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Delay Estimation and Predictive Control of
Uncertain Systems With Input Delay: Application to

a DC Motor
V. Léchappé, S. Rouquet, A. Gonzáles, F. Plestan, J. De León,E. Moulay and A. Glumineau

Abstract—It is well-known that standard predictive techniques
are not very robust to parameter uncertainties and to external
disturbances. Furthermore, they require the exact knowledge
of the delay. In practice, these constraints are rarely satisfied.
In this paper, solutions are presented to allow the use of
predictive control in presence of external disturbances, parameter
uncertainties and an unknown input delay. First, a recent
predictive control method developed to attenuate the effect of
external disturbances is shown to be also robust to parameter
uncertainties. In addition, a delay estimator is presentedto
estimate unknown time-varying delays. Theoretical results are
widely illustrated through experimental tests on a DC motor.

Index Terms—Delay estimation, predictive control, input delay.

I. I NTRODUCTION

On the one hand, input delays can appear because of the
physical nature of the plant: they are usually due to transport
phenomenon. On the other hand, input delays can arise from
communication latencies, computation time or sensor measure-
ments: in that case, they are extrinsic to the system. The latter
are more and more common because of the fast development
of remote controllers and control over networks (see [1] for
further applications).

The standard approach to control such systems is the well-
known Smith predictor introduced in [2]. Then, the finite
spectrum assignment technique and the Artstein reduction
method respectively in [3] and [4] have extended Smith’s
result. However, these methods have a major problem: they
are not very robust to external disturbances and modeling
errors. In addition, the exact value of the delay is required
to compute the prediction which is very sensitive to delay
mismatch [5]. In order to improve the problem of disturbance
attenuation, a new predictive scheme has been introduced in
[6]. This solution offers new perspectives for the control of
uncertain input delay systems. In particular, it can be applied
for the control of electrical machines.

DC motors are commonly used in many areas such as
robotics or industry. Furthermore, the simple modeling facil-
itates its use as a benchmark system for the evaluation of
new control laws. Numerous techniques have been applied for
driving DC motors [7]. However, they do not consider any
delay. This issue is studied in this paper.

Among the few existing works concerning DC motors with
delayed inputs, one can cite [8] which shows the influence of
the delay time distribution on the stability of a DC motor with
a PI controller. In [9], an observer-based delay compensator is

designed in the discrete framework associated with buffersto
reduce the unknown delay variations. An adaptive controller
is used in [10] to follow the "Quality-of-Service" (QoS)
variations of the network. These works consider very small
delays (less than the sampling period) and a perfect model (no
parameter uncertainty, no external disturbance). The control
of a DC motor with a large delay and external constant
disturbances is achieved in [11] by using the recent method
of [6].

All these works deal with constant and known delays.
However, if the control is carried out over a network (net-
worked control system), the delay is usually time-varying.
Recently, numerous works on the control of DC motor through
communication networks have been published. They generally
take into account random delays as in [12] and often also
both delay and packet dropout as in [13], [14], [15], [16].
Memoryless controllers are used in [13] and [14] because the
delays are small (less than100 ms). When the delay becomes
larger, predictive techniques are used as in [12] and [15]. The
work [16] does not use predictive control, that is why the
performances are clearly degraded when the delay increases.
Among the works that use predictive techniques, none consid-
ers an external disturbance or parameter uncertainties.

In most of the cases, the delay is not available for mea-
surement. Therefore, it is useful to have delay estimators in
order to approximate the value of the delay. Various methods
are available but they are generally run offline or they deal
only with constant delays. In addition, most of the works
only deal with “open-loop” estimation. That is to say that
they estimate the delay but do not use the estimated value to
design a controller [17], [18]. However, few works combined
predictive control with delay estimation. As far as the authors
know, only four results are reported in the literature: [19],
[20], [21] [22]. In [19] and [20], the delay is constant and the
algorithm is very complex to implement. The work in [21]
deals with transfer function systems and does not consider
parameter uncertainties nor external disturbance. In [22], the
delay estimation technique is based on a particular structure
of the model and cannot be used for the DC motor.

