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REDUCTIVE GROUPS, THE LOOP GRASSMANNIAN, AND

THE SPRINGER RESOLUTION

PRAMOD N. ACHAR AND SIMON RICHE

ABSTRACT. In this paper we prove equivalences of categories relating the de-
rived category of a block of the category of representations of a connected
reductive algebraic group over an algebraically closed field of characteristic p
bigger than the Coxeter number and a derived category of equivariant coherent
sheaves on the Springer resolution (or a parabolic counterpart). In the case of
the principal block, combined with previous results, this provides a modular
version of celebrated constructions due to Arkhipov—Bezrukavnikov—Ginzburg
for Lusztig’s quantum groups at a root of unity. As an application, we prove a
“graded version” of a conjecture of Finkelberg—Mirkovi¢ describing the princi-
pal block in terms of mixed perverse sheaves on the dual affine Grassmannian,
and deduce a new proof of Lusztig’s conjecture in large characteristic.

CONTENTS

1. Introduction

Part 1. Preliminary results
2. Dg-algebras and dg-modules
3. Reductive algebraic groups and Steinberg modules
4. Koszul duality

Part 2. Formality theorems
5. Formality for Pr;-modules
6. P j-equivariant formality
7. Compatibility with induction

Part 3. Induction theorems
8. Translation functors
9. Cotangent bundles of partial flag varieties
10. The induction theorem
11. The graded Finkelberg—Mirkovié¢ conjecture

Index of notation
References

11
11
21
28

34
34
41
49

98
58
(0]
92
97

109
110

P.A. was supported by NSA Grant No. H98230-15-1-0175 and NSF Grant No. DMS-1500890.
S.R. was partially supported by ANR Grant No. ANR-13-BS01-0001-01. This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No 677147).
1



2 PRAMOD N. ACHAR AND SIMON RICHE

1. INTRODUCTION

1.1. Main players. Let G be a connected reductive algebraic group over an al-
gebraically closed field k of characteristic ¢, and let T' C B C G be a maximal
torus and a Borel subgroup. Assume that ¢ > h, where h is the Coxeter number of
G, and that the derived subgroup of G is simply connected. Under these assump-
tions, most of the combinatorial data for the category Rep’(G) of finite-dimensional
algebraic G-modules (in particular, characters of simple and indecomposable tilt-
ing modules) can be deduced from the corresponding data in the “principal block”
Repg(G), i.e. the Serre subcategory generated by the simple modules whose highest
weight has the form w(p) — p+ ¢\ for A € X*(T) and w € W = Ng(T')/T. (Here,
as usual p is the half sum of positive roots.)

In the hope of computing these data, it has long been desired to have a “geo-
metric model” for this category, in the spirit of what is known for representations

of complex semisimple Lie algebras [10, 21], affine Kac-Moody Lie algebras [38],
quantum groups at a root of unity [9], and reductive Lie algebras in positive char-
acteristic [17, 16, 15]. The main goal of the present paper is to provide such a
model.

More precisely, let G denote the Frobenius twist of G, and let G be the complex
connected reductive group whose root datum is dual to that of G. (Thus, the
coweight lattice for GV is identified with £X*(T).) This paper is concerned with
the categories and functors in the following diagram:

graded Finkelberg—Mirkovié conjecture

m

(1.1) D (Gr,k) —=—= DCoh®*®»(N) —— Dg,;,(B) ——= D"Rep, (G).
ndp

Here, Gr is the affine Grassmannian for GV, Tw € GV(C[[z]) is an Iwahori sub-
group, and DE’;&’,‘)(Gr,k) is the mixed derived category of k-sheaves on Gr which
are constructible with respect to the stratification by Iw-orbits (in the sense of [4]).
Next, N is the Springer resolution for @, with its natural action of G x G,, and
Dgtcin(B) is the derived category of complexes of B-modules whose cohomology is
trivial on the first Frobenius kernel B; C B.

The functor P in (1.1) is an equivalence of triangulated categories that was
established by the first author and L. Rider (see [0]) and by C. Mautner and the
second author (see [44]) independently. The other two functors in this diagram are
the topics of two of the main results in this paper. The formality theorem asserts
that DPCoh®*®=(A) is a graded version of D8, (B), and the induction theorem
asserts that RInd$ : DY, (B) — DPRep,(G) is an equivalence of categories. In
the last section of the paper, we will study the composition Q := RIndg oFoP,
and we will prove a graded analogue of the Finkelberg—Mirkovié¢ conjecture [20],
describing Repy(G) in terms of Perv’(’[fif) (Gr, k).

Statements analogous to those above were established by Arkhipov—Bezrukav-
nikov—Ginzburg [9] for quantum groups at a root of unity. Their work has significant
consequences for the representation theory of quantum groups: they lead to alter-
native proofs of Lusztig’s character formula for simple modules (see [9, §1.2]) and
of Soergel’s character formula for tilting modules (using [60]). We believe that



REDUCTIVE GROUPS, LOOP GRASSMANNIAN, SPRINGER RESOLUTION 3

the results of the present paper will likewise have consequences for the representa-
tion theory of G. In particular, we expect to use them to establish the character
formulas for simple and tilting G-modules conjectured by the second author and
G. Williamson in [50]. See §1.7 below for details.

1.2. Statements and strategy. Let us now state our results more precisely.

The diagram (1.1) is inspired by the ideas in [9], but the proofs in this paper are
quite different from those in [9]. In particular, a central theme of this paper is the
importance of “wall-crossing functors.” Most of the categories and functors in (1.1)
have analogues associated to parabolic subgroups. When we construct the various
functors in (1.1), we will simultaneously construct their parabolic analogues, and
we will construct commutative diagrams that relate the Borel version to a parabolic
version (or two parabolic versions to each other). Wall-crossing functors play an
essential role in the argument, even if one is interested only in the Borel versions of
the theorems, because they let us reduce difficult calculations (in, say, D§,;,(B))
to easier cases.

At several points, we will need the notion of a degrading functor. Let C and
C’ be triangulated categories, and suppose C is equipped with an autoequivalence
{1} : ¢ = C. A triangulated functor ¢ : C — C’ is called a degrading functor
(with respect to {1}) if (i) its image generates C’' as a triangulated category, and
(ii) there is a natural isomorphism ¢ = ¢ o {1} that induces, for any X,Y € C, an
isomorphism

P Home (X, Y {n}) = Home: (9 X, ¢Y).
neEZ

Let S be the set of simple reflections in the Weyl group W of (G,T). For any
subset I C S, we let P C G be the corresponding standard parabolic subgroup,
Py be its Frobenius twist, and n; be the Lie algebra of the unipotent radical of Py
The Frobenius morphism of P; will be denoted Fr, and for V' € Rep(PI) we will
denote by Fr* (V') the Pr-module obtained from V' by composition with Fr. We will
use similar notation for other groups below.

Let D& .. .(Pr) be the full triangulated subcategory of the derived category
DbRepf(PI) of finite-dimensional algebraic P;-modules generated by the objects
of the form St; ® Fr*(V) for V in Rep’(P;). Here, St; is a fixed Steinberg module
for Py, i.e., the module Ind%! (£ —1)s;), where ¢; is a fixed character of T such that
for any simple coroot oV, we have

(¥ o) 1 if oV corresponds to a reflection s, € I,
a ,qr) = . .
’ 0 if o corresponds to a reflection s, ¢ I.

Finally, let N, 7= G xPr ny;. For a G x G -equivariant coherent sheaf F on N, I,
let F(1) be the sheaf obtained by twisting the Gy,-action. The following statement
combines parts of Theorems 6.1, 7.2, and 7.4.

Theorem 1.1 (Formality theorem). For any subset I C S, there is a functor
Fy : DPCoh“*Cm (N}) — D8y oin (P1)

that is a degrading functor with respect to (1)[1] and such that for any V € Repf(G‘),
there is a natural isomorphism

FI(FRV)2F(F)QF*(V).
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If JCICS (sothat Py C Pr), there is a commutative diagram

Fy

DbCOhGXGm (NJ) Dgtein(PJ)
\
(1.2) Hui Rind! ((—$®k(<ﬁcz))
DbCOhGXG7m (ﬁ]) dl Dgtein(PI)'

In this commutative diagram, II;; is a functor that is defined using the inter-
mediate space N, g1 = G xPrq 7 and the correspondence

NJ — /\7],1 — /\71;

see §9.2 for details.

Next, let Rep;(G) be the Serre subcategory of Repf(G) generated by the simple
modules whose highest weight has the form w(p—¢y) —p+£€A with A € X*(T). This
subcategory is a direct summand of Repf(G), and it “has singularity I” in the sense
that the stabilizer of —¢; for the dot-action of the affine Weyl group is the parabolic
subgroup Wy of W generated by I. In particular, when I = &, Repy(G) is a sum
of regular blocks of Rep’(G). If J € I C S, then we have a natural translation
functor T : Rep;(G) — Rep;(G).

The following statement combines parts of Lemma 8.14 (see also Proposition 7.5)
and Theorem 10.7.

Theorem 1.2 (Induction theorem). For any subset I C S, the functor
(1.3) RInd§, : D8 (Pr) — DPRep;(G)

is an equivalence of categories. Moreover, for any V € Repf(G'), there is a natural
isomorphism

RInd$ (M @ Fr*(V)) = RInd$, (M) @ Fr*(V).
If J C I CS, there is a commutative diagram

R Indgj

Dgyein(Py) DPRep,;(G)
\
(1.4) RIndp! ((-)@k(ss—<r)) J{Tf
N Y RIndg, b
DStein(PI) —D RepI(G)

Remark 1.3. T. Hodge, P. Karuppuchamy and L. Scott have obtained a different
proof that (1.3) is an equivalence in the case I = @, see [31]. Their proof is closer to
the proof of the quantum case in [9]. (It does not directly apply to other parabolic
subgroups, as far as we understand.)

Combining Theorems 1.1 and 1.2 with the main results of [6, 44], one sees im-
mediately that the functor Q := RIndg o F o P is a degrading functor. We will
discuss further properties of Q in §1.5.

1.3. Koszul duality and the formality theorem. We now discuss in more detail
the ingredients in the proof of Theorem 1.1. Given a subset I C S, consider the

exterior algebra
/\I = /\. fl[,
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Fy
DbCOhGXGm(N ) izl (/\7) v DStem(P])

§5:56

Ty, §450 §7 RInd}%jMI‘l ((H)@k(ss—s1)
v
b1

DPCoh®*Cm (A 1) & (A1) ———— D i (PrMi 1)

P
§4;89 87 RIndPJJMI h
DPCohCCm (N7) ng (Ar) %) Dgyein(Pr)
\/
Fr

FIGURE 1. Setup for the proof of Theorem 1.1

regarded as a dg-algebra with trivial differential and with n; placed in degree —1.
For any subset J C I, the group P; acts on A;. Let Djf (A1) be the derived
J

category of Pj-equivariant A;-dg-modules with finitely generated cohomology.

The proof of Theorem 1.1 involves breaking up the commutative diagram into
subdiagrams as shown in Figure 1. In the middle row, P;Mj; is the (scheme-
theoretic) preimage of P; under the Frobenius morphism Fr : P; — P;. (The
notation will be explained in §6.1.)

The left half of Figure 1 is essentially a study of Koszul duality. Recall that
Coh*C= (A7) is equivalent to Coh?”*Cm (7). The latter is, in turn, identified with
the category of finitely-generated graded Pj-equivariant modules over the symmet-
ric algebra Sy := Sym(n}). The functor s and its variants are degrading functors
that are close to the well-known Koszul duality relating Sy to Ay, see [12, 30]. The
appropriate theory, including the commutativity of the squares in the left half of
the figure, is developed in Sections 4 and 9, building on [30, 46].

The right half of Figure 1 involves the study of a certain dg-algebra Rn;. This
algebra is equipped with a homomorphism o7 : Rny — Aj, as well as a quasi-
isomorphism 7; to the distribution algebra of the first Frobenius kernel Ny ; of Nj.
We can therefore consider the composition

(1.5) D' (A;) <5 D(Rn;) “> D"Rep’(Ny.1).

We will build the right half of the figure in three steps. First, in Section 5, we use
the functors in (1.5) to construct an equivalence of categories

(16) Pr - ng</\1> l> Dgtein(PLl)?

where the right-hand is the subcategory of the bounded derived category of finite-
dimensional representations of the Frobenius kernel P;; of P; generated by St;.
Next, in Section 6, we study the action of P; or Py on the various algebras in (1.5) in
order to construct ¥; and show that it is an equivalence. Finally, the commutativity
of the two squares in the right half of Figure 1 is shown in Section 7.
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Fg

o

- - RInd§
DPCoh% S () > D¥(Ag) —%> DB,y (B) "2 D"Rep,, (@)

Hg’1<’n1>[n1]T iHZ,I 89 @g'IT leﬂ,l §8 TI@T lTé

. . » RInd§
DPCoh®®n (Nj) — D% (Ar) == DYy, (Pr) — D"Rep; (G).

\/

Fr
FIGURE 2. Setup for the proof of Theorem 1.2

Remark 1.4. Let us briefly explain the origin of the name “formality theorem” for
Theorem 1.1 (which we took from [9]). For simplicity we restrict to the case I = @.
In this case, a well-known result due to Friedlander—Parshall [27] asserts that there
exists a graded algebra isomorphism

(1.7) Ext, (k,k) = Sym(ng),

where in the right-hand side n} is placed in degree 2. On the other hand, it follows
from abstract nonsense that the category Dg,.;,(B1) can be described in terms of
dg-modules over the dg-algebra R Homp, (k,k). In view of (1.7), if we could prove
that this dg-algebra is formal (i.e. quasi-isomorphic to its cohomology), then this
would prove that D&, (B1) can be described in terms of the dg-algebra Sym(n})
(with trivial differential). Combining this with some form of Koszul duality would
provide an approach to proving equivalence (1.6). In practice, however this is not
the way we construct this equivalence, and in fact we will not prove the formality
of any dg-algebra.

1.4. Exotic sheaves and the induction theorem. We saw in §1.3 that in the
proof of Theorem 1.1, the proof that F7 is a degrading functor is quite separate from
the proof that (1.2) commutes. In contrast, for Theorem 1.2, the commutativity
of (1.4) must be established first. This plays an essential role in the proof that
RInng : D8,oin(Pr) — DPRep;(G) is an equivalence.

The commutativity of (1.4) is established in Section 8, as part of a larger effort
concerned with the diagram in Figure 2. This figure also depicts the left adjoints
of HgJ, @gJ, and Té

The main result of Section 8 asserts, in addition to the commutativity of (1.4),
that when #I = 1,! the middle and rightmost parts of Figure 2 form a commutative
diagram of adjoint pairs. This means that there is a pair of natural isomorphisms
that intertwine the units (or the counits) for the adjoint pairs (091,04 ;) and
(TP, TL). Similarly, we will show in Section 9 that the leftmost square in that
figure is a commutative diagram of adjoint pairs.

Let us now return to the problem of showing that RInng : D8 (Pr) —
DPRep;(G) is an equivalence. It is easy to see that the essential image of this
functor generates DPRep;(G) as a triangulated category, so it is enough to show
that it is fully faithful. If we had a rich enough supply of objects in DtS)tein<PI) whose

A posteriori, this assumption can be removed; see Remark 8.17.



REDUCTIVE GROUPS, LOOP GRASSMANNIAN, SPRINGER RESOLUTION 7

Ext-groups and images under RIndIGDI were understood, we could try to prove full
faithfulness by direct calculation. Unfortunately, it is unclear (at least to us) how
to produce such objects in D, ;. (Pr).”

Figure 2 suggests looking instead at DPCoh&*Cm (/\71) Note that, since we al-
ready know that F7 is a degrading functor, RIndIGgI is fully-faithful if and only if
RInng o Fy is a degrading functor. Moreover, in the special case I = &, there is a

rich supply of objects with favorable Ext-properties in DPCoh®*®m (J\N/ »): namely,
the standard and costandard objects in the heart of the exotic t-structure, which
has been introduced by Bezrukavnikov [14] and studied further in [6, 43]. Using
the special case I = {s} in Figure 2, we prove in Section 10 that RIndg o Fy
takes standard (resp. costandard) exotic sheaves to Weyl (resp. dual Weyl) mod-
ules. That gets us most of the way to finishing the proof of Theorem 1.2 (in the
case I = &).

For general I, we introduce some “parabolic analogues” of the standard and
costandard exotic sheaves, and study how they behave under the functors Iz r
and 1191, Using the case I = @, in this case also we prove that the functor
RInng o Fy takes standard (resp. costandard) exotic sheaves to Weyl (resp. dual
Weyl) modules, and we finish the proof as before. (These parabolic exotic sheaves
might be of independent interest. In particular they allow one to define an “exotic

t-structure” on DPCoh®*CGm (N7), which might have other applications. )

1.5. The graded Finkelberg—Mirkovié conjecture. Recall that GV is the com-
plex connected reductive group which is Langlands-dual to G, and that Gr =
GV(C((2)))/GY (C[2]) is its affine Grassmannian. Let Pervy,y,(Gr, k) be the abelian
category of GV (C[[z])-equivariant k-perverse sheaves on Gr. This category admits
a natural convolution product *, and the celebrated geometric Satake equivalence,
due in this setting to Mirkovié—Vilonen [47], asserts that there exists an equivalence
of monoidal categories

S : (Pervepn (Cr, k), %) = (Rep'(G), ®).

The category Repf(G') embeds naturally in the category Repy(G) via the func-
tor V. +— Fr*(V). On the other hand, Pervg,,(Gr,k) embeds in the category
Perv(w)(Gr, k) of k-perverse sheaves on Gr which are constructible with respect
to the Iw-orbits (where Iw is an Iwahori subgroup, as in §1.1). The Finkelberg—
Mirkovié conjecture [20] predicts that the equivalence S can be “extended” to an
equivalence of highest-weight categories

Q : Perv(1y)(Gr, k) = Repy (G)

which satisfies Q(F xG) = Q(F) @ Fr*(S(G)) for any F in Perv(1y)(Gr, k) and G in
Pervepn (Gr, k). (Here, % also denotes the natural convolution action of Pervg,, (Gr, k)
on Perv(y)(Gr, k).)

As an application of our constructions, we prove a “graded version” of this con-
jecture. Namely, consider the abelian category Perv?f‘i,f)((}r, k) of mixed k-perverse
sheaves on Gr which are constructible with respect to the Iw-orbits, in the sense
of [4], and let (1) be its “Tate twist” autoequivalence. This category is a graded

highest weight category in a natural way. Moreover there exists a natural action of

2In the case I = @, the proof in [9] essentially proceeds in this way, but it turns out that the
“direct calculation” is not so easy.
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Pervgpn (Gr, k) on DZ’I’Q‘)(Gr, k) (induced by convolution), see §11.2, and we prove in

Proposition 11.6 that this action restricts to an action on Perv?fif)((}r, k).

Theorem 1.5 (Graded Finkelberg—Mirkovié¢ conjecture). There is an exact functor
Q: Perv’(“fij‘)((}r, k) — Repy(G)
with the following properties:

(1) the functor Q sends standard, costandard, simple, and indecomposable tilt-
ing objects in Perv?féff)(Gr, k) to standard, costandard, simple, and indecom-
posable tilting objects in Repy(G) respectively;

(2) there is an isomorphism e : Qo (1) = Q that induces, for any F,G in
Pervity) (Gr, k) and any k € Z, an isomorphism

@ EthlgervI(‘I‘ij‘>(Gr,k) (]:7 g<n>) l> EXtIlzep,a (&) (Q(]:)a Q(g))7
neZ

(3) there exists a functorial isomorphism
Q(F xG) = Q(F) ® Fr*(5(9))
for any F in Perv‘(ﬁ‘g‘)((}r,k) and G in Pervgpn (Gr, k).

As in (1.1), we define Q to be the composition RInd$ o Fi o P. Then parts (2)
and (3) follow quite easily from Theorems 1.1 and 1.2, combined with the main
result of [0, 43]. (Part (2) is essentially a restatement of the fact that Q is a
degrading functor with respect to the Tate twist.) The papers [6, 43] also tell us
how P interacts with exotic sheaves on . Combining this with the study of exotic
sheaves in the proof of Theorem 1.2 leads to a proof of t-exactness for Q, and of
part (1) of the theorem above.

Remark 1.6. The natural analogue of the Finkelberg—-Mirkovi¢ conjecture in the
setting of quantum groups at a root of unity is proved by Arkhipov-Bezrukavnikov—
Ginzburg in [9], using their versions of Theorems 1.1, 1.2, and of the results of [6, 43].
However, since they do not consider the role of the exotic t-structure in this picture,
they have to work harder to prove the exactness of their version of our functor Q;
see [9, §9.10].

1.6. Relationship with the Bezrukavnikov—Mirkovié—Rumynin theory of
localization in positive characteristic. The papers [17, 16, 15] build a “local-
ization theory” for modules over the enveloping algebra U(g) of the Lie algebra g of
G; in other words they provide a “geometric model” for the representation theory
of this algebra. Building on these results, in [19] the second author has obtained a
geometric model for the representation theory of the restricted enveloping algebra
g of g, i.e. the quotient of U(g) by the trivial character of the Frobenius center (or
equivalently the distribution algebra of the Frobenius kernel G1). In this subsec-
tion we briefly explain the (philosophical) relation between our results and those
of [17, 16, 15,

Let as above I C S be a subset, and consider the category g—mod§g of finite-
dimensional g-modules with generalized Harish-Chandra character —¢;. (This cat-
egory would be denoted ModfiI((Z/lg)o) in the conventions of [19, §3.2].) Consider
also the Grothendieck resolution

9 =G x 1 pr,
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where p; is the Lie algebra of P;. Then by [19, Theorem 3.4.14] there exists an
equivalence of triangulated categories

(1.8) DGCoh(§; Ny /5, G/Pr) = D*(g-mod ),

where the left-hand side is the (derived) category of coherent dg-sheaves on the
dg-scheme obtained as the derived intersection of g; and the zero-section G / Prin
g x G/PI, see [19, §1.8] for details on this construction.

A construction similar to that of the functor »; in §1.3 (involving Koszul duality)
provides a functor

%1+ D*Coh® (N7) — DGCoh (8; Ny ¢z p, G/Pr)

with properties similar to those of »7, see [19]. Composing this functor with (1.8)
we obtain a functor
(1.9) DPCoh®(N;) — D (g-mod§)

which is a degrading functor.
Now we have a natural forgetful functor

DPCoh®*n (N;) — DPCoh® (A7),
and differentiation of the G-action provides a natural functor
£
DPRep,;(G) — D" (g-mod?).
It is reasonable to expect that the following diagram is commutative:

RInd§ oF;

DPCoh®*Cm (A7) DPRep, (G)
(1.10) l l
b G [ 7 (1.9) b fe
DPCoh™™ (N7) DP(g-mod}?).

This would explain the relationship between the results of the present paper and
localization theory.

We will not attempt to prove the commutativity of (1.10). One difficulty in trying
to prove such a relationship is that the construction of the equivalence (1.8) depends
on the choice of a “splitting bundle” for some Azumaya algebra; in order to prove
some compatibility result we would most likely have in particular to understand
this choice better, and see how one can choose the bundle in a more canonical way.

1.7. Application: a character formula for tilting modules. The results of
this paper open the way to geometric approaches to various deep problems in the
representation theory of G, either via constructible sheaves or via coherent sheaves.

First, in [50], the second author and G. Williamson conjecture that the mul-
tiplicities of standard/costandard modules in indecomposable tilting modules in
Repy(G) can be expressed in terms of the values at 1 of some ¢-Kazhdan-Lusztig
polynomials (in the sense of [35]), which compute the dimensions of the stalks of
some indecomposable parity complexes on the affine flag variety F1 of GV. This
conjecture is proved in the case G = GL, (k) in [50], but the methods used in this
proof do not make sense for a general reductive group.

Note that, as was noticed by Andersen, from the characters of indecomposable
tilting G-modules one can deduce (at least if £ > 2h — 2) character formulas for
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simple G-modules, see [50, §1.8]; hence the conjectural tilting character formula
provides a replacement for Lusztig’s conjecture [41], which was recently shown to
be false for some values of ¢, see [57].

Theorem 1.5 is a first step towards a proof of this character formula valid for
any reductive group. Namely, this result reduces the computation of multiplicities
of tilting objects in Repy(G) to the similar problem in Pervﬁ’g‘)(Gr,k). In a work
in progress with S. Makisumi and G. Williamson we develop a modular analogue of
the (geometric) Koszul duality for Kac-Moody groups of Bezrukavnikov—Yun [18],
and deduce in particular an equivalence of graded additive categories between the
category of tilting objects in Perv‘(}]if) (Gr, k) and the category of Iwahori-Whittaker
parity complexes on Fl as considered in [50, §11.7], see [3]. Since the combinatorics
of the latter category is known to be governed by the appropriate /-Kazhdan—
Lusztig polynomials (see [50, Theorem 11.13]), this implies the conjectural character
formula for tilting G-modules of [50].

In a different direction, in a joint work with W. Hardesty [2] we use the relation
between the category Repy(G) and exotic coherent sheaves on Ny to obtain first
results towards a proof of a conjecture of Humphreys [32] on support varieties of
tilting G-modules.

We conclude this paper with a direct application of our results to characters of
simple G-modules, independent of [3]. In particular, we give a new proof of Lusztig’s
conjecture [11] for ¢ large (with no explicit bound), as already proved by Andersen—
Jantzen—Soergel [8] (building on work of Kazhdan—Lusztig [40], Lusztig [42] and
Kashiwara—Tanisaki [38]), Fiebig [25] and Bezrukavnikov—Mirkovié [15] (as part of
a broader picture). But we obtain slightly more than what was known until now:

(1) a geometric character formula valid for all simple modules in the princi-
pal block and in all characteristics ¢ > h (in terms of mixed intersection
cohomology complexes on Gr), see Proposition 11.9;

(2) and an equivalence between the validity of Lusztig’s conjecture and parity-
vanishing properties of some (ordinary) intersection cohomology complexes
on Gr, see Theorem 11.11.

1.8. Acknowledgments. This paper began as a joint project with Ivan Mirkovié¢.
We thank him for his encouragement, and inspiring discussions at early stages
of our work. As should be clear already, this paper owes much to the ideas of
Bezrukavnikov and his collaborators, in particular those of [9]. We also thank
Geordie Williamson for stimulating discussions. Finally, we thank Terrell Hodge,
Paramasamy Karuppuchamy and Leonard Scott for keeping us informed of their
progress on [31].

