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A feasible direction interior point algorithm for nonlinear
semidefinite programming

Miguel Aroztegui · José Herskovits · Jean Rodolphe Roche · Elmer

Bazán

Abstract We present a new algorithm for nonlinear

semidefinite programming, based on the iterative solu-

tion in the primal and dual variables of Karush-Kuhn-

Tucker optimality conditions, which generates a feasible

decreasing sequence. At each iteration, two linear sys-

tems with the same matrix are solved to compute a fea-

sible descent direction and then an inexact line search

is performed in order to determinate the new iterate.

Feasible iterates are essential in applications where fea-

sibility is required to compute some of the involved

functions. A proof of global convergence to a stationary

point is given. Several numerical tests involving nonlin-

ear programming problems with linear or nonlinear ma-

trix inequality constraints are described. We also solve

structural topology optimization problems employing

a mathematical model based on semidefinite program-

ming. The results suggest efficiency and high robustness

of the proposed method.
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programming, feasible directions, interior-point

methods.
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1 Introduction

This paper proposes a new technique to solve the

following nonlinear semidefinite programming problem

(NSDP),

min
x
f(x) s.t. x ∈ Rn and G(x) 4 0 (1)

where f : Rn → R and G : Rn → Sm are smooth func-

tions, not necessarily linear. We denote Sm the set of

real symmetric matrices of size m×m. G(x) 4 0 means

that the matrix G(x) is negative semidefinite. We call

Ω = {x ∈ Rn;G(x) 4 0} the set of feasible solutions

and int(Ω), its interior.We assume that int(Ωa) 6= ∅
then equality constraint cannot be handled.

Applications in a wide range of disciplines lead

to semidefinite programming problems, (SDP). For

example, combinatorial optimization [3], nonconvex
quadratic programming [16], eigenvalue optimization

[28], systems control theory [12], matrix completion and

statistics problems [33],[15] and applications in struc-

tural design [2]. In particular, SDP formulations were

employed in free material structural mechanical design,

see for example [46], [27], [40], [39] and [47].

In the case of linear SDP, when f is linear and G

is an affine function, problem (1) is convex and sev-

eral efficient algorithms were developed. Duality the-

ory and the central path concept were extended from

linear programming to semidefinite programming. Nes-

terov and Nemirovsky [8] and Alizadeh [3] introduce

interior point techniques based on path-following and

potential-reduction approaches. In Todd, [42], a deep

overview is presented.

A crucial result for semidefinite programming is the

characterization of Karush - Kuhn - Tucker (KKT) op-

timality conditions presented by Shapiro, [36] and [37].

Extensions to the nonlinear case of interior points meth-

ods are an important class of algorithms for NSDP
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problems. We mention the primal predictor-corrector

interior point method of Jarre [22] and the primal-dual

interior point algorithms described in [44], [43] and [5].

The sequential linear SDP method is an another im-

portant class of techniques introduced to solve NSDP

problems. We mention the approach of Correa and

Ramirez [13], that is a generalization of the algorithm

presented by Fares, Noll and Apkarian [14]. Also Kan-

zow, Nagel, Kato and Fukushima [24], presented a suc-

cessive linearization method with a trust region-type

globalization. In [23], successive linearization is applied

to solve robust design of structures. In [29], the authors

combine successive linearization with filter techniques.

A computer code based on an augmented La-

grangian approach was developed by Kočvara and

Stingl [38] [26]. In [32] the authors analyze different

types of augmented Lagrangian method and the con-

vergence has been proved for ε-global solutions. In [41],

Sun, Sun, and Zhang, have proved local convergence

with a linear rate of the augmented Lagrangian method

applied to NSDP problems. A new homotopy method

for NSDP problems has been developed recently by

Yang and Yu, [45].

In this paper, we present an interior point algorithm

which extends to semidefinite programming the Feasi-

ble Direction Interior Point Algorithm, FDIPA. FDIPA

is a general technique for smooth nonlinear inequality

and equality constrained optimization [18] [19] [34] [20].

The proposed algorithm, at each interior point, defines

first a descent direction that is also feasible with re-

spect to the semidefinite constraints. Then, it makes a

line search in that direction to obtain a new interior

point with a lower objective. Feasible iterates are es-

sential in the case when the objective function or some

constraints are not defined at infeasible points. In struc-

tural optimization the stiffness and mass matrices, as

well as the material matrices, must be positive definite

to compute the mechanical constraints. Newton, quasi -

Newton or first order versions of the present algorithm

can be obtained.

The paper is organized as follows. Some notation

and basic concepts are described in the next section. In

section 3 we describe the main ideas of the algorithm.

We show how the search direction is built to give a feasi-

ble and descent direction. At the end of this section the

presented algorithm is described. Global convergence

of the proposed optimization algorithm to a stationary

point is proved in section 4. Details of the implemen-

tation are shown in section 5. Numerical examples are

presented in section 6.4. Finally, the last section is ded-

icated to conclusions.

2 Notation and basic concepts

2.1 Notation

Let Rm×n denote the space of m× n real matrices and

Sn, the space of real symmetric matrices. The sets of

symmetric positive semidefinite and positive definite

matrices of size m × m are denoted Sm+ and Sm++, re-

spectively. Negative semidefinite and definite matrices

are defined in a similar way.

The symbol 4 refers to a partial order on the neg-

ative semidefinite matrices, that is, A 4 B means that

A−B is negative semidefinite, [17]. Similarly, the sym-

bol ≺,< and � refers to a partial order on the negative

definite, positive semidefinite and positive definite ma-

trices, respectively.

The symmetric part of M ∈ Rn×n is indicated by

sym(M) and the skew part as skw(M). We denote

ker(A) as the null space of the matrix A ∈ Rm×n.

The (i, j)th entry of a matrix A ∈ Rm×n is called

aij . The transpose of A is written as A>. Let In denote

the identity matrix in Rn×n.

Given A ∈ Sm, then m = 1
2m(m+ 1) is the number

of upper diagonal elements of A. To introduce the sym-

metric Kronecker product, we define the two following

maps:

svec : Sm → Rm

svec(A) =
[
a11
√

2a12 a22
√

2a13
√

2a23 a33 ... amm
]>

and smat : Rm → Sm the inverse of svec, see [25].

Then, the inner product

〈A,B〉 = tr(A>B) = svec(A)>svec(B), forA,B ∈ Sm.

The symmetric Kronecker product of two matrices

A,B ∈ Rm×n is denoted by A~B and verifies for any

matrix C ∈ Sn the following equality:

(A~B)svec(C) = svec (sym (BCA)) (2)

In [25] it is proved that,

1. (A~B)svec(C) = (B ~ C)svec(A)

2. A~B = B ~A
3. (A~B)(C ~D) = 1

2 (AC ~BD +AD ~BC)

4. (P ~ P )−1 = P−1 ~ P−1

5. If A,B < 0 then, A~B < 0.

6. If A < 0 and B 4 0 then, A~B 4 0.

(3)

where A,B,C ∈ Sm and P is a non singular matrix.
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The partial derivative of G(x) with respect to xp is

denoted by
∂G

∂xp
(x), with components

∂gij(x)

∂xp
, i, j =

1,m.