One of the contribution of this work is to extend the result
of [6] to systems with parameter uncertainties. Besides, a
delay estimator is designed for unknown time-varying delays.
Finally, the combination of the predictive method with the
delay estimator is tested experimentally on a DC motor with a
large input delay and unmodeled dynamics. An accurate speed
tracking is achieved in presence of a large unknown delay,
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external disturbance and parameter uncertainties.
The article is organized as follows. In Section II, the

predictive scheme of [6] is recalled and an analysis of its
robustness to parameter uncertainties is worked out. A delay
estimator is proposed in Section III and a convergence proof
is given for unknown time-varying delays. The DC motor
model and the experimental setup are introduced in Section
IV-A. Experimental results are shown in Section IV-B. Finally,
the conclusion and some future developments are outlined in
Section V.

II. PREDICTIVE CONTROL OF UNCERTAIN SYSTEMS WITH

KNOWN AND CONSTANT DELAY

The results presented thereafter are an extension of [6]
to systems with parameter uncertainties. The systems under
consideration are LTI systems with uncertainties∆A, ∆B and
an additive external perturbationd:

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t− h) + d (1)

with x(t) ∈ R
n, u(t) ∈ R

m, d(t) ∈ R
n, A ∈ R

n×n, B ∈
R

n×m and the constant and known delayh ∈ R. The following
assumptions are made:

Assumption1: The matricesA andB are known and(A,B)
is controllable.

Assumption2: The statex(t) is measurable.
Assumption3: The disturbanced is piecewise constant1 and

unknown.
Assumption4: The matrices∆A and∆B are constant and

unknown and do not affect the controlability property.
In addition, it is assumed that the referencexr is constant and
verifies:

0 = Axr +Bur (2)

whereur is the constant control input required to maintain
x at equilibrium pointxr. Equation (2) allows to compute a
controller of the formu(t) = u′(t)+ur then the tracking error
e(t) = x(t)− xr verifies:

ė(t) = Ae(t) +Bu′(t) +Axr +Bur

= Ae(t) +Bu′(t).
(3)

The Finite Spectrum Assignment (FSA) technique in [3] is
based on the following prediction

xp̂(t) = eAhx(t) +

t
∫

t−h

eA(t−s)Bu(s)ds (4)

for all t ≥ 0. The term xp̂ will be called the "standard
prediction" in the sequel because it is the most widely used
prediction in the literature of input delay systems [4], [23].
The state prediction (4) allows to turn (1) into the system

ẋp̂(t) = (A+∆A)xp̂(t) +Bu(t) + φ1(t), (5)

1This condition is imposed by an experimental constraint (Remark 3) but
similar results would hold if the disturbance is sufficiently slow-varying with
respect to the delay size [6].

with

φ1(t) = eAhd+ eAh∆Bu(t− h)−∆A

t
∫

t−h

eA(t−s)Bu(s)ds.

(6)
The termφ1 can be seen as a perturbation of the delay-free
system

ẋp̂(t) = (A+∆A)xp̂(t) +Bu(t). (7)

This transformation is very close to the Artstein reduction[4]
where the substitution is carried out withz(t) = e−Ahxp̂(t).
Since (7) is not retarded anymore, all the controllers for delay-
free systems can be used to stabilize it aroundxr. In particular,
PID or sliding mode algorithms will be necessary to reject the
perturbationφ1 and makexp̂(t) tend toxr. If xp̂(t) tends to
xr, it is expected thatx(t) tends toxr . However,xp̂ is not
the exact prediction because it does not take into account the
perturbation; so there is an unavoidable error whend 6= 0,
∆A 6= 0 or ∆B 6= 0. The consequence of this error is stated
in the next proposition wherẽx = xp̂ − xr :

Proposition1: Consider system (1) satisfying Assumptions
1-4. Suppose that there exists a predictive controlleru(x̃)
continuous at the origin such thatx̃(t) and its time-derivative
tend to zero. Then, the convergence of the statex(t) to the
referencexr is not ensured.

Proof: The dynamics of̃x is governed by the equation

˙̃x(t) = (A+∆A)x̃(t) + ∆Axr −Bur +Bu(t) + φ1(t).
(8)

Assuming that there exists a controller continuous at the
origin2 such that x̃ converges to zero, then, one has
lim

t→+∞
u(x̃(t)) = u( lim

t→+∞
x̃(t)) = u(x̃ = 0) = u∞. Passing

to the limit in (8), it can be deduced that

Bu∞ = Bur +Φ (9)

with Φ = −∆Axr−eAh∆Bu∞−eAhd+∆A
0
∫

−h

e−AsdsBu∞.