1.9. Contents. This paper is divided into 3 parts, which each begin with an
overview of their content. Part 1 is devoted to preliminaries. Part 2 is concerned
with the proof of the formality theorem. Finally, Part 3 is devoted to the proof
of the induction theorem and of the graded analogue of the Finkelberg—Mirkovié¢
conjecture.
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Part 1. Preliminary results

Overview. Section 2 contains background material on (module categories for)
dg-algebras equipped with actions of algebraic groups. In Section 3, we fix notation
and conventions for reductive groups and related objects. We also prove a number
of lemmas on the behavior of Steinberg modules for Levi subgroups under various
functors. These modules play an important role in Part 2. Finally, in Section 4,
we study some version of the familiar Koszul duality for symmetric and exterior
algebras on a vector space equipped with a group action. In particular, we show
that Koszul duality is compatible (in a suitable sense) with a change of vector space.

2. DG-ALGEBRAS AND DG-MODULES

Throughout this section, we let k be a field.

2.1. Dg-modules. If A is a ring, we denote by A-mod the abelian category of

A-modules. If A is a dg-algebra, we denote by A-dgmod the category of (left) A-

dg-modules, and by D(A) the corresponding derived category. If the cohomology

algebra H*(A) is left Noetherian, we denote by D (A) C D(A) the full subcategory

of differential graded modules whose cohomology is finitely generated over H*(A).
Let f : A — B be a homomorphism of dg-algebras. We denote by

f* : B-dgmod — A-dgmod

the functor that regards a B-module as an A-module via f. This functor is exact,
and we denote similarly the induced functor from D(B) to D(A).
The functor f* has a right adjoint

f+« : A-dgmod — B-dgmod given by f«(M) = Homj (B, M),

where the B-module structure is induced by right multiplication of B on itself. (The
functor f* also has a left adjoint M — B ®a M, but we will not use any special
notation for this functor.) It is well known that, if A is concentrated in nonpositive
degrees (i.e. if A = 0 for i > 0), then the category A-dgmod has enough K-injective
objects (see [53, Proposition 3.11] for the simpler case of modules over a ring, or [19,
Theorem 1.3.6] for the more complicated case of sheaves of dg-modules); therefore
the functor f. admits a right derived functor

Rf.: D(A) — D(B).

Arguments similar to those in [53] or [19] show that Rf, is right adjoint to f*.
Also, if f : A — B and g : B — C are morphisms of dg-algebras concentrated in
nonpositive degrees, then we have a canonical isomorphism

[rogt=(g0f)"
By adjunction we deduce an isomorphism

(2.1) R(go f)« = Rg. o Rf,.

2.2. Normal subalgebras and quotients. Let A be a k-dg-algebra concentrated
in nonpositive degrees and endowed with a counit € : A — k (assumed to be a
morphism of complexes), and let Ay = ker(e) be the augmentation ideal. Let
a C A be a normal dg-subalgebra, i.e., a dg-subalgebra with the property that
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A-(anAy)=(anNAL)-A Let AJa:=A/A-(anA,). For any A-dg-module M,
we consider the complex
Hom] (k, M),

where k is considered as an a-dg-module via the restriction of €. This complex
identifies with the sub-A-dg-module of M consisting of elements m € M satisfying
a-m = e(a)m for all @ € a. In particular, it has a natural structure of A J a-dg-
module. The assignment M +— Hom](k, M) defines a functor from the category
of A-dg-modules to the category of A / a-dg-modules; we denote its right derived
functor by

RHom?(k,—) : D(A) — D(A / a).

(This functor can be computed by means of K-injective resolutions.)
If p: A — A/ ais the natural surjection, then we have a natural isomorphism
of functors p, = Hom] (k, —); we deduce a canonical isomorphism

(2.2) Rp. = RHom] (k, —).

The following lemma justifies our choice of a special notation for this functor. (In
practice we will always work under the assumption of this lemma; otherwise the
notation might be misleading.)

Lemma 2.1. Assume that A is K-flat as a right a-dg-module, and consider the
embedding i : a — A. For any M in D(A), the image in D(k) of the A J a-dg-
module RHom] (k, M) coincides with the complex R Hom] (k,i*M).

Proof. The claim follows from the fact that, under our assumption, if M is a K-
injective A-dg-module then i*M is also K-injective (as an a-dg-module), since the
functor A ®, (—) sends acyclic dg-modules to acyclic dg-modules. O

One can restate the fact that the functor p* is left adjoint to Rp,. by saying that
there exists a functorial isomorphism

(2.3) Hom pa /a) (M, RHom} (k, N)) = Hompa) (M, N)

for any M in D(A // a) and any N in D(A) (where we omit the functor p* in the
right-hand side).

2.3. Semidirect products. Let D be a Hopf algebra over k, and let A be a k-dg-
algebra that is also a D-module in such a way that

e the differential of A commutes with the D-action;

e d-1=¢(d)-1 for any d € D;

e the multiplication map A ® A — A is a homomorphism of D-modules.
One can then form the semidirect product or crossed product A x D, namely the
dg-algebra which coincides with A ® D as a complex of k-vector spaces (where D
is considered as a complex concentrated in degree 0, with trivial differential), and
with multiplication given by

(axd)-(bxe)=>_a(dy - b) xdaye.

Here we are using Sweedler’s notation, with A(d) = ) d(1) ® d(a).
Consider now two Hopf algebras D and E over k and a k-linear morphism of
Hopf algebras ¢ : D — E. Let A and B be k-dg-algebras endowed with actions of
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E as above, and f : A — B be a k-linear morphism of dg-algebras which commutes
with the E-actions. Then one can consider the commutative square

id
AxD— _gyuD
idp«pl iidBXgO
fxide

AXxE———=BxE
of dg-algebras and morphisms of dg-algebras.

Lemma 2.2. Consider the setting described above, and assume that A and B are
concentrated in nonpositive degrees. Then there exists an isomorphism of functors

(f X idE)* o R(idB X (p)* = R(idA X (p)* o (f X id[))*.
Proof. Adjunction and isomorphism (2.1) provide a morphism of functors

R(idg % @)« — R(idg % ) R(f xidp).(f xidp)* =
R((f xidg) o (ida % ¢)) (f x idp)* = R(f » idg).R(ida » ¢).(f % idp)*,
and using adjunction again we deduce a natural morphism of functors
(2.4) (f xidg)* o R(idg % ¢)x — R(ida x @) o (f x idp)™.

To prove that the latter morphism is invertible, we observe that the algebras A x D
and B x D are K-flat as complexes of right D-modules (for the action induced by
right multiplication of D on itself). Moreover, there exist canonical isomorphisms
of A x D-modules and B x D-modules respectively

(AxD)@pE~AXE, (BxD)®pE~BxE
We deduce, for M in D(B x D), functorial isomorphisms in D(k):

RHomg,,p(B x E, M) = RHomg,,r((B x D) ®p E, M) = RHomp(E, M)
=~ RHomj ,p((A x D) ®p E, M) =2 RHomj, (A x E, M).

It is easily checked that this isomorphism is induced by (2.4), and the lemma is
proved. O

2.4. Induction. For any affine k-group scheme H, we denote by Rep(H) the
abelian category of (not necessarily finite-dimensional) algebraic H-modules, and
by Rep'(H) C Rep(H) the subcategory consisting of finite-dimensional modules.
If \: H — k* is a character of H, we denote by kg (\) the corresponding 1-
dimensional H-module. (When A is the trivial character, we abbreviate the notation
to k.)

If H and K are affine k-group schemes and ¢ : H — K is a morphism of group
schemes, we can consider the induction functor

Ind% : Rep(H) — Rep(K)

defined by Ind% (V) = (V@ O(K))? , where O(K) is considered as a K x H-module
via the action induced by

(k,h)-g=kgp(h)~ for g€ K and (k,h) € K x H.
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Note that we allow ¢ to be any morphism, not necessarily an embedding of a closed
subgroup (as e.g. in [34]). The functor Indg is right adjoint to the forgetful functor

For’s : Rep(K) — Rep(H);

in particular it takes injective objects to injective objects.
The (left exact) functor Ind% admits a right derived functor

RInd% : D¥Rep(H) — DT Rep(K),

which can be computed using injective resolutions, and which is right adjoint to
the functor For¥ : D*Rep(K) — D Rep(H).

This construction is transitive in the sense that if o : H - K and v : K — I
are morphisms of affine k-group schemes, then we have canonical isomorphisms of
functors

(2.5) Forl o Fork = Forl,,  RIndl oRInd% = RInd,

where the functors Forl; and RIndff are defined with respect to the morphism
Yow: H— I. (In fact, the first isomorphism is obvious, and the second one
follows by adjunction.)

Later on we will need the following technical lemma. Consider as above a mor-
phism of (affine) k-group schemes ¢ : H — K, and let H' C H, K’ C K be closed
subgroups such that ¢(H’) C K'. Then we can consider the diagram

RInd%
D*Rep(H) =

Forg,l lForg/
RIndX;

DT Rep(H') ——————— D" Rep(K’).

D*Rep(K)

Lemma 2.3. Assume that:

(1) the morphism

Hx" K' - K:[h:k]— ko(h)™*
18 an isomorphism;

(2) H' is a finite group scheme.

Then there exists a canonical isomorphism of functors
Fork, oRInd}; = RIndg o Fork,

from D*Rep(H) to D*Rep(K').
Proof. For any M in Rep(H ), restriction induces a functorial morphism
(2.6) For, ond (M) = (Mo O(K))" = (Ma0(K")" = nd, oForll, (M).
One can also define a functorial morphism
(2.7) Ind%, o Forl, (M) — Fork, o Ind (M)

as follows: an element in Indgi o Fortl, (M) is an H'-equivariant morphism f : K/ —
M. Inducing this morphism we obtain an H-equivariant morphism H x "K' >
H xH M. By (1) the domain of this map identifies with K. Composing with the
action morphism H xH "M — M we deduce an H -equivariant morphism K — M,
i.e. an element of Fork, o Ind® (M1).
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It is straightforward to check that the morphisms (2.6) and (2.7) are inverse to
each other, so that we obtain an isomorphism of functors

!
Fork, o Indg = Indg, oFort, .
From this isomorphism we deduce a canonical morphism of functors
!
Fork, oRInd}y — RInd%, o Fort,,

and to prove that this morphism is an isomorphism it suffices to prove that if M
is an injective H-module then the H’-module Forf, (M) is acyclic for the functor

Ind%,.
So, let M be an injective H-module. By [34, Proposition 1.3.10(a)], there exists
a k-vector space V such that M is a direct summand of V @ O(H). We have a
natural isomorphism
RIndX,(V ® O(H)) 2V @ RIndX, (O(H)),
so that to conclude it suffices to prove that
R>°Ind¥(O(H)) = 0.

Now using [34, Proposition 1.3.10(c)] we see that, as complexes of vector spaces, we
have

RInd%,(O(H)) = RI"' (O(H) ® O(K")),

where I" : Rep(H') — Vect(k) is the functor of H'-invariants and where H' acts
diagonally on O(H) ® O(K'). From this we deduce a canonical isomorphism

RInd%,(O(H)) = RInd?,(O(K")).

Then the desired vanishing follows from [34, Corollary 1.5.13(b)]. O
Remark 2.4. Assume that H and K are infinitesimal affine k-group schemes in the
sense of [34, §1.8.1]. Then there exist canonical equivalences of categories

(2.8) Rep(H) = Dist(H )-mod, Rep(K') = Dist(K)-mod

where Dist(—) denotes the distribution algebra; see [34, §81.8.4-6]. On the other
hand, the morphism ¢ : H — K defines an algebra morphism ¢ : Dist(H) —
Dist(K), see [34, §1.7.9]. It is straightforward to check that in this setting the
functor Ind% : Rep(H) — Rep(K) corresponds to the functor ¢, defined in §2.1
under the identifications (2.8).

2.5. A spectral sequence for H-modules. Let H be an affine k-group scheme,
and let K C H be a closed normal subgroup. Let V be a finite-dimensional H-
module. Then, for any H-module V’, the natural (diagonal) H-action on the vector
space Hompg (V, V') descends to an (algebraic) H/K-action. In other words, the
functor Homg (V, —) factors through a functor Rep(H) — Rep(H/K), which we
will denote similarly. Then the derived functors Ext (V,—) also factor through
functors Exty (V, —) : Rep(H) — Rep(H/K).

Lemma 2.5. For any V' in Rep(H), there exists a (bifunctorial) convergent spectral
sequence

EY? = HP(H/K, Ext% (V, V")) = Exth ™ (V, V).
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Proof. Using adjunction we can assume that V is the trivial H-module. In this
case the spectral sequence we wish to construct looks as follows:

BB = HP(H/K,HI(K, V")) = HPYI(H, V).

This spectral sequence is obtained from Grothendieck’s spectral sequence for the
derived functor of a composition of functors, see e.g. [34, Proposition 1.4.1]. For
this we observe that we have I¥ = I"/K o K where as above I is the functor of
invariants. Then we have to check that if V' is an injective H-module then the
H/K-module I® (V') is injective. However, as in the proof of Lemma 2.3, we can
assume that V' = E ® O(H) where E is a k-vector space (with trivial H-action).
Then we have
V) =1"(E® O(H))= E® O(H/K),

so that this H/K-module is indeed injective. (]

From this lemma we deduce the following property.

Corollary 2.6. For any n > 0 we have
dim(Extf; (V, V")) < > dim(HP(H/K, Ext} (V,V")))

ptg=n

(if the right-hand side is < o0).

Proof. The convergence of the spectral sequence of Lemma 2.5 means that for any
n, there is a filtration on Ext% (V, V') whose associated graded is a subquotient of

P Hr(H/K, Extl (V,V")).
ptg=n
The claim follows. O

2.6. Equivariant dg-modules. Let H be an affine k-group scheme, and let A be a
k-dg-algebra endowed with the structure of an H-module which is compatible with
the grading, the differential and the multiplication. (Such a structure will be called
an H-equivariant dg-algebra.) Let A-dgmody be the category of H-equivariant
A-dg-modules, i.e. A-dg-modules M endowed with the structure of an H-module
which is compatible with the grading and the differential, and such that the action
morphism A®@ M — M is H-equivariant. (Morphisms are required to commute with
the A- and H-actions.) We denote by Dy (A) the corresponding derived category.
If H*(A) is left Noetherian, we denote by D%(A) C Dy (A) the full triangulated
subcategory whose objects have finitely generated cohomology.

If A is concentrated in nonpositive degrees, we will also consider the full subcat-
egory A—dgmodE of A-dgmody; consisting of dg-modules which are bounded below,
and the corresponding derived category D};(A). Our assumption implies that the
usual truncation functors for complexes define functors on the category A-dgmod;
using these functors it is easy to check that the natural functor D} (A) — D (A) is
fully faithful, and that its essential image is the full subcategory of Dy (A) consisting
of dg-modules whose cohomology is bounded below.

We will not attempt to study the general theory of equivariant dg-modules. For
instance, it is not clear to us whether, given a general H-equivariant dg-algebra A
as above (even if it is concentrated in nonpositive degrees), any object of A-dgmod
(or even of A—dgmodz) admits a K-injective resolution. (A very special case of this
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question will be treated in §2.8 below.) In this setting, we will restrict ourselves to
easy constructions.

First we remark that if H and K are affine k-group schemes, ¢ : H — K is
a morphism of group schemes, and A is a K-equivariant dg-algebra, then A can
also be considered as an H-equivariant dg-algebra via ¢. Moreover, the functor
Forg : Rep(K) — Rep(H) associated with ¢ induces an exact functor A-dgmod;; —
A-dgmod . We will denote by

Fork : Dic(A) — D (A)

the induced functor on derived categories. If A is concentrated in nonpositive
degrees, then this functor restricts to a functor Dt (A) — D (A).

Now let A and B be H-equivariant dg-algebras, and let f : A — B be an H-
equivariant morphism of dg-algebras. As in the nonequivariant setting (see §2.1)
we have an exact “restriction of scalars” functor f* : B-dgmod; — A-dgmod,;, and
the corresponding derived functor

f* : DH(B) — DH(A)

If A and B are concentrated in nonpositive degrees, this functor clearly restricts
to a functor from D};(B) to Dj;(A). If A, B, C are H-equivariant dg-algebras and
f:A—B, g:B — Care H-equivariant morphisms of dg-algebras, then we have

(2.9) (gof) =f"eyg"

Combining the previous two constructions, it is clear that if ¢ : H — K is a
morphism of affine k-group schemes and if f : A — B is a K-equivariant morphism
of K-equivariant dg-algebras, the following diagram commutes:

Dk (B) — = Dy (A)
(210) Forgl \LForﬁ
DH(B) f* DH(A)

The following lemma is well known.

Lemma 2.7. Let H be an affine k-group scheme, let A and B be H -equivariant
dg-algebras, and let f : A — B be an H-equivariant morphism of dg-algebras which
is a quasi-isomorphism. Then the functor f*: Dy(B) — Dy (A) is an equivalence
of categories.

If A and B are concentrated in nonpositive degrees then f* restricts to an equiv-
alence D} (B) = D} (A), and if H*(A) = H*(B) is left Noetherian then f* restricts
to an equivalence D%(B) = D%(A),

Sketch of proof. The same procedure as for ordinary dg-modules (see [13]) shows
that for any M in A-dgmody, there exists M’ in A-dgmod which is K-flat as an

A-dg-module and a quasi-isomorphism M’ 95 M. Hence the derived functor

B & (=) : Du(A) = Dy(B)

is well defined. Then the same arguments as for [13, Theorem 10.12.5.1] show that
f* is an equivalence, with quasi-inverse given by B ®@% (—).
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The final claim is clear from the fact that for M in Dg(B), H*(M) is bounded
below, resp. finitely generated, iff H*(f*(M)) is bounded below, resp. finitely gen-
erated. (]

Remark 2.8. Consider as above an affine k-group scheme H and a morphism f :
A — B of H-equivariant dg-algebras concentrated in nonpositive degrees. Assume
also that H is infinitesimal. We can consider the semidirect product A x Dist(H)
as defined in §2.3. We also have a similar semidirect product B x Dist(H), and a
dg-algebra morphism f xid : A x Dist(H) — B x Dist(H). Then the equivalence
Rep(H) = Dist(H)-mod considered in (2.8) induces equivalences

(2.11) Dy(A) = D(A % Dist(H)),  Dy(B) = D(B x Dist(H)).

In fact these equivalences also hold at the level of nonderived categories, so that
K-injective resolutions exist in this setting.
Clearly, the following diagram commutes up to an isomorphism of functors:

Iz

Dy (B)

(2.11)lz

D(B x Dist(H))

Dy (A)

zl(zn)

iid)*
PO D(A x Dist(H)).
For simplicity, the functor corresponding to the functor R(f % id). under the iden-
tifications (2.11) will be denoted

Remark 2.9. Let H and K be infinitesimal affine k-group schemes and let ¢ : H —
K be a morphism of k-group schemes. Let A be a K-equivariant k-dg-algebra
concentrated in nonpositive degrees. Then via ¢ we can also consider A as an
H-equivariant dg-algebra, and as in Remark 2.8 we have natural equivalences

(2.12) DE(A) = DT (A x Dist(K)), DF(A) =2 D (A x Dist(H)).

Moreover ¢ induces an algebra morphism ¢ : Dist(H) — Dist(K), and hence a
dg-algebra morphism ida x ¢ : A x Dist(H) — A x Dist(K), so that we can consider
the associated direct and inverse image functors relating DT (A x Dist(K)) and
DT (A x Dist(H)). Tt is clear that the following diagram commutes:

K
Fory

Dic(A) Dy (A)

(2.12)lz zi(‘z.m)

D*(A x Dist(K)) 2" p+(A x Dist(H)).

We will denote by

RInd% : D}, (A) — Dj(A)
the functor corresponding to R(ida % ¢). under the identifications (2.12). This
notation is justified by the fact that this functor is compatible with the functors
RInd% of §2.4 in the obvious sense; in fact this follows from the observation that
any K-injective A x Dist(H )-dg-module is also K-injective as a complex of Dist(H )-
modules, since A x Dist(H) is K-flat as a complex of right Dist(H )-modules.
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2.7. H-action on Hom-spaces. Let H be an affine k-group scheme, and let A be
an H-equivariant dg-algebra.

Lemma 2.10. For any M in A-dgmody, there exists an object M’ in A-dgmody

which is K-projective as an A-dg-module and a quasi-isomorphism M’ 95 M.

Proof. The “bar resolution” of [13, §10.12.2.4] (see also [13, Remark 10.12.2.7])
provides a resolution with the desired properties. O

From now on in this subsection we assume that k is algebraically closed and that
H is reduced and of finite type (in other words an algebraic group in the “tradi-
tional” sense). Then we can consider the abelian category Rep®™°(H) of “discrete”
H-representations, i.e. vector spaces V endowed with a group homomorphism from
(the k-points of) H to GL(V) which is not necessarily a morphism of algebraic
varieties. (A typical example is an infinite-dimensional representation that is not
the union of its finite-dimensional subrepresentations, which might arise e.g. when
taking the dual of an infinite-dimensional algebraic H-module.)

For any M in A-dgmody;, consider the functor

Hom3 (—, M) : (A-dgmod;)”" — C(Rep™(H))
(where the right-hand side is the category of complexes of objects in Repdisc(H)),

where the H-action is diagonal. The resolutions considered in Lemma 2.10 are split
on the right for this functor, so that we can consider the associated derived functor

RHomp(—, M) : D (A)°P — D(Rep™°(H)).

By construction, for any N in A-dgmody and any n € Z we have a canonical
isomorphism

H™ (R Homa (N, M)) = Hom}y a) (For}y (N), Forf, (M)).
In particular, this implies that the vector space Hom,a) (Forﬁ}(N),Forﬁ}(M))
has a natural action of H (which might be nonalgebraic).

Lemma 2.11. Let f : A — B be an H-equivariant morphism of H -equivariant
dg-algebras. Then for any M, N in Dy (B), the morphism

Hompg) (M, N) — Hompa)(f*M, f*N)
induced by the functor f* (where for simplicity we omit the functors Forﬁ}) 18
H -equivariant.
Proof. Let M’ 9B M and M7 L5 f*(M) be resolutions as in Lemma 2.10. Then
we have H-equivariant isomorphisms
HomD(B) (M7 N) = HO(HOmé(M/, N))7
Hompa)(f*M, f*N) = H(Homy (M", f*N)).

Moreover, the morphism under consideration is induced by the morphism of com-
plexes

Homg(M', N) — Homy (M", f*N)
sending a morphism ¢ : M’ — NJ[k] to the composition
M”25 p(0) L (),

This morphism is obviously H-equivariant, which proves the lemma. O
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2.8. The case of finite-dimensional dg-algebras. As in §2.6, we let H be a
k-group scheme, and A be an H-equivariant dg-algebra concentrated in nonpositive
degrees. We assume in addition that dimg(A) < co.

Lemma 2.12. For any bounded below H -equivariant A-dg-module X, there exists
a bounded below H -equivariant A-dg-module Y which is

o K-injective as an H-equivariant A-dg-module;

o K-injective as an A-dg-module;

e a complex of injective H-modules
and a quasi-isomorphism of H-equivariant A-dg-modules ¢ : X 2=V .
Proof. We proceed in a way similar to the procedure in [19, Lemma 1.3.5]. Namely,
we first consider a bounded below complex V; of injective H-modules (with the same
lower bound as X') and an injective morphism of complexes of H-modules X < V.
This morphism defines in a natural way an injective morphism X — Homg (A, V).
(Here, A acts on Homg (A, V) through right multiplication in A, as in the definition
of the coinduction functor in [49, §1.2], and H acts diagonally.) One can easily
check that Zy := Homg (A, Vp) is bounded below with the same bound as X and K-
injective, both as an A-dg-module and as an H-equivariant A-dg-module. Using [34,
Proposition 1.3.10(b)], one can also check that Zy is a complex of injective H-
modules.

Proceeding similarly with the cokernel of the injection X — Z; and repeating,
we obtain H-equivariant A-dg-modules Z; which are bounded below with the same
bound as X, K-injective both as A-dg-modules and as H-equivariant A-dg-modules,
and whose terms are injective H-modules, and an exact sequence of H-equivariant
A-dg-modules

X —~Zy—>2Z1—Zy—>---
Let Y be the total complex of the double complex 0 — Zy — Z; — --- (where Z
is in horizontal degree k). Then there exists a natural morphism X — Y, which is
easily seen to be a quasi-isomorphism. Hence to conclude it suffices to check that
Y has the desired properties. Clearly each graded component of Y is an injective
H-module, so we need only consider the first two conditions.

For any p, we denote by Y, the total complex of the double complex 0 — Zy —
Zy == Zy1— Zp, —0—---. Then for any p we have an exact sequence

(2.13) Zppa[-p =1 = Y1 > Y,

which is split as an exact sequence of H-equivariant graded A-modules (i.e. when
we forget differentials).

Now we can prove that Y is K-injective as an H-equivariant A-dg-module. Let
M be an acyclic H-equivariant A-dg-module. We have, as complexes of k-vector
spaces,

Homx—dgmodH (M7 Y) = @ I—I()Inx—dgmoclH (Mﬂ YP)
P
(Here, Homy ggmod,, (X, X') is the complex whose i-th term consists of homoge-
neous morphisms of H-equivariant A-modules of degree ¢ from X to X’, with the
differential induced by dx and dx-.) For any p, since the exact sequence (2.13) is
split as an exact sequence of H-equivariant graded A-modules, it induces an exact
sequence of complexes

Hom;—dgmodH (M’ ZP+1 [_p - 1]) — Homz—dgmodH (M’ Y;ﬂrl) - Hom/.A—dgmodH (M7 Y;?)
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Since Zp11 is K-injective, the complex Homp ggmod,, (M, Zp+1[—p — 1]) is acyclic.
Hence the inverse system (Homp_ggmod,, (M, Yp))p>0 is J-special in the sense of [53,
Definition 2.1], where J is the class of acyclic complexes of k-vector spaces. Us-
ing [53, Lemma 2.3] we deduce that its inverse limit Homp_ggmod,, (M,Y') is acyclic,
which proves the desired K-injectivity.