Then, we can define the following matrix in Rn×m,

∇G(x) =


svec

(
∂G

∂x1
(x)

)>
...

svec

(
∂G

∂xn
(x)

)>

 . (4)

The derivative of G in the direction d ∈ Rn at x,

denoted by DG(x)d, verifies:

DG(x)d =

n∑
p=1

dp
∂G

∂xp
(x) (5)

In view of (4), the matrix equation (5) can be ex-

pressed in a vector format

svec (DG(x)d) = ∇G(x)>d (6)

The Lagrangian function of problem (1) is defined

as L : Rn × Sm → Rn such that

L(x,Λ) = f(x) + 〈G(x), Λ〉.

Alternatively, the Lagrangian can be written in the

form L : Rn × Rm → Rn such that

L(x, λ) = f(x) + 〈svec(G(x)), λ〉

where λ = svec(Λ).

Therefore the gradient of the Lagrangian with re-

spect to x can be written as

∇xL(x, λ) = ∇f(x) +∇G(x)λ, (7)

see [37] and [10].

2.2 Definitions

The following three definitions are related to the first

order optimality conditions for semidefinite program-

ming introduced in [36] and [37].

We call {b1(x), . . . , bp(x)} an orthonormal basis of

kerG(x) and let E0(x) = [b1(x) . . . bp(x)] a matrix be-

longing to Rm×p.

Definition 1 A point x is a regular point of problem

(1) if the vectors


b>i

∂G

∂x1
(x)bj

...

b>i
∂G

∂xn
(x)bj

 such that i 6 j, i, j = 1, . . . , p


are linearly independent.

Definition 2 A regular point x is a stationary point

of problem (1) if there exist Λ ∈ Sm such that the

following conditions are verified:

∇xL(x,Λ) = 0

ΛG(x) = 0

G(x) 4 0

(8)

Definition 3 A Karush-Kuhn-Tucker point of prob-

lem (1) is a stationary point with Λ < 0.

Definition 4 The vector d ∈ Rn is a feasible direction

of Ω at x ∈ Ω if there exists τ > 0 such that x+ td ∈ Ω
for all t ∈ [0, τ ].

Definition 5 The vector field d(x) defined on Ω ⊆ Rn
is said to be an uniformly feasible direction field of Ω

if there exists τ > 0 such that, x + td(x) ∈ Ω for all

x ∈ Ω and all t ∈ [0, τ ].

When the vector field d(x) is a uniformly feasible di-

rection field of Ω, the segment [x, x+ τd(x)] is included

in Ω for all x ∈ Ω.

Definition 6 d ∈ Rn is a descent direction of a real

function f at x ∈ Rn if there exist some δ > 0 such

that: f(x+ td) < f(x) for all t ∈ (0, δ].

2.3 Some technical results

Some results that will be employed latter are presented

now.

Lemma 1 A ∈ Sm− and B ∈ Sm+ , the following equali-

ties are equivalent

AB = 0

tr(AB) = 0

sym(AB) = 0

(9)

Proof The proof for AB = 0 ⇐⇒ tr(AB) = 0 can be

found in [38].

Here we show AB = 0⇐⇒ sym(AB) = 0.

(⇒) Obvious.

(⇐) By hypothesis, sym(AB) = 0 and since

tr(skw(AB)) = 0, the trace of AB is null. Then, thanks

to the first equivalence, it is AB = 0. ut

Lemma 2 If A,B ∈ Sm, A � 0 and AB + BA ≺ 0

then B ≺ 0.

Proof Suppose that there exist an eigenvalue λ > 0 of

B with an eigenvector v. Then,

v>(AB +BA)v = v>ABv + v>BAv = 2λv>Av

Since A is positive definite, λv>Av > 0 therefore,

v>(AB+BA)v > 0, and we conclude that AB+BA is

not negative definite, which is a contradiction with the

hypothesis. ut
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The proof of the following lemma is similar as the

previous one.

Lemma 3 If A,B ∈ Sm, A � 0 and AB + BA 4 0

then B 4 0.

Lemma 4 If A,B ∈ Sm and A � 0, the matrix AB has

real eigenvalues and the same inertia as B. See [21].

Lemma 5 If A ∈ Sm++ and B ∈ Sm− and they commute,

then

y>ABy = 0⇐⇒ By = 0.

Proof It follows from lemma 4 that the matrix AB ∈
Sm− . Then there exist λ1, . . . , λm , m non-positive eigen-

values of AB, and a complete set of orthonormal eigen-

vectors {b1, . . . , bm}, a base of Rm, see [21]. Let y be

a not null vector in Rm such that y>(AB)y = 0, then

there exists a set {α1, . . . , αm} such that:

y =

m∑
j=1

αjbj .

In consequence,

0 = y>(AB)y = 〈y, (AB)y〉 (10)

=

m∑
j=1

m∑
i=1

αiαjλi 〈bi, bj〉 =

m∑
i=1

α2
iλi (11)

Since, y 6= 0, there exist i0 such that αi0 6= 0. In view

of the last equation, λi0 must be null. This is true for

all λi such that αi 6= 0, therefore y ∈ ker(AB), but

A ∈ Sm++ then y ∈ ker(B). ut

Lemma 6 If A ∈ Sm− and B ∈ Sm then,

AB2 = 0⇐⇒ sym(AB) = 0

Proof (⇒): A ∈ Sm− then there exist Q ∈ Sm such that

A = −QQ.

Since 0 = tr(AB2) = tr(BAB) = −tr(BQQB) =

−‖BQ‖2, then BQ = 0 and −BQQ = BA = 0.

(⇐): We have AB +BA = 0, then AB2 = −BAB.

It follows that A and B2 are diagonalizable simulta-

neously and AB2 4 0. On the other hand, −BAB =

B(−A)B < 0. Therefore, 0 4 −BAB = AB2 4 0 and

we conclude that AB2 = 0. ut

Lemma 7 If we assume A ∈ Sm++ and B ∈ Sm− and

they commute then,

(A~ I)−1(B ~ I) ∈ Sm− .

Proof Since A � 0 and B 4 0 and commute then there

exist a regular matrix P ∈ Rm×m such that

A = PDAP
−1

B = PDBP
−1

In view of symmetric Kronecker product properties, see

for example lemma E.1.2 in [25] :

A~ I = PDAP
−1

B ~ I = PDBP
−1

where P = P ~P , DA = DA~ I and DB = DB ~ I. DA
and DB are diagonal matrices and P is orthonormal.

Therefore

(A~ I)−1(B ~ I) = PDADBP
> ∈ Sm−

ut

Lemma 8 Let B ∈ Sm− and {b1, . . . , bp} be an or-

thonormal basis of ker(B) and E0 = [b1, . . . , bp] ∈
Rm×p. The following sets are equal:

C1 = {A ∈ Sm : 〈A,B〉 = 0, A < 0, B 4 0}
C2 =

{
E0θE

>
0 : θ ∈ Sp, θ < 0

}
Proof First we prove C1 ⊂ C2. If A ∈ C1, A < 0. By

hypothesis B 4 0 and 〈A,B〉 = tr(AB) = 0. Using

proposition 1, AB = 0, consequently A and B are si-

multaneously diagonalizable, then

A = [E0 E⊥]

[
DA 0

0 0

]
[E0 E⊥]> = E0DAE

>
0

where DA < 0 is a diagonal matrix and the columns of

E⊥ are eigenvectors of B in ker(B)⊥, then, A ∈ C2.

Now we proceed to prove C2 ⊂ C1. If A ∈ C2, A =

E0θE
>
0 for some θ < 0. On the other hand, 〈A,B〉 =

tr(E0θE
>
0 B) = 0 because E>0 B = 0. Then, A ∈ C1. ut

3 Description of the algorithm

The basic ideas involved in the present algorithm are

described next. Most of the assertions are a motivation

for our technique and will be proved in the following

section.