Reminding thatAxr = −Bur, (9) becomes

Bu∞ = −Axr +Φ. (10)

Besides, from (4), it follows that

xr = eAhx∞ +

0
∫

−h

e−AsdsBu∞ (11)

with lim
t→+∞

x(t) = x∞. Combining (10) and (11) and noting

thatA ande−As commute and that
0
∫

−h

Ae−Asds = In − eAh,

one gets

0 = eAh(x∞ − xr) +

0
∫

−h

e−AsdsΦ. (12)

Since−
0
∫

−h

e−AsdsΦ 6= 0 for all ∆A and ∆B, we obtain

x∞ 6= xr .

2If u is not continuous at the origin but one hasx̃(t) = 0 for all t > T ,
then it follows thatu(x̃(t)) = u(x̃ = 0) for all t > T .
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Notice that when the model is perfectly known (Φ = 0)
thenx∞ = xr but when there are some unmodeled dynamics
it is not possible to drivex to xr with the standard prediction.
Therefore, a new state prediction has been proposed:

Definition 1 ([6]): The new prediction is defined by

Xp̂(t) = xp̂(t) + x(t)− xp̂(t− h) (13)

for all t ≥ h, with xp̂ given by (4).
Remark1: Xp̂ can be computed without any knowledge of

d but it requires the knowledge ofh.
Similarly to (5), system (1) can be turned into

Ẋp̂(t) = (A+∆A)Xp̂(t) +Bu(t) + φ2(t) (14)

with

φ2(t) = d+∆Bu(t− h)

−∆A
t
∫

t−h

eA(t−s)B[u(s)− u(s− h)]ds

+eAh∆B[u(t− h)− u(t− 2h)].

(15)

The termφ2 can be seen as a perturbation of the delay-free
system

Ẋp̂(t) = (A+∆A)Xp̂(t) +Bu(t). (16)

Then one has the following result wherẽX = Xp̂ − xr.
Proposition2: Consider system (1) satisfying Assumptions

1-4. Suppose that there exists a predictive controlleru(X̃)
continuous at the origin such that̃X(t) and its time-derivative
tend to zero. Then, the statex(t) converges to the reference
xr.

Proof: The tracking error dynamics̃X is governed by the
equation

˙̃X(t) = (A+∆A)X̃(t) +∆Axr−Bur+Bu(t) + φ2(t).
(17)

Assuming that there exists a controller continuous at the origin
such thatX̃ converges to zero, it can be deduced from (17)
that

(B +∆B)u∞ = Bur −∆Axr − d (18)

where lim
t→+∞

u(t) = u∞ (see the proof of Proposition 1 for

the existence of the limit). Reminding thatAxr = −Bur, (18)
becomes

(B +∆B)u∞ = −(A+∆A)xr − d. (19)

Besides, from (13), it follows that

Xp̂(t) = eAh[x(t) − x(t− h)] + e(A+∆A)hx(t− h)

+
t
∫

t−h

eA(t−s)B[u(s)− u(s− h)]ds

+
0
∫

−h

e−(A+∆A)s[(B +∆B)u(t+ s− h) + d]ds

(20)
so if lim

t→+∞
X̃(t) = 0, one has

xr = e(A+∆A)hx∞ +

0
∫

−h

e−(A+∆A)sds[(B +∆B)u∞ + d]

(21)

where lim
t→+∞

x(t) = x∞. Combining (19) and (21) and noting

that A + ∆A and e−(A+∆A)s commute and that−
0
∫

−h

(A +

∆A)e−(A+∆A)sds = In − e(A+∆A)h leads to

0 = e(A+∆A)h[x∞ − xr ]. (22)

Sincee(A+∆A)h 6= 0, one hasx∞ = xr .
The consequence of this proposition is that if it is possibleto

find a robust controller that makeXp̂ tend toxr thenx will
tend toxr in spite of the external perturbation and the pa-
rameter uncertainties. As a result, the problem of disturbance
rejection and robustness to model uncertainty for input delay
systems is reduced to a problem of disturbance rejection and
robustness to model uncertainty for delay-free systems. The
only constraint that the controller should verify is that itis
able to stabilize reduced system (14) which is possible when
the uncertainties are not too large. Note that this limitation
is related to the system and the controller rather than to the
predictive scheme: even in the delay free case, it may be
impossible to stabilize the system if parametric uncertainties
are too large.

