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ABSTRACT:  The use of full-field measurements in the identification of material properties is currently widespread 

thanks to advances in measurements techniques and computer-assisted identification methods. In this paper, an iterative 
procedure is used to identify the local stress fields and the material properties distributions using full-field measurement 
techniques. After summarizing the principle of the method, we focus on its validation in which we identify an elastoplastic 
behavior. Then the method was applied on noisy measured displacement fields to assess its robustness.  
 

1. INTRODUCTION 

 

Optical measurement techniques applied in the field of experimental mechanics have improved significantly in the last 
decades. Thanks to the large amount of information given by full-field measurement techniques, it is now possible to 
tackle complex identification problems such as strongly localized phenomena (Lüders bands, crack propagation …). 
Mechanical properties are generally identified from overall loading informations and kinematic fields (obtained by Digital 
Image Correlation, interferometric techniques, grid methods, etc.). The Finite-Element Updating Method is probably the 
most widespread identification method, as it allows identifying very different physical properties. Specific methods, 
adapted to the identification of mechanical behaviors were also proposed. A general overview over existing identification 
techniques can be found in [1]. We have chosen to use the Constitutive Equation Gap Method (CEGM) as it can be 
adapted to a wide range of material behaviors and as it is compatible with the identification of heterogeneous behaviors. 
This method was originally designed as an error estimator for finite element method. 
The first step of the proposed work is to extend the approach developed in [3, 4] to identify the parameters of the 
constitutive laws (elastoplasticity, cohesive zones models). Cohesive zones models, associated with traction-separation 
laws, are commonly used in numerical simulations to account for the initiation of micro-cracks and their propagation 
leading to the fracture of the material.  
The proposed approach introduces the elastoplastic secant stiffness tensor  (𝐵𝑠)  for the identification of plastic 

parameters. For a linear kinematic model, tensors 𝐵𝑠 can be expressed directly as a function of the material properties 

(yield stress and hardening coefficient) and of the loading history. Its reliability is checked through applications on 
simulated data obtained under small perturbation and plane stress assumptions with COMSOL Multiphysics software. In 

particular, the robustness of the method with respect to measurement noise is studied in order to evaluate the 
performance of the proposed approach. 

2. IDENTIFICATION PROCEDURE AND NUMERICAL METHOD 

We propose a method to identify the parameters of an elastoplastic constitutive law in a 2D framework. The CEGM is 
based on the minimization of a functional expressing the gap in the constitutive equation. In its simplest form (small strain 
hypothesis, equilibrium, and linear elastic constitutive behavior) the cost-function reads:  
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where 𝐵  is a heterogeneous elastoplastic tensor, 𝑢𝑚  a measured displacement field, 𝑢𝑐  a displacement field 

compatible with the local and global equilibrium of the studied domain  using the secant tensor  𝐵. 

For an elastoplastic identification problem, the elastic and plastic behavior can be described by the secant stiffness 

tensor 𝐵𝑛
𝑠 links the stress tensor 𝜎𝑛 and the strain tensor 𝜀𝑛 at load step n: 

 

 

𝜎𝑛 = [ 𝐵𝑛
𝑠  ] : 𝜀𝑛. (2) 

 
According to [5], denoting ∆𝛾 the plastic multiplier increment, this discretized secant tensor reads: 
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where 𝐵𝑒
 is the elastic tensor (depending, for a cubic material, on the three elastic constants: e.g. Young modulus E, 

shear modulus G, and Poisson ratio ) and 𝑃 is a constant mapping matrix 

 

 

  𝑃 =
1
3

[
2 −1 0

−1 2 0
0 0 6

] (4) 

 

The plastic multiplier ∆𝛾𝑛 at load step 𝑛 can be written: 
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with 𝜎0 and 𝑘 standing respectively for the yield stress and the hardening coefficient, and  representing the von Mises 

stress associated to the stress level reached at the current load step 𝑛. 

 
We focus on an elastoplastic model with kinematic hardening associated with a von Mises criterion. The elastic and 
plastic identification problem thus consists in finding the elasticity tensor and the elastoplastic secant stiffness tensor and 
the stress field which satisfy the equilibrium equation, the constitutive equation and the global equilibrium.  
 