The same arguments show that Y is also K-injective as an A-dg-module, and the
proof is complete. O

Now we consider affine k-group schemes H and K, a morphism of k-group
schemes ¢ : H — K, and a finite-dimensional K-equivariant dg-algebra A concen-
trated in nonpositive degrees. Via ( we can also consider A as an H-equivariant dg-
algebra. The functor Ind% : Rep(H) — Rep(K) induces a functor from A-dgmod
to A-dgmod - (which we will also denote Ind%) as follows: if M is in A-dgmod;, we
consider the A-action on the complex of K-modules Ind% (M) defined by (a-f)(k) =
(k=' - a) - f(k) (where elements in Ind% (M) = I (O(K) ® M) are considered as
algebraic morphisms K — M as in [34, §1.3.3]). Lemma 2.12 ensures that the
right derived functor RIndg is well defined on the subcategory D};(A) C Dy (A),
and that moreover the following diagram commutes up to isomorphism, where the
vertical arrows are induced by the functor of forgetting the A-action:

Dl (A — M D)
(2.14) i i
RInd%
D+Rep(H) D*+Rep(K).

It is also easily checked that the functor RIndg is right-adjoint to the forgetful
functor Forfy : D (A) — D}, (A).

3. REDUCTIVE ALGEBRAIC GROUPS AND STEINBERG MODULES

3.1. Notation for algebraic groups. From now on we assume that k is an alge-
braically closed field of positive characteristic ¢, and let G be a connected reductive
algebraic group over k with simply connected derived subgroup. Let T'C B C G be
a maximal torus and a Borel subgroup, and let B+ be the opposite Borel subgroup
(with respect to T'). We also denote by N the unipotent radical of B, and by g, b,
t, bT, n the Lie algebras of G, B, T, B+, N.

We will denote by ® the root system of (G, T), by ®* C ® the system of positive
roots consisting of the T-weights in nilradical of b*, by ¥ C ® the corresponding
simple roots, by W the Weyl group of (G,T), and by S C W the set of simple
reflections corresponding to ¥. We will denote by

S — ag, > Sq

the natural bijections S = ¥ and ¥ =+ S. For any o € ® we denote by g, the
corresponding root subspace in g, and by « the corresponding coroot.

For any subset I C S, we denote by X5 = {as : s € I} C X the corresponding
subset of ¥. Then we have the corresponding root system ®; = ® N ZX¥; and
positive roots ®] = &+ N ®;. We also let W; C W be the (parabolic) subgroup
generated by I, and wy be the longest element in W;. We denote by P; C G the
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parabolic subgroup containing B associated with I, and by p; its Lie algebra, so

that
pr=te P ga

+
acd;

We denote by My the Levi factor of P; containing 7', by my its Lie algebra, by Nj
the unipotent radical of P;, and by nj its Lie algebra. Of course, when I = @ we
have Py = B, Mg =T and Ny = N. When I = {s} for some s € S, we simplify
the notation Py, My, etc. to Py, M, etc. (This simplification will also be used
for other notation depending on I C S that will be defined later in the paper.)

We denote by G = G the Frobenius twist of G. Recall that by definition, as
rings we have O(G) = O(G), but the k-actions are different: if = € k, then x acts
on O(G) in the way z'/¢ acts on O(G). (Here, (—)/* is the inverse of the field
automorphism of k given by z ++ z¢.) The Frobenius morphism Fr : G — G is the
k-scheme morphism induced by the k-algebra morphism O(G) — O(G) defined by
f — f% The k-scheme G has a natural structure of k-algebraic group, and Fr is an
algebraic group morphism. Its kernel is (by definition) the Frobenius kernel of G,
and will be denoted G;. It is an infinitesimal affine k-group scheme. We use similar
notation for the subgroups of G introduced above. In particular, 7" is a maximal
torus in G, and B is a Borel subgroup in G.

We let X denote the lattice of characters of T' (or equivalently of B), and X C X
be the set of dominant weights. Given a subset I C .S, we set

1
pI::§ Z a €X®zQ.

aE@f

We also choose a weight ¢; € X such that {(¢;,a¥) = 1 for all @ € ¥;. When
I =S, we simplify the notation to p and ¢. (Starting from Section 8 we will make
a more specific choice for these weights, but in Sections 37 they can be arbitrary.)
Throughout the paper we assume that ¢ > h, where h is the Coxeter number of ®.

Since O(T) = O(T), the lattice of characters of T' identifies canonically with
X. With this identification, the morphism X — X induced by composition with
the Frobenius morphism 7" — T is given by A — ¢X. In other words, we have
Fory k(X)) = kr (£X).

If I C S, we set My := U(ny), the universal enveloping algebra of ny. We denote
by 3; C M the (central) subalgebra generated by elements of the form 2 — ¥l for
x € ny. Then 3; is canonically isomorphic to Sym(n;) (where 1y is the Lie algebra
of NI), and if k is the trivial 37-module we have

Nr ®3, k=nyp,

where n; is the restricted enveloping algebra of ny, which identifies with the distri-
bution algebra of Ny ;.

Note that our notation (and the rest of the notation introduced later) follows
the following pattern: if H is an algebraic group over k, then H is its Frobenius
twist, H; its Frobenius kernel, § its Lie algebra, ) the enveloping algebra of b, and
h the distribution algebra of H; (or equivalently the restricted enveloping algebra

of h).
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3.2. Steinberg modules. Given I C S, we can define the P;-module
Str := Ind} (kp((¢ — 1)cr))-

It is clear that N; C Py acts trivially on St;, so that this module factors through
an Mr-module (which we denote similarly.) When I = @, St; is just the one-
dimensional B-module kp((¢ — 1)sz) (i.e. the trivial module if we have chosen
¢ = 0). When I = S we omit the subscript S. For any I, St; is irreducible as a
Pr- or Mr-module. When regarded as an M7 ;-module, or as an Mj ;T-module, it
is simple, injective, and projective (see [34, Proposition I11.10.2]).

Remark 3.1. The results of [34] cited above (as well as those cited below) are stated
for the module IndgfrﬁMI((E — 1)pr) instead of St;, assuming that (¢ — 1)p; belongs
to X. However, under our assumptions, if I # & then ¢ is odd, so that (¢ — 1)p;
indeed belongs to X. And we have isomorphisms of P;-modules

Indp?yy, (€= 1)pr) 2 Indg! (€ = 1)pr) 2 Sty @ kp, (€~ 1)(pr — 1)),

since (¢ — 1)(pr — <) is a character of P;. These isomorphisms allow us to transfer
the required results from the case of Ind% ar, (€= 1)pr) to the case of Str.

Lemma 3.2. Let By = BN My, and let B;“ = BT N M;. Then we have isomor-
phisms of Mj-modules
~ M s ~ M ,1
St[ = IndBII,; kBI,l((Z — 1){[) = IndBil ]kB?—l((f — 1)(([ - 2p[))
Proof. This follows from [34, I1.3.18(4)—(5) & I11.3.7(4)]. O

Next, we define a Pr-module
Zp := For (St) @ kp, (¢ — 1)(sr — 2pr +2p — <)).

(Note that (s; — 2p; + 2p — ¢, ") = 0 for any « € ®;, so that ¢; — 2p; +2p — ¢
defines a character of My, and hence of P; via the surjection Py — M;.)

Lemma 3.3. We have an isomorphism of Py1-modules Zj = IndIA)/[II‘ll(StI). More-
over, as a Pr1-module, Z1 is the injective envelope of Str. '

Proof. By the tensor identity (see [34, Proposition 1.3.6]), the first assertion is
equivalent to the claim that

St 2 Indf/}l’.’l1 (Str @ kar, o (€ —1)(2pr — 51 — 2p+<)))
as Pri-modules. By Lemma 3.2 (applied to I and then to S) and transitivity of
induction, we have isomorphisms of P; ;-modules

Indiyf (Str @ kg, , (€= 1)(2p1 — 51— 2p +)))

=~ Indg?l kpp (€= 1)(=2p+) = Indglir Ky (€= 1)(=2p+5)) = St

(where the second isomorphism can be deduced from [34, Lemma II1.3.2]). Since
induction takes injective modules to injective modules, Z; is an injective Py i-
module. It is indecomposable because St is an indecomposable Nj-module (see
e.g. [34, I1.3.18(1)]), so the adjunction morphism St; — Indi}l’ll St; = Z; shows

that it must be the injective envelope of St;. O

Remark 3.4. The Pyj-module Zj is also projective; see [34, §1.8.10]. Using [34,
Lemma I1.9.3], we deduce that it is even projective as a PrT-module.
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Corollary 3.5. Consider the projection Pr1 — Mj 1, and the associated functor
RIndp"". Then we have RIndp" (Z;) = St;.

Proof. Lemma 3.3 and [31, Corollary 15.13(b)] imply that Z; = RIndy;;’, (Str).
Using (2.5), it follows that we have

Rindy" (Z;) = RIndp,; oRIndy:", (Str) = St;
since the composition M7 — Pr1 — M7 is the identity morphism. O
Corollary 3.6. There exists a nonzero morphism of Pr-modules St; — Zj.

Proof. Consider the vector space Homp, , (Str,Zr). Since Pr; is normal in Py,
and since both St; and Z; admit Pr-module structures, this space admits a nat-
ural Pr-action (by conjugation). By Lemma 3.3, this module has dimension 1,
so that Pr necessarily acts via a character x : P — Gp,. Now the same argu-
ments as for Lemma 3.3 (see in particular [34, I11.10.1(4) & §9.1-2]) show that
7r = Indfjl‘llTT(St 1), so that adjunction provides a nonzero morphism of Py,7T-
modules Stly — Zy. This shows that x is trivial on T, and hence that it is the
trivial character. O

Lemma 3.7. Let I C I' ¢ S. Then Sty is a direct summand in Indﬁj’;lTT(Stj ®

kar, (€ — 1) (sp — 1)) with multiplicity 1. Moreover we have

dimy (Homoy,, ,7(Strr, Indy, ! (Sty @ k(€ —1)(s — <)) =
dimy (Homyy,, r(Indy 7 (Str @ k(¢ — 1)(sp — 1)), Str)) = 1.
In particular, any composition
Sty — Indy,!" 'y (Sty @ k(€ —1)(sp = <1))) = Strr
where both arrows are My 1T-equivariant and nonzero is itself nonzero.

Proof. Set v = (¢ —1)(sir — <r). By adjunction, we have
My T
Homyy,, ,7(Str, Indy; 77 (Str @ k(v))) = Homyy, 7 (St @ k(—v), Str).

Since Sty is both injective and simple as an My ;7-module, it is its own injective
envelope, and the dimension of the vector space considered above is the multiplicity
of Sty as a composition factor of St; @ k(—vr). Now the highest weights of St; and
Sty ® k(—v) are both equal to (¢ — 1)¢;, and the corresponding weight spaces
have dimension 1. So, the multiplicity under consideration is at most 1. On the
other hand we have Sty = Ind}}jﬁ/(StI ® k(v)), so adjunction provides a nonzero
morphism of Pr-modules (hence of M T-modules) Sty — St; ® k(v), and hence
the multiplicity is at least 1.

We have thus proved that

. M ’ T

(31) dlmk(HOmMﬂvlT(Stp,IndM?;}T (St[ (24 ]1{(1/)))) =1.

N . My T
Any nonzero My ;T-equivariant morphism Sty — Indy, " (St; @ k(v)) must be
injective since Sty is simple. And since both Mj ;T-modules are injective, such a

morphism must be the embedding of a direct summand. This proves that St; is a
direct summand in Ind%;l;}T(Stj ® k(v)) with multplicity 1.
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It remains to compute
. My T
(3.2) dimy (Homyy,, ,7(Indy,, 7 (St @ k(v)), Str)).

By the same arguments as above, this dimension is the multiplicity of St;, as a
composition factor of Ind]]\VZ'fTT(StI ®k(v)). Now since Sty is also its own projective
cover, (3.1) shows that this multiplicity is 1, and (3.2) is proved.

The final assertion is an easy consequence of the previous statements. (I

3.3. The case of semisimple rank 1. We conclude this subsection with some
results in the special case where I consists of a single simple reflection s. Recall
that St has weights

(é - l)gsa (6 - 1)99 — O, (f - 1)§s - 20&57 Tty (Z - 1)§g - (( — l)as.
For any A € X with (A, oY) > 0, we set
N.(\) := IndE (N), M, () == (Ind5: (—s\))*.

Both of these modules factor through M -modules; as such they are isomorphic to
the costandard and standard Mg-module of highest weight A respectively.

There exists, up to scalar, a unique nonzero morphism Mg (A\) — N4()); its image
is the simple M -module with highest weight A, which we denote by Ls(A). Finally,
we denote by T4(\) the indecomposable tilting M-module of highest weight A. The
Ms-modules Lg(A) and T4(A) will sometimes be considered as Ps-modules via the
projection Py — M.

Lemma 3.8. There exists an exact sequence of B-modules
(33) 0= kp(ls, — log) — Sty @ kp(ss — as) L Sty @ kp(ss) = kp(lss) = 0
which corresponds to a nonzero element of Ext%(kp(lss), kp(fss — Losy)).

Proof. In [34, Proposition I11.5.2], a certain basis {vg, v1,- -+ ,ve—1} of Sty is consid-
ered, where each v; is a weight vector of weight (¢ — 1)g; — ics. Consider the linear
map f: Sty @ k(¢s — as) = Sts @ k(¢s) given by

(—1—i . .
Yl ®1 H0<i</l-—1
v ®1) =4 10 ’
4 ) {O ifi=0-1.
According to the formulas in [34, Proposition 11.5.2], f is B-equivariant. Its kernel

is the span of vy_; ® 1, which is isomorphic to kg(fss — fas), and its cokernel
is spanned by the image of vy ® 1; it is isomorphic to kg(¢ss). Hence we have
constructed the four-term exact sequence (3.3).

Before addressing the claim about Ext?, let us construct some short exact se-
quences. Consider the module N4 (¢ss), and let {ug,u1,--- ,u¢} be the basis for this
module described in [34, Proposition I1.5.2]. Let g : Sts @ kp(ss — as) — Ny (4sy)
be the map given by

g(v;®1) =wu;y; forie{0,---,¢—1}.

As in the preceding paragraph, one can check using [34, Proposition I1.5.2] that
g is B-equivariant. This map is clearly injective, so that we obtain a short exact
sequence of B-modules

(3.4) 0 — Sty @ kp(ss — as) L Ny(lsy) = kp(fss) — 0.
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We claim that (3.4) is not split. Indeed, to prove this it suffices to prove that
N;(4ss) is indecomposable as a B-module. However it is clearly indecomposable as
a Ps-module, and the functor Forgs is fully faithful (since its right adjoint Indgs
satisfies Ind%5* o Forky 22 id). Hence N,(4s,) is indeed indecomposable over B, which
proves our claim.

Next, taking the dual of (3.4), and then tensoring with kp(2lss — fog) and
observing that

Str = Sts @kp, (€ — 1) (s — 265))
and
M (lss) = Ns(bas — £ss)™ =2 Ny(lss)™ @ kp, (20ss — L),
we obtain a short exact sequence

(3.5) 0 — kp(lss — Las) = Mg(lss) — Sty @ kp(ss) — 0.

Since (3.4) is not split, this short exact sequence is not split either.
By [34, Proposition I1.5.2 & Corollary I1.5.3], we have

RIndE kp((f — 1)ss — fas) =2 Indbr kp((€ — 1)s,)[~1] = Sts[-1].
We therefore have

Exth(Sts @ kp(ss), kg (lss — o)) =2 Exth(Sty, kg ((£ — 1)gs — Lay))
=~ Homp, (Sts, RIndp kp((£ — 1)ss — Las)) =2 Homp, (Sts, Sts) = k.

From these considerations we deduce that (3.5) is the unique nonsplit extension of
Sts @ kp(ss) by kp(lss — Lag), and then that (3.4) is the unique nonsplit extension
of kp(fss) by Sts @ kp(cs — as).

We can finally finish the proof of the lemma. Suppose for a contradiction that
the element of Ext(kp(fss),kp(lss — fa,)) corresponding to (3.3) vanishes. This
means that there exists a B-module V' equipped with a filtration 0 C V; C Vo C V
such that (3.3) is isomorphic to

0oV =>Vo—=V/Vi = V/Va—0.

Consider the short exact sequence 0 — Vi — V — V/V; — 0. This extension
cannot split, because Vi = kg (fss — fag) is not a direct summand of Vo & Sty ®
kp(ss — as) (since Sty is indecomposable over B). So from (3.5), we conclude that
V = Mg (lss). A similar argument using the short exact sequence 0 — Vo — V —
V/Va — 0 and (3.4) shows that V' = N4(4ss). But now we have our contradiction,
since M;(fs;s) and Ng(fss) are not isomorphic as Ps-modules, and hence not as B-
modules either, since Forf® is fully faithful. (In fact, both M,(fc,) and Ng(fs,) are
nonsimple and have the simple M-module L4(¢s,) with highest weight f¢s—viewed
as a P;-module—as a composition factor with multiplicity 1, but this module is the
top of Mg(fss) and the socle of N (£s;).) This finishes the proof. O

The following lemma gathers well-known properties of the tilting module T (/ss),
see e.g. [23, Lemma 1.1 & Lemma 1.3].

Lemma 3.9. The Mg-module T(€ss) is isomorphic to Ls((€ —1)ss) @ Ls(ss). This
module fits into exact sequences

Ns(egs - as) — Ts(£§s) - NS(€§5) cmd Ms(é’;s) — Ts(ggs) - Ms(£§s - as)~
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Moreover we have

Ns(ggs - as) = Ms(ggs - as) = Ls(ggs - as)a
and the modules Ny (lss) and Mg(lss) have length 2, with socle L(4ss) and Lg(fss —
as) respectively, and top Ls(lss — as) and Ls(€ss) respectively.

From Lemma 3.9 we deduce the following fact, which is in fact a special case of
a claim in [23, Theorem 2.1].

Corollary 3.10. For any A € X such that (\,aY) > 0, the Mg-module T(lss) ®
Ls(€X) has top Ls(UX + bss — as); in particular, it is indecomposable.

Proof. By Steinberg’s tensor product theorem, we have
Ls(lss — as) @ Ls(€N) = Lg(EX 4 Lsg — ).

Hence from Lemma 3.9 we deduce that T,(4ss) ® Ls(¢A) admits a filtration with
sucessive subquotients Ls(¢A + s — a5 ), Ls(€ss) @ Ls(€N) and L (€A + f6s — as). In
particular, the simple composition factors of this module which are not isomorphic
to Ls(4X + s — as) are of the form Lg(¢u) with g € X such that (u, oY) > 0.

We claim that no simple My-module of the form L¢(¢u) appears in the top or
the socle of T4(fss) ® Ls(¢N). We will prove this claim for the top; the case of the
socle is similar. We have

Hom s, (Ts(€ss) @ Ls(€N), Ls(€u)) = Hompr, (Ts(€ss), Ls(€pe) @ Ls(€N)™).

Now all the composition factors of Ly(¢u) @ Ls(¢N\)* are of the form L (¢v), and we
have

Hom s, (Ts(€ss), Ls(4v)) =0
for any v (see Lemma 3.9), which implies our claim.

From this claim we deduce in particular that the top of T(fss) ® Ls(€A) is either
Ls(IX + fss — as) or Ly(EX\ + fss — as)®2. But the latter case cannot occur, since
otherwise the embedding

Ls(bX + les — as) <= To(lss) @ Ls (€M)

deduced from the embedding L;(¢ss —as) < Ts(fss) would split, and then T4 ({ss) ®
Ls(¢X) would have a simple module of the form L(fu) in its socle, which does not
hold as we have seen. O
Proposition 3.11. Let A € X be such that (A, o)) > 0.

(1) As P,-modules, we have ITnd5r (Sty @ kp(ss) @ Lo (X)) = To(lss) @ Ly (£N).
(2) For any nonzero map of B-modules

g:Sts @kp(ss) ® Ls(AN) — kp(lss) ® Ls(€N),
the morphism
Indz; (9) : Indf (Sts ® k(<) ® Ly()) — Indf; (kp(fss) @ Ly(EN))

18 surjective.

(3) Let 0 be an endomorphism of Ind5: (St @ kp(ss) @ Ls(£N)), and let
h: Indj (Sts ® kp(s) ® Ls(EN)) = Indj (kp(lss) ® Ls(€N))

be a morphism. If the composition h o 0 is surjective, then 0 is an isomor-
phism.
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Proof. (1) By the tensor identity, we have

(3.6)  Ind%(St, ® kp(ss) ® Lo(£A)) 22 (Ste ® Ly(£A)) ® TndE kg (s,)
>~ St, @ Ls(€N) @ Ls(ss).

Then the claim follows from Lemma 3.9.

(2) First consider the special case where A = 0. In this case, a nonzero map
Sts @kp(ss) = kp(flss) is clearly unique up to a scalar. Applying the functor Indg‘*‘
yields a map T(¢ss) — Ng(fss), which is nonzero by adjunction. Now, the general
theory of tilting modules implies that Homp, (T(€ss), Ns(£ss)) is 1-dimensional, and
that any nonzero map in this space is surjective. This implies the desired claim in
the special case A = 0.

For general A\, we have

Homp(Sts @ kp(ss) @ Ls(€A), kp(fss) @ Ls(€N))
>~ Homp(Sts @ Ls(4N),kp((£ — 1)ss) ® Ls(£N))
=~ Homp, (Sts @ Ls(€\), Ind 5 (kp((£ — 1)ss) ® Ls(£N)))
>~ Homp, (Sts @ Ls(€X), Sts @ Ls(€N)) 2k,
where the last step holds because St;®L;(¢)) is simple by Steinberg’s tensor product
theorem. This calculation shows that any nonzero map g : Sts ® kp(cs) @ Ls(A) —
kp(€ss) ® Ls(€X) is of the form go ®idy_(en), where go : Sty @ kp(cs) = kp(lss) is a
nonzero map. It follows (using the tensor identity) that Ind%: (g) can be identified

with IndFB)S (90)®idy_(¢x), s0 that this map is surjective by the special case considered
above.
(3) If h o @ is surjective, then h is surjective. Now we have

Ind: (kp(fss) @ Le () 2 Ny(fs,) @ Ls(€N)

by the tensor identity. From this, Lemma 3.9 and Steinberg’s tensor product theo-
rem, we deduce that there exists a surjection

Ind%: (kp(fss) @ Ls (X)) = Ls(bss — as + £N).

This implies that the surjection from Ind5* (St, @k (s) ®Ls (L)) 2 T, (fss)@Ls(€N)
(see (1)) to its top Ls(fss — as +£A) (see Corollary 3.10) factors through h. Hence
from our assumption we obtain that the composition

Ind% (St, ® kp(ss) @ Lo(A)) 5 Ind% (St, @ kp(cs) @ Ly(€N))
— top(Ind}; (Sts @ kp(ss) ® Ls(N)))

is nonzero, which implies that 6 is surjective, and then an isomorphism since it is
an endomorphism of a finite-dimensional module. ([

4. KOSZUL DUALITY

In this section we fix a field F, an algebraic F-group scheme H, and a finite-
dimensional H-module V. We review the construction and main properties of the
Koszul duality equivalence relating dg-modules over the exterior algebra of V' and
dg-modules over the symmetric algebra of V*. The version we use is essentially the
version of [30], but the construction given there has the annoying feature that it
requires unnatural boundedness conditions on the dg-modules. Here we use slightly
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different arguments, which require introducing an extra grading, but allow us to
get rid of these conditions. These arguments are very close to those of [46], so we
omit most proofs.

4.1. Reminder on Koszul duality. Let us consider the dg-algebra

A= NV,

where V is placed in degree —1, and the differential is trivial. We will consider the
H x Gp-action on A which is compatible with the multiplication in the obvious
sense, and where H, resp. G,,, acts on V via its natural action, resp. in such a
way that 2z € Gy, acts by dilation by 272, In this way A can be considered as an
H x Gy-equivariant dg-algebra, and we can consider the category A-dgmody ¢
of H x Gy,-equivariant A-dg-modules as in §2.6, the corresponding derived category
Dy xg,, (M), and the full subcategory D%X@m (N).

The Gy-action on an H x Gy-equivariant A-dg-module will rather be regarded
as an extra Z-grading on the dg-module, which we will call the internal grading.
Using this point of view we can consider the full subcategory /\—dgmod%xﬁm of
A-dgmody, .~ consisting of objects whose internal grading is bounded below, and
the corresponding derived category D%x«}m (A). (This category shouldn’t be con-
fused with the derived category Dngm (A) of equivariant A-dg-modules which are

bounded below for the cohomological grading.) The embedding of /\—dgmod%x(@m
in A-dgmodp ¢, induces a functor DEX@m (N) = Dgxg,, (N), which is easily seen
to be fully faithful. The essential image of this functor contains D%x«;m (A), so that

Dﬁ_%xGm (A) can be considered as a full subcategory in D%x({;m (N).
We will also consider the dg-algebra

S := Sym(V"),

where V* is placed in degree 2, and the differential is trivial. We will consider the
H x Gy-action on S which is compatible with the multiplication in the obvious
sense, and where H, resp. G,,, acts on V* via its natural action, resp. in such a
way that z € Gy, acts by dilation by 22. In this way S can be considered as an
H x Gy-equivariant dg-algebra, and we can consider the category S-dgmody, ¢
of H x Gy-equivariant S-dg-modules as in §2.6, the corresponding derived category
Dy g, (S), and the full subcategory D%X@m (S). As above one can also consider the
category S—dgmod%xﬁm of H x Gy-equivariant dg-modules whose internal grading
is bounded below, and the corresponding derived category DEX(GH‘(S). Again it is
easily checked that the natural functor DEX@m (S) = Dpxe,, (S) is fully faithful,
and that its essential image contains the subcategory D%X(Gm (S).
We will denote by

(1) : D, (N) = Dii g, () and (1) : Dij.q, (S) = Di g, (S)

the functors of tensoring with the tautological 1-dimensional G,-module.
The goal of this subsection is to outline the proof of the following result.