In this section the delay was supposed to be known and
constant. In the next section, an approximated prediction and
a delay estimator are going to be combined to deal with
unknown and time-varying delays.

III. D ELAY ESTIMATOR AND PREDICTION FOR UNKNOWN

AND TIME -VARYING DELAY

In real applications, the delay is often time-varying because
of network congestion for example. In addition, measuring the
delay is quite difficult and usually only an approximation is
available for control design. Consequently, an approximated
prediction based on a delay estimation is presented in this
section.

Consider the system

ẋ(t) = Ax(t) +Bu(t− h(t)) (23)

where the delay satisfies the following assumption
Assumption 5: The delayh(t) is time-varying andun-

known and there existhmin, hmax, δ > 0 such that

hmin ≤ h(t) ≤ hmax (24)

and
|ḣ(t)| ≤ δ. (25)

The exact prediction for time-varying delay is very difficult to
compute since it requires a prediction of the delay [24], [25].
Assuming that the delay is slow-varying, a good approxima-
tion of the prediction is to use the same expression as in the
constant delay case (4):

xp̂(t) = eAĥx(t) +

t
∫

t−ĥ(t)

eA(t−s)Bu(s)ds (26)

but where the delay is substituted by its approximationĥ.
Since the delay usually cannot be measured, it is necessary to
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find a solution to estimate it. The delay is neither a parameter
neither a state so standard techniques of identification and
observation cannot be applied directly. Thereafter, an optimiza-
tion method (similar to the one proposed in [26]) is presented
to estimate a time-varying delay.

First, let us recall that the delay observability conditionis:
Assumption6 ([17]): For all t ≥ 0,

u̇(t) 6= 0. (27)

Condition (27) is natural because if the input is constant, the
delay has no influence on the system so it cannot be observed.
Note that Assumption 6 could appear restrictive because it
means that the input should be strictly monotonic but in
practice the notion of persistency3 given in [27] can be used
to relax this condition. For a technical purpose, Assumption 6
can be substituted as follows

Assumption 7 ([26]): There exist time intervalsI, suffi-
ciently large, where the first derivative ofu is continuous and
bounded: for allt ∈ I,

|u̇(t)| > α (28)

with α > 0.
In addition, it is assumed that

Assumption8: The delayed value of the input is known:
the signalu(t− h(t)) is available.

Remark 2: In practical application, systems are able to
save the input value received at instantt and to send it back
to the controller along with the measurement. The dashed
line on Fig. 5 illustrates this process. The advantage of this
method is to avoid the use of time stamped packets and clock
synchronization.
This delay estimator is based on the minimization of the
criterion

J(ĥ) = ||u(t− ĥ(t)) − u(t− h(t))||2 (29)

on [hmin, hmax]. Defining the dynamics of the delay estima-
tion τh thanks to the gradient descent algorithm4, one has

˙̂
h(t) = −ρh[u(t− ĥ(t))− u(t− h(t))] ∂u(t−ĥ)

∂ĥ

∣

∣

∣

ĥ(t)
(30)

with ρh > 0. Since

∂u(t− ĥ)

∂ĥ
= −∂u(t− ĥ)

∂t
, (31)

it results that

τh(t) = ρh[u(t− ĥ(t))− u(t− h(t))]u̇(t− ĥ(t)). (32)

Besides, to guarantee that̂h will stay in the interval
[hmin, hmax], a projection is used as follows:

˙̂
h = Proj[hmin,hmax]

(τh) (33)

3Roughly speaking, an input is said to be persistent for a system if it
sufficiently rich to excite this system in order to estimate some parameters or
to reconstruct its state.

4See the work of [28] for details about gradient descent algorithms.

with

Proj[hmin,hmax]
(τh)=







0, for ĥ=hmax andτh>0

0, for ĥ=hmin andτh<0
τh else.

(34)

Assumption9: The initial condition of the delay estimator
satisfieŝh(0) ∈ [hmin, hmax].
If Assumption 9 is verified, then [29] guarantees that

∀t ≥ 0, ĥ(t) ∈ [hmin, hmax]. (35)

The following theorem states the convergence property of the
above estimator.