For a real number a, we denote

Ωa = {x ∈ Ω such that f(x) 6 a}

and introduce the following assumptions about f and

G:

Assumption 1 There exist a real number a such that

Ωa is compact and int(Ωa) 6= ∅.

Assumption 2 If x ∈ int(Ωa) then G(x) ≺ 0.
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Assumption 3 f and G are C1 in Ωa and ∇f and
∂G

∂xp
for p = 1, ..., n are Lipschitz functions.

Assumption 4 Any KKT point x is a regular point of

problem (1).

The present algorithm makes iterations in the pri-

mal and dual variables (x,Λ) to solve the equalities

in KKT conditions. The method is modified in such a

way to satisfy the inequalities at each point. That is,

the primal variables are feasible and the dual variables,

positive at each iteration.

Several approaches have been proposed to handle

the complementarity condition ΛG(x) = 0, see [4], [5]

and [42]. Since the product of two symmetric matrices

in general is not symmetric, instead of ΛG(x) = 0 we

consider sym (ΛG(x)) = 0. In the following section we

show that our algorithm generates a sequence (xk, Λk)

converging to (x∗, Λ∗) such that sym (Λ∗G(x∗)) = 0

and that this implies Λ∗G(x∗) = 0.

Then, the stationary point conditions (8) can be

written in the following form:

∇f(x) +∇G(x)λ = 0

svec (sym (ΛG(x))) = 0
(12)

where λ = svec (Λ).

In order to obtain the linear system to be solved

at each Newton iteration we define a vectorial function

ψ : Rn+m → Rn+m, given by the equalities in (12)

ψ(x, λ) =

[
ψl(x, λ)

ψc(x, λ)

]
=

[
∇f(x) +∇G(x)λ

svec(sym(ΛG(x)))

]
Using the Kronecker product we observe that

ψc(x, λ) = svec(sym(IΛG(x)) = [I ~G(x)]svec(Λ)

and also,

ψc(x, λ) = svec(sym(ΛG(x)I) = [Λ~ I]svec(G(x))

therefore, the Jacobian of ψ is:

∇ψ(x, λ) =

[
∇xψl(x, λ) ∇λψl(x, λ)

∇xψc(x, λ) ∇λψc(x, λ)

]
(13)

=

[
∇xxL(x, λ) ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

]
In a similar way as in [20], instead of the Hessian

of the Lagrangian ∇xxL(x, λ), we can employ a posi-

tive definite matrix denoted B. This matrix B can be a

quasi-Newton approximation, or even the identity ma-

trix.

A Newton like iteration to solve (12) is given by the

following linear system[
B ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

] [
x0 − x
λ0 − λ

]
(14)

= −
[
∇f(x) +∇G(x)λ

svec(sym(ΛG(x)))

]
where (x,Λ) ∈ int(Ωa)× Sm++ is the current point and

(x0, λ0) ∈ Rn × Rm are the new estimates given by

the Newton like iteration. Note that λ = svec (Λ) and

λ0 = svec (Λ0). We also denote W (x,B,Λ) the matrix

of the system (14).

Instead of adopting (x0, λ0) we introduce a line

search in the primal space and an appropriate updating

rule for the dual variables.

Let be d0 = x0 − x. Then we have,

Bd0 + ∇G(x)λ0 = −∇f(x)

(Λ~ I)∇G(x)>d0 + (I ~G(x))λ0 = 0
(15)

If d0 = 0 equation (15) becomes,

∇f(x) +∇G(x)λ0 = 0 (16)

(I ~G(x))λ0 = 0 (17)

Since G(x) ≺ 0, the matrix I ~G(x) is nonsingular

and we have Λ0 = smat(λ0) = 0. This proves that

Λ0G(x) = 0.

Therefore, ∇f(x) = 0 and x is a stationary point

of the problem. If d0 6= 0, since B and Λ are positive

definite, we prove that d0 is a descent direction of the

objective function. However we cannot ensure that d0 is

a feasible direction. In effect, when x is on the boundary

of Ω, it follows from (15) that d0 is tangent to Ω. Thus,

depending on the curvature of the boundary of Ω, d0
can point outwards of the feasible domain.

To obtain a feasible direction, as in [20], we modify

the previous linear system introducing an appropriate

right hand side:

Bd + ∇G(x)λ = −∇f(x)

(Λ~ I)∇G(x)>d + (I ~G(x))λ = −ρλ (18)

where ρ is a positive real number and λ = svec(Λ).

In view of the equations (2) and (6), the second

equation of (18) is equivalent to

sym
(
ΛDG(x)d+ ΛG(x)

)
= −ρΛ (19)

where Λ = smat(λ).

In the next section we prove that in fact d consti-

tutes a feasible directions field in the sense of definition

5.

We introduce now the following assumption on Λ.
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Assumption 5 At each iteration the current values of

Λ and G(x) commute.

The pair (d, λ) obtained by the linear system (18)

can also be computed solving

Bd1 + ∇G(x)λ1 = 0

(Λ~ I)∇G(x)>d1 + (I ~G(x))λ1 = −λ (20)

and taking,

d = d0 + ρd1 (21)

λ = λ0 + ρλ1. (22)

The descent direction d0 verifies d>0 ∇f(x) < 0. For

a given ξ ∈ (0, 1), we get an upper bound for ρ such

that

d>∇f(x) 6 ξdT0∇f(x). (23)

Consequently, the feasible direction d will be a descent

direction also. In fact, if d>1 ∇f(x) > 0, we take

ρ 6 (ξ − 1)
d>0 ∇f(x)

d>1 ∇f(x)
.

Otherwise, we choose

ρ 6 ϕ‖d0‖2,

for some fixed parameter ϕ > 0.

Once we have computed a descent and feasible direc-

tion d, we can determine the next point in the sequence,

xk+1, performing a line search along the search direc-

tion d to get feasibility and an appropriate reduction of

the objective function.

We shall prove global convergence to a stationary

point, for any way of updating B and Λ, provided they

are positive definite and Λ satisfies assumption 5.

3.1 The statement of the algorithm

In the following we state precisely the present algorithm

for semidefinite programing:

Parameters. ξ ∈ (0, 1), η ∈ (0, 1), ϕ > 0 and ν ∈
(0, 1).

Initial data. x ∈ int(Ωa), Λ ∈ Sm++ commuting

with G(x) and B ∈ Sn++.

Step 1. Computation of the search direction d.

(i) Solve the following linear system in d0 ∈ Rn and

λ0 ∈ Rm[
B ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

] [
d0
λ0

]
=

[
−∇f(x)

0

]
(24)

If d0 = 0, stop.

(ii) Solve the following linear system in d1 ∈ Rn and

λ1 ∈ Rm[
B ∇G(x)

(Λ~ I)∇G(x)> I ~G(x)

] [
d1
λ1

]
=

[
0

−λ

]
(25)

(iii) Compute the parameter ρ such that

ρ = min

{
ϕ‖d0‖2, (ξ − 1)

d>0 ∇f(x)

d>1 ∇f(x)

}
(26)

if d>1 ∇f(x) > 0. Otherwise:

ρ = ϕ‖d0‖2. (27)

(iv) Compute the search direction d as

d = d0 + ρd1. (28)

Step 2. Line Search.