Theorem 4.1. There exists an equivalence of triangulated categories

Koszul : D¢ (S) = D . (N)
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which commutes with the functors (1). This equivalence restricts to an equivalence
of triangulated categories

D%XG",(S) l> D%XG (A)

m

Sketch of proof. As in [46] we consider functors
o /\—dgmod%xﬁm — S—dgmod%xGm, B : S—dgmod%xGm — /\—dgmodf{x@m

defined by

(M) =S ®r M, PB(N) = Homp(A, N),
where the S-action (respectively the A-action), the differential and the grading are
defined as in [46, §2.2]. (In each case the differential is obtained as the sum of the
natural differential with a “Koszul type” differential.) One can check as in [46,
Theorem 2.6(i)] that these functors send acyclic complexes to acyclic complexes,
and hence that they induce triangulated functors

o DExGm(A) — D%xGm(S)a B D%xGm(S) — DExGm(A)'

Next, as in [40, Theorem 2.6(ii)] one checks that these functors are quasi-inverse to
each other, and we obtain the desired equivalence Koszul := #. Finally, arguments
similar to those in the proof of [16, Proposition 2.11] imply that <, resp. 4,
sends D%’x({}m (A) into Dngm (S), resp. ngxGm(S) into D%X(Gm (A). The second
statement follows. O

Remark 4.2. The equivalence constructed (in a much more general setting) in [40]
differs from the equivalence of Theorem 4.1 by composition with duality. This turns
out to be a crucial idea in order to obtain the general equivalence considered in [46].

4.2. Regrading and forgetting the grading. The version of Koszul duality we
will use later is not exactly the one provided by Theorem 4.1. First, consider the
category S-modgxg,, of H X Gp-equivariant S-modules, and the corresponding
derived category D(S-modpxg,, ). Let also S—modfﬁxGm be the full subcategory of
S-modgxg,, consisting of finitely generated modules. Then it is well known that
the natural functor

D"(S-modf, ¢ ) — D(S-modprxa,,)

is fully faithful, and that its essential image is the subcategory of complexes whose
total cohomology is finitely generated.
Let C(S-modp «g,, ) be the category of chain complexes of objects of S-mod g«

m m *

If M is in S-modgxg,,, as in §4.1 we will consider the Gp,-action on M as an
“internal” grading M = €, M;. Then we consider the functor

§:C(S-modyxg,,) — S-dgmody ¢, .
sending a complex (M?%);cz to the dg-module £(M) whose n-th term is
(M) = P M,
i+j=n
with the natural differential, S-action, and H-action, and where Gy, acts on M]Z -

E(M)I with weight j. It is clear that £ is an equivalence of categories; therefore
it induces an equivalence of triangulated categories

¢€: D(S-modyxc, ) = Duxc, (S)
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which satisfies
§o(l) =(1)[-1]o&.

It is clear also from the comments above that £ induces an equivalence of triangu-
lated categories

fi ~ fi
Db(S'mOdlngm) — ‘DI%XGm (S),

which we will again denote &.
Consider now the functor

Foryy“®™ : Dyxg,, () = D ()
associated with the obvious embedding H = H X {1} — H x Gy,.

Lemma 4.3. For any M in D%X@,m (A) and any N in D;}X@m (N), the functor
ForgX(Gm induces an isomorphism

(4.1) @ Homp,, . (M, N(n)) = Homp,, (a) (Forgx(Grm M, ForgX(Gm N).
nez

Proof. Using truncation functors and the five-lemma we can assume that M is
finite-dimensional and concentrated in a single degree. In the proof of Lemma 2.12
we have seen how to construct an object N’ which is K-injective as an H X Gy,-

equivariant A-dg-module and a quasi-isomorphism N 2 N Looking at this
construction, and using the fact that any injective H x Gy,-module is also injective
as an H-module (as can be deduced from [34, Propositions 1.3.9(c) and 1.3.10(b)]),
one can easily check that N’ is also K-injective as an H-equivariant A-dg-module.
It follows that the left-hand side in (4.1) is the 0-th cohomology of the complex

@ Homl.\—dgmodH X G (M’ N/ <n>)7
nez

while the right-hand side is the 0-th cohomology of the complex
HOIn/.\—dgmodH (M7 N/)'

The functor Forgx(c’m clearly induces an isomorphism between these two complexes,
and the claim follows. O

We finally set
K = Forf;*® oKoszul o € : D®(S-mod, . ) — DE(N).

This functor is endowed with a canonical isomorphism

I

ko (1)[1] & «.

Moreover, it follows from Lemma 4.3 that, for any M, N in Db(S—modfT_glem)7 K
and this isomorphism induce an isomorphism

(4.2) & Hom,,, (smodts (M, N(n)[n]) = Hom yes ) (M, k).
nez
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4.3. Compatibilities. Let now V' C V be an H-stable subspace. Then we can
consider the dg-algebras A and S as above, but also the similar dg-algebras

Nie= NV, 8:=Sm(V'))

attached to V', and the corresponding functor x’. The embedding V' < V induces
an embedding e : A" — A and a surjection f : S — S’. Therefore we can consider
the functors

L
¢* : D'S(N) — D'S(N), S’ ®s (=) : D*(S-modfs, ;. ) — D"(S'-modfg ¢ ).

Proposition 4.4. There exists a canonical isomorphism of functors making the
following diagram commutative:

D>(S-mod, g, ) —— = Df(A)
s/qaé(—)l ie*
DP(8"-modff,., ) ——= DF(N).
Proof. Consider the functor
S’ ®s () : S-dgmodf, . — S'-dgmodF ¢ .

It is easily checked that there are enough objects in S—dgmod%X@m which are K-flat
as S-dg-modules, and this implies that this functor admits a left derived functor

L
S'®s (=) : Dijue,, (S) = Dijxe,, (S)-

Then to prove the proposition it suffices to construct an isomorphism of functors
making the following square commutative:

Koszul
Dive,, (S) —"— Dic, (N
(43) st |-
Koszul’
Dffvg,(8) —— Dl g, ().

The left vertical arrow in (4.3) is left-adjoint to the functor f* : DEX@,m(S’) —
D%X(Gm (S). And since A is free over A, the functor e, induces a functor Re, :
D%X@m N) — D%X@,m(/\), which is right-adjoint to e*. Since the horizontal arrows
in (4.3) are equivalences, to prove that this diagram is commutative it suffices to
prove that the following diagram is commutative:

Koszul
Dix,(S) — = Dij.,,(N)
(4.4) f*T TRe*
Koszul’
DEXG,D(SI) = > DEXGm<A/)'

Now, recall the functor 4 considered in the proof of Theorem 4.1, and let 4’ be
the similar functor associated with V’/. Then by construction we have an isomor-
phism

e, 0B = RBo f*.
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Since all the functors considered here are exact, we deduce the desired commuta-
tivity of (4.4). O

Let now K C H be a closed subgroup, and assume that H/K is a projective
noetherian scheme. Then we can consider the functor « in the H-equivariant setting
or in the K-equivariant setting.

On the A-side, we can consider the functor

f f
Forfl : DEE(N) — DE(N),
and its right adjoint
H . nf f
RIndy : DE(N) — DE(N),
see §2.8. (The fact that this functor restricts to a functor between the categories
of objects with finitely generated cohomology follows from the commutativity of

diagram (2.14) and [34, Proposition 1.5.12].)
On the S-side, we can also consider the functor

Forgigz . Db(s_mOdg‘gIXGm) - Db(s_mOd%XGm).

The category S-modgk xg,, identifies with the category QCthXG’“(V) of K X G-
equivariant quasi-coherent sheaves on V. From this point of view, it is well known

that it admits enough injective objects, see e.g. [13, §A.2]. Using the same procedure
as in §2.8 we see that the functor Indgig:‘ induces a functor from S-modg«g,, to
HXxGp,

S-mod g xg,,, which we will also denote IndKX@m. Since the category S-modk «g,,
has enough injective objects, this functor admits a right derived functor

RIndgigz : D¥(8-modkxg,,) = D' (S-modpixg,,)-

From the point of view of quasi-coherent sheaves, the functor Indgigz“ identifies

with the composition of the “induction equivalence”
QCoh™ "= (V) = QCoh™ "% ((H x Gy,) x K> V)
with the direct image functor associated with the morphism
(H X Gy) x*¥Em vV 5V

induced by the H x Gpy-action on V. This morphism is projective under our as-
sumptions, and using the compatibility between equivariant and ordinary direct
image functors (see [13, Proposition A.10]), we deduce that RIndgigi restricts to
a functor

RIndp5gm Db(S—modegngm) — Db(S—modﬁfijm),

which is right adjoint to the functor Forgig::.

Proposition 4.5. There exist canonical isomorphisms of functors making the fol-
lowing diagrams commutative:

DP(S-mod® . ) —“> DE(A) DP(S-mod¥, ¢ ) — == DE(N)
Forﬁigg‘li iForg RIndﬁing iRIndg
DP(S-mod, ;) —“> DE(N), DP(S-mod ) ——= DE(N).

Proof. 1t is enough to prove similar compatibilities for the functor Koszulo&. In this
setting the commutativity of the first diagram is obvious, and the commutativity
of the second one follows by adjunction. O
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Part 2. Formality theorems

Overview. This part of the paper contains the proof of the Formality theorem
(Theorem 1.1). First, in Section 5 we prove a formality theorem for a derived
category of representations of the Frobenius kernel P;; of P;. Then in Section 6
we upgrade this to an “equivariant” version, containing all of Theorem 1.1 except
the commutative diagram. Finally, that commutative diagram is established in
Section 7.

5. FORMALITY FOR FPj1-MODULES
In this section we fix a subset I C S. We will denote by
b
DStein(PI,l)

the full triangulated subcategory of the category DP Repf(Pm) generated by the
object St;. The goal of this section is to describe this category in terms of differential
graded modules over the exterior algebra of nj.

5.1. A differential graded resolution of n;. Recall the algebras Dy, 37, and ny
introduced in §3.1. Let A; = A® s, considered as a dg-algebra as in Section 4, and
consider the graded algebra

Rr:=Ar®3r.

This algebra identifies with the (graded-)symmetric algebra of the complex 1y ,
ny, where the first term is in degree —1. Therefore, it admits a natural differential
which satisfies the (graded) Leibniz rule; in other words it admits a natural structure
of a differential graded algebra. Moreover, the differential is 3;-linear, and we have

k if n=0;
5.1 H"(R;) = '
(5.1) (Ri) {O otherwise.

(In fact, decomposing n; as a direct sum of 1-dimensional vector spaces, we see that
. . X-(=
the complex Ry is a tensor product of dim(n;) copies of the complex k[X] #
k[X] where X is an indeterminate.) Hence the natural morphism of complexes of
37-modules R; — k induced by the augmentation 3; — k is a quasi-isomorphism.

A major role in our arguments will be played by the differential graded algebra
Rn; :=R; X3, Ny.
Since Ny is flat (in fact, free) over 37, by (5.1) we have

H”(RnI) = {

Hence the morphism of differential graded algebras m; : Rny — n; induced by
the morphism R; — k (where n; is considered as a differential graded algebra
concentrated in degree 0, with trivial differential) is a quasi-isomorphism.

The differential graded algebras Rn; and n; admit natural actions of P; induced
by the adjoint action of P; on ny, and the quasi-isomorphism 7; is Pj-equivariant.
By restriction, we deduce actions of M; and My 1, such that My, acts trivially on
the subalgebra A; C Rnj.

Note that the functor

(5.2) Rrr.: Dy, (Rnp) = Dy, (ng)

ny ifn=0;

0  otherwise.
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is well defined; see Remark 2.8.
Lemma 5.1. The functor

71—)Ik : DMI,l (n1> — DMI,l (RnI)
is an equivalence of categories, which restricts to an equivalence
f ~ f
(53) Dﬁ[wl(n[) — DA%IJ(RH]).
The functor (5.2) is also an equivalence, and it restricts to a functor D%}I (Rny) —

R

D?@I.l(n[) which is a quasi-inverse to (5.3).

Proof. The first claim follows from Lemma 2.7. By the same lemma, the functor
7} restricts to an equivalence DX/[I (np) = DJJ\}M(Rn[). The right adjoint R, :

DLM (Rn;) — DLM (ny) to this restriction must therefore be its quasi-inverse; in

particular it must be an equivalence. Finally, for X in D;%II 1(Rn 1) we have

7R (X) 2 X,
which implies that Rmr.(X) has finitely generated cohomology. O

5.2. A crucial vanishing lemma. Note that the category of M ;-equivariant
Rn;-dg-modules is canonically equivalent to the category of modules over the semi-
direct product Rn; x my, where m; is the restricted enveloping algebra of my, or
equivalently the distribution algebra of My ;; see Remark 2.8. The same consider-
ation applies to A;j-modules.

Now, consider the dg-subalgebra 91; C Rny x m;. This dg-subalgebra is normal,
Rnyxmy is K-flat as a right 917-dg-module, and we have (Rny xmy) /9 = Af xmy.
Hence we can apply the results of §2.2 in this setting, and in particular consider
the object RHomg, (k,k) in Day, , (Ar). Since the dg-algebra A; is concentrated in
nonpositive degrees, the usual truncation functors for complexes define functors on

Dy, (Ar). We set
(5.4) RHomg? (k,k) := 750 (R Hom, (k,k)).

Then, considering similar constructions for the dg-subalgebra A; C Aj xmj, we can
form the object
RHomy, (k, RHomg (k, k))

in D+(m1) = D+Rep(MI71).
Lemma 5.2. For any k € Z, the Pr-module Extf;tl (k,k) is a subquotient of
(Ninp)*

Proof. We can compute Extf}t ,(k, k) using the Chevalley-Eilenberg complex, which
provides a Pr-equivariant projective resolution of the trivial 9t7-module, see e.g. [55,
Theorem 7.7.2]. In this way we see that this P;-module is the k-th cohomology of a
complex whose underlying graded vector space is (A* n7)*, and the claim follow. [

The main result of this subsection is the following technical result.

Lemma 5.3. We have

RHomyy, , (St7, RHomy, (k, R Homz (k,k)) ® St;) = 0.
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Proof. It follows in particular from Lemma 5.2 that the object R Homg,”(k,k) has
bounded cohomology. Using truncation functors, we deduce that to prove the
lemma, it suffices to show that for any k& > 0 we have

RHomyy, , (Str, RHomp, (k, Exty (k. k)) ® Str) =0,

where Ext . (k,k) is considered as a (trivial) A;-dg-module concentrated in degree
0. Then, to prove this fact it is enough to prove that

(6.5)  RHomyy, , (St;, RHomp, (k, k) ® Ext;’;h (k,k) @ St;) =0 for any k£ > 0.

And since M ; acts trivially on Az, the complex RHomy, (k,k) € DT Rep(Mj 1) is
isomorphic to a direct sum of shifts of trivial modules, so that (5.5) reduces to the
claim that

RHomMm(StI,Extf]}lI (k,k) ® St;) =0 for any k& > 0.

Finally, since St; is projective as an M ;-module (see §3.2), to prove this, we must
show that

(5.6) Homy, , (Str, Extl, (k,k) ® St;) =0 for any k > 0.
By Lemma 5.2, all the T-weights in the M;-module Extgh (k, k) are of the form

-2 a
acF
where F' C &+ \ ®] is a subset of cardinality k. By [31, Lemma 11.12.10], under
our assumptions that k # 0 and ¢ > h, no such weight belongs to /X. Now, using
Lemma 3.2, the tensor identity, and the fact that the induction functor Indglf ’11 (-)
is exact, we see that the M; ;-module Extgtl (k,k) ® St; admits a (finite) filtration
with subquotients of the form

Ind"! (kp, , (€= )s +v)),

where v is a T-weight of Ext’g}l (k,k). As explained above, no weight of the form
(—1)sr +v belongs to Wre (¢ —1)s;+4X = (£ —1)sr +£X. By the linkage principle
for My 1-modules (see [34, Corollary 11.9.12]), it follows that the simple module Sty
is not a composition factor of any subquotient of this filtration. This proves (5.6)
and finishes the proof. O

5.3. From A;-modules to Rnj-modules. Recall that M ; acts trivially (in other
words through the quotient M;; — {1}) on A;. Therefore, we can consider the
functor

Forly) : D(Ar) = Das, , (Ar).

On the other hand, for any V' in Rep(M; 1) one can consider the functor
(_) QV: DMI,I(/\I) - DMI,I(/\I)'

(Here, A acts on X ®V via its action on X, and M7 ; acts diagonally.) In particular
we can consider the object k ® V', where k is the trivial dg-module; this object will
simply be denoted V. Using this convention, we denote by

i
DSgtein (AI)

the full triangulated subcategory of the category D%}M (A1) generated by St;.
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Lemma 5.4. The functor D'(A;) — DE_. (A1) given by
V s Forly) (V) @St
is fully faithful.

Proof. First, we observe that the category D'8(Ar) is generated, as a triangulated
category, by k. Indeed, since A; is concentrated in nonpositive degrees, the usual
truncation functors for complexes induce functors for A;-modules. Then using these
truncation functors we see that that the category D (A;) is generated (again as
a triangulated category) by differential graded modules which are concentrated in
degree 0. Such objects are direct sums of copies of k, and the claim is proved.
Using this claim, to prove the lemma it suffices to prove that the morphism

EXt/.\I (k, k) — EXt.DMI ) (/\I) (St], St[)

induced by our functor is an isomorphism. Now, since St; is a projective M ;-
module with Endyy, | (Str) =k (see §3.2), there are natural isomorphisms

Ext}, (k,k) = Ext} (k,k) @ Enday, , (Str) = Ext}, ,(Str,Str),

and the lemma follows. (Here, in order to prove the second isomorphism, we remark
that if X — k is a quasi-isomorphism of A;-dg-modules with X K-projective,
then the induced morphism X ® St; — St; will be a quasi-isomorphism of My ;-
equivariant Ar-dg-modules, with X ® St; K-projective as an M| ;-equivariant Aj-
dg-module.) O

Consider now the morphism o; : Rny — Rny /91 = A;.

Proposition 5.5. The functor
o7+ D& (A1) = DY (Rnj)

Stein

18 fully faithful.
Proof. To prove the proposition it suffices to prove that the morphism

D%, Str, Str)

Hom Sty, St[) — Hombﬁé
1

I (Rny) (
induced by o7 is an isomorphism. Using the constructions of §2.2 for the normal dg-
subalgebras Ay C Ay xmy and 91; C Rny xmy, and in particular isomorphisms (2.3)

and (2.1) (see also (2.2)), we have canonical isomorphisms
Hombﬁﬁl‘l(/\1)(St17 Str) = Hom'D+Rep(J\/[I’1)(S‘LI7 RHomy, (k, Sty)),

f,
D]\%[I.l (Rn[)(

Hom Str, Str) = Hom%+gep(as, ;) (Str, R Homn, (k, R Homg, (k, St1))).

Now 917 and A; act trivially on St;, so that we have
R Hom, (k, St;) = RHomy, (k,k) ® St;, RHomy, (k,St;) = RHomy, (k, k) ® St;.
Hence the claim above reduces to the claim that the morphism
Hom})+gep(ar, ) (Str, R Homy, (k, k) @ Str)
— Hom?%y+pep(ar, o) (Str, RHomy, (k, R Homay, (k, k)) @ Str)
induced by the natural morphism
(5.7) k = 7<oR Homy, (k,k) = R Homy, (k, k)
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in fo;}l (A7) is an isomorphism. The cone of (5.7) is RHomg (k,k), so the desired
claim follows from the fact that

Hom$,+ gep(ar, ) (Str, R Homy, (k, R Homg (k, k)) ® St) = 0,

which was proved in Lemma 5.3. O

5.4. Formality theorem for P;;. Since N;;-modules are the same thing as nj;-
modules, see Remark 2.4, there exists a canonical equivalence of categories

(58) D]T/[I.l (nI) = D+Rep(P171).
Let us consider the following composition of functors, which we will denote by ¢;:

For}{v}; 1(—)®St1 or
D (A1) —2 % D, (M) D5 DY, (Ruy)

785 Dy, () 2 D*Rep(Pry).

It is clear that this functor satisfies ¢ (k) = St;. Combining Lemma 5.1, Lemma 5.4,
and Proposition 5.5, we obtain the following “formality” theorem.

Theorem 5.6. The functor ¢y is fully faithful on the full subcategory D'8(A;), and
it induces an equivalence

ng(/\l) = Dgtein(PI,l)'

5.5. Equivariance. In this subsection we fix a subset J C I. The dg-algebra A;
has a natural action of Py, and hence Qf Pj via the m_orphism Pj; — P; induced by
the Frobenius morphism Frp, : Pr — Pr. If V € Rep(P;), as in §5.3 we can consider

V' (or more precisely Forlljj (V)) as a Pjy-equivariant Aj-dg-module concentrated in
degree 0, with trivial Aj-action. Using the constructions of §2.7, we deduce a natural
action of (the group of k-points of) P; on the vector space Hom,, ) (k, V), for any
n € Z.

On the other hand, consider the distribution algebra p; of Pr ;. Since P;y C Py
is a normal subgroup, there exists a natural action of Py, hence also of P;, on this
algebra. If V' € Rep(P;), we can consider St; ® V as a representation of Fr;}(PJ),
hence as a Pj-equivariant p;-dg-module. Using again the constructions of §2.7, we
deduce a natural action of P; on the vector space

Hom{gep(p, 1) (Str, Str @ V1) = Homl,, ) (Str, Str @ V),

for any n € Z.
In Section 6 we will need the following consequence of Theorem 5.6.

Proposition 5.7. For any V € Rep(PJ), considered as a Nj-dg-module concen-
trated in degree O (with trivial Aj-action), there exists a canonical isomorphism

or(V) =Sty @ V.

Moreover, for any n € Z, the functor ¢y induces a Pj-equivariant isomorphism of
vector spaces

Hom%(/\l)(k’ V) = Hom%ReP(PI,l) (Str, Sty @ V).
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Proof. To prove the isomorphism (V) = St; ® V, since py acts trivially on V', it
suffices to prove that the functor ¢; commutes with tensoring with a vector space
(up to natural isomorphism). However, it is clear that the functors For}{\gll (—)®Str,
o7, and the equivalence (5.8), commute with this operation. And the functor
Ry, also commutes with tensoring with a vector space, since its inverse 7} (see
Lemma 5.1) clearly has this property.

Now, we claim that the natural morphism

(5.9) Hom%,)(k, k) @ V. — Homp s, (k, V)

is an isomorphism. Indeed, consider the Koszul resolution Kj for the trivial Aj-
dg-module k, as considered e.g. in [45, §2.3]. This dg-module is a K-projective
resolution of k, so that we have

Homp,y(k, V) = H"(Homgy, (K7, V)) = H"(Sym®(n}) @ V),
where 0} is in degree 2. We deduce that

Sym™2(5) @V if n € 2Z0;

Hom™ , +(k, V) =
MDA ( ) { 0 otherwise.

We have a similar description for Hom7, s (k, k), and from this it is clear that (5.9)
is an isomorphism.
Similarly, we claim that the natural morphism

(5.10) Hom%Rep(Pz,l) (St[, St]) ® V — Hom%ReP(PI,l)(Stl’ St] ® V)

is an isomorphism. Indeed, if X*® is an injective resolution of St; as a Pr ;-module,
then using [34, Proposition 1.3.10(c)] we see that X* ® V is an injective resolution
of St; ® V, so that we have

Homp)+gep(p, ,)(Str, Sty @ V) = H"(Homp, (St;, X* ® V)
= H"(Hom3p, , (Str, X*) ® V) = H"(Homp,  (Str, X°)) @ V.

This shows that (5.10) is indeed an isomorphism.

It is easy to check that isomorphisms (5.9) and (5.10) are Pj-equivariant, and
compatible with the morphisms induced by ¢ in the obvious sense. So, to conclude,
it suffices to prove that ¢; induces a Pj-equivariant isomorphism

Hom%(,\l)(]k, k) = Hom%Rep(Plyl)(St[7 Str).

The fact that this morphism is invertible follows from Theorem 5.6, and what
remains to be proved is Pj-equivariance. For this we can assume (for simplicity of
notation) that J = I.

We remark that the morphism

(511) Hom%Rep(PI’l)(StI, St[) — Hom%Rep(NI,l)(StI, St[)

I,1

induced by the functor FOYZ, . associated with the embedding N;; — Pr; is

injective. Indeed, by (2.3) appiied to ny C pr, we have a canonical isomorphism

HOID;DL1 (St], St[) = HOIH;\/IL1 (St], I%HOIIINL1 (]k, St[)).
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And since Sty is projective as an Mji-module (see §3.2), we deduce for any n
canonical isomorphisms
Hom i gep(p, 1) (Str, Str) = Homay, , (Stz, Homy, | (k, Str))
= }IOHl]\/[L1 (ﬂ(, Hom?VI’I(StI, St]))
(since Ny acts trivially on Str). The claim follows.
For similar reasons as above, the vector space Hompren(n, ,)(Str, Str) has a

natural action of Pr and, by Lemma 2.11 (applied to the inclusion n; < py), (5.11)
is Pr-equivariant. Hence to conclude it suffices to prove that the morphism

Hom(p,y(k, k) — Homp 1 gep(n, ,)(Str, Str)
induced by For?j ’11 opr is Pr-equivariant. Now, applying the commutativity of

diagram (2.10) for the functors o} and 7}, we see that we have an isomorphism of
functors

Fory!" ops 2 Ry, o (05 (—) ® Sty) 2 (Rrp, 0 07(—)) @ St
where Rmr, is now considered as a functor from D(Rn;) to D(n;) and o} as a

functor from D(Ar) to D(Rny). (We also use once again the fact that Ny acts
trivially on St;.) Since the natural morphism

HomTIL)Rep(NLl) (]1{7 k) — Homanep(NI,l) (St[7 St[)
is clearly Pr-equivariant, to conclude we only need to prove that the morphism
Hom%(,\l) (k, k) — Hom%Rep(NIJ) (k, k)

induced by the functor Rmy, o o} is Pr-equivariant. However, this morphism is the
composition

Hom%(,\l)(k,k) — Hom g,y (k, k) — Homlp (k, k)

where the first morphism is induced by o7, and the second one is the inverse to the
isomorphism induced by 7}. Hence the desired property follows from Lemma 2.11.
|

nI)

5.6. An Ext?-computation for B-modules. In this subsection we fix some s €
S. The following fact, whose proof uses a computation done in the course of the
proof of Proposition 5.7, will be used in §8.6 below.

Lemma 5.8. We have dimy (Ext (kg (£s;), ki (fss — L)) = 1.

Proof. We certainly have Ext%(kp(fs,), kp(fss — fas)) = Exty(kp, kp(—fay)). Tt
follows from Proposition 5.7 and its proof (in the special case J = I = @) that as
B-modules we have

Sym??(1*) @ kp(—lay) if g € 27,

Ext%, (kp,kp(—fag)) =2
X B1< B B( o )) {0 otherwise.