Theorem1: Let I = [t0, t] with t0 > 0 be such thatt −
ĥ(t) ∈ I and t − h(t) ∈ I, if |u̇(s)| > α for all s ∈ I, then
the delay estimation error resulting from estimator (32)-(33)
verifies

||e(t)|| ≤ ||e(t0)||e−ρhα
2(t−t0) +

1

ρhα2
sup
s≥t0

|ḣ(s)| (36)

for all t ∈ I and withe(t) = ĥ(t)− h(t).
Proof: For sake of clarity, the argumentt will be omitted

when no confusion is possible. In [30, Chapter 4], it is
proved that projection (34) retains all the properties thatare
established in the absence of projection that is why it is
considered that

˙̂
h(t) = ρh[u(t− ĥ(t))− u(t− h(t))]u̇(t− ĥ(t)) (37)

in the sequel. Let

V =
1

2
(ĥ− h)2 (38)

be a Lyapunov candidate function. Taking the time derivative
of V along the trajectories of (37) gives

V̇ = ρh(ĥ−h)[u(t− ĥ)−u(t−h)]u̇(t− ĥ)− (ĥ−h)ḣ. (39)

Reminding that from the mean value theorem there existsφt ∈
[min(t− h, t− ĥ),max(t− h, t− ĥ)] such that

u̇(φt) =
u(t− ĥ)− u(t− h)

h− ĥ
, (40)

one gets

V̇ = −ρh(ĥ− h)2u̇(t− ĥ)u̇(φt)− (ĥ− h)ḣ. (41)

Sincet − ĥ andφt are in the intervalI, the termsu̇(t − ĥ)
and u̇(φt) have the same sign. It follows that

V̇ ≤ −ρhα
2(ĥ− h)2 − (ĥ− h)ḣ (42)

and then that

V̇ (t) ≤ −ρhα
2||ĥ− h||2 + ||ĥ− h|| sup

s≤t

|ḣ(s)|. (43)

Applying Lemma 9.4 in [31] leads to (36).
When the delay is constant,̇h = 0, the delay estimation
error converges exponentially to zero. For a noisy signal, the
alternative dynamics can be used

τh(t) =
ρh
T

t
∫

t−T

[u(t−ĥ(t))−u(t−h(t))]T u̇(t−ĥ(t))ds (44)
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DC Motor
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Synchronous Motor
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Encoder

(Measure)

Torque Sensor

(Not used)

Fig. 1. Test Bench

whereT > 0 is the window’s length that can be adjusted with
respect to the noise level: the larger the noise is, the larger T
should be. Note that it is the filtered version of the dynamics
defined in (32). The integral acts as a low pass filter whose
time-constant is tuned by the parameterT . Similarly, if the
input signal is fast varying, (44) can be normalized as follows

τh(t) =
ρh
T

I(t)

ǫ+ |I(t)| (45)

with I(t) =
t
∫

t−T

[u(s − ĥ(s)) − u(s − h(s))]T u̇(s − ĥ(s))ds

andǫ > 0. This normalization allows to make the convergence
speed almost independent from the input dynamics. The dy-
namics of the estimators (44) and (45) are directly derived
from (32) so the convergence can be derived from the proof
of Theorem 1.

IV. EXPERIMENTAL VALIDATION

A. Setup presentation and model

1) Experimental setup: the experimental setup is composed
by a DC motor, a synchronous motor, a torque sensor, an
asynchronous motor and an encoder. They are coupled by
flexible joints. The plant to control is the DC motor and the
synchronous motor has been used to introduce an external
disturbance. The torque sensor and the asynchronous motor are
not used in these experimentations. The control is computed
thanks to a dSPACE board (DS1104). The optical encoder
gives the angular position (1000 pulses per revolution) andthe
speed is derived from a Kalman filter. The dSPACE board uses
the real-time model produced via Matlab/Simulink. The delay
is artificially introduced in the loop by adding a delay blockin
the Simulink model. The armature voltage of the DC motor is
controlled by a PWM signal generated by the dSPACE from
the scaled input voltageu(t) = v(t)

vmax
with v(t) the equivalent

continuous voltage andvmax = 54 V.
2) Model and control design: the transfer function of the

DC motor with a retarded inputu is:

Ω(s)