Find t, the first element of {1, v, v2, v3 . . . } such that

f(x+ td) 6 f(x) + tηd>∇f(x) (29)

and

G(x+ td) ≺ 0. (30)

Step 3. Updates.

(i) Take the new point x := x+ td.

(ii) Define new value for B ∈ Sn++.

(iii) Define new value for Λ ∈ Sm++ commuting with

G(x).

(iv) Go to Step 1.

�
In the previous algorithm we employ Armijo’s line

search adapted to constraint optimization problems.

Extensions of Wolfe or Goldstein line search criteria

[31] can be also employed.

We introduce now the following assumptions on the

way that B and Λ are updated in Step 3.

Assumption 6 There exist positive numbers λI and

λS such that

λII 4 Λ 4 λSI

Assumption 7 There exist positive numbers σ1 and

σ2 such that

σ1I 4 B 4 σ2I
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4 Global convergence

In this section we prove that for any initial point

x0 ∈ int(Ω), the present algorithm generates a sequence

{(xk, Λk0)} converging to a stationary point of problem

(1), (x∗0, Λ
∗
0) . Assumptions 1 to 7 previously introduced

are supposed to be satisfied.

First we prove that the algorithm is well defined

and in particular that the matrix W (x,B,Λ) given in

(14) is nonsingular. Then it is shown that at each iter-

ation d0 and d are descent directions of f at x and d(x)

constitutes an uniformly feasible directions field in Ωa.

Finally we state that any sequence generated by the

algorithm converges to a stationary point of (1).

Theorem 1 Assume that x ∈ Ωa is a regular point

of problem (1), B ∈ Sn++, Λ ∈ Sm++ and Λ and G(x)

commute. Then, the matrix W (x,B,Λ) defined in (14)

is nonsingular.

Proof We have to prove that, if W (x,B,Λ)v = 0 for

some v ∈ Rn+m, then v = 0.

Let v> = [r>, y>], r ∈ Rn, y ∈ Rm such that

W (x,B,Λ)v = 0. Since B ∈ Sn++ and using block Gaus-

sian elimination we have:

r =−B−1∇G(x)y (31)

My = 0 (32)

where M is the Schur complement:

M = ∇G(x)>B−1∇G(x)− (Λ~ I)−1(G(x)~ I).

To finish the proof, we must conclude that M is

nonsingular. ButM is symmetric, then it will be enough

to show that M is positive definite.

We have

y>My = y>
(
∇G(x)>B−1∇G(x)

)
y (33)

− y>(Λ~ I)−1(G(x)~ I)y

Since B−1 is positive definite,

y>
(
∇G(x)>B−1∇G(x)

)
y > 0 (34)

By hypothesis and lemma 7

−y>(Λ~ I)−1(G(x)~ I)y > 0, (35)

concluding that y>My > 0.

Now, suppose that y>My = 0. We must prove that

y = 0. From (33), (34) and (35) we have,

y>∇G(x)>B−1∇G(x)y = 0 (36)

and

y>(Λ~ I)−1(G(x)~ I)y = 0. (37)

Since B is positive definite, from equation (36) we

have

∇G(x)y = 0. (38)

Due to lemma 5 and from equation (37),

(G(x)~ I)y = 0. (39)

By definition of ∇G(x), equation (38) is equivalent

to〈
∂G

∂xi
(x), Y

〉
= 0, i = 1, . . . , n (40)

where Y = smat(y).

Since (G(x) ~ I)y = svec(sym(G(x)Y )), in view

of lemma 6 and proposition 1, equation (39) can be

rewritten as

〈Y 2, G(x)〉 = 0 (41)

The matrix Y 2 is positive semidefinite and matrix G(x)

is negative semidefinite, then applying lemma 8 we have

Y 2 = E0θE
>
0 , θ ∈ Sp, θ < 0 (42)

where E0 = [b1, . . . , bp] ∈ Rm×p and the set of vec-

tors {b1, . . . , bp} is an orthonormal base of ker(G(x)).

Taking the square root of Y 2 in (42), we obtain

Y = E0θ
1/2E>0 , θ

1/2 ∈ Sp (43)

Replacing Y by E0θ
1/2E>0 in equation (40), follows〈

∂G

∂xi
(x), E0θ

1/2E>0

〉
= 0, i = 1, . . . , n

which is equivalent to〈
E>0

∂G

∂xi
(x)E0, θ

1/2

〉
= 0, i = 1, . . . , n

and also to,

V svec(θ1/2) = 0 (44)

where

V =



[
svec

(
E>0

∂G

∂x1
(x)E0

)]>
...[

svec

(
E>0

∂G

∂xn
(x)E0

)]>

 .

We identify in the columns of matrix V , vectors of

the form

c

[
b>i
∂G

∂xi
(x)bj . . . b

>
i

∂G

∂xn
(x)bj

]>
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with c =
√

2 when i = j and c = 1 when i 6= j where

i, j = 1, . . . , p and i 6 j. By hypothesis, x is a reg-

ular point of problem (1), then the columns of V are

linearly independent. Therefore, the linear system (44)

has the unique solution svec(θ1/2) = 0. Consequently

Y = smat(y) = E0θ
1/2E>0 = 0 and M is positive defi-

nite in Ωa. ut

Since Ωa, Λ and B are bounded, it follows from

theorem 1 that d0, λ0, d1 and λ1 are also bounded.

When d0 = 0 is obtained in step 1, the algorithm

stops. In fact, since G(x) ≺ 0, G(x) ~ I ≺ 0 then the

solution of (24) is λ0 = 0. Thus,∇f(x) = 0 and we have

that x is a KKT point associated with a null Lagrangian

multiplier matrix.

In what follows we consider the case where, at every

iteration, d0 6= 0.

Lemma 9 The direction d0 computed by the algorithm

satisfies

d>0 ∇f(x) 6 −d>0 Bd0.

Proof Multiplying the first equation of (15) by d>0 ,

d>0 ∇f(x) = −d>0 Bd0 − d>0 ∇G(x)λ0.

In view of the second equation of (15),

−d>0 ∇G(x)λ0 = λ>0 (G(x)~ I)(Λ~ I)−1λ0.

Then,

d>0 ∇f(x) = −d>0 Bd0 + λ>0 (G(x)~ I)(Λ~ I)−1λ0.

Thanks to assumption 5 and 7, (Λ~ I)−1(G(x)~ I) ∈
Sm− and B ∈ Sn++ then,

d>0 ∇f(x) 6 −d>0 Bd0.

ut

As a consequence, if d0 6= 0, it is a descent direction

of f at x.

Lemma 10 The search direction d computed by the al-

gorithm satisfies

d>∇f(x) 6 ξd>0 ∇f(x). (45)

Proof In view of (28),

d>∇f(x) = d>0 ∇f(x) + ρd>1 ∇f(x).

If d>1 ∇f(x) > 0, using (26),

ρd>1 ∇f(x) 6 (ξ − 1)d>0 ∇f(x).

If d>1 ∇f(x) 6 0, using (27),

ρ 6 ϕ‖d0‖2.

Both cases verifies (45) with ξ ∈ (0, 1). ut

Since d0 is a descent direction of f at x, then

d>0 ∇f(x) < 0. Lemma 10 implies that d is also a descent

direction of f at x.

Lemma 11 The search direction d and the parameter

ρ computed by the algorithm verifies:

ϕ0‖d0‖2 6 ρ 6 ϕ‖d0‖2 (46)

and

‖d‖ 6 δ‖d0‖, (47)

for some δ > 1 and ϕ0 > 0.