Corollary 2.6 (together with [34, Proposition 1.9.5]) then tells us that
(5.12)  dimy (Ext}(kp, kp(—Lay)))

< dimk(HO(B,EXt2Bl (kBl,kBl(feaS)))) + dimk(H2(B7HomB1 (kBl’kBl(igas))))
= dimy (HO(B, 7" @ k5(—a))) + dimyg (H*(B, k5 (—as))).
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The weights of n* @ kz(—as) are of the form § — ay with § € @1, each with
multiplicity 1. In particular, it has a 1-dimensional 0-weight space, so
dimy (H(B, 7" @ k(—ay))) < 1.
Let us now study

H3(B,kpy(—as)) = Exty (ks k(—ay)).

Using adjunction and the fact that Rlndg k(=) = ke [—1] (as follows from [34,
Corollary I1.5.5]), we have

Ext? (k. ks (—as)) 2 Hom? (ke, RInd% (k5(—aw))) 2 Ext?, (ke ke) = 0.
So (5.12) now says that dimExt%(kp,kp(—fas)) < 1. We have already seen in

Lemma 3.8 that Ext%(kp, kp(—las)) = Exth(kp(ls,), kg (fss — Lay)) # 0, and the
lemma follows. O

6. P;-EQUIVARIANT FORMALITY
As in Section 5, we fix a subset I C S. We also fix another subset J C I.

6.1. Statement. We denote by P;Mj ; the subgroup of G generated by P; and
Mry 1, or equivalently by P; and Py, which is normalized by P;. Note that any
element of P;M; 1 can be written (nonuniquely) as the product of an element of
Pj; and an element of My, which justifies our notation, but that M;j; is not
normalized by Py. The subgroup P;M;; C P can also be characterized as the
inverse image of P; under the Frobenius morphism Frp, : Pr — PI; in particular
we have a natural surjective morphism Frj;: PyMr; — P 7. We denote by

DSyein(PyMp,1) C DPRep'(PyM; 1)

the full subcategory generated by objects of the form St; @ V for V' € Repf(PJ).
(Here, what we really mean by St; ® V is ForII;éMIyl(StI) ® ForngI‘l(V), where

the functor For?’]ML1 is defined with respect to the embedding P;M;; — Pr, and

the functor For;“; My, 18 defined with respect to Fryr.)

The group Py acts on ny, and hence on the dg-algebra A;. By restriction, we
can consider A; as a Pj-equivariant dg-algebra. We define the functor

'(/)J)I : D}JgJ (A]) — D+Rep(PJM1,1)

as the composition

Forg]M * sy —1
+ JMrp.1 —RZ + a (1)
DPJ (Ar) D;JMIJ(/\I) o D¥ vy, (M) — D;,M“(Rnl) ~——
PyMy 1

RIndNI)1 XPyMp q

D;]MIJ(n[) = D+Rep(NI71 X PJM[,]_) D+Rep(PJM1,1).

Here the first arrow is associated with the morphism Fr;;, the equivalence on

~

the second line is induced by the equivalence Rep(N;1) = ny-mod (see (2.8)),
and the functor RIndZ‘;f[;’},J w,, 18 defined with respect to the morphism Ny ; x
PyMyp1 — PyMy; given by multiplication in PyMr . Since the morphism 7y is
a quasi-isomorphism (see §5.1), by Lemma 2.7 the functor 7} : D;,Mm(n[) —

D;FJ m; , (Rng) is an equivalence, so that the fourth arrow is well defined.



42 PRAMOD N. ACHAR AND SIMON RICHE

The main result of this section is the following.

Theorem 6.1. The functor ;1 is fully faithful on the subcategory Dif (A1), and
J
it induces an equivalence of categories
Va1 D (A1) = D3ein(Pr M ).

Moreover, for any X € Dfﬁ (A1) and any V € Rep(Py), there exists a natural and
J
functorial isomorphism

(6.1) Y5.0(X ® V) = 4hy1(X) @ Forgly, (V).

Theorem 6.1 will be proved in §6.3. For this proof we will relate the functor v
to the functor ¢ of Section 5. More precisely, in §6.2 we prove the following.

Proposition 6.2. The following diagram commutes up to an isomorphism of func-
tors:

Y,
D} (A1) M~ D*Rep(PyMp,1)
Forfi’} i lFor}P,if[I’l
D*(Ar) ——"——> D" Rep(Py1).

6.2. Proof of Proposition 6.2. Let us consider the large diagram of Figure 3.
Here to save space we have omitted the identifications

D;JM,J(”I) >~ DRep(N;1 x PyMy 1),
D, (nr) = D" Rep(Np1 % Pra),
Dy, (nr) = D¥Rep(Ny,1 »x My1) = D Rep(Pp 1)

induced by (2.8), and the functor RIndZIIJM p,, is defined with respect to the

multiplication morphism Ny x Prq — Pr . Note that the lower vertical arrows in
the second and third columns are well defined thanks to Remark 2.9, and that the
functors Rny,. on the second and third lines are well defined thanks to Remark 2.8.

By construction, the functor v ;; is the composition of the arrows appearing
on the top of this diagram, and the functor ¢; is the composition of the arrows
appearing on the bottom of this diagram. Hence to prove the proposition it suffices
to prove that each subdiagram (a)—(g) commutes (up to isomorphism).

It is clear that subdiagram (a) commutes, and (b) commutes by (2.10). Consider
now subdiagram (c). As in Lemma 5.1, the functor

Rﬂ']* : D;IJ (Rn]) — D;m(nj)

is an equivalence of categories, with quasi-inverse 7. Hence to prove the desired
commutativity it suffices to prove that the following diagram commutes:

*

+ I +
o
DPJM“("I) DPJMM(RHI)
PyMy PyMrp 1
ForPL1 i \LForPI’1

Df, (n)) ———=Df, (Rny).

This again follows from (2.10).
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FI1GURE 3. Diagram for the proof of Proposition 6.2

Next, Lemma 2.3, applied to the multiplication morphism Ny x P;Mp, —
PJM[J and to the subgroups N[’l X P[71 C NI,I X PJM[J and P],l C PJMIJ,
implies that subdiagram (d) commutes.

Consider now subdiagram (e). We claim that for any bounded below A;-dg-

module V, the M ;-equivariant A;-dg-module For}{vﬁ1 (V)®Sty is split on the right



44 PRAMOD N. ACHAR AND SIMON RICHE

for the functor Indﬂ}‘l1 : A;-dgmod,;, . — Ar-dgmodp, . Indeed, to prove this claim

it suffices to prove that if Forj\}l} 1(V) ® Sty — Y is a quasi-isomorphism of M ;-
equivariant Aj-dg-modules such that Y is K-injective, then the induced morphism
Indf/};1 (For}}l}yl(V) ® Sty) — Indf/}l’?1 (Y) is a quasi-isomorphism. However Y is
K-injective as a complex of M ;-modules because A; x m; is K-flat as a right m;-

module, and For{ }

(V)®8t is a bounded below complex of injective My 1-modules
by [ Prop051t10nl 3.10(c)], since Sty is an injective M ;-module (see §3.2). Hence
this fact is clear.

Using this claim, we see that the composition RIndPI !

1
(Foriwl},l(*) ® Str)
appearing in subdiagram (e) is the functor on derived categories induced by the
exact functor

Ar-dgmod™ — Aj- dgmodPI Ve Indf/};l (For}{\}[;1 (V) ® Str).
Now, for any V in A;-dgmod™ we obviously have
Indy" (Forl;) (V)@ St;) = Forh) (V) @ Ind}), (Str) = Forh) (V) @ 2

by Lemma 3.3, which finishes the proof of the commutativity of subdiagram (e).
Finally, subdiagram (f) commutes by Lemma 2.2 (see also Remark 2.9), and
subdiagram (g) commutes by (2.1), since the following diagram commutes:

7T[><1id
an bal m[C—> an Xpr——=Nn5 X Py
k lmult
Ny X My =——————=pjy.

We have proved that all the pieces in the diagram of Figure 3 commute. Hence
the diagram as a whole commutes, and Proposition 6.2 is proved.

6.3. Proof of Theorem 6.1. We begin with some preliminary lemmas.

Lemma 6.3. For any X € D; (A1) and any V € Rep(Py), there is a natural
J

isomorphism ;1 (X @ V) = ¢;1(X) ® ForPJMI (V).

Proof. We certainly have the following collection of natural isomorphisms (in each
line, Y should be understood as belonging to the appropriate category of dg-
modules):

Forp?y, (Y ® V) ® Zy = Fory! (V) @ Z @ Forp (V)
o (Y ® FOT?‘;M, (V) =o(Y)® FOTPJM, (V)
(Y ® FOTPJMI (W) =r)e FOI"P,M (V).

The tensor identity (or rather its easy extension to our more general version of
induction) tells us that

P;M PyM
RIn delilljJMll(Y®F0rPJM (V) = RIndy,  ip,ar,, (Y) ®FOYPJM“(V)-
The lemma follows from the combination of these isomorphisms. O

Lemma 6.4. There exists a canonical isomorphism 1y 1(k) = St;.
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Proof. From the definition of 7 we see that

-~ P My,
'L/)J,I(k) = RIndN;J;IIDJMIJ(ZI)’

where the induction functor is defined with respect to the multiplication morphism,
and where Ny ; x P; My acts on Z; via the projection to the second component
PyMy 1. Since ¢r(k) = Sty is concentrated in degree 0, using Proposition 6.2 we
see that ¢ (k) is also concentrated in degree 0, so that

¢J7](k) = IndNi,l >€1VIIDJM1,1 (Z[)

We also deduce that Forl’;jf“ (Indg‘;ﬂl/[;‘}gJMI (Zr)) = Sty.

Now by adjunction we have

PyM -
HomPJMI,l (Stlv IndN‘;71>I<1‘11—’,,M171 (ZI)) = HomNI,l XPyMr 1 (Stla Zl)a

where Ny 1 x Py My acts on Sty via the multiplication morphism to Py M ;. But
since Ny acts trivially on Sty, this action coincides with the action via the projec-
tion Ny 1 x PyMp1 — PyM;, on the second factor, and we deduce that

HomNIylprMI,l(St], Z]) = HOHlpJ]\/[I,l(StI7 Z])

By Corollary 3.6 there exists a nonzero PjMy 1-equivariant morphism St; — Zj,

and by these isomorphisms we deduce a nonzero morphism of Pj;M; ;-modules
Sty — Indgjlyg’}g]Mm (Z1). Since Sty is simple (see §3.2), this morphism is injective.
And the remarks above imply that our two modules have the same dimension, so
that this morphism must be an isomorphism.

We have thus proved that there exists an isomorphism (k) = St;. To con-
struct a canonical isomorphism, we simply remark that the forgetful functor induces
an isomorphism

HOIanMIJ (Sth St[) 1) HOHIPIJ (St[, St[)
(since both spaces have dimension 1), so that the canonical isomorphism ¢y (k)

Sty induces, via Proposition 6.2, a canonical isomorphism 1 r(k) = St;. a

As explained in §5.5, for any V € Rep(P;) and any n € Z, the vector space
Hom{,(n,y(k, V) admits a natural action of Py, which can easily be seen to factor

through an action of P (see the proof of Proposition 5.7).

Lemma 6.5. For any injective Py-module V and any n € Z, the morphism
HOHI%PJ (A1) (k, V) — Hom%(,\l) (k, V)
induced by the functor Forflj} 1s injective, and it induces an isomorphism
Hom3, () (k, V) = I (Homfn y (k, V).
Proof. By Lemma 2.12, there exists an object X in /\[—dgmod;J which is K-injective
and has components which are injective Ps-modules, and a quasi-isomorphism of
Pj-equivariant dg-modules V' 25 X. Then we have

Hom"DPJ () (k, V) = H"(Homgp . k, X)).

dgmod}-,J (



46 PRAMOD N. ACHAR AND SIMON RICHE

Now, as in §5.5, consider the Koszul resolution K of the A;-dg-module k. Then

. . .. . .. . qis . .. .
since X is K-injective the quasi-isomorphism K; — k induces a quasi-isomorphism

Hom/.\z—dgmodPJ (kv X) & Hom/.\I—dgmodPJ (Kfv X)

Next, we remark that we have
Hom/.\z—dgmodpj (KI’ X) =1 (Hom,'\l (KI7 X)) =1 (Sym. (ﬂ?) ® X)?
where 0} is in degree 2. The morphism Sym®(n}) ® V' — Sym®(n}) ® X induced

by the quasi-isomorphism V' 2 Xisa quasi-isomorphism of bounded below com-
plexes of injective Pj-modules; therefore it induces a quasi-isomorphism

1™ (Sym* () ® V) <5 17 (Sym* (8}) ® X).
Combining these isomorphisms, we obtain that
Hom, (n,)(k, V) = H(I™ (Sym* (87) © V)
N {HPJ(sym”/2(ﬁ7) ®V) ifn € 2Zs;
0 otherwise.
Similarly we have

Sym™2(13) @V if n € 2Zso;

Hom, . k,V)=
mDPJ(/\z)( ) {Q otherwise

(see the proof of Proposition 5.7) and the lemma follows. O

Similarly (see again §5.5), for any Pj-module V and any n € Z, the vector space
Hom?p)+gep(p, ,)(Str, St; ® V) admits a natural action of P;.

Lemma 6.6. For any injective Py-module V and any n € Z, the Pj-action on
Hom{+ gep(p, 1) (Str, Str @ V) factors through an action of P;. Moreover, the mor-
phism

HomT[L)JFRep(PJMI)l)(StI? St] & V) — Hom%JrRep(PI)l)(StI’ St] & V)

. PyMpy . . . . ) . .
induced by the functor Forp‘l'1 b1 s injective, and induces an isomorphism

HOI’nTéJrRep(PJ]\/IIJ)(St[7 St[ X V) l> I[PJ (Hom%JrRep(Pm) (St[, St[ ® V)) .

Proof. Let Sty 95 X be an injective resolution in Rep(P;M;1). Then X ® V is
an injective resolution of St; ® V', so that we have

Hom?+ rep(p, a1, 1) (Str, Str @ V) = H" (Homp p, , (Str, X @ V).
On the other hand we have
Hom}, yy, ,(Stz, X ® V) = 7 (Hom}, | (Str, X @ V)) 2177 (Hom}, , (Str, X) @ V),
where the PJ—action is induced by the P;Mj j-actions on Sty, X and V. Since V
is injective, the functor IV (— ® V) is exact; therefore we obtain that

HOm  pep(py a1y 1) (Str,St7 @ V) 2 177 (H" (Hom, | (Str, X)) ® V)
= I (H"(Hom}, , (St7, X ® V))).
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By [34, Proposition 1.4.12 & Corollary 1.5.13(b)], any injective P;M; ;-module is
injective as a Py 1-module; in particular X ® V' is an injective resolution of St; @ V'
as a Pri-module, and we have

H" (Homp, | (Str, X ® V)) = Homl 1 gep(p, ) (Str, Str @ V).
This finally proves that
Hom%.*_Rep(PJMIYl)(St], St[ ® V) = I[PJ (Hom%+Rep(PIY1) (St], St] X V))

This isomorphism proves the lemma, provided we prove that the Pj-action de-
duced (via the Frobenius) from the Pj-action considered in this proof coincides
with the action constructed (in the general setting) in §2.7. For this we choose a
complex of Pj-equivariant p;-modules Y and a Pj-equivariant quasi-isomorphism
Y 2% St; which is a projective resolution over p;y. Then this morphism induces a
quasi-isomorphism

Hom$, | (St7, X ® V) % Hom$, (Y, X ® V)
because X ® V is a bounded below complex of injective Pr;i-modules. And the

quasi-isomorphism St; ® V = X ® V induces a quasi-isomorphism

Homy, (Y,St; ® V) *% Hom}, (Y, X @ V)

since Y is a bounded above complex of projective Pri-modules. These quasi-
isomorphisms are Pj-equivariant, so the actions do indeed coincide. O

Corollary 6.7. For any injective Py-module V and any n € Z, the functor VI
induces an isomorphism

HOI’H%PJ (AI) (k, V) l) HOHlTéJr Rep(P,]ijl) (St[, St[ X V)

Proof. By Lemmas 6.3 and 6.4, we have canonical isomorphisms ¢ ; (k) = St; and
¥51(V) = Sty ® V. Now by Proposition 6.2 we have a commutative diagram

Hom%PJ(,\I)(]k,V) Hom%+Rep(P‘,M1,1)(SthStI ®V)

| |

Hom%(/\[)(k, V) Hom%+Rep(P“) (St], St] X V),

where the horizontal morphisms are induced by ;5 and ¢r respectively, and the
vertical morphisms by the appropriate forgetful functors. By Proposition 5.7 the
lower line is a Pj-equivariant isomorphism, and by Lemmas 6.5 and 6.6 the vertical
arrows are embeddings of the Pj-fixed points. Therefore the upper line is also an
isomorphism. ([l

Now we deduce a similar property for finite-dimensional Pj-modules.

Proposition 6.8. For any finite dimensional Pj-module V, and any n € Z, the
functor ¢ ;1 induces an isomorphism

Hom%fﬁ (AI)(k’ V)= Extp, ar, , (Str, Str @ V).
J
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Proof. As in the proof of Corollary 6.7, we have canonical isomorphisms 1 r (k) =
Sty and ¢y (V) = St; ® V. Choose an injective resolution V. — X*® of V as a
Pj-module and, for any k > 0, let X} be the complex

s 0 XY s X0
We have natural isomorphisms
HomD;gJ(AI)(lk, V) HomDﬁfJ(AI)(k’X ),
EXtyng]\/II,l(Sth Sty ® V) = HOII?[%J]\/[I,1 (St[, Sty ® X.).
Hence the natural morphism X*® — X} induces a commutative diagram

o,

(62) |

Hom%;gj(/\l)(k, Xk) E—— EXtT[E’JMLl (Sth Str ® Xk),

Hom k,V) ——Extp 5, , (Str,St; @ V)

where the horizontal arrows are induced by 9 ;. By Corollary 6.7 and the 5-lemma,
the lower line is an isomorphism. On the other hand, the same arguments as in the
proof of Lemma 6.5 show that we have

(6.3) Hongj(AI)(k,X’)g P H @™ (sym? (if) @ X*)),
i+2j=n

and similarly for X}. In particular, we deduce that the left-hand morphism in (6.2)
is an isomorphism for £ > 0. It follows that the upper horizontal morphism is
injective, and to finish the proof we only have to prove that

(6.4) dimk(ExtTISJMm (Str, Sty @ V)) < dimk(HOm%fg (A1) (k,V)).
Py

The formula (6.3) also shows that

dimk(HomgﬁfJ(AI)(k,V)): > dimg(Bxt), (k, Sym? (i]) @ V)
i+2j=n

= ) dim(Bxt’, (k,Homfp,(k, k) @ V).
i+k=n
On the other hand, by Corollary 2.6 we have
dimg (Ext, yr, , (Str, St @ V)) < > dimg(Bxt}, (k, Extp, | (St7,Str @ V)))
i+k=n

= ) dim(Bxt’, (k,Extp,  (Str,St;) @ V).
i+k=n

By Proposition 5.7, for any k we have an isomorphism of Pj-modules
Homb,s, (k, k) = Extlp, | (Str, Sty),

hence these formulas prove (6.4) and conclude the proof. (Note that all the dimen-
sions under consideration here are finite thanks to [34, Proposition I1.4.10].) O

We can finally complete the proof of Theorem 6.1.
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Proof of Theorem 6.1. The second part of the theorem has already been established
in Lemma 6.3. Since the category D;g (A1), resp. D§, i (PyMy 1), is generated by
J

the objects V, resp. Sty ® V, for V € Repf(P_]) (see the proof of Lemma 5.4 for the
first case), and since ¢ (V) = St; ® V (see Lemmas 6.3 and 6.4), to prove the
first part of the theorem, it suffices to show that for any V,V € Repf(PJ) and any
n € Z the morphism

HOHI%PJ (/\1)(‘/, V/) — Hom%gmn(PJMzJ)(StI @V, Str ® V’)
induced by ;1 is an isomorphism. However we have a commutative diagram

Hom%P] (AI)(‘/’ V/) Hom%gtein(PJMLl)(StI ® ‘/, St[ ® V/)

Hom%}_}] (/\I)(k7 1% X V/) > HOmEb (PJ]\/II,I)(StI7 St[ & 1% [029] V/)

Stein

where both horizontal arrows are induced by 1 and the vertical arrows are in-
duced by the natural adjunctions. The lower horizontal arrow is invertible by
Proposition 6.8, hence so is the upper arrow, and the theorem is proved. (]

7. COMPATIBILITY WITH INDUCTION

In this section, we show that the equivalence of Theorem 6.1 is compatible (in
the appropriate sense) with induction of representations from one subgroup of the
form P;M7j,; to a larger one. A larger such subgroup can be obtained by enlarging
either J or I. The two cases are rather different, and we will treat them separately.

7.1. Enlarging J. In this subsection we fix J € J’ € I. Then PJ C .PJ/. Using
the constructions of §2.8 we can consider the functor

P /
Rindy” : DY (A1) = Df (Ar).

Using [34, Proposition 1.5.12] and the commutativity of diagram (2.14), we see that
this functor restricts to a functor from D% (Ar) to D% (Ar).
J J!

Lemma 7.1. For any V € Rep(PJ), there exists a canonical isomorphism
Rindg)yp" (Str @ Forgy? (V) 2 Sty @ Fory? - (RInd” (V).

Proof. Using the tensor identity, it suffices to prove that we have a canonical iso-
morphism

Py M;p, P, ~ Py Py
R IndeM[{ll (Forp? Mia (V) = Forp” v, . (R Indpj (V).
First, we remark that since Py ; acts trivially on For;; a;y, (V), there exists a canon-
ical isomorphism
P, M, P ~ Py Py
Indijlfl1 (ForijL1 (V) = I*jorpj/]\/h1 (IndP; )

for any V in Rep(PJ). Hence, as in the proof of Lemma 2.3, to conclude it is enough
to prove that

R Indp?y " (Forly o (O(Py))) =0 for i > 0.
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Now, again as in the proof of Lemma 2.3, we have
RIndji7 (Forfy oy, (O(Py)) = RIP™M1H(O(Pyr My ) @ O(P))
> RIndg! ),  (O(Py My y)).

The functor RIndgj M, , 1s right adjoint to the functor Forgj , > but this functor

also admits as a right adjoint the right derived functor of the functor i (=)
Rep(P;M;j 1) — Rep(Py) induced by 1771, Hence we also have

RIndp/i (Forky, (O(Py))) = RIP1(O(Py My,)).

Now using [34, Proposition 1.4.12 & Corollary 1.5.13(b)] we see that any injective
Pj M 1-module is also injective over P; 1, so that

RIP1 (O(Py My,1)) = RIP (O(Py My y)) = RIndp! M (k).

PJ/MIJ

And using again [34, Corollary 1.5.13(b)] we obtain that R’Indp” """ (k) = 0 for
1 > 0, which finishes the proof. (Il
It follows in particular from Lemma 7.1 and [34, Proposition 1.5.12] that the

functor RIndg']\%ﬁ1 restricts to a functor from D§, ., (PyM; 1) to D8, (Py My 1).

Theorem 7.2. The following diagram commutes up to isomorphism:

Y1
D (Ar) = DSyein(Ps Mr,1)
RIndgjl l lRIndiij{’ll
D% (/\I) D]S:’tcin(PJ'MLl)'
J! JI

Proof. The functor Rlnd?’ " is right adjoint to the functor Forgj ", and the functor
J

RInd% M is right adjoint to the functor Forh’y"*. Hence to construct an iso-
PyMy PyM;j
morphism as in the statement of the theorem it suffices to construct an isomorphism
which makes the following diagram commutative:
D (A o Db, (PyM
p, (N) ————=——> Dgiein (P Mi1,1)
Forijl T For}}z‘;/lvl}/;{il
f; ~
D (M) —— == Dgiein(Pr Mi1).
J J' I
For this we consider the large diagram of Figure 4. We will prove that all parts
of this diagram are commutative; restricting to D;g (A7) will provide the desired
J/

isomorphism.

First, we remark that the left-hand trapezoid obviously commutes, and that
the two central squares are special cases of diagram (2.10), so that they indeed
commute. Hence to conclude the proof it suffices to prove that the right-hand
trapezoid commutes.
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DT (Ap) Dt Rep(PyMj 1)
Py ,
PyM
P TMr 1
Zy@Forp) (- RN 5Py vy
o* (ﬂ* —1
D} A)) — L Dt Rn;) —— > Dt
PJMIJ( 1) PJMI)I( nr) PyMyp, 1(”1)
Py PyrMy g Py My Py My gy PyrMp 1
For[:'j ForpTny ) ForpTny ForpTny | Forpy 1
o 51
+ + +
DP,]/MI,I(AI)HDPJ/MI (Rn1)4>DP /MI,i(nI)
Py PyrMy g
J
Zy@Forp’ () Rind T B g
Dt (A D¥Rep(P, My.1)
Py s

FIGURE 4. Diagram for the proof of Theorem 7.2

By definition, we have

Py M ,
I dNi,1>41i31‘,/M1,1 — [Nraxp, MI’l(O(PJ’MLl) Q _).

Now the restriction morphism O(PyMy1) — O(P;M; ;) induces a morphism of
functors

PJ/MIlOI dPJ/MIJ

P/M11 NiixP; M
NraxPyMpa = = Fo Orp : o AT I,I(O(PJ/MIJ)@_)

N Py M
— INE P (O(PJMM) @ Fory, ep)u, (=)

For

PyMy 1
Nr1xPyMy 1

Njyl NPJ/MI,l

= Ind Nr1xPyMy 1

o For

By general properties of derived functors, this morphism induces a morphism

PJ/MIl PJ/MIl N[11>4PJ/M1,1

, PjyMry 1
(7.1) Forp 'y, oRInd 7 b ay,, = RIndy " 0p g, o Fory p) s
By Lemma 2.3, we have canonical isomorphisms
PJ/M]J ~ Pjyl N[,1>4P‘]1M111
ForP oRIn dNI,mPJ,MI,i ~ 1’%Ind]\h’1>4PL1 OFOI‘NIJNPI,l ,
P/'MI 1 PyMry 1 ~ Pra Nr1xPyMry 1
Forp, oRInde><1PJMI~1 = RIndemDL1 OFoer,leI,l

Moreover, under these identiﬁcations, the image of (7.1) is the identity morphism

N171><1PJ/M111. . . . . . .
of the functor RIn N 1><1PI . OFOTNI,MPM ; in particular it is an isomorphism.