Thanks to the properties of convexity of the constitutive equation gap E, the minimization can be performed in two 

consecutive steps: first with respect to its first argument (to determine a displacement field 𝑢𝑐⃗⃗⃗⃗  associated with a statically 

admissible stress fields 𝜎𝑐) and then the second minimization is performed with respect to its second argument 𝐵 (to 

identify the material parameters). 
The CEGM procedure is controlled through an optimization algorithm. The iterative procedure is started with an initial set 
of parameter chosen arbitrarily.  
The procedure is stopped using a convergence criterion on the norm of the tangent tensor, and the optimal material 
parameters are obtained.  

3. APPLICATION EXAMPLE 

In this section some results obtained with the CEGM presented above are given. The identification method was tested on 
numerical examples associated with different configurations, for a homogeneous and a heterogeneous material subjected 
to a tensile test.  
 

1. The first test is the numerical simulation of a tensile test performed at constant velocity on a rectangular bar. The 
behavior of the material is isotropic, elastoplastic with a linear kinematic hardening. In this example, the Young 

modulus is 210 GPa, the Poisson ratio is 0.3, the yield stress 𝜎0 is 300 MPa and the hardening modulus 𝑘 

equal to 1 GPa. The identification is made on an area of the same size as the bar. The material behavior is 

identified on 4 domains as shown in Figure 1.a. The rapid convergence of the elastic properties () is shown in 
Figure 1.b. 
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Figure 1- Geometry of the sample (a) – convergence on the Poisson ratio (b) - convergence on the Young 
modulus (c) and identified kinematic hardening modulus and yield stress (d). 

 

2. The second test is performed on a composite specimen made of two different materials i.e. a numerical 
mechanical test on a composite specimen (stiff matrix with a soft elliptical inclusion). For the matrix the Young 
modulus is 210 GPa, the Poisson ratio is 0.3, the yield stress is 300 MPa and the hardening modulus equals to 1 
Gpa. The inclusion has a Young modulus worth 100 GPa, a Poisson ratio of 0.15, a yield stress of 300 MPa and 
a hardening modulus equals to 1 GPa. Two types of identification are performed. In the first one, the mesh of the 
identification is perfectly consistent with the mesh used for the simulation (two identification domains D1 – 
inclusion and D2 - matrix) and the other one is performed on an identification mesh that does not respect the 
material heterogeneity (400 domains Dj with j = 1 to 400). 
 

 

Figure 2- Geometry for the identification: mesh accordance (a) and not in accordance (400 domains) (b). 
 

 

Figure 3- Convergence of Poisson ratio (a) and Young modulus (b) for two domains. 



 

Figure 4- Convergence of Young modulus (a) and Poisson ratio (b) for 400 domains. 

 
The robustness of the CEGM approach with respect to noise was evaluated using a set of simulated displacement field 
representative of real experiment conditions on which a Gaussian white noise with different noise levels was added. 
Results showed that the identification method was robust with respect to noise, even in the elastic domain where signal to 
noise ratio is the worst. As an example, for a noise level similar to the one associated with experimental results, the error 
on the identified elastic constants (𝐸, 𝑣) is shown to be less than 7%. 

4. CONCLUDING REMARKS 

We illustrate the use of the CEGM to identify the parameters of an elastoplastic behavior from full-field measurements. 
Here we identify mechanical stresses and a distribution of elastic and plastic coefficients. The originality of this work 
resides in its ability to tackle heterogeneous stress fields associated with either heterogeneous materials or complex 
structures for elastic or plastic materials. For a plastic load step, the determination of the secant tensor requires to 
estimate the von Mises equivalent stress. It is here reached using an elastic prediction associated with cubic elasticity. 
This step gives inaccurate elastic coefficients but an equilibrated stress field consistent with the global applied load 
allowing the determination of the equivalent stress. Before applying the identification method to real experimental data, 
the proposed procedure was checked on the basis of numerically-obtained displacement fields given by a FE simulation. 
Results of the study show the ability of the method to deal with strongly heterogeneous situations. Gaussian white noise 
was also superimposed to the numerical data in order to assess the robustness of the method with respect to noise. This 
method is now being extended to the introduction of damage in the material response. 
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