Proof Looking at (26) and (27), we see that ρ 6
ϕ‖d0‖2. By lemma 9 and assumption 7,

−d>0 ∇f(x) > σ1‖d0‖2.

If d>1 ∇f(x) > 0 and in view of (26) we have,

min

{
ϕ,

(1− ξ)σ1
d>1 ∇f(x)

}
‖d0‖2 6 ρ.

Since d1 is bounded and (27), there exist ϕ0 > 0 such

that

ϕ0‖d0‖2 6 ρ.

and then (46) is proved.

Now using (21) and the triangular property,

‖d‖ = ‖d0 + ρd1‖ 6 ‖d0‖+ ρ‖d1‖

and using condition (46),

‖d‖ 6 ‖d0‖+ ϕ‖d0‖2‖d1‖ = δ‖d0‖,

where δ = 1 + ϕ‖d0‖‖d1‖ > 1. ut

As a consequence of (46) and (47), ρ and ‖d‖2 have

the same order of magnitude, in particular,

ϕ0‖d(x)‖2 6 ρ(x) 6 ϕ‖d(x)‖2, x ∈ Ωa. (48)

Lemma 12 It follows from assumption (3) that there

exists a positive real number L such that

G(y) 4 G(x) +DG(x)(y − x) + L‖y − x‖2I (49)

where x, y ∈ Ω.

Proof Since G is C1, the Mean Value Theorem [30] can

be applied. Then

G(y) = G(x) +

n∑
i=1

(yi − xi)
∂G

∂xi
(x+ ξ(y − x)) (50)
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for some ξ ∈ (0, 1). We also have that

(yi − xi)
∂G

∂xi
(x+ ξ(y − x)) 4 (yi − xi)

∂G

∂xi
(x)

+

∥∥∥∥ ∂G∂xi (x+ ξ(y − x))− ∂G

∂xi
(x)

∥∥∥∥ ‖y − x‖I.
(51)

Since
∂G

∂xi
verify the Lipschitz condition, there exist

Li > 0 such that∥∥∥∥ ∂G∂xi (x+ ξ(y − x))−
∂G

∂xi
(x)

∥∥∥∥ 6 Li‖ξ(y−x)‖ = Liξ‖y−x‖.

(52)

Then, using (52), (51) and (50), we have,

G(y) 4 G(x) +

n∑
i=1

(yi − xi)
∂G

∂xi
(x) + L‖y − x‖2I

where L = ξ
∑n
i=1 Li. ut

Due to assumption (1), the sequence {xk}k∈N ∈
int(Ωa) generated by the algorithm have an accumu-

lation point x∗ ∈ Ωa. Since Λk, Bk, G(xk) and ρk are

bounded, it follows that there exist K1 ⊂ N such that

{d0(xk), d(xk), ρ(xk), Λ0(xk), Λ(xk), G(xk)}k∈K1 con-

verges to {d0(x∗), d(x∗), ρ(x∗), Λ0(x∗), Λ(x∗), G(x∗)}.
In [20], it was shown the existence of τf > 0 such

that at any x ∈ Ωa, condition (29) is verified for any

t ∈ [0, τf ].

Proposition 1 For all x ∈ Ωa such that ‖d(x)‖ ≥
M > 0 there exist τ > 0 such that:

G(x+ td(x)) 4 0 (53)

for all t ∈ [0, τ ].

Proof Thanks to lemma 12, there exist L > 0 such that

G(x+ td(x)) 4 G(x) + tDG(x)d+ t2L‖d(x)‖2I (54)

Let F (t, x) be the matrix in the right hand side of (54),

then,

G(x+ td(x) 4 F (t, x). (55)

Since Λ � 0 and lemma 3, it is enough to show the

existence of τ > 0 such that

sym(ΛF (t, x)) 4 0, t ∈ [0, τ ]. (56)

Considering (19), we have,

sym(ΛF (t, x)) = sym
((
Λ− tΛ

)
G(x)

)
+ (57)

+ t
(
tL‖d(x)‖2 − ρ(x)

)
Λ

where Λ = smat(λ) is defined in (22).

Since ρ verifies (48), for all v such that ‖v‖ = 1, we

have

vt(ΛF (t, x))v ≤ vtΛG(x)v (58)

− t(vt(ΛG(x))v + ϕ0‖d(x)‖2λI) +

+ t2 L‖d(x)‖2λS

It will be enough to show that the right hand side of (58)

is non positive. This one is non-positive when t = 0. Let

us consider now the following second degree equation:

vtΛG(x)v − t(vt(ΛG(x))v + ϕ0‖d(x)‖2λI) + (59)

+ t2 L‖d(x)‖2λS = 0

where x ∈ Ωa, ‖d(x)‖ ≥M and v such that ‖v‖ = 1.

Let t(x, v) be the positive solution of (59):

t(x, v) = (
vt(ΛG(x))v

2L ‖d(x)‖2λS
+
ϕ0λ

I

2LλS
)+ (60)

+

√
(
vt(ΛG(x))v

2L ‖d(x)‖2λS
+
ϕ0λI

2LλS
)2 − vtΛG(x)v

L ‖d(x)‖2λS

Since vtΛG(x)v ≤ 0 and
ϕ0λ

I

2LλS
> 0, if follows from

lemma 5 that t(x, v) is positive in the compact

S = Ωa ∩ {x : ‖d(x)‖ ≥M} × {v ∈ Rn : ‖v‖ = 1}.

Then there exist τ > 0 such that G(x + td(x)) 4 0 for

all t ∈ [0, τ ] and x ∈ Ωa ∩ {x : ‖d(x)‖ ≥M}. ut

As a consequence of proposition 1, it will be proved

bellow that if x∗ ∈ Ωa, is an accumulation point of

a sequence {xk}k∈N generated by the algorithm then

‖d(x∗)‖ = 0.

Proposition 2 Let be {xk}k∈N a sequence given by the

algorithm converging to x∗ with ‖d(x∗)‖ = 0. There

exist δ > 0 and τ > 0 such that, if xk ∈ B(x∗, δ) ∩Ωa,

then

G(xk + td(xk)) 4 0 (61)

for all t ∈ [0, τ ].

Proof Since ‖d(x∗)‖ = 0, thanks to the continuity of

d(x), ‖d(xk)‖ goes to zero. As ρ verifies (48), we have

tL‖d(x)‖2 − ρ(x) 6 (tL− ϕ0) ‖d(x)‖2, x ∈ Ωa.

It follows from (57) that if

max{v>(Λk − tΛk)G(xk)v, v ∈ Rm, ‖v‖ = 1} 6 0. (62)

then (61) is true for t ≤ ϕ0

2L
.
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Since Λk and G(xk) are both symmetric and com-

mute, there exists an orthonormal matrix Pk such that

Λk = P tkD
k
λPk (63)

G(xk) = P tkD
k
gPk (64)

where Dk
λ and Dk

g are diagonal matrices.

Let Λ
k

= PkΛ
k
P tk. We shall prove that there exist

δ > 0 and τ > 0 such that, if xk ∈ B(x∗, δ) ∩Ωa, then

v>((Dk
λ − tΛ

k
)Dk

g )v 6 0, (65)

for all v ∈ Rm, ‖v‖ = 1.

Let Λ
k

= D∗λ + Mk, where Mk = PkΛ
k
P tk − D∗λ.