We deduce that (7.1) induces an isomorphism on every object of DTRep(Ny; x
Py Mj 1), hence that it is an isomorphism of functors. O

7.2. Enlarging I. In this subsection we fix J Cc I ¢ I’ C S. Then P; C P and
iy C f7. We deduce a Pj- equivariant embedding of Py- equivariant dg-algebras
j[7]/ : /\]I — /\].

Lemma 7.3. There exists a canonical isomorphism of (complexes of) PyMp ;-

modules
PyMp

]%IndPJI\/fI,i1 (Stf ® ik((f - 1)(§I’ - gl))) > Sty
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Proof. By Lemma 2.3, in D" Rep(P;,1) we have

(7.2) Forlljj/lfﬂ‘l oRIndp /" (Str @ k(¢ — 1)(sp — 1))
RIndp!" ' (St; @ k(¢ — 1)(sr — <1))-

In particular, since the functor Indgf’l1 is exact (see [34, Corollary 1.5.13(b)]), we

deduce that R Indgj%;/f (St;r@k((£—1)(s;r—sr))) is concentrated in degree 0. Now,

as in Lemma 3.2, we have an isomorphism of P j-modules Sty =2 IndPI Hkp, ((—
1)sz)), and similarly for I'. Tt follows that

Ind!' ) (Str@k((0—1)(sp—1))) & Ind ! (Ind 1 ((€=1)sr) @k (= 1) (61 —51)))
= IndPI/ ((E - ].)Q/) = St]/,

where the second isomorphism uses the tensor identity and transitivity of induc-
tion. Combining these isomorphisms with (7.2), we obtain an isomorphism of Py ;-

modules
P;M,,
Indp) 2 (Str @ k((€ = 1) (s —<1))) = Sty

By adjunction we have

PyM;r 4
Homp, ar,, , (Str, Indp) ;" (Str @ k((€ = 1) (s = <1)))

= HOHlpJMI,l(St[/,St] ® k((f — 1)(([/ — CI)))
= Homp, ., (Ind (k((¢ — 1)s)), Ind5 (¢ 1)sp)).

Since restriction of functions from P; to P; induces a nonzero Pr-equivariant mor-
phism IndP"(]k((E — 1)s1r)) — Ind5 ((¢ — 1)sp), we deduce that there exists a
nonzero Py My j-equivariant morphism

Sty — Indp " (Str @ k(¢ — 1)(s — 7).

Since both of these modules are isomorphic to St;» as Pp j-modules, and since
Endp,, , (St;r) = k, this morphism must be an isomorphism. O

Lemma 7.3 and the generalized tensor identity imply that for any V € Rep(Py)
we have a canonical isomorphism

PyMy
(7.3) RIndp, -t ((Str @ V) @ k(€ = 1)(sp — 1)) = Stp @ V.
In particular, it follows that the functor RIndp ». ' ((—) @ k((£ — 1)(sr — <1)))
restricts to a functor from DE, . (PyMp1) to Dstein(PJM[/,]_).

JMI/

Theorem 7.4. The following diagram commutes up to isomorphism:

b,
DngJ (/\1) ’:I DIS)tein(PJMI,l)
\
j;ﬂl RIndeM§’1 (=) ®K((E=1) (517 —<1)))
i

f;
D, (M) == D3iein(PsMr)-
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Proof. The embedding n;» C n; induces embeddings of dg-algebras
j})p:Rnp<—>Rn1, jI,I,Zn]/"—>n[

such that both squares in the following diagram commute:

oqr T

/\1/ Rn[/ nys
jz,z/i lﬂ,l' l][,ﬂ
or s
/\[ Rn] nr.

We also set
pi=—=1)(s1 —2pr+2pp —<p) and v:=(L—1)(sr —<1).

(Note that both p and v define characters of My, and hence of P; and any of its
subgroups.)

Consider the large diagram of Figure 5. (Here the functors F; and F» are defined
so that the corresponding triangle commutes.) It is straightforward (using in par-
ticular the commutativity of diagram (2.10)) to check that the left-hand trapezoid
and the four central squares in this diagram commute. In an equation, this means
that

PyMpr -k —%
(7.4) (Forp ' (=) @k(p)) o Faoji 1 77 o Fu.

Now we look more closely at the right-hand trapezoid. We complete this part of
the diagram as follows:

D*Rep(Nyy % PyM; ) —22d

For\L TRInd
D*Rep(Nypr 1 % PyM;y) RInd((-)8k(v))
RInd((7)®k(V))\L TFM(*)@H&(;L)
DFRep(Np/ 1 x PyMp 1)

D+ Rep(PJMLl)

Bind o D+Rep(PyM; ).
(Here, for simplicity of notation we have not indicated the groups in the functors
Ind or For. For the vertical arrows, these functors are defined with respect to the
obvious inclusions, and for the horizontal arrows they are defined with respect to
the multiplication morphisms.) We claim that the pairs of functors
Ni1xPyMy, Np1xPy My,

(7'5) (FOI‘N;: X};J]\/;ITI’RIndNi/Tle‘)]J]\}I,ll)’

N/ ><1P‘M/‘ ]\/v/1>4F),]\/[/y
(7.6)  (RIndN A () @ (W), Fory 20l () @ k()
in this diagram are naturally adjoint pairs. For (7.5), this follows from the general
theory.

Ny xPyMy .
For (7.6), we first remark that the functor Inde/i:Pij s exact. In fact,

using Lemma 2.3 we see that
NI’,1><]PJMI’,1 NI/)1><1PJMI/‘1 ~ NI’,1>(]PI/,1 NI/11><1PJM],1
FOINI/J NPI’,l ORIndNIIVI ><1PJMI’1 = RIndNI/J)ﬂP[J OForNI’1><1P[11 ?

and then the claim follows from [34, Proposition 1.5.13(c)]. By [34, §1.8.20], the func-
tor Forxj :1:1;%;/11 has as left adjoint the coinduction functor Coindxzizgﬁj t’ll,
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H(-)®k))

PyMy,
PyMy 4

N

D+ Rep(PJMI,l)
D+Rep(PJM1/71)

PyMyp o

RInd,
Ny @PyMp

o
=
& -
% 3
= =
Z ~
° =y g
= -~ ~ T 0 k
[ ~ ~ ® ~ o
c c ~ =
= = | =
- g e:{ﬁ—;f T_:
N S
- == ~
+R ~ N + A
Q ﬂth. Q
5
B
= * R
k& k£
N = =~
= [ =
x Tx
SN~— ~
e — ~
g’ o x
~ O~
33 2
+ A oo +A;
Q 5 Q
=

1
_
"
O'I/
_

—_ E —
~ e % =~
< < ~ <
= = ‘ =
~ <~ —
~ =% = XX =
Lo w0 48 33 o <L
X Q Q 8 Q -
E o ~
= =
Q?Q? S
o v,
o —
/¢ ¢
~— @i ~ ® —
= N e % %
= = N <
+ &
Q Q

FI1GURE 5. Diagram for the proof of Theorem 7.4

and moreover we have

. Ny XPyMpy < Ny xPyMp
COlnde/ijjMiil = Inde/;xPjM?l (—@k((¢ = 1)(2pr — 2p1)))-

(Here, Coindxj 11 :ij %i til stands for the functor Coinde ;1 :g t’ll, extended as in [34,
Proposition 1.8.20].) Since v = (¢—1)(2p;—2ps)—p, we deduce the adjunction (7.6).
Using the adjunction morphisms associated with the pairs (7.5) and (7.6) (to-

gether with the generalized tensor identity and the transitivity of induction) we
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construct a morphism of functors as follows:

RIndpJMI M) ®@k(v) ovpyr = RIndPJMlll () @k)) e Rlndf]‘;f;;ﬂu[’l o
= RIndy! i L (4) @ k) o Fi
S Rindy, U8, () @ K)o RIndy AL oFor RN of
2 Ry 0 (k)R I o(Fory! T () @k(n)oFedi,
Sl RlndNJ/Aiﬁ;zleM . omndﬁiﬁji:ijﬁiff ((—)®k(v))o (ForNﬁ 1:2?‘\211 ()@k()oFrosi o

(7.6) PyMp

. A -
RIndy p gy, , oF2 0010 =¥y ooir -

This morphism will be denoted 7.

To conclude the proof it remains to prove that 7 is an isomorphism. For this
it suffices to prove that 7y is an isomorphism for any V € Rep'(P;) (since these
objects generate the category D%J (Ar)). And then, by compatibility of all our

functors with tensoring with a finite dimensional Pjy-module, it suffices to consider
the case when V' = k. In this case, nx is a P;Mp j-equivariant endomorphism
of St;/; hence to prove that this morphism is invertible it suffices to prove that
it is nonzero. In particular, we can replace all the derived functors appearing in
the equations above by their nonderived counterparts. With this replacement, the
composition we have to consider looks as follows:
Py My,

(7.7) Sty — Ind,’ Py, (Z1 ®K(v)) = St

Let us consider the middle term in (7.7). One can check, using arguments similar
to those in the final step of the proof of Theorem 7.2, that, as Pp ;T-modules, we
have

PyMy, Py T
Indy’" S ar, , (21 @ k() = Indy 2 b 7 (Zr © k()
Py T
o IndNII/:l1 NMI’IT(StI ®k(v)),

where the second isomorphism uses a T-equivariant version of Lemma 3.3 (see the
proof of Corollary 3.6). We deduce that, as M ;T-modules, we have
PjyMy/

Indy,, %p,ar,, (21 k() = Indy; o (St @ k(v)).

Using Lemma 3.7, we see that to conclude, it suﬁices to prove that both morphisms
appearing in (7.7) are nonzero.

MI/ 1T

The first morphism is the image under the left exact functor Ind % PlJ Mia of the

NraxPyMiq
Nﬁ;ylxx]gjj\/;lyl(zl ®]k( )). Therefore

injective adjunction morphism Z; ® k(v) — Ind
it is injective, and in particular nonzero.
To handle the second morphism, as above we restrict equivariance to Py 1T

In this setting, the morphism under consideration is the image under the functor

Indgfl’/,llz Py T of the morphism
Ny X Py T
(7:8) Indy! ety (Zr @ (€= 1)(2p1 = 2p1))) = Zrp

induced by adjunction. This morphism is surjective. It is even a split surjection. In
fact, since Np» 1 C Ny 1 xPp 1T acts trivially on all the modules under consideration
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we have

Ny {XPy T
Indy, om0 (Zr @K((E—1)(2p1 — 2p1))) =

P ’ T P ’ T
FOTNII,T;xP,,YlT(Inde,ilT (Zrr @ k(¢ = 1)(2p1 = 2p1))))
(where the forgetful functor is defined with respect to the projection Ny 1 X Pp 1T —
Pr 1T on the second factor), and our morphism is induced by the surjective mor-
phism

Py, T
IndP;ilT (Z]/ ® k((ﬁ - 1)(2pp — 2p1))) — 7

induced by adjunction. Since Zy is projective as a Py 1 T-module (see Remark 3.4),
this surjection must be split, which finally proves that the second morphism in (7.7)
is nonzero, and concludes the proof of the theorem. O

7.3. The functors ©;; and ©7/. In the rest of the paper, we mainly consider the
functors 1 ; only in the special case J = I. In this case, we simplify the notation
and set

Yr =11 D (A) =5 Dgein(P1).-
Now we fix two subsets J C I C S. Recall the embedding j;; : Af — Aj. We
consider the functor

: % f f;
Oy 1= RIndy! ofj ;o (=) ®kp, (<5 — 1)) : Df (As) = D (Ar).
Proposition 7.5. The following diagram commutes up to isomorphism:

Y

Dif] (As) Dgyein(Py)
|
@J,Ii RIHd;I] ((-)@k(w—q))
P
D'E (A1) —————> D&i(Pr).
Proof. Consider the following diagram:
¥
D (Ny) —————> Dcin(Py)
(*)®ﬂ<p4,‘(97*€1) (—)®kp; Jf(w*ﬂ))
! ¥
D% (/\J) . D]SOtein(PJ)
’ |
ml Rindp? "1 ((-)@k((=1)(6r51)))
P,
DE (A1) “—— D8ein(Pr M)
RIndié RIndP‘I]MI'1
P
Dii (/\1) . DISDtcin(PI)'

The upper square is commutative by Lemma 6.3. The middle square commutes
by Theorem 7.4, and the bottom square commutes by Theorem 7.2. The compo-
sition on the left-hand side is ©;, and the composition on the right-hand side
is isomorphic to RIndg’]((f) ® k(ss — 1)) (see (2.5)). Hence the proposition is
proved. [
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The algebra Aj; is free of finite rank as a right A;-module; in particular it is
K-flat as a right Aj-dg-module. Therefore the functor Ay @a, (=) : A;-dgmod —
Aj-dgmod s exact, and induces a triangulated functor

L i i
/\J ®/\I (—) : Dli(/\[) — DE](AJ)
This functor is easily seen to be left adjoint to the functor j7 ;. Hence, if we set
L : ‘ fo
oM = () ® kp (s — 1)) o (As®@n, (=)o Forgi : DPgI (A1) — Dsl (Ar),
then the functor ©7 is left adjoint to © ;.
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Part 3. Induction theorems

Overview. The main goal of this part is to prove the induction theorem (The-
orem 1.2). This proof appears to be long and quite technical. For this reason, we
start this part with a detailed overview explaining the basic ideas of this proof.

As explained in §1.4, instead of considering the functor RInng directly, we will
consider the composition

. ~ RInd§
DPCoh™*En (Ny) 245 D (Ar) 5 Db osn(Pr) ——% D"Rep;(G),

where 17 is as in §7.3, and the functor s¢; is induced by the Koszul duality functor
of Section 4. The main point of this is that we can consider some “standard” and
“costandard” objects in DPCoh®*Cm (/\N/' 1) with favorable Hom-vanishing properties.
This construction is performed in Section 9. In case I = & these objects are simply
the standard and costandard objects in the heart of the exotic t-structure, which
are well known from [14, 6, 43]. In fact, a reader interested only in the case [ = &
and familiar with the exotic t-structure may skip most of Section 9. (From this
section, only §§9.1-9.2, §9.6, and §9.8 will be used in the proof of this special case.)

We will show that the composition RIndgj o ¥y o x5 sends these objects to
the usual standard and costandard objects in Rep;(G) (see Proposition 10.3). For
this proof, the crucial case is when I = &. In this case, the claim is easy for
certain standard (resp. costandard) objects, and we will deduce the other cases from
these ones using translation functors and some analogous functors II;; and 1%/

relating the categories DPCoh®>Cm (./\7 1) for different choices of I. The compatibility
between the functors R, Indgl orozy and translation functors is proved in Section 8,
building on the results of Section 7. (More precisely, we compare the functors I ;
and II7! with the functors Oy and ©71 of Section 7 via s in §9.8, and the
functors ©;; and ©7 with the translation functors via RInng othr in §8.7.)

But we will need more than the mere existence of some isomorphisms of functors:
in order to prove that a certain morphism in the distinguished triangle (10.3) below
is nonzero, we will need to prove that one can construct certain isomorphisms of
functors which are compatible with adjunctions in an appropriate sense. This leads
us to the notion of “commutative diagram of adjoint pairs”, which is introduced
and studied in Section 8.

Once all these ingredients are introduced, the proof of the induction theorem is
not difficult; see Section 10. The application to the “graded Finkelberg—Mirkovié¢
conjecture” is presented in the final Section 11.

8. TRANSLATION FUNCTORS

8.1. Setting. From now on we assume that the derived subgroup 2(G) of G is
simply connected, and denote by 7" the maximal torus of 2(G) contained in T.
For any a € X, we denote by w, € X*(T") the corresponding fundamental weight,
and we choose a preimage ¢, of @, under the surjective morphism X — X*(T").
Then, for any K C S, we choose ¢x as

SK = ZCow

acK
With this choice, for any J C I we have

ST —SJ =SnJ-
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We define the affine Weyl group W,g as the semi-direct product W x X. (This
group is sometimes rather called the extended affine Weyl group.) To avoid confu-
sion, for A € X we denote by t) the element 1 x A € W,g. The group Wag acts on
X via the “dot action” defined by

(vtr) o pi=v(p+ LA+ p) — p.

The subgroup W5 := W x Z® of W,g has a natural Coxeter group structure
(where we use the same normalization as in [43, §2.2]). Then the Bruhat order and
the length function extend in a natural way to W,g. We set

at = {w € Wag | £(w) = 0};

then conjugation by W3, stabilizes the set of simple reflections in W,g, and we
have Wag = WS x WX,
Under our running assumption that ¢ > h, —gx belongs to

Cz:={0AeX|0< (A+p,a¥)<lforall a e dt}.

Moreover, this weight has “singularity K7 in the sense that it belongs to the walls
of C7z parametrized by the simple roots in K, and to no other wall. By standard
arguments (see [34, §11.6.3]), this implies that

(8.1) {we WH* |we(—sk) =—cx} = Wkg.

a

For any I C S, we set
X7 ={ eX|Vaed], (\a¥) >0}
Then, for X\ € X}r, we denote by
Mr(A),  Nr(A), Lr(A)

the Weyl, dual Weyl, and simple M;-modules of highest weight A, respectively. We
will also consider these Mr-modules as Pr-modules via the surjection Py — Mj.
As usual, when I = S we omit the subscript in this notation. (In the case I = {s},
these modules have already been encountered in §3.3.)

Now we fix J C I C S. In this section, we will build on the results of §7.3
to obtain a relationship between the adjoint functors (071, © s,1) and translation
functors for Rep(G). A summary of the categories and functors we will work with
in this section appears in Figure 6.

Let us explain the notation used in this figure that has not been introduced
yet. First, on the right-hand side, for K € {I,J} we denote by Repg(G) the
Serre subcategory of Rep(G) generated by the simple modules whose highest weight
belongs to X* N W,g e (—cx). It is well known that this subcategory is a direct
summand in Rep(G), and we denote by

ing : Repi (G) — Rep(G), prg : Rep(G) — Repi (G)

the corresponding inclusion and projection functors respectively, or the induced
functors on derived categories. Note that in general Repg (G) is a direct sum of
several blocks of Rep(G), even when K = &; this is due to the fact that we work
with W,g and not with W;}f’x. More precisely, for any w € W3 we can consider
the Serre subcategory Repy ,(G) of Rep(G) generated by the simple modules whose
highest weight belongs to X N W5*w e (—<x). Then each Repg ,(G) is a direct
summand in Rep(G), and Repg (G) is the direct sum of these subcategories.



60 PRAMOD N. ACHAR AND SIMON RICHE

Qg
D () = Dtein(Py) DPRep(Py) D Rep;(G)
v
e R1Indp 1 RInng pry
iny
DPRep(Py) DPRep(G@)
(9)®k(sp\ g) | | (F)®k(=sp\ 1) mnng
(S)®k(sp\ g) | | (F)®k(=sp\ 1)
ol I |4 ©u1 D]S)tcin,—ql\J<PJ> (D)®Nr(er\ ) { 4 T
\ (5)®L(sp\ ) <7>®L(<I\J)*
RIndG
Rlnd DPRep(Py) DPRep(G@)
Fux prr
Rlnd RIndICjI ing
D¢ () — > DB (PD) DPRep(Pr) DPRep;(G)
Qr

F1GURE 6. Diagram for the study of translation functors

We also consider the translation functors

T/ :==pr; o ((—=) @ L(sp\s)) o ins : Rep;(G) — Rep,(G),
T7 :=pry o ((—=) @ L(sps)*) o iny : Rep;(G) — Repy(Q).

For any w € W, the restriction of T} to Rep; ,(G) is the functor denoted T *(=s7)

we(—s7)
in [34, §I1.7.6], and the restriction of T to Rep ; ,(G) is the functor denoted T:f:(( :JI))
in [31, §T1.7.6]

In the left-hand side of the diagram, Dgteim_ <I\J(P, 7) denotes the full triangu-
lated subcategory of DPRep(P;) generated by objects of the form V & k(—sp )
with V' € D&,...(Ps). The functors inc : D§, ., (Psy) — DPRep(P;) and inc :
DEteln’*CI\J<PJ) — DPRep(Py) are inclusion functors.

Finally, the functors 2; and €; are given by
(8.2) Qy=pr; oRInng oinc oy and Qr =pr; oRInng oinc o1y.
Later we will need the following easy lemma.

Lemma 8.1. For any K C S, the triangulated category D&, (Px) is generated
by the objects of the form N ((X — si) with X € X} + s, or by the objects of the
form Mg (X — sx) with A € X} + cx, or by the objects of the form L (¢X\ — Gk )
with A\ € X}; + k.

Proof. Note that
(W x X) o (—sx)) N Xf = {l\—cx, A € XF; +sk}.

Using this and [34, I1.7.3(5)], we see that the three cases are equivalent; we will
prove the case of the objects Lx (¢A — ¢k ).
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By definition (see §6.1), D&, ;. (Px) is generated as a triangulated category by
the objects of the form Stx ® Forgg(LK(,u)) with 4 € X}. Now since Stx is

simple as an Mg-module (see §3.2), by Steinberg’s tensor product theorem (see [34,
Proposition 11.3.16]) we have

St ® Forb (Lic (1)) 2 Lie(¢ — 1)si) ® Forb (Lic (1)) 2 Lie(¢ — Vs + ),

and the claim follows. O

8.2. String diagrams and commutative diagrams of adjoint pairs. It will
be convenient to use the “string diagram” notation to carry out computations with
natural transformations. The string diagrams in this section should be read from
top to bottom. We follow the usual convention that if p - ¢ is an adjoint pair
of functors (with a fixed adjunction), then the unit 7 : id — ¢p and the counit
€ : pq — id are denoted by

/\ and p\/q

q p

respectively. The most important rules for doing calculations with string diagrams
are those coming from the unit-counit equations

epopn =id, and geong =1id,

(sometimes called the “zigzag relations”), depicted graphically as

(8.3) P - P and -1
\/\p I\) q/\/ (\]
Suppose now that we have four categories A, A’, B, B’, with functors f : A — B
and f': A" — B’ and two adjoint pairs p 4 ¢ and r - s as shown in the following
diagram:

A ! B
(8.4) U ) Ll

There exists a bijection

(8.5) Mor(f'q,sf) = Mor(rf', fp)
that sends a morphism 0 : f'q — sf to the morphism 0" : rf’ — fp defined by

r f r f!
! p f p

The inverse map of (8.5) associates to ¢ : rf’ — fp the morphism ¢V : f'q — sf

defined by
! q f q
:
s f 5 /
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The unit-counit relations (8.3) imply that the assignments 6 — 0" and ¢ — ¢V are
indeed inverse to one another.
These constructions satisfy the following property.

Lemma 8.2. Let 6 € Mor(f'q,sf). For any X in A" and Y in A, the following
diagram commutes:

Hom(pX,Y) ——> Homg(fpX, fY)

adjil i(—)oeé\(

Hom 4/ (X, qY) —— Homg(rf'X, fY),
where the bottom map is the composition

Hom 4/ (X, ¢Y) EiN Homp: (f' X, f'qY) SrolD), Homp: (f'X,sfY)

29y Homp(rf'X, fY).

Proof. Consider the diagram of Figure 7 (where we simplify the notation, and write
e.g. 0 for Oy o (—)). It follows from the definitions that each part of this diagram
is commutative, and the exterior square in this diagram is exactly the diagram of
the lemma. O

Definition 8.3. The diagram (8.4) is said to be a commutative diagram of adjoint
pairs if there exists an isomorphism 6 : f'q =+ sf such that 6" : rf’ — fp is also
an isomorphism.

Of course, the condition in Definition 8.3 is equivalent to requiring that there
be an isomorphism ¢ : rf’ — fp such that ¢V : f'q — sf is also an isomorphism.
The following easy observation (which is standard and was already implicitly used
in the proof of Theorem 7.2) says that Definition 8.3 is easy to satisfy when f and
f! are equivalences.

Lemma 8.4. In diagram (8.4), suppose f and f' are equivalences of categories. If
0 : f'q — sf is an isomorphism, then 0" : rf' — fp is an isomorphism as well.
Similarly, if ¢ : vf' — fp is an isomorphism, then so is ¢V : f'q — sf.

Proof. This statement can be deduced from Lemma 8.2 and the Yoneda lemma.
Alternatively, one can argue using string diagrams as follows. If € is an isomorphism,
then the following two natural transformations (whose construction uses the natural
adjunctions = - f and f'~! 4 f’) are isomorphisms as well, inverse to each other:

WA U

The former is obtained by composmg 6" with the isomorphisms 1d — f'f'- 1 and
ff —id, so 6" is an isomorphism. The argument for ¢ and ¢V is similar. O

In the following lemma, we do not assume that f and f/ are equivalences.
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FIGURE 7. Hom-spaces for Lemma 8.2

Lemma 8.5. Suppose that (8.4) is a commutative diagram of adjoint pairs. Then
f takes the counit for the adjoint pair p 4 q to the counit for the adjoint pair r - s.
More precisely, there exists an isomorphism of functors fpq — rsf such that, for
any X € A, the diagram

flex)

f(pa(X)) F(X)
vﬂim> ———— (X)

commutes.
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Proof. Let 6 be as in Definition 8.3, and consider the isomorphism f(pg(X)) —
rs(f(X)) given by

Fpa(x)) L pra(x) TO0, g p(x)).

Then the lemma follows from the claim that

r f/ q r f/ q
=N =
f f
which follows immediately from the definition of #" and the rules in (8.3). g

8.3. More natural transformations. We now list a number of natural transfor-
mations related to Figure 6. Consider first the triangle

DPRep(Py)
S
DStem P] DbRep P[)

The unit for the adjoint pair Forgf, 1R Indgg gives rise to a natural transformation
inc
(8.6)

R Indgj F org

which is easily seen to be an isomorphism. Similarly, consider the triangle
b
DSteln ,—SI\J (PJ)

DPRep(Py).

Pr

Dgteln(PI)

The counit for the adjoint pair Forgfl - RInd?’} gives rise to a natural transforma-
tion

Forﬁzg RIndg
(8.7)

inc
Pasting these two triangles, we also have a natural isomorphism incoR Indg’] =
RIndg oinc, which we will depict as

inc  RIndp!
(8.8)

RInd lnC
The following lemma follows directly from the zigzag relation for the adjunction
Forp! - RInd}!.
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Lemma 8.6. The composition

inc o RInd% % RIndL o Forl oRmd% 2 RInd% oine

coincides with the isomorphism (8.8). In other words, we have

. Py
e RIndp, inc R Indgl
J

RInd2r i
RInd?’I inc Hep, me

Throughout this section, functors like (—) ® k(sp\s) and (=) ® L(sp )" will
often be denoted simply by k(s s) and L(sp s)*, respectively. The functors (—) ®
k(sr\s) and (—)®k(—cp\ ;) commute with the appropriate inclusion functors. These
commutativity isomorphisms will be denoted by diagrams of the form

inc  k(—<n\J) k(—<rs) inc inc  k(sp.g) k(sps)  inc
(8.9) ><
k(—<ns) inc inc  k(—¢n\J) k(srs)  inc inc  k(sng)

The “transitivity” isomorphism RInng o RInd?II & RInng (see (2.5)) will be
denoted by

RIndg, RIndp! RIndg,
(8.10) or
RIndg, RInd%, RIndy!