U(s)
=

K

1 + sτ
e−hs. (46)

with Ω andU the Laplace transforms of the angular velocity
ω and the input voltageu respectively. The steady-state gain
K and the time constantτ are known. The identified values
of K andτ areK = 894 min−1 andτ = 1.10 s. The transfer
function K

1+sτ
is a classical simplified model for DC motors

where the inductance term can be neglected. The delayh is not
internal to the motor model but is supposed to be introduced
by the control input, as for example, by the remote control
over a network. The model is assumed to be linear and then

does not take into account any nonlinear phenomenon such
as dry friction. To apply above results, system (46) has to be
turned into its state-space representation

ω̇ = aω + bu(t− h) (47)

with a = −1/τ and b = K/τ . Considering parameter
uncertainties and external disturbance, system (47) becomes

ω̇ = (a+∆a)ω + (b+∆b)u(t− h) + d (48)

with a and b known nominal terms,∆a and ∆b unknown
constant modeling errors andd a constant unknown external
disturbance.

Remark 3: Only the constant disturbance case is studied
because, for practical reasons, it is not possible to apply
a repeatable time-varying disturbance with the experimental
setup at our disposal. Indeed, the external disturbance was
created by connecting the synchronous motor (Fig. 1) to
deliver a current into a resistance. The disturbance is then
proportional to the value of the resistance but this latter can
not be modified. Furthermore, the exact value of perturbation
d is not known but it is the same value for each experiment.

Remark4: The model of the motor is very accurate so some
additional uncertainties have been intentionally added totest
the new prediction. However, the parameters of the DC motor
cannot be modified easily so the uncertainties are added to the
computation of the standard prediction as follows

ωp̂(t) = e(a+∆a)hω(t) +

t
∫

t−h

e(a+∆a)(t−s)(b+∆b)u(s)ds.

(49)
with ∆a = −0.2a and∆b = 0.2b (±20% error).
The reference trajectory is given byωr so from the equilibrium
equation0 = aωr + bur, one hasur = −a

b
ωr. From the

expression of the standard predictionωp̂ in (49), the new
predictionWp̂ reads as

Wp̂(t) = ωp̂(t) + ω(t)− ωp̂(t− h). (50)

Remark 5: The computation ofωp̂ from (49) requires an
integration. Usually, the integral has to be discretized ina
finite number of points. However, this method can lead to
instability for some systems [32]. Since the DC motor is
open-loop stable, it is possible to compute the integral part
of (49) without discretizing the integral, by using the structure
given in [23]. Note that for open-loop unstable systems, a safe
implementation of the prediction is given in [33].
The advantage of the predictive schemes is that it is possible
to use any controllers available for delay-free systems andjust
"plug" the predictionwp̂ or Wp̂ instead of the normal stateω.
To test and compare the schemes, a PI controller and a Super
Twisting Algorithm5 (STA) will be designed. It is important to
keep in mind that the objective is to compare both predictive
schemes and to illustrate that they can be used with any kind
of robust controllers. Consequently, no comparison between
PI controller and STA will be drawn.

5Some first order sliding mode controllers have already been proposed to
deal with input delay systems but with the standard prediction: see [34], [35]
and [36].
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a) PI controller: the PI controller is defined by

u(t) = ur − kpχ(t)− ki

∫ t

0

χ(s)ds (51)

with χ = ωp̂−ωr for the standard scheme andχ = Wp̂−ωr for
the new predictive scheme. The gainskp andki arekp = 0.001
andki = 0.002.

b) Super Twisting Algorithm (STA): [37] the Super
Twisting controller is a second order sliding mode controller.
Its expression is given below:

u(t) = ur+
1

b

[

−aχ(t)− k1
√

|χ(t)|sign(χ(t)) + ν(t)
]

(52)

with the dynamics ofν governed by the following equation

ν̇ = −k2sign(χ(t)). (53)

with χ = ωp̂ − ωr for the standard scheme andχ = Wp̂ −
ωr for the new predictive scheme. The gains should satisfy
k2 > 0 andk1 >

√
2k2. Here, the following choice has been

madek1 = 0.25 and k2 = 0.025. This controller does not
require the acceleration values and achieves a robust finite-
time convergence.

B. Experimental results

This section is divided into three subsections. First, the
performances of the predictive control are studied with a
known delay. Then, the delay estimator is tested. Finally,
the combination of the predictive schemes and the delay
estimation is illustrated.