Since Λ
k

converges to D∗λ,, then, for all ε > 0, there

exists δ such that for all xk ∈ B(x∗, δ) ∩ Ωa, it is

|v>(MkDk
g )v| < ε.

Since the eigenvalues of Dk
λ are between λI and λS

by hypothesis and the eigenvalues of Λ∗ are bounded,

due to theorem of Weyl [21], there exist τ1 > 0 such

that the eigenvalues of (Dk
λ − tD∗λ) are positive for all

t ∈ [0, τ1].

Then for ε small enough:

v>((Dk
λ − tD∗λ)Dk

g )v − t v>(MkDk
g )v 6 0. (66)

for all v ∈ Rm, ‖v‖ = 1 and t ∈ [0, τ1]. The result follows

for τ = min{τ1,
ϕ0

2L
}. ut

Theorem 2 Any accumulation point x∗ of the se-

quence {xk} generated by the algorithm is a stationary

point of problem (1).

Proof Let be the set K1 ⊂ K ⊂ N previously defined.

It follows from propositions 1 and 2 that there exists

K2 ⊂ K1 such that tk goes to t∗ > 0 for k ∈ K2.

We shall prove that at the limit, ‖d(x∗)‖ = 0. If this

is not true, we assume that ‖d∗‖ > ηd > 0.

From the line search condition (29),

f
(
xfol(k)

)
6 f(xk) + η tk(dk)>∇f(xk).

where fol(k) is the element that follows k in K2. Taking

the limits for k →∞,

f(x∗) 6 f(x∗) + η t∗(d∗)>∇f(x∗).

Then, 0 6 (d∗)>∇f(x∗).

But, from lemma 10, when k →∞, we obtain

(d∗)>∇f(x∗) 6 ξ(d∗0)>∇f(x∗)

and from lemma 9 we have, for k →∞,

(d∗0)>∇f(x∗) 6 −(d∗0)>B∗d∗0.

Since B∗ is positive definite, (d∗0)>∇f(x∗) < 0, that is

a contradiction. Thus, d∗ = 0.

Let λ∗0 = svec(Λ∗0). Now, considering equation (15),

we have that (x∗, λ∗0) verifies

∇f(x∗) +∇G(x∗)λ∗0 = 0 (67)

(G(x∗)~ I)λ∗0 = 0. (68)

To prove that (x∗, λ∗0) is a stationary point of our

problem, it remains to show that G(x∗)Λ∗0 = 0.

If x∗ ∈ int(Ωa), then G(x∗) ≺ 0. Consequently

G(x∗)~I is non singular and the linear system (68) has

the unique solution λ∗0 = 0. Then, Λ∗0 = smat(λ∗0) = 0

and the complementarity condition holds.

Considering now the case when x∗ belongs to

the boundary of Ωa, it follows from (68) that

sym(G(x∗)Λ∗0) = 0. To finish the proof, we show that

skw(G(x∗)Λ∗0) = 0 or, equivalently, that all eigenvalues

of G(x∗)Λ∗0 are real.

Let k ∈ K2. Since Λk0 is symmetric and G(xk) ≺ 0, it

follows from lemma 4, that G(xk)Λk0 has real eigenval-

ues. Moreover, {G(xk)Λk0}k∈K2
goes to G(x∗)Λ∗0. Since

the eigenvalues are continuous functions, we conclude

that the eigenvalues of G(x∗)Λ∗0 are also real. ut

5 Algorithm implementation

In this section we include implementation details of the

present algorithm and a set of experimental studies with

linear and nonlinear SDP problems.

The quasi-Newton matrix B must verify assumption

7. We employ the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) updating rule with Powell’s correction to en-

sure positive definiteness of B [35], with B = I as

initial value. For linear SDP problems, we have that

∇xxL(x, λ) ≡ 0. We take B = 10−6I.

The matrix Λ must satisfy assumption 5 and 6, as

required to prove global convergence. This is the case if

Λ = µI, (69)

where µ is a positive real number. However, to keep

good local convergence properties of Newton like

methods, we should take Λk+1 = Λk0 . Unfortunately,

the assumptions 5 and 6 would not be always verified.

We propose the following updating rule for Λ,

Rule 1:

i) Compute λ0min, the minimum eigenvalue of Λ0.

ii) If λ0min > λI then, set Λ = Λ0.

iii) Else, set Λ = Λ0 +
(
λI − λ0min

)
I. ut
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With this rule Λ meets assumption 6, but assump-

tion 5 is true only at the limit. To ensure global conver-

gence with this rule, we restart with Λ = I if the search

direction is not descent or not feasible. In one of these

situations the line search gives a very short step length

can be obtained. In our numerical tests the line search

never failed.

The stopping criterion is based on Karush-Kuhn-

Tucker condition. The iterates stop when

‖∇f(xk) +∇G(xk)svec(Λk0)‖ < Tol

and

‖Λk0G(xk)‖ < Tol,

where Tol ∈ R.

In the numerical studies the parameters are taken

with the following values: ξ = 0.8, η = 0.1, ϕ = 1,

ν = 0.7 and Tol = 10−4. When a step t < 0.01 is

obtained in the line search, in the next iteration we

take Λ = I.

When an initial feasible point is not provided, the

following auxiliary problem is solved,

min
x,z

z, s.t. x ∈ Rn, z ∈ R and G(x)− zI 4 0 (70)

where z is an additional variable. A feasible point of

Problem (1) is obtained once z becomes negative.

We shall present next the numerical results with

some test problems of SDPLIB [11], a collection of

linear semidefinite programming problems. Following,

the results with some applications in structural opti-

mization leading to linear and nonlinear SDP problems

will be reported.

5.1 Numerical experiments with linear test problems

The numerical results with some test problems of

SDPLIB are reported in table 1, where iter is the

number of iterations to solve problem (1) with the given

stopping criterion and f the computed objective func-

tion. Rule 1 was employed to define Λ and the last col-

umn shows the number of iterations with Λ = I. The

last restart took place at iteration 196 in example Con-

trol4, in iteration 75 in example hinf9 and in iteration

12 in example truss1. An initial interior point for each

problem was obtained, as described above.

6 Applications of SDP to Structural

Optimization

In this section an overview of some linear and nonlinear

SDP models for trusses optimal design is given. The

corresponding numerical results are reported in section

6.4.

Table 1 Numerical results, SDPLIB.

Problem n m iter f(x∗) iter(Λ = I)
control1∗ 21 15 37 17.7847 1
control2∗ 66 30 123 8.3001 1
control3∗ 136 45 95 13.6333 1
control4∗ 231 60 400 19.7942 4
hinf1 13 14 24 2.0326 1
hinf2 13 16 48 10.9677 1
hinf3 13 16 30 56.9665 1
hinf4 13 16 35 274.765 1
hinf5 13 16 122 362.4300 1
hinf6 13 16 158 449.1210 1
hinf7 13 16 36 390.8300 1
hinf8 13 16 59 116.2170 1
hinf9 13 16 87 236.2490 24
hinf10 21 18 42 108.8370 1
hinf11 31 22 56 65.9161 1
qap5 136 26 16 −436.0000 1
qap6 229 37 23 −381.4360 1
theta1 104 50 20 23.0000 1
truss1 6 13 23 −8.9998 3
truss3 27 31 23 −9.1099 1
truss4 12 19 20 −9.0099 1

* ξ = 0.4

6.1 The minimum compliance problem

We consider two or three-dimensional trusses with b

bars and l degrees of freedom, submitted to a set of

primary loading cases P = {p1, . . . , ps}, where pi ∈ Rl
is the i-th loading case. The design variables are the

bar volumes, denoted by xj , j = 1, . . . , b.