Lastly, we have a canonical isomorphism of Pj;-modules

k(sng)* 2 k(=<snJ)-

Let us fix a nonzero (surjective) map of Pj-modules

(8.11) L(sns) = k(sn\g);
then by duality we deduce a nonzero (injective) map
(8.12) k(—sng) = L(sng)™

We define a natural transformation

RIndIGng(—CI\J)
v RInng ok(—sps) = L{sps)* o RInng or

L(sr\s)* RInd@,
by
RInd® (M ®@k(—sp ) = RIndE (M @ L(sp5)*) = RIndS (M) ® L(sp )",

where the first morphism is induced by (8.12) and the second one by the tensor
identity.
We likewise define

L(srs) RInd@,
d:L(spg)o RInng — RInng ok(sns) or

RIndg, k()
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by
RIndg (M) ®L(sps) = RIndg, (M ® L(spy)) = RIndE (M @ k(sp ),
where the second morphism is induced by (8.11).

8.4. Natural transformations related to induction. In this subsection, we
prove several lemmas about v and §. Note that the diagram

RIndf,
DPRep(Py) DPRep(G)
(=) ®k(sr\7) T4i(—)®k(—<1w) (—)®L(<I\J)T4i (=)®L(sn\0)”
DPRep(P. DPRep(G
eD(P)) —— eb(G)

matches the pattern of (8.4), so that the following lemma makes sense.

Lemma 8.7. We have § =~ and v = §Y. In other words,

L(sr\s) RInd@, L(sps) RInd@, RIndg, k(—sp\s) RIndg k(—sns)

)

RIndg, k() RIndg, k(si\s) L(sns)* RIndg, L(sps)" RIndg,
Proof. Unwinding the definition of 4", we encounter the composition
L(sng) = k(sng) @ k(=sp\) @ L(spg) = k(sng) @ L(sns)® @ L(sng) — k(sn)s

where the first and last maps come from adjunction, and the second one is induced
by (8.12). It is easy to see that this composition is equal to the map in (8.11). It
follows that v = §. The second equality follows, since (—)V is inverse to (—)". O

Lemma 8.8. For any M € D%, ,.(Pr), the natural adjunction maps
R Indgl (incM) — inypr; R Ind% (inc M),
inypr; R Indgl (inc M) — RInng (inc M)

are isomorphisms.

Proof. This statement is equivalent to saying that for any M € D'gtein(PI), the
object RInng (inc M) belongs to DPRep;(G), or equivalently that its cohomology
objects belong to Rep;(G). Using Lemma 8.1, it suffices to prove this claim for the
objects Ny(w e (—¢7)) with w € W; x X and w e (—¢;) € X. In this case, using
Kempf’s vanishing theorem (see [34, Proposition 11.4.5]) and (2.5) we have

RInd§ (inc M) = RInd§ (RInd} (k(w e (—¢7)))) = RInd% (k(w e (—¢r))).

Then [34, I1.7.3(5)] implies that this object indeed belongs to D”Rep;(G), and the
claim is proved. O

Lemma 8.9. The natural transformation
pr;yinc: pry o RInng ok(—cp ) oinc — pry o L(sps)* o RIndIGgJ oinc

of functors from Dg,...(Ps) to DP’Rep;(Q) is an isomorphism.
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Proof. Using again Lemma 8.1, it suffices to prove that this morphism is an iso-
morphism when applied to any object Nj(¢A — ;) with A € X'J|r +¢s. In this case,
the argument is closely modeled on the proof of [34, Proposition I1.7.11]. Let @ be
the cokernel of the map (8.12). Then there is a distinguished triangle

INj(Lx—57)
EEE——

RInd% (Ns(EX —<7) @ k(—sps)) RInd% (Ns(EX — 7)) @ L(sp\ )"

- RInd%J(NJ(f)\ — §J) & Q) ﬂ>,

so that to conclude we only have to show that pr; RInng(NJ(éx\ —-s5)®Q)=0.
Since (as in the proof of Lemma 8.8), RInd§ (N;(¢X — ;) ® Q) = RIndf(k(¢\ —
¢J) ® @), we have reduced the problem to showing that

(8.13) pr; RInd%(k(I\ — ¢;) ® Q) = 0.

Let v be a weight of L(¢y\ )*, and assume that —¢y +v € Wag ® (7). Then we
must have —¢; +v € W5 e (—¢;). Indeed, write

—ss+v=(wty)e(—cr) =wllp—sr+p)—p
where w € W and p € X. Then we have
ltw(p) = —s5+v+w(sr) —w(p) + p.
Here it is easily checked that the right-hand side belongs to Z®; so fw(u) belongs
to Z® N (X = (Z®. (Here the equality follows from the fact that X/Z® has no
{-torsion since ¢ > h.) This implies that w(u) € Z®, hence that p € Z®, and finally
that wt, € WGP, as claimed.

According to [34, Lemma I1.7.7], we must have v = —wgp ; for some w € W,
and —¢;+v = w' e (—¢;) for some w’ € WS* such that w'e(—<;) = —¢;. By (8.1),
the latter implies that w’ € Wy, so w’ e (—¢;) € —¢;r + Z®;. To summarize, we
have that

(8.14) —’ng\JE—§[+§J—|—Z(I)J:—§[\J+Z(I>J.
Assume that w was chosen to have minimal length, and choose a reduced expression
w = 81 8p. Since —¢p\ s is antidominant, we have

—SN\J =X T8pS\J = —Sr—18rSn\g < 0 =< —WS g,

where < is the standard order on X associated with our choice of positive roots
(see §9.3 below). Write —wep j+<p s as Y g nsas. Here each ng is a nonnegative
integer; it is strictly positive if s occurs at least once in the product sy ---s,. If
w # 1, then at least one simple reflection not in J must occur, since W; stabi-
lizes —¢p\ s for the standard action. So if w # 1, we have —wsp ;s +<sp\ 7 ¢ Z®,
contradicting (8.14).

We conclude that w = 1, i.e., that the only weight v of L(¢y\ s)* such that
—6j +v € Wag ® (—¢1) is v = —¢p\ . In other words, if v is any weight of @, then
—s7+v ¢ Wag @ (—¢r), and hence

IN—=Gy+v ¢ Wag @ (—c1).
Then (8.13) follows from this by [34, I1.7.3(5)]. O
Lemma 8.10. The natural transformation

pry 5For§’] :pry ol(spg)o RInng o ForIIZIJ —pry o RIndIG)J ok(sps) o Forgg
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of functors from Dg,...(Pr) to D’Rep;(G) is an isomorphism.

Proof. By adjunction, and since N(¢p\ 7) = Indgl (Nz(p\s)), there exists a canonical
morphism ForgI(N(gI\J)) — Nz(sp\s). Moreover this morphism is surjective (see
e.g. [20, Theorem 3.1.1] for a much more general statement). Composing with the
embedding L(cp\s) < N(sp\s) and with a morphism of Pj-modules Ny(sp\s) —
k(sps), we see that (8.11) factors as a composition

(8.15) L(spg) = Nz(spg) — k(spg)-
Now, consider the functor
(=) ® N7 (sp\s) : D"Rep(Pr) — D"Rep(Py).

Using the morphisms in (8.15) in place of (8.11), we can define two natural trans-
formations

8" : Nr(sps) o RIndp! — RIndy! ok(sp.s),
5" L(gI\J) o RInng — RIndIGgI o NI(§I\J)

that are analogous to §. These transformations are related to § by

L(srs) RIndg,
L(srs) RIndg, Ctr >
RIndg, k(sr\s) .

RIndIG;J k(srys)
Thus, the lemma will follow if we can show that the following two natural transfor-
mations are isomorphisms:

(8.16) 5 Forg’] :Nz(spg)o RIndg o Forg’] — RIndg ok(cps)o Forglj,

(8.17) pr; 8" RInd}! Forg’] :pry oL(spy) o RInd%, o RIndy! o Forﬁ’J
—pry o RInng oNz(sp)o RIndg ° Forg .
The fact that (8.16) is an isomorphism follows the observation that
RIndj! (Fory! (V))®@N;(sps) = VORI k(s s) = RIndp! (Fory! (V)®k(sp 7))
by the tensor identity. On the other hand, because the morphism
Rlndg o For?J — inc

induced by the counit is an isomorphism, we see that (8.17) is an isomorphism if
and only if

(8.18) pr,;¢”inc:pry oL(spy) o RIndg, oinc — pry o RInd§, oNr(sp ) oinc

is an isomorphism. We will prove this by an argument similar to that in the proof
of Lemma 8.9. Let C be the cone of our morphism L(sp ) — Ni(sps). For
V € DPRep(P;), we have a distinguished triangle

RIndS, (V) ® L(spy) 25 RIndS, (V @ Ny(sp ) — RInd€, (v @ ) s .
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Hence, for a given V, pr; 87, is an isomorphism if and only if pr; R Indgl (Vel) =0.
Using Lemma 8.1, we see that to prove that (8.18) is an isomorphism, it suffices to
show that

pr; RInd§, (Ind}; (k(PA — 1)) ® C) = pr; RInd§ (k(¢A — 1) ® C)

vanishes for any A € XI+ +<r.

We have H'(C') = 0 unless i € {—1,0}, and moreover any weight v of H=1(C) or
HO(C) lies in the W-orbit of a dominant weight v which satisfies v < ¢\ (since
v is a weight of N(sz\ 7). Hence, by [34, Lemma I1.7.7] and the same arguments as
in the proof of Lemma 8.9, if v is such a weight and if —¢; +v € W,g e (—¢), then
we have v = we\ ; for some w € W, and —¢; +v = w' @ (—¢;) for some w’ € We%”‘
such that w'e(—¢r) = —¢;. By (8.1) we have w’ € Wr; then, in analogy with (8.14),
we deduce that

weng €Sn\J + 7.9;.

Reasoning similar to which followed (8.14) now shows that w must lie in W;. How-
ever, our morphism L(cp s) — Nr(sp\s) is an isomorphism on the weight space of
weight <7\ 7, and hence also on any weight space whose weight is in Wr (s s), so no
such weight can appear in H=1(C) or H(C).

To summarize, if v is any weight of a cohomology object of C, then —¢; + v ¢
Wag ® (—<7), and hence ¢\ — ¢ + v ¢ Wag ® (—¢;). By [34, I1.7.3(5)], we conclude
that pr; Ind% (k(¢X — sng) ®C) =0, as desired. O

8.5. Natural transformations related to the formality theorem. According
to Proposition 7.5, there exists a natural isomorphism

a:ro®yr = RInd?’] ok(—<pg) o,

which we will depict with the following diagram:

Y1 O
(8.19)

RIndp k(=sr\s)

Consider the two functors D;gl (Ar) — DPRep(Py) given by M + Forg (Yr(M)) ®
k(sp\s) and M +— inc(ys (071 (M))). We define a natural transformation

B k(spg)o Forg oty — inc othy 0 ©F1
by

Forg! (1 (M)) @ k(sp\s) — Forp! (11(05,107 (M) @ k(sp 1)
< Forp! (RTnd ! (¢, (071 (M)) @ k(=sp\s))) @ k(sps)
= ¥ (071(M)) @ k(—sp 1) @ k(spg) = ¢ (071(M)),
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where the first, third and fourth morphisms are induced by adjunction. Graphically,
this means that

k(srs) Foryl ¢y
k(sry ) Forg Pr

inc vy e’
inc Py e’

8.6. Study of g for a minimal parabolic. In this subsection, we assume that

J =2 and I = {s}. Our goal is to prove the following statement.

Proposition 8.11. Assume that J = @ and that I = {s} for some s € S. The
natural transformation

RIndgs B RIndgs ok(ss) 0 Forgs 0 Yyey — RIndgs oinc oy o 02 {s}
is an tsomorphism.
For the proof of this proposition we will use the following simplified notation:
Y=y, Y=y, A=Ay, A=Ay, ©0°:=0211 0,:=0, .
We will need some preliminary lemmas concerning the object
Y, =0'(0) = (A A) ©kpls) € DE(A).
(See §2.2 for the definition of the quotient A / A;.) It is easy to see from the

definition of ©% that for any V' € Rep(FPs) (regarded as a Ps-equivariant Ag-module,
as in §5.3), there is a canonical isomorphism

V)2V, V.

(Here and below, we omit the functor Forgs .) Note that A /Ay is isomorphic to the
exterior algebra on the 1-dimensional space n/n; = k(—a;,). We therefore have

kp(ss) @V if 1 =0;
Hi(YS®V)g kp(cs —as) @V ifi=—1;
0 otherwise.

In particular, we have a truncation homomorphism

T: Y0V =2 kg(s) V.
Lemma 8.12. The object ¥(Y; ® V) € D&, (B) is isomorphic to the following
chain complex concentrated in degrees —1 and 0, where f is the map defined in
Lemma 3.8 (and were we omit the functor Fork: ):

(8.20) - — 0= Sty @kp(ss —as) @V L2 St @ kp(c) @V =0

Proof. Recall from (6.1) that we have ¢(Y,® V') = ¢(Y,) ® V. Therefore, it suffices
to prove the lemma in the special case where V is the trivial P;-module. Consider
the truncation distinguished triangle

Yy D kplss) S klss —as)[2] = .

The object Y; is certainly indecomposable (because it is indecomposable as a A-
module), so the connecting morphism ¢ is nonzero. Therefore, ¥(¢) is a nonzero
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element of Ext% (kg (fss), kp(fss — o). By Lemma 5.8, ¢(¢) must be a nonzero
scalar multiple of the element § € Ext%(kp(fss),kp(fss — fa)) constructed in
Lemma 3.8. It follows that the cone of 6 is isomorphic to the cone of 1 ({). The
cone of § is given by the chain complex (8.20) (with V' = k), while the cone of 9(()
is P(Y2). 0

Lemma 8.13. For any simple module V € Rep(P;), the composition
(8.21) V2% 0,00(V) 2 0,(ky(c) © V)
(where 1 is the adjunction morphism) is an isomorphism.

Proof. 1t is easy to see from the definition that Os(k;(ss) ® V) = V. Since V
is simple by assumption, we need only show that ©4(7) o7 is nonzero. But this
morphism is the image of 7 under the isomorphism

Homeg(A)(@s(V), ks () ®V) = Hompif (/\S)(Va 93(k3(§S) ®V))
induced by adjunction; hence it is indeed nonzero. (]
We are now ready to prove Proposition 8.11.

Proof of Proposition 8.11. By the same arguments as in the proof of Lemma 5.4,
the category D;g (As) is generated by the simple P,-modules V, regarded as P,-
equivariant /\S—dé—modules with trivial As-action. Hence we can fix such a V', and
it suffices to show that RIndg"' By is an isomorphism. Applying 1, to the maps
in (8.21), and using the natural transformation «, we obtain the commutative
diagram

%(V) 1/159598(‘/) Q/Js@s(kg(%) & V)
(8.22) alz alz
RIndE: (0% (V) @ k(—¢,)) = RIndE: (4 (I (ss) @ V) @ k(—sy)).

For brevity, we introduce the notation
Qv :=90*(V) @kp(—¢s).
According to Lemma 8.12, QQy can be identified with a chain complex
Sts @k(—as) @V = St @V

concentrated in degrees —1 and 0.
We also have ¢(kp(ss) @ V) = kp(ls,) ® V, so from (8.22) we obtain the maps

Ys(V) = RInd5 (Qv) — RIndE (kp((4 — 1)s,) @ V).

By Lemma 8.13, the composition of these two maps is an isomorphism. Next,
applying Fork: and using the counit Fory: RInd%: — id, we obtain the commutative
diagram

Fors 4, (V) — Fork: RInd%: (Qyv) — Fortr RInd: (kp((4 — 1)ss) @ V)

| |

Qv kp((f—1)s5) @ V.
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Note that RInd%: (kg((£—1)s,) ® V) = St, @V by the tensor identity and Kempf’s
vanishing theorem. Hence the right-hand vertical arrow identifies with a surjective
map Forts (St, @ V) — kg((f — 1)ss) @ V.

Let Q} = Qv ®k(s,). Tensoring (8.23) with k(s), we obtain a sequence of maps

(8.24) Forfs ¢, (V) ® k() 25 Q) — kp(ls,) @V,

where the first map is induced by the natural transformation 8. The composition
of these two maps is again surjective. Now apply RIndgs to obtain the diagram

(8.25)

RInd% (Forf v, (V) @ k() e’

Bds Vo RInd @ — RInd% (kp(les) @ V).
Recall that 4,(V)) 2 St,® V, so the first term above is isomorphic to R IndE (St, ®
k(ss) ® V). Next, Qf, is given by a chain complex of the form

2035t k(s —as) @V = St @k(ss) @V =0 — -+

with nonzero terms in degrees —1 and 0. Since RInd%* (St, ® k(s — as) @ V) =
St, ® RIndE k(s, — ) ® V = 0, we can identify the second term in (8.25) with
RInd%: (Sts ® k(ss) ® V) as well. By Proposition 3.11(2) and the surjectivity of
the composition in (8.24), the composition of the two maps in (8.25) is surjective.

Then Proposition 3.11(3) tells us that the first map must be an isomorphism, as
desired. 0O

8.7. Main result. Recall the definition of the functors Q; and Q; in (8.2). We
define natural transformations

H:QIOGJ,I%T}OQJ and qS:TIJoQ]%QJo@J’I

by the diagrams in Figure 8. (The dotted boxes in that figure have no significance
for the definition of # and ¢, but they appear in the proof of the next lemma.)

Lemma 8.14. (1) The natural transformation 0 is an isomorphism.
(2) If J =@ and I = {s}, then ¢ is an isomorphism.

Proof. The large diagrams in Figure 8 are mostly assembled from constituents that
are already known to be isomorphisms, such as those from (8.6), (8.9), (8.10),
and (8.19). To complete the proof, we must check that each region enclosed in
dotted lines is an isomorphism (under the appropriate assumptions).

In the definition of 6, the two such regions are isomorphisms by Lemmas 8.8
and 8.9. In the definition of ¢, the two upper regions are isomorphisms by Lem-
mas 8.8 and 8.10. For the lower one, we must add the assumption that J = & and
I = {s}, and then invoke Proposition 8.11. O

Recall (see §7.3) that the functor ©/ is naturally left adjoint to ©;7. On
the other hand, since the functor T/ and T! are built from functors which are
naturally (bi)adjoint, 77 is naturally left adjoint to TJI . Therefore, the following
lemma makes sense.

Lemma 8.15. We have ¢ = 0" and 6 = ¢V.

Proof. Since the operations (—)” and (—)" are inverse to each other, the two equal-
ities are equivalent; so we need only prove the first one. Unpacking the definitions,
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Prr R Ind% inc Pvr O

pr; L(spng)™  ing pry RInng inc oy,

pry;  L(spg)  ing pry RInng inc Y1

T/ Qs
Q o1

FIGURE 8. Natural transformations for Theorem 8.16

this equality is equivalent to

. G .
pry L(sp\s) iny  Pr; RInd®  inc Pr
I pry L(<1\,]) iny pry RInng inc Pr

pry RIndIG;,J inc Py oI

pry Rlﬂd}G:J inc vy el
Now this equality is a straightforward consequence of the definitions, Lemma 8.6,

Lemma 8.7, and the usual rules for manipulating string diagrams. O

Combining Lemma 8.14 and Lemma 8.15 in the special case where J = @ and
I = {s}, we obtain the following statement, which is the main result of this section.
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Theorem 8.16. The following diagram is a commutative diagram of adjoint pairs:

Qy
D¥(N) ————— D"Rep,(G)

z E]
@g’{s}T4J/®z,{s) T{s}/H/Té !

fg b
DPS (Ag) T D Rep{s}(G).
Remark 8.17. It will follow from Theorem 10.7 below that the functors Qg are
equivalences of categories. Once this is known, the general case of Theorem 8.16
(for any pair J C I) will follow from Lemma 8.4.

Applying Lemma 8.5 in this special case we deduce the following corollary, which
is the result we will use later in the paper.

Corollary 8.18. There exists an isomorphism of functors

Oy 0091t o Og (s} = Ti o Tés} 0Ny

{s}

such that for any X in Dfs(/\) the following diagram commutes, where the vertical
arrow is induced by our isomorphism of functors and the other arrows are induced
by adjunction:

Q5 0 071} 00, ((X)

| T

T, 0 T8 0 Qa(X)

Qp(X).

Remark 8.19. The vertical arrows in Theorem 8.16 are actually biadjoint pairs:
there are also adjunctions ©2-{3} |- Og sy and T{i} F TQ{,S}. This raises two
questions:

(1) Is the diagram in Theorem 8.16 a commutative diagram of adjoint pairs for
the adjunctions @215} |- Og (s and Tg} F Tés} ¢ Concretely, consider the

isomorphism 6! : Tés} 0 Qg — Qs 0Oy (5. This question asks whether
the morphism

(071 : Q0078 5 T 0Qpy

is an isomorphism. It is difficult to answer this question with explicit string
diagram calculations, mainly because it is difficult to draw a string diagram
for #=1. (The problem is that the definition of § involves morphisms, such
as v, that are not isomorphisms.) However, we will see later that g and
Qy,) are equivalences of categories. Lemma 8.4 will then tell us that (§1)¥
is indeed an isomorphism.

(2) Is it true that (7')Y = ¢~'? Starting from Theorem 8.16, there are
in fact two ways to make a commutative diagram of adjoint pairs for
0245} - ©4 (4 and T{gs} F Tés}: we can either look at 6~% and (§=1)V
as above, or at ¢~! and (¢~1)". These are a priori different; if they hap-
pen to coincide, then a version of Lemma 8.5 would show that there is a



REDUCTIVE GROUPS, LOOP GRASSMANNIAN, SPRINGER RESOLUTION 75

commutative diagram

Qp (M) —1> Q5 (0215104 (4 (M) —> Qy (M)

zi

Qo (M) ——= T, TEH Qo (M) ——> Qu(M).

We do not know the answer to this question.

9. COTANGENT BUNDLES OF PARTIAL FLAG VARIETIES

9.1. Springer resolutions. For any I C S, we set
./VI =G XPI nr.
This variety is endowed with a natural G-action, and is naturally isomorphic to the

cotangent bundle to G / P;. When I = @ we simplify the notation to N; in this
case the variety is nothing but the usual Springer resolution of the nilpotent cone.

Remark 9.1. If one replaces 1y by (§/pr)* in the definition of N7, then the results
of the present section hold for any reductive group G with simply connected derived
subgroup in any characteristic. (Under our assumptions, it is well known that the

Killing form induces an isomorphism of Py-modules fiy 2 (§/pr)*.)
We let G, act on n; by z -2 = 2 2z. This induces an action on ./\71 that
commutes with the left multiplication action of GG, so one can consider the category

Coh&*Em (N7). As in §4.1, we will denote by
(1) : Coh®*Cm (A7) =5 Coh®*Cm (A7)

the functor of tensoring with the tautological G,-module of dimension 1. We will
use a similar convention for all varieties endowed with a G,-action to be encoun-
tered below.

Remark 9.2. The convention for the definition of (1) used in the present paper is
the same as in [43, 44], but is opposite to the convention used in [6].

Throughout this section, to simplify notation we set

d[ = dlm(G/P]) = dlmk(m) = |(I)+| - |(I)}~_|, nr:i= |¢'}~_| = dlm(P[/B)

For any Pr-module V, we denote by L / PI(V) the associated G—equivariant
vector bundle on G/P; (see [34, §1.5.8]). We also denote by L, (V) the pullback
of Ley/p, (V') under the natural projection Np — G/P;. This coherent sheaf has a
natural G x Gp-equivariant structure. When V = k p, (A) for some A € X which
induces a character of Pr, we write O, (A) instead of L (kp, (A)).

For X\ € X}" C X we denote by

M), Nr(v),  Lr(V)

the Weyl, dual Weyl, and simple M r-modules of highest weight A, respectively. We
will also consider these Mj-modules as P;-modules via the surjection P; — Mj.
Using these modules we can consider the G x Gy,-equivariant coherent sheaves

L, (Mi(N),  Lg,(N/(N), Lg, (Li(\)
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on ./V].

Below we will use the following lemma, whose proof can be easily adapted from
the proof of [1, Corollary 5.9]. (Of course, in this statement N;(A) could have been
replaced by My(\) or by L()).)

Lemma 9.3. The category DPCoh&* G (JC/I) is generated, as a triangulated cate-
gory, by the objects L (Nr(X))(i) for A € X} andi € Z.
9.2. Induction and restriction functors. If J C I C S, we set

N’J)I =G P nr.
For any P;-module M, as above we can consider the vector bundle £ N (M) ob-
tained by pulling back the vector bundle L, p, (M) under the projection Nj; —

G/P;. We use the same convention as above for the notation O v, ()
The inclusion map ey : iy < n; induces an inclusion map

€J,1 2/\71,1 ‘—>/\~/J-
On the other hand, there is a smooth, proper map
I ./\7J,I — ./\71
whose fibers are isomorphic to PI / P 7. Define a pair of functors
Tly,; : D"Coh®*En (N}) — DPCoh®*Em (A7),
1177 : DPCoh®*Er (Ay) — DPCoh®*C= (A7),
by
Iy (F) = par€s 1 (F @ Ogr, (—=sns)),
O7(F) = es 1.1 (F) @ Og (spg — 201 +2p){ds — d).

In the special case where J = @&, we denote these functors simply by II; and II .
When I = {s} for some s € S, we further simplify I, and s} to II, and II®.

For A\, u € X}, we have
(9-1) (O + 1)) = Lig, (N1 (),
(9.2) (L, (Nr(V)) = ea Ly, (N1(N) @ kg (s — 2p1)) (=)
(Here (9.2) follows directly from the definitions, and (9.1) can be deduced from [34,

L.5.18(5)].) On the other hand, if u € —X], then from [34, I1.4.2(10)] one can
deduce that

(9.3) (O (1 + 51 = 2p1)) = L, My (wrp))[—n).
Lemma 9.4. The functor I1;; has a left adjoint given by 171 {d; — d;)[d; — d ]
and a right adjoint given by "1 (d; — dr)[d; — di].