1) Predictive control with a known delay: this part is not
focused on controller performances but rather on the difference
between the two predictive schemes. Both controllers (PI and
STA) have been tuned on the delay-free system in order to
reject the perturbation and the parameter uncertainties. The
delay is chosen equal toh = 1 s in order to have the same
order of magnitude for the delay and dynamics of the system
(represented byτ = 1.1 s) which means that the effect of
delay is not negligible. Some parameter uncertainties (given
in Remark 4) affect the computation of the prediction and a
perturbationd is introduced by the synchronous motor between
50 s and80 s. The objective is to makeω track the reference
velocityωr in spite of the delayh, the modeling errors∆a,∆b
and the external disturbanced.

The results for the constant and known delay case are
shown on Fig. 2 and 3. On Fig. 2, PI controller (51) is
considered. As it was required in Propositions 1 and 2, both
predictions are able to track the referenceωr in spite of
the parameter uncertainties and the external disturbanced.
However, only the motor controlled by the new predictive
scheme guarantees the tracking ofω to wr (Fig. 2–Top)
as stated in Proposition 2. On the contrary, in accordance
to Proposition 1, the standard predictive scheme does not
guarantee the asymptotic tracking ofω to ωr (Fig. 2–Bottom).
Roughly speaking, since the model is not accurate the standard
prediction does not achieve to predict correctly the state of
the system whereas the new prediction does (thanks to the
correction term “ω(t)− ωp̂(t− h)” in (50)).
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Fig. 2. Experimental results withPI controller and known and constant delay
h = 1 s, a constant disturbanced between50 s and80 s and∆a = −0.2a
and∆b = 0.2b – Top: PI controller (51) withnew prediction: χ = Wp̂−ωr

– Bottom: PI controller (51) withstandard prediction: χ = ωp̂ − ωr .
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Fig. 3. Experimental results withSTA controller and known and constant
delayh = 1 s, a constant disturbanced between50 s and80 s and∆a =
−0.2a and ∆b = 0.2b – Top: STA controller (52) withnew prediction:
χ = Wp̂ − ωr – Bottom: STA controller (52) withstandard prediction:
χ = ωp̂ − ωr .

Similarly, on Fig. 3, the STA controller guarantees the
convergence of both predictionsωp̂ andWp̂ to the reference
ωr in spite of the disturbance and the uncertainties. However,
only the speedω obtained from the new predictive scheme
is able to track the referenceωr (Fig. 3–Top). The velocityω
from the standard prediction scheme displays constant tracking
errors (Fig. 3–Bottom). This validates once again Propositions
1 and 2.

These experimental results confirm that the new predictive
scheme associated to any kind of robust controllers provides
better tracking performances than the standard predictive
scheme.

2) Delay estimator performance: in this section, the per-
formance of the delay estimator (33)-(45) are illustrated.The
delay estimator parameters areρh = 50, ǫ = 0.1 andT = 200
s. A PI controller is applied to stabilize the system around
a piecewise constant trajectory. On Fig. 4, the velocityω
is not displayed because the objective is to illustrate the
behavior of the delay estimator and not to study the trajectory
tracking. Various phases are distinguishable. First, whenthe
input saturates theṅu = 0 and the delay is unobservable.
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Fig. 4. Experimental results with PI controller and piecewise constant and
unknown delayh(t), ωr is piecewise constant, a constant disturbanced
between60 s and90 s– Top: control input – Bottom: exact delayh(t) and
estimated delaŷh(t).

This explains the two stages betweent = 0 and t = t1 and
betweent = t4 and t = t5. Remark that the delay estimator
does not diverge reaching this singularity; this is a crucial
advantage over the work presented in [17]. Similarly, whenω
has converged toωr, the input becomes constant sou̇ = 0.
Consequently, the delay estimate cannot converged to the exact
value: see for example betweent = t2 andt = t3 and between
t = t8 and t = t9. The delay estimator can only give a good
estimation when the input varies. The origin of input variation
can be the change of the reference such as betweent = t3
and t = t4 and betweent = t9 and t = t10 or it can be
due to a disturbance such as betweent = t7 and t = t8 and
betweent = t11 and t = t12 s. This illustrates that the input
should move sufficiently (to be persistent) in order to estimate
accurately the delay. This constraint is inherent to the input
delay and the quality of the estimation will always depend
on the richness of the input signal. However, it is not very
prejudicial when the objective is to achieve the stability of the
closed loop system (which is possible even with an inexact
delay estimation). Note that the same conclusion holds for a
sufficiently slow time-varying delay as it will be shown in the
next section.