The worst possible compliance of the structure for

the set of loadings is,

φP (x) = sup{2u>p− u>K(x)u : u ∈ Rl, p ∈ P}, (71)

where x ∈ Rb and K(x) is the reduced stiffness matrix.

The so called Truss Topology Design (TTD) [9]

looks for the volume of each of the bars that mini-

mizes the structural compliance. The structural topol-

ogy changes if some of the volumes are zero in the so-

lution. Then, the minimum compliance problem can be

stated as follows,

min
x,τ

τ

s.t. φP (x) 6 τ,∑b
j=1 xj 6 V ,

x > 0,

(72)

where V is a prescribed value for the total volume of

the truss. Using the equivalence proved in [6],

φP (x) 6 τ ⇐⇒
[
τ p>

p K(x)

]
< 0, ∀ p ∈ P, (73)



12

we have that (72) is equivalent to the following semidef-

inite program:

(TTD)



min
x,τ

τ

s.t.

[
τ p>

p K(x)

]
< 0, ∀ p ∈ P,∑b

j=1 xj 6 V ,
x > 0.

(74)

6.2 The robust compliance optimization problem

A structure is considered “robust” if it is reasonable

rigid when any set of small possible uncertain loads

acts on it. As proposed by Ben-Tal and Nemirovsky

[7], is considered in addition to the primary loads, a

set of “secondary” loads that are uncertain in size and

direction, eventually acting on the structure. The com-

pliance to be minimized is the worst possible one, un-

der the simultaneous action of the “primary” and “sec-

ondary” loads.

Let M be the ellipsoid of loading conditions defined

as follows:

M = {Qe : e ∈ Rq, e>e 6 1}, (75)

where

Q = [p1 . . . ps re1 . . . req−s] ∈ Rl×q. (76)

The vectors re1, . . . , req−s are called “secondary”

load cases. The set {e1, . . . , eq−s} must be chosen as

an orthonormal basis of a linear subspace orthogonal

to the linear span of P . The value r is a prescribed

magnitude.

The robust truss topology problem (RTT ) is ob-

tained replacing P by M in (72). Using an equivalence

similar to (73) proved in [7], it is possible to rewrite the

robust truss topology model as the following semidefi-

nite programming problem:

(RTT )



min
x,τ

τ

s.t.

[
τI Q>

Q K(x)

]
� 0,∑b

j=1 xj 6 V ,
x > 0,

(77)

where Q is defined in (76).

6.3 Structural topology and geometry optimization

with eigenvalues

This subsection uses theoretical results and semidefinite

programming models presented in [1] and [2].

The eigenvalues of a truss are the solution of the

following equation:

K(x)v = λM(x)v (78)

where K(x) and M(x) are the reduced structural stiff-

ness and mass matrices respectively and (v, λ) ∈ Rm×R
is an eigenvector-eigenvalue pair.

Let λmin(x) be the smaller eigenvalue. The con-

straint λmin(x) > λ is equivalent to the semidefinite

constraint K(x)− λM(x) < 0, see [1]. Then, the topol-

ogy optimization problem of minimum volume subject

to constraints on the minimum eigenvalue and the com-

pliance is

(MV )



min
x,V

V

s.t.

K(x)− λM(x) < 0,[
γ p>

p K(x)

]
< 0, ∀ p ∈ P,∑b

j=1 xj 6 V,

x > 0,

(79)

where λ is a lower bound of the eigenvalues and γ an

upper bound of the compliance.

We consider now the structural geometry optimiza-

tion problem of minimum volume, where the nodal co-

ordinates y are the design variables,

(MVG)



min
y
V (y)

s.t.

K(y)− λM(y) < 0,[
γ p>

p K(y)

]
< 0, ∀ p ∈ P,

y
j
6 yj 6 yj ; j = 1, 2, ..., l

(80)

where y
j

and yj for j = 1, 2, ..., l, represent lower and

upper bounds on the nodal coordinates. Note that the

objective function and the matrix constraints depends

nonlinearly of the nodal coordinates y.

Let be the topology optimization of the compliance,

subject to constraints on the lower eigenvalue and the

volume,

(MC)



min
x,γ

γ

s.t.

K(x)− λM(x) < 0,[
γ p>

p K(x)

]
< 0, ∀ p ∈ P,∑b

j=1 xj 6 V ,

x > 0,

(81)
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where V is an upper bound of the structural volume.

Finally, the nonlinear problem of maximizing the

minimum eigenvalue with compliance and volume con-

straints can be stated as,

(MF )



max
x,λ

λ

s.t.

K(x)− λM(x) < 0,[
γ p>

p K(x)

]
< 0, ∀ p ∈ P,∑b

j=1 xj 6 V ,

x > 0.

(82)

We solve problems (MF ), (MV ) and (MC) and com-

pare the results as in [1]. Problems (TTD), (RTT ),

(MV ) and (MC) are linear SDP problems since the ma-

trix constraints are linear functions of the design vari-

ables. On the other hand, problems (MF ) and (MVG)

are nonlinear SDP problems.

6.4 Numerical tests for structural optimization

problems

All the problems solved here are first converted to the

general format (1). In examples 1 and 2 we apply the

present algorithm to test problems (TTD) and (RTT )

studied in [7]. The data of the structural optimization

test problems, as well as the number of iterations re-

quired to solve them for the given stopping criterion,

are shown in Table 2. The results for both updating

rules for Λ are compared, with µ = 10−4. In all the ex-

amples, feasible descent directions were obtained with-

out restart. We took Λ = I, only at the first iteration.

Table 2 Data and results of structural optimization exam-
ples

Example Model n m
Iter Iter

(Λ = rule1) (Λ = µI)

1
TTD 11 20 25 263
RTT 11 27 26 231

2
TTD 23 36 15 162
RTT 23 47 17 471

3
MC 23 36 18 223
MV 23 47 18 141
MF 23 47 12 107

4 MVG 8 53 23 432
5 MVG 4 25 14 40

Example 1. Consider the 2D structure shown in Fig-

ure 1 submitted to a single “primary” loading case

P = 2 [1, 0, 0,−1, 0, 1,−1, 0]. The length of each of the

horizontal and vertical bars is 1.0. The secondary load-

ing cases have a magnitude r = 0.4 and define a basis

of the orthogonal complement of the linear span of P

in the linear space of all the degrees of freedoms of the

structure.

1 
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2 4 6 
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1
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Fig. 1 Truss of Examples 1 and 5

Figure 2-left shows the final topology obtained with

model (TTD). The resulting truss is unstable since, for

any non-horizontal force applied to node 4 the compli-

ance will be infinite. On the other hand, Figure 2-right

represents the final topology obtained with the robust

model (RTT ).

Fig. 2 Results of example 1. Left=(TTD). Right=(RTT ).

Table 3 shows the deigns obtained with the present

algorithm. The row n1 : n2 is the volume percentage of

the bar connecting node n1 and n2. Vertical bars 3 : 4

and 1 : 2 are omitted since their volumes are null.

Table 3 Optimal designs - Example 1. Bar volumes (%).