Proof. In this proof, for brevity we set r = d; — dj. The canonical bundle of
Py /PJ is isomorphic to the line bundle corresponding to the Pj-representation
AP (Pr/ps)* = kp (205 — 2p1). Since py; is a smooth morphism with fibers
isomorphic to P;/Py, we have

/J{LI(_) = uh(-) ®Oﬁ” O/(/JJ(QPJ —2p1)[-7]-
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Next, the canonical bundle of n; is isomorphic to Ox, @ kp (2p — 2p5)(2ds), and
likewise for n;. The map ey : 0y — n; is an inclusion of one smooth variety in
another, and it follows that ef]J(—) el (—) ®o,, (Oa, ®@kp, (2p —2p1)(2r) [r]).
We deduce that
(94) €)() = el() Doy, O, (2ps —201) (20}l
= e (= ®og, Og,(2p5 = 2p1))(2r)[r].
Now, the right adjoint to Il is given by
F s egpapiy 1 (F) ®og, OF, (sr\7)
= eJJ*u?}J(]:) ®O/\7J O',v] (gj\J - 2,0] + 2,0J)[*T‘} = HJ’I(F)<*T> [7,’,]
On the other hand, if we rewrite Il; ; as
I (F) = py e (F@ O, (=snvg +2p1 — 2py))(—2r)[—1],
we see that its left adjoint is given by
F s eg iy 1 (F) @ Og (spyg — 201 + 2p) (20)[r] = T (F) (r)[r],
as desired. O

Remark 9.5. Below we will mainly consider the case when J = @. In this case
we have dy — d; = ny, hence we obtain adjoint pairs (II/(—n;)[—n/],II;) and
(ILr, I (np) [n1]).

Lemma 9.6. Assume that K C J C I. Then there exist natural isomorphisms

My =My ollk,y and — TIFT =2 1157 o 11741

Proof. Let e : /\~/'K,I — ./f\V/K’J be the inclusion map induced by e : n; — n;, and
let 1’ : N1 — N1 be the obvious map. Consider the diagram

€K, 1
~ /’,v\ ~
NKJ o NK,J er.s NK

Ni
The square in the upper-left part of this diagram is cartesian, and the vertical
maps are smooth, so there is a natural isomorphism e ;irc . = pi(e)* (see [13,
Proposition A.15(3)]). Therefore,

Iy (ks (F)) = el (i, g€k s (F @ Og, (—sn k) @ Ogz, (—sn\1))
= :uJ,I*e?},I/JK,J*e?(,J(]: ® O/\?K (—<J\K - CI\J))
= g ety () e s (F @ O (—sn\k))
= prrxe ((F @ O, (—snk)) = gk 1 (F).

The proof that II%:7 =2 II%:/ o IT7! is similar. ([
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9.3. Hom-group calculations. In this subsection we fix a subset I C S.
In the next lemma we use the standard order on X defined by

)\ju ~ ,lL—)\GZZO(I)+.

Lemma 9.7. (1) Let \,p € X. If N A u+ 2p1, then for all n,k € Z, we have

HOM py, copeien 7y (60,10, (1), Op (W) () [K]) = 0.

(2) Let A € X. We have

}mmmﬁwwmwj@&hq%Ju_zm;oﬁuxmmDg
{k ifn=2n; and k =ny;

0 otherwise.

Proof. In the special case where I = @, both of these statements are proved
in [6, Lemma 7.10] or [13, Lemma 2.6]. In the general case, the coherent sheaf
ez, 1+Og, (1) admits a (Koszul) resolution by locally free coherent sheaves

(95) 0_>‘Fn1—>]:n1—1—>"'—>.70—>0

where
Fi= Ly (ks(u) ® /\(ﬁ/ﬁz)*> (24)

for any i¢. In particular, each F; admits a filtration whose subquotients are line
bundles O g (v)(2i) with u X v =< u+2pr.

Thus, if A A u+ 2py, then A £ v for all weights v as above. The special case
I = & then implies that Hom(F;, Og(A)(n)[k]) = 0 for all i, and part (1) of the
lemma follows.

Suppose now that A = u + 2p;. The reasoning in the previous paragraph still
shows that Hom(F;, Og(A)(n)[k]) = 0 for 0 < i < nz, and hence that there is a
natural isomorphism

Hom(F,, [n1], C’)K/()\)<n>[k]) = HOm(eg’[*OK/—g’I (A= 2py1), (’)/\7()\)<n>[k])

Since Fp, = Og(p+2p1)(2nr) = Og(A)(2nr), part (2) also follows from the special
case I = @& described above. (]

Lemma 9.8. (1) Let A\, € X7 If X 4 p, then for all n,k € Z, we have
Hom py caneon (77) (£ (N1 (1)), L, (N1(0) () ] ) = 0.
(2) Let A € XF. We have

{k ifn="k=0,

Hom pyp ¢ pérxem (47 (ﬁﬁl(NI(A))’L‘NI(NI(M)WWC]) = 0 otherwise.

Proof. In the special case where I = &, this lemma reduces to Lemma 9.7, which,
as we noted above, was proved in [0, 43].
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For general I, using (9.1), (9.2), and adjunction (see Remark 9.5), we find that

Hom (L, (N1 (1)), L7, (Nr(N)(n)[k]) = Hom(L g, (N; (1)), T (O (A+sr) (n) [k]))
= Hom(eg,f*ﬁﬁz’j (N7 (1) @ k(51 — 2p1))(—2n1)[—n1], O A +s1)(n)[k])
= Hom(eg, 1Ly, ,(Nr(1) @ ky(=2p1))(=2n1)[-n1], O (A\) (n)[K]).

The sheaf eg,l*ﬁﬁgyl(Nl(p) ® kp(—2pr)) admits a filtration whose subquotients
have the form ng*OﬁgJ(V) with v =< u — 2p;. Thus, if A £ p, then A £
v + 2p; for all such v. Lemma 9.7 then implies that Hom(eg’l*ﬁﬁzYI(Nl(u) ®
k(=2p1))(2dr)[—dr], O (A)(n)[k]) = 0, so part (1) is proved.

Suppose now that A = u, and consider the surjective map

ee,l*ﬁﬁgw,(NI(/\) ®kp(=2p1)) = €0, 105, (A —2p1).

Its kernel is filtered by sheaves of the form ng*Oﬁg 1(1/) with v < A — 2p;, so
Lemma 9.7 implies that the induced map

Hom(eg,1.0x, (A = 2p1)(=2n1)[=n1], O (N (m)[k])
— Hom(eg, 1+ Ly, , (N1(1) ® k5 (=2p1))(=2n0)[=1u1], O (V) (m) [k])

is an isomorphism. The left-hand side is described by Lemma 9.7, and then part (2)
of the present lemma follows. O

The same arguments as in the proofs of Lemma 9.7 and Lemma 9.8 allow us to
deduce the following claim from [6, Lemma 7.10] or [43, Lemma 2.6].

Lemma 9.9. For any A\, u € XI+, the k-vector space

D Hompucapeen iy (L, Nrl0)), L1, (N700) () [4])

k,nezZ
is finite-dimensional.

From Lemma 9.3 and Lemma 9.9 we deduce in particular that the category
DPCoh®*Cm (N7) is of graded finite type in the sense of [14, §2.1.5].

9.4. Some orders on X. If A € X, we denote by w) the shortest element in
Wty C Wag. Then we can define a new partial order on X by declaring that A < u
iff wy precedes w,, in the Bruhat order on Wag. The goal of this subsection is to
prove some properties of this order, and explain a construction of some refinements.
(These properties are well known, but we could not find any proof in the literature.)

Given A € X and I C S, we denote by dom;(\) the unique Wi-translate of A
which belongs to X. (When I = S, we write dom instead of domg.) Given w € W,
we denote by min(wW7), resp. max(wW7), the minimal, resp. maximal, element in
wW;. Then we define a “Bruhat order” on W/W; by declaring that

oWy <wW; < min(oW;) < min(wW;) <  max(vW;) < max(wWry).

(The equivalence between the two properties follows from [24, Lemma 2.2].)

For p € X, we denote by conv(u) the intersection of the convex hull of Wy C
R ®z X with p + Z®, and set conv®(u) := conv(p) \ Wp. (This definition agrees
with that in [43], but differs slightly from [14], because we take an intersection with
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a coset of the root lattice, rather than with the weight lattice.) With this notation
introduced, it is well known that for A\, u € X, we have

(9.6) A€ conv(p) & dom(A) < dom(p).
The first property we will need is the following.

Lemma 9.10. Let p € X and s € S, and assume that p < sp. Then p < sp.

Proof. Let v = dom(pu), and let I = {t € S | t(v) = v}. Let also v € W be the
unique element such that v = min(vW;) and p = v(v). Then by [13, Lemmas 2.2
& 2.4], we have w, = t,v~!, and l(w,) = {(t,) — ¢(v). The fact that s(u) = u
implies that (v,v71(aY)) < 0, hence that sv < v. By a remark in [51, p. 86], this
implies that sv = min(svWy). Using again [13, Lemmas 2.2 & 2.4], we deduce that
wsy, = t,v s = wys and that £(ws,) > €(w,), so that indeed sy > p. O

Corollary 9.11. Let I C S, and A\, p € X be such that WiA = Wrp.
(1) If N € XT, then u < \.
(2) If X € =X, then p > .

Proof. We prove (1); the proof of (2) is completely analogous. Let w € Wy be of
minimal length such that g = wA. If w = s1 -+ - s, is a reduced decomposition, then
we have

A= SpA = Sp_18pA = s = WA = .
Hence the claim follows by a repeated application of Lemma 9.10. [

The following lemma can probably be proved by combinatorial arguments, but
instead we rely on geometry of affine Grassmannians; for this reason we defer the
proof to §11.1, where the necessary geometric background will be introduced.

Lemma 9.12. (1) If \,u € XT, then A < p iff A < p.
(2) Let N € X*t, and let I = {s € S | s\ = A\}. Then, under the bijection

W/Wr = WA
wWy; = w(A)
the restriction of < to WA corresponds to the inverse of the Bruhat order
on W/Wr.
(3) If A < u, then X € conv(u).

Remark 9.13. It is asserted without proof in [14, p. 340] (and then subsequently
in [43]) that the orders < and < coincide on each W-orbit in X. However, comparing
Lemma 9.12(2) with [22, Theorem 1.1], we see that this claim is false in general.

From these properties, we deduce in particular the following fact.

Lemma 9.14. Let A, p € X and I C S. If p € WA and p < A, then domy(u) <
dom[()\).

Proof. Let v = dom(\) = dom(p), and let K := {s € S| s(v) = v}. Then as in
Lemma 9.12(2) we have a natural bijection W/Wy — Wv. Write A = v1(v) and
1 = v2(v), where v1 = min(v; Wg) and vy = min(vaWr ). Then, by Lemma 9.12(2),
the fact that p < X translates into the fact that v; < vs.

Now, let v{ be the minimal element in the double coset Wjyv1Wg. Then vi(v) €
WiA. Now for any s € S we have sv} > v}, which implies that (v} (v), ;) > 0. Since
this holds for any s € I, this proves that v{(v) € X}, and finally that dom;(\) =
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v} (v). Moreover we clearly have v§ = min(viWi). Similarly we have dom;(p) =
vh(v), where v} is the minimal element in Wjyva Wi, and vy = min(v,Wk).

We can finally conclude. Since v1 < vg, by [24, Lemma 2.2] we have v} < v4. By
Lemma 9.12(2), this implies that v}(v) < v{(v), hence that domy(p) < domjy()), as
stated. O

Below we will consider refinements <’ of the order <. We will usually require
that these refinements satisfy the following property:

(9.7) Aecon?(p) = A<

In the rest of this subsection we explain how one can construct explicitly a
refinement of < satisfying (9.7) and some extra useful properties related to a choice
of a subset I C S. More precisely, let us choose

e a total order <; on X that refines the order < (or equivalently the order
<, see Lemma 9.12(1)) and makes (X, <;) isomorphic to (Z>, <);

e for each W-orbit of weights WA, a total order <, on the set WA ﬁX}r that
refines the partial order induced by <; and

e for each \ € X}*‘, a total order <3 on Wi\ that refines the partial order <.

Then we define a total order <’ on X by setting

dom(A) <3 dom(u), or
A< iff dom(A) = dom(u) and domy(A) <o domy(u), or
WiA =W and X <3 pu.

Clearly, the ordered set (X, <’) is isomorphic to (Z>¢,<). A fortiori, the same
property holds for (X}, <’).

Lemma 9.15. The order <’ refines < and satisfies (9.7).

Proof. First, (9.7) is satisfied because if A € conv® (1) then dom(\) € conv(dom(u))\
{dom(u)}, so that dom(X\) <3 dom(u) by (9.6) and our choice of order <;, and then
A <’ u by construction of <’.

Now assume that A < p. Then by Lemma 9.12(3) we have A € conv(p). If A €
conv®(u) then as seen above A <’ u. Otherwise we have A\ € Wpu. By Lemma 9.14,
since A < p we have domy(A) < domy(u). If dom(A) < domy(p) then domyr(A) <
domy(p), hence A <’ u. Otherwise we have domy(A) = dom;(u), hence A <3 p and
again A <’ p. O

It is clear that this order also satisfies the following properties:

(9.8) p<"X = doms(p) <" doms(N\);
(9.9) if u <’ X and Wi # Wi, then vip <" v\ for all vy, vy € Wr.
9.5. Standard and costandard exotic sheaves. In this subsection again we fix
asubset I C S, and we let X; "8 C X be the set of regular dominant weights for
M[2
X = (A e X |(a),\) >0 for all s € I}.
We clearly have
X}k,reg — X}' +¢r.
For A\ € X" we define

DbCOhGXGm (./\71)3)\
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to be the full triangulated subcategory of DPCoh@xCm (N7) generated by objects of
the form £ (N7(p —<r))(n) with p € X8 1 < X and n € Z. The subcategory

DbCOhGXGrm (./\N/'])<>\
is defined similarly. If <’ is a partial order refining <, we can likewise define the
subcategories D®Coh®*®m (A7) </y and DPCoh®*Em (A7) /y.

In the next statement we denote by &, the minimal length of an element v € W
such that v()\) is dominant.

Proposition 9.16. Choose a total order <' on X that refines <, makes (X, <’)
isomorphic to (Z>o, <), and which satisfies (9.7).

For each A € X;'™®, there exist objects V(\), Ar(\) € DPCoh®*Cnm (N7) that
are uniquely determined (up to isomorphism) by the following two properties:

(1) there exist distinguished triangles

(9.10) F = L, (NI = 1))(=0x = nr)[—ns] — V() 4,

(9.11) Ar(A) —>£/\71(N1()\—§1))<—5,\ —np)[-n7] = F LR

with F, F' € D*Coh® ®=(Ny) i
(2) we have

Hom(G,Vi(\) = Hom(A;(A\),G) =0  forall G € D*Coh®*Cm(A})oiy.

Proof. Lemma 9.8 guarantees that the objects E/\E(NI(A —¢1)){(=0x —ns)[—ns] for
A E X}"reg form a graded exceptional sequence with respect to the partial order
=, in the sense of [11, §2.1.5] (see also [6, §8.1] or [13, §2.3]). The objects V()
are obtained by taking the <’-mutation of this exceptional sequence, as in [14,
Lemma 3|, and the objects Aj(\) form the dual graded exceptional sequence, as
in [14, Proposition 3]. O

Remark 9.17. (1) The assumption that <’ satisfies (9.7) is not necessary in
Proposition 9.16. However this property is used in the proof of certain
properties of the objects V;(A) and A7()\) considered below.

(2) Let A € X% and let V/(\) be an object such that there exists a distin-
guished triangle

G — L, (Mr(A — <)) (=0x — np)[=nr] L V(N
with G € DPCoh%*Cm (N7)</» and such that

(9.12) Hom(H,V,(\) =0 forall H € D’Coh®*C= (A7) .

Then there exists an isomorphism V7 (A\) = V(). Indeed, since the cone
of the natural morphism Lg (M;(A —<r)) = Ly, (N7(A —¢1)) belongs to

DPCoh®*Cm (A7) o/ (see property (9.7)), (9.12) implies that the morphism
f factors through a morphism g : /.ZM(NI()\ —r)) = V5(A). And an easy
argument with the octahedral axiom shows that the cone of g belongs to
DPCoh®*Cm (A7) /s, so that V/()\) satisfies the properties which charac-

terize Vi(A). Of course, similar comments apply to the objects Aj(A).
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The following important property follows from the general theory of (graded)
exceptional sequences (see [141, §2.1.5]).
Corollary 9.18. For any order <’ as in Proposition 9.16, we have

{]k ifp=Xandn=~k=0;

0 otherwise.

1

Hom(A;(u), Vi(A)(n)[k])

9.6. Study of the case I = &. In the special case where I = &, we omit the
subscripts and simply write

V) =Vg(A),  AQ)=A4Az(N).

In this case, these objects have been studied extensively in [14, 6, 43]. (Our normal-
ization of these objects follows the conventions in [0, 43] but is slightly different from
those of [14], where the shift (—d,) is omitted.) The proposition below summarizes
the main properties we will need. This statement mentions the category

DchhGXGm (N)COHVO(A)7

defined as the full triangulated subcategory of DPCohCG*Cm (N) generated by the
objects O (p)(n) with p € conv®(X).

Proposition 9.19. Let A € X, and let s € S.
(1) The objects V(X)) and A(N) are independent of the choice of order <’ as in
Proposition 9.16.
(2) In the distinguished triangle

F = 0g)(=6) = v 2,
we have F € DPCoh®*Cm (_/\~f)com,0()\).
(3) If sA= A, then I1I,(V(A)) = II,(A(N)) = 0.
(4) If s\ < A, there exist distinguished triangles

V(sA){(=1)[=1] = T (V) (—1)[-1] 5 v (3) 25,
AN (~1)[~1] = T (A(sA) (1) [-1] S A(sA) 15,

where the second morphism in both triangles is the counit for the adjunction
I (—1)[—1] - IL,.
(5) If sA < A, then there exist isomorphisms

I(V(sA) 2 (V) (D=1 and  TL(A(sA)) = TL(AN))(1)[1].

Proof. Part (1) is proved in [6, Proposition 8.5(1)] or [43, Remark 3.5], and part (2)
follows from [413, Lemma 3.1(3)—(4)] and the proof of [43, Proposition 3.8].

Let us now prove part (3). Standard arguments (involving in particular the base
change theorem) show that the functor II° o I is isomorphic to the Fourier—-Mukai
transform associated with the kernel Oy, (—¢s, ¢s —as)(—1), where Y is the subvari-
ety of N x N considered in [13, §3.1] (and where we follow the notational conventions
of [43]). Hence, using [13, Proposition 3.3(2)] and the exact sequence [43, (3.2)] (in
which p can be replaced by cs; see [18, Lemma 1.5.1]), we obtain that if sA = A
there exists a distinguished triangle

(9.13) V(A1) = V(A1) = II° I, (V(N)) ,
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We have HomeCoth@m(ﬁ)(V(A),V(/\)) = k, hence the first morphism in this
triangle is either 0 or an isomorphism. If it is zero, then II°II;(V())) is isomorphic
to V(A)(1) & V(X)(1)[1]. This is absurd since V() has a nontrivial restriction to
the inverse image of the regular orbit in the nilpotent cone (as follows e.g. from the
proof of [13, Proposition 3.8]), while II*(F) has a trivial restriction to this open

subvariety for any F in D*Coh®*®m (A7),

We have proved that the first arrow in (9.13) is an isomorphism. Hence we have
IT°II,(V(A)) = 0. But the functor II° does not kill any nonzero object, since it is a
composition of a smooth pullback with a pushforward under a closed embedding.
Hence indeed we have II3(V(A)) = 0. The proof of the fact that II;(A(N)) = 0 is
similar, using [13, Proposition 3.6(1)] as the starting point.

We now con51der part (4). As above, from [13, Proposition 3.3(3)] and the exact
sequence [13, (3.2)] we deduce that there exists a distinguished triangle

s JUN
(9.14) V(sA)(=D)[-1] = IPI, (V) (=1)[-1] = V(}) =
The second arrow in this triangle is nonzero, since otherwise V(sA) would be decom-
posable, which would contradict the fact that Hom ), ¢ xem (ﬁ)(V(s/\), V(sA)) =

k. Hence to conclude the proof in this case, we just need to prove that
(9.15) dimk(HomeCthX@,m(ﬁ)(HSHS(V()\))(—D[—1],V()\))) =1.

(Indeed, this will also prove that II;(V (X)) is nonzero, and hence that the morphism
induced by adjunction forms a basis of this 1-dimensional vector space.)
Since s\ < A, by Lemma 9.10 we have s\ < A, and hence

Hom jy, ¢ e (7) (V(sA),V(A){n)[k]) =0

for any k,n € Z, by definition of a (graded) exceptional sequence. Thus, using the
long exact sequence obtained by applying the functor Hom ¢, ¢xom ( AN/)(—, V(N)
to the triangle (9.14) we obtain an isomorphism

HOm 1 g (57 (V) T (A)) 2 Hom gy e 7y (P TL(V(A) (1) [-1], T (V).

which implies (9.15) and finishes the proof in this case.

The case of the objects A(\) and A(s)) is very similar (using [43, Proposi-
tion 3.6(1)]), and left to the reader.

Finally, we consider part (5). By (1), we can assume that the order <’ has been
chosen as in §9.4, in terms of the subset I = {s}. Under this assumption, we will
also consider the objects Vs (A) and Aggy(A) (constructed from the same order),
and we will prove more precisely that

(9.16) I, (V(sA) = (V) (1) [-1] = V53 (A),
(9.17) I (A(sA)) = T (AN (D[] = Aggy (V)
First we prove (9.16). For p € X, using (9.1) and (9.3) we see that
0 if sp = p;
H.S(Oﬁ/’(/l)) = Eﬁs(Ns(M_%)) if sp < s

‘CK[S(MS(SN - gs))[_l] if sp - p.

Note that if u € conv®(\) = conv?(s)), then u <’ X and sp <’ A (see (9.7)). Hence,
using these isomorphisms, we see that applying Il to the distinguished triangle
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in (2) for both A and s\, we obtain distinguished triangles
G = Lz (NyA =) (=6x = 1)[=1] = (V) (= 1)[-1],
G = Lz (Ms(A = 60))(=0x = 1)[=1] = T(V(s)),

where G and G’ belong to DPCoh@*Cm (N7)<sx. Using also Remark 9.17(2), we see
that to conclude the proof of the isomorphisms in this case, it suffices to prove that

Hom(£ g (N, (1 — <)), TL(V(X)) (m) )
= Hom(ﬁﬁ (NS(,U —65)): I (V(sA))(n)[k]) = 0

for any p € X8 such that g <’ X. And in turn, since sA <’ A (see Lemma 9.10),
using adjunction (see Lemma 9.4), to prove this it suffices to prove that

(9.18) I1* (L (Ny (e — <)) € DPCoh®Cm (A7) v,

Now, as in the proof of Lemma 9.8, the object II*(L 5 (Ns(p —<5))) admits a filtra-
tion with subquotients of the form ey (3. Og, . }(u)(l) with v € {u—as, -, su}.
And as in the proof of Lemma 9.7, for any such v there exists an exact sequence

(v).

Hence to conclude it suffices to prove that any for weight n in {u, u — s, -+, su}
we have n <’ s\. However, these weights satisfy n <’ u, and since u & {\, sA}, (9.9)
ensures that p <’ s\, so that indeed 1 <’ sA. This finishes the proof of (9.16).

Finally we deduce (9.17). For this we note, using (9.16) and Lemma 9.4, that
for any p € X8 and n, k € Z we have

Hom(ITs (A(A)), Vs (1) (n)[K]) = Hom(A(A), IFPTLs (V (1)) (n) [K]).

Then, using (4) we deduce that this vector space vanishes unless = Aandn =k =
—1. Using [43, Lemma 2.5], this proves that II,(A(\)) = Ay (A){(=1)[-1]. One
can prove by similar arguments that IT;(A(sA)) = Ay ()), and the proof of (9.17)
is then complete. ([l

Og(v+as)(2) = Og(v) - ep 3.0k

@,{s}

Remark 9.20. The analogue of Proposition 9.19(2) for the objects A(X) does not
hold: the cone of the morphism A()\) — Og(A)(—dx) does not belong to the

subcategory DPCohC*Cm (/\7 )convo () in general. This is one of the subtle differences
between the objects A(X) and the objects V().

Now we return to the case of a general subset I C S. From Proposition 9.19 we
deduce the following fact.

Corollary 9.21. Let A € X, and assume that A ¢ Wi X "® (i.e. that the stabilizer
of A in Wy is nontrivial). Then

I (AN) = 1 (V(A)) = 0.
Proof. We prove that II;(A()\)) = 0; the case of V() is similar.

First, let us assume that A € X;". Then since A ¢ X", there exists s € I such
that sA = A. Using Lemma 9.6, we obtain that

I (A(N) =1y 1 o T (A(X) =0
by Proposition 9.19(3).
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Now we consider the general case. Let p = dom;()), and let v € W be the
element of minimal length such that A = vu. Let v = s;---s, be a reduced
decomposition of v. Then we have

L= Spph = Sp—1Spfh = v = STA = A

Decomposing 11 as Tl 3,7 o IL,, for k € {1,---,7} and using Proposition 9.19(5)
repeatedly, we obtain that

7 (A(w) = M (A(spp)(=1)[=1] = - -- = T (AN)) {(=r)[=7].

By the case of I-dominant weights considered above we have II;(A(p)) = 0, and
hence I (A(X)) = 0 as well. O

9.7. Standard and costandard exotic sheaves and induction/restriction
functors. In this subsection we fix a subset I C S with I # &, and we assume that
the objects V() and Ar(\) are defined with respect to an order <’ constructed
as in §9.4 (which is authorized by Lemma 9.15).

Below we will need the following lemma on weights. Here, for any X C X, we
denote by Conv(X) the convex hull of X (in R ®z X).

Lemma 9.22. Let A\ € X7 "™, and let Y C ®}. Then the weight X — 3, .y
belongs to Conv(WiA) N (A + ZPy).

Proof. If <y is the order on X defined by A <y piff p — X € Zzoq)}', then it is well
known that a weight u € X belongs to Conv(WiