exhibit a linear decreasing branch at large ductility character-
istic of the linear cohesive law. The usual trend of the critical
stress in 1/

√
a evolves toward a linear trend at high ductility.

In Figure 12, the qualitative shape of the loading

curves at high ductility ratios are quite consistent with

the molecular simulation results for CS1000 (Fig. 5).

The trend of the critical stress is similar to that ob-

tained with a plastic cohesive law: in the limit δ∗cr/σ
∗
Y S →

0 the critical stress converges to the LEFM prediction,

while at large ductility, the critical stress depends lin-

early on the crack length, with a limit case:

Σcr
σY S

= 1− 2a

Lx
⇒ Σ∗cr√

G∗c
=

(
1− 2a

Lx

)√
2

δ∗cr/σ
∗
Y S

(25)

Equation 25 differs from Equation 24 by a factor

of 2 which arises from the difference in energy release

with the plastic cohesive law. We evaluated the trend

of the critical stress from the results of molecular sim-

ulation of CS1000. We display in Figure 13 the critical

stresses for the various CS1000 systems simulated. Fig-

ure 13 shows that the critical stress obtained by molec-

ular simulation follow a linear trend in a limited range

of crack length (0.2 < 2a0/Lx < 0.6). Note that the sys-

tems considered in Figure 13 have different geometrical

ratios Ly/Lx which is not accounted for in this analysis.

0.0 0.2 0.4 0.6 0.8 1.0
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Σ
cr
 (

G
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a
)

Linear trend

Systems A' to P'

Bulk CS1000

Fig. 13 Trend between the critical stress Σcr and the re-
duced crack length 2a0/Lx for all the CS1000 systems con-
sidered.

A major consequence is that the dimensionless ductility

ratio δ∗cr/σ
∗
Y S differ from one system to another. But,

in raw units (case of Fig. 13) the effect of Ly/Lx van-

ishes with increasing ductility ratio as the critical stress

approaches the limit case (Eq. 25). The range of the

linear trend (0.2 < 2a0/Lx < 0.6) is not wide enough

to characterize the degree of ductility of the cohesive

law. Assuming that the linear relation applies (Eq. 25),

the y-intercept of the linear trend in Figure 13 is the

yield stress σY S . Doing so, we obtain σY S = 20 GPa,

which compares well with the yield stress estimated by

molecular simulation of bulk CS1000 (19.4 GPa). Ac-

cordingly, the linear trend is valid up to small crack

length which is characteristic of a high ductility ratio

(δ∗cr/σ
∗
Y S > 2).

The analysis of the loading curve shape and critical

stress confirms that the linear cohesive zone model is

well adapted to model the behavior of CS1000.We cal-

ibrated the value of δcr to capture the loading curves

from molecular simulations. We found that with δcr =

18.5 Å the cohesive zone model captures reasonably

well the mechanical responses of all the CS1000 sys-

tems considered. As an illustration, we display in Fig-

ure 14 the loading curves for the three CS1000 systems

of Figure 4 along with the predictions from the lin-

ear cohesive zone model. In the framework of the co-

hesive model, the energy dissipated during fracture is

concentrated in the cohesive zone and the critical en-

ergy release rate Gc can be obtained by integration of

the cohesive law (Eq. 12). Thus, with the linear cohe-

sive law, we have: Gc = δcrσY S/2 = 18.5 N/m. Alter-

natively, we can compute Gc by integrating the load-

ing curves from molecular simulation (Eq. 11). Unlike

the case of α-cristobalite, this estimation is valid here

since crack propagation is stable for CS1000. We ob-

tain Gc = 19.5± 3.2 N/m which is consistent with the

value obtained from the cohesive law. In addition, no

particular correlation is found between the energy re-
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Fig. 14 Loading curves from molecular simulations com-
pared with the cohesive model predictions for the three sys-
tems of Figure 4.

lease rates and the system size. If the process zone size

was larger than the system size, we would observe that

Gc increases with the system size up to an asymptotic

value which is the relevant one at larger scales. Here,

the high degree of cross-linking of CS1000 strongly lim-

its the process zone size to the nanometer scale.

4 Conclusion

A careful analysis of molecular simulations of material

fracture failure, in which we pay a special attention to

the size effects, shows that usual LEFM predictions are

still valid if the process zone size is small at the scale of

molecular simulations. We illustrate this situation for a

silica crystal, α-cristobalite, for which the process zone

is only a few atoms large. Provided that boundary con-

ditions are accounted for (periodic boundaries in our

work), LEFM captures correctly the global material be-

havior (remote stress and average strain). In particular,

one can directly estimate material fracture properties,

such as toughness, from molecular simulation. In con-

trast, when the process zone occupies a significant frac-

tion of the molecular system, LEFM fails to predict the

mechanical behavior. We illustrate this second situation

with the example of a nanoporous polymer, CS1000, for

which the process zone is about one order of magnitude

larger than that of α-cristobalite. LEFM fails to predict

the behavior of CS1000 both quantitatively and quali-

tatively: the LEFM scaling between critical stress and

crack size (inverse square root) becomes linear, the sta-

bility of CS1000 failure does not follow LEFM analysis,

and LEFM estimates of toughness from critical stress is

not consistent with the total energy released during fail-

ure. To overcome the inherent limitations of LEFM in

presence of large scale yielding, we develop an alterna-

tive analysis which includes cohesive zone models at the

crack tips. Provided the cohesive law is well adapted, we

recovered all the features of the mechanical behavior of

CS1000 within this framework. From the cohesive law,

one can then easily recover the macroscopic toughness

and anticipate the mechanical behavior at larger scales.

Thus, our analysis with cohesive zone models offers the

possibility to upscale fracture properties from molecular

simulation even with large yielding at the scale of the

molecular system. It should be noted however that, the

approach is limited by the size of the molecular system

simulated since the process zone cannot extend further.

The process zone size is on the order of the square of

the ratio between toughness and yield stress. Thus, es-

timating this ratio is critical to know whether or not

the scale of molecular simulations is relevant, and to

decide what kind of analysis to perform.
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Kröner E (1967) Elasticity theory of materials with long

range cohesive forces. International Journal of Solids



18 Laurent Brochard et al.

and Structures 3(5):731–742

Langer J, Lobkovsky AE (1998) Critical examination of

cohesive-zone models in the theory of dynamic frac-

ture. Journal of the Mechanics and Physics of Solids

46(9):1521–1556

Lawn BR (1983) Physics of fracture. Journal of the

American Ceramic Society 66(2):83–91

Lucas J, Moody N, Robinson S, Hanrock J, Hwang

R (1995) Determining fracture toughness of vitre-

ous silica glass. Scripta Metallurgica et Materialia

32(5):743–748

Marder M (2004) Effects of atoms on brittle fracture.

International journal of fracture 130(2):517–555

Marder M, Gross S (1995) Origin of crack tip instabil-

ities. Journal of the Mechanics and Physics of Solids

43(1):1–48

Mattoni A, Colombo L, Cleri F (2005) Atomic scale

origin of crack resistance in brittle fracture. Physical

review letters 95(11):115,501

Miller R, Tadmor E, Phillips R, Ortiz M (1998) Quasi-

continuum simulation of fracture at the atomic scale.

Modelling and Simulation in Materials Science and

Engineering 6(5):607

Nakano A, Kalia RK, Vashishta P (1994) Growth of

pore interfaces and roughness of fracture surfaces

in porous silica: Million particle molecular-dynamics

simulations. Physical review letters 73(17):2336

Nazmus Sakib A, Adnan A (2012) On the size-

dependent critical stress intensity factor of confined

brittle nanofilms. Engineering Fracture Mechanics

86:13–22

Oh ES, Walton JR, Slattery JC (2006) A theory of frac-

ture based upon an extension of continuum mechan-

ics to the nanoscale. Journal of applied mechanics

73(5):792–798
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