TTD RTT
3 : 5 25 24.482
1 : 3 12.5 11.954
4 : 6 25 24.483
2 : 4 12.5 11.954
4 : 5 0 1.2644
3 : 6 0 1.2644
2 : 3 25 23.679
1 : 4 0 0.9196

The results presented in Figure 2 and in Table 3 are

similar to those reported in [7].
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Example 2. Let be a 3D truss with fixed nodes on the

horizontal plane z = 0 and free nodes on the horizontal

plane z = 2. The 8 nodes coordinates are,cos(2πi/4)

sin(2πi/4)

0

 , i ∈ {1, 2, 3, 4},
 1

2 cos(2πj/4)
1
2 sin(2πj/4)

2

 , j ∈ {5, 6, 7, 8},
(83)

All the free and fixed nodes are jointed by bars. A

single load case P = {p} is defined. The components of

p acting at the nodes on the plane z = 2 are given by,

pj =
1√

4(1 + ρ2)

 sin(2πj/4)

− cos(2πj/4)

−ρ

 , j ∈ {5, 6, 7, 8},

(84)

where ρ = 0.001. The secondary loading cases were de-

fined as in example 1.

Figure 3-left and right show the optimal designs

with (TTD) and (RTT ) models. These results, that

are given in Table 4, were also obtained in [7]

Table 4 Optimal designs of example 2. Bar volumes (%).

TTD RTT
1 : 5 0.0010 0.0033
1 : 6 12.500 12.459
1 : 7 0.0010 0.0027
1 : 8 12.500 12.460
5 : 6 0.0018 0.0526
5 : 7 0.0032 0.0434
5 : 8 0.0018 0.0526
6 : 7 0.0019 0.0526
6 : 8 0.0032 0.0436
7 : 8 0.0019 0.0526

Fig. 3 Results of example 2. Left=(TTD). Right=(RTT ).

Example 3.

We apply now the present algorithm to solve the

problems (MV ), (MC) and (MF ). Consider the planar

structure with 3×3 nodes in Figure 4-left. The nodes in

the left side are fixed in all directions and a horizontal

force of magnitude 1.0 is applied in the middle node

of the right side. The length of each of the horizontal

and vertical bars is 1.0 and the Young’s modulus of the

material is 1.0. The initial sectional area of all the bars

is 0.01.

We consider the minimum volume problem (MV )

with γ = 1 and λ = 0.05. Our optimal design is shown

in figure 4-right and the nonzero optimal volumes x∗ in

Table 5, with V = V ∗ = 4.731.

Considering the minimum compliance problem

(MC) with V = V ∗ = 4.731 and λ = 0.05, we ob-

tain the optimal design (x∗, γ∗) with optimal compli-

ance γ∗ = γ = 1.

Finally, when solving the problem of maximization

the minimum eigenvalue (MF ) with V = V ∗ = 4.731

and γ = 1, we obtain the optimal design (x∗, λ∗) with

λ∗ = λ = 0.05. These results were also obtained in [1].

6 

7 8 9 

  
 
 
 
 
 

4 

1 2 3 

5 

Fig. 4 Truss of example 3. Our algorithm obtains the same
x∗ when applied to problems (MV ), (MC) and (MF ).

Table 5 Results of example 3. Bar volumes (%).

V olume(%)
4 : 5 48.355
5 : 6 48.020
1 : 5 0.464
5 : 7 0.464
1 : 6 1.342
6 : 7 1.342

The two next examples consist on (MVG) problems,

that require the solution of nonlinear SDP models.

Example 4.

Let be the three-dimensional truss with fixed nodes

on the horizontal plane z = 0. The structure has 10

nodes. The initial and optimal nodal coordinates are

given in Table 6 and 7 respectively. The corresponding

geometries are represented in Figures 5 and 6.
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Table 6 Initial coordinates of the structure of example 4.

node coord x coord y coord z
1 −0.375 0.000 2.000
2 0.375 0.000 2.000
3 0.375 −0.375 1.000
4 0.375 0.375 1.000
5 −0.375 0.375 1.000
6 −0.375 −0.375 1.000
7 1.000 −1.000 0.000
8 1.000 1.000 0.000
9 −1.000 1.000 0.000
10 −1.000 −1.000 0.000 
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Fig. 5 Example 4 - 3D Truss. Initial design

A single load case P = {p} is defined. The compo-

nents of p acting at the nodes 1 and 2, on the plane

z = 2 and 5 and 6, on the plane z = 1 are given

by: p1x = 0.1, p1y = p2y = 1, p1z = p2z = −0.5,

p5x = p6x = 0.05. All bars have a sectional area of

0.1 and ρ = 1.

The box constraints for this example are: 0.1 ≤ x3 ≤
0.6, −0.6 ≤ y3 ≤ −0.1, 0.5 ≤ z3 ≤ 1.5, 0.1 ≤ x4 ≤ 0.6,

0.1 ≤ y4 ≤ 0.6, 0.5 ≤ z4 ≤ 1.5, −0.6 ≤ x5 ≤ −0.1,

0.1 ≤ y5 ≤ 0.6, 0.5 ≤ z5 ≤ 1.5 and −0.6 ≤ x6 ≤ −0.1,

−0.6 ≤ y6 ≤ −0.1, 0.5 ≤ z6 ≤ 1.5.

Table 7 Final coordinates of the structure of example 4.

node coord x coord y coord z
1 −0.3750 0.0000 2.0000
2 0.3750 0.0000 2.0000
3 0.1382 −0.1222 1.3583
4 0.1383 0.1222 1.3583
5 0.1382 0.1222 1.3583
6 0.1382 −0.1222 1.3584
7 1.0000 −1.0000 0.0000
8 1.0000 1.0000 0.0000
9 −1.0000 1.0000 0.0000
10 −1.0000 −1.0000 0.0000

Fig. 6 Example 4. - Optimal design

Example 5

We apply now (MVG) problem to the 2D truss con-

sidered in example 1, submitted to the same primary

loads. The optimal nodal coordinates are given in Table

8 and shown in Figure 7.

Fig. 7 Optimal design of example 5

Table 8 Final coordinates of the structure of example 5.

node coord x coord y
1 0.0000 0.0000
2 0.0000 1.0000
3 1.0000 0.2767
4 1.0000 0.7341
5 2.0000 0.3000
6 2.0000 0.7000

The box constraints for this example are: 0.7 ≤ y1 ≤
1.3, −0.3 ≤ y2 ≤ 0.3, 0.7 ≤ y3 ≤ 1.3 and −0.3 ≤ y4 ≤
0.3

7 Conclusions

In this paper, a new approach for nonlinear semidefi-

nite programming is presented and supported by strong
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theoretical results. In particular, global convergence to

a critical point was proved. The present technique com-

putes a descent feasible direction based on Newton-like

iterations to solve KKT optimality conditions. To ob-

tain a search direction, it is merely required the solution

of two linear system with the same coefficient matrix

followed by an inexact line search.

Linear SDP test problems from SDPLIB library

were solved very efficiently. The numbers of iterations

are in general comparable to the size of of the problem

and the value of the objective function is similar to the

values published in [11].

In this paper we have presented a large number of

linear and nonlinear SDP problems coming from struc-

tural optimization. The numerical results exposed show

the performances of the proposed algorithm in linear

and nonlinear cases, in particular the number of iter-

ations are very raisonable when we consider Rule 1 to

update Λ.

The results obtained solving the structural geomet-

ric optimization of minimum volume where the nodal

coordinates are the design variables shows the inter-

esting performances of the presented algorithm in the

nonlinear case.

The numerical tests were successfully performed

with the same parameters.
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