3) Predictive control with the estimated delay: in this
section, the delay estimator (33)-(45) is combined with pre-
dictions (49) and (50) by substituting the unknown real delay
h by its estimation̂h. The whole scheme is shown on Fig. 5.
Note that the convergence proof of the prediction and the delay
estimation have been given separately in Sections II and III.
Intuitively, if the delay estimation is not accurate, the system
is going to get away from the equilibrium point so the control
is going to vary. Thus, Assumption 7 will be verified and the
delay estimator will be able to get closer to the exact value and
so on until the delay is sufficiently accurate to guarantee the
convergence of the system. No theoretical proof of the stability
of the closed-loop system is available since the result strongly
depends on the choice of the controller. This issue will be
considered in future developments. However, the efficiencyof
the combination of both techniques is illustrated thereafter by
experimental results.

The results are shown on Fig. 6 and 7 for different delays
h(t). Note that the same parameter uncertainties and external
disturbance as in Section IV-B1 are applied.

Predictor

Controller h(t) System

xr
u(t) u(t− h(t))

u(t− h(t))

y(t)

u(t)

y(t)

Delay

Estimator
ĥ(t)

Fig. 5. Closed-loop scheme with the combination of the delayestimator and
the predictor (see Remark 2 for the dashed line).
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Fig. 6. Experimental results with PI controller andpiecewise constantand
unknown delayh(t), ωr = 700+100 sin(0.3t) RPM, a constant disturbance
d between50 s and80 s and∆a = −0.2a and∆b = 0.2b. The speedω1

and the delay estimatêh1 are obtained from thenew predictive scheme
whereasω2 and ĥ2 are obtained from thestandard predictive scheme–
Top: velocity trajectories – Middle: tracking errors – Bottom: exact delay
h(t) and estimated delays.

On Fig. 6, one can see that the piecewise constant delay is
correctly estimated for both predictive schemes. It can be noted
that the delay estimation is not destabilized by the disturbance.
As in the above section, only the new predictive scheme allows
an effective tracking of the velocity reference in spite of the
uncertainties and the external disturbance:ω1 correctly tracks
ωr whereasω2 displays a large tracking error.

Fig. 7 shows that when the delay is time-varying, the
estimation error converges in a ball around the exact delay
as mentioned in Theorem 1. The small oscillations that can
be observed on the delay estimates comes from the periodic
cancellation of the input derivative. Indeed, whenu̇ gets closer
to zero, the dynamics of the estimator tends to zero. However,
the estimation is sufficiently accurate to guarantee an efficient
tracking with the new predictive scheme. Like in the previous
cases, the standard predictive scheme exhibits a large tracking
error due to modeling errors∆a,∆b and external disturbance
d.

These two plots show that the new predictive scheme com-
bined with the delay estimator (33)-(45) provide an efficient
trajectory tracking in presence of time-varying and unknown
delay and in spite of parameter uncertainties and external
disturbance.

V. CONCLUSION

In this work, a recent predictive scheme is associated to
a delay estimator. This combination is an efficient way to
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Fig. 7. Experimental results with PI controller andtime-varying and unknown
delayh(t), ωr = 700+100 sin(0.3t) RPM, a constant disturbanced between
50 s and80 s and∆a = −0.2a and ∆b = 0.2b. The speedω1 and the
delay estimation̂h1 are obtained from thenew predictive schemewhereas
ω2 andĥ2 are obtained from thestandard predictive scheme– Top: velocity
trajectories – Middle: tracking errors – Bottom: exact delay h(t) and estimated
delays.

fix the standard drawbacks of predictive control; namely, the
knowledge of the delay value and the sensitivity to parameter
uncertainties and external disturbances. An extensive compar-
ison with standard predictive techniques is made throughout
the paper. The efficiency of the proposed scheme is validated
experimentally on a DC motor. In some future works, it would
be interesting to proof theoretically the convergence of the
closed-loop system when the delay estimation is used in the
prediction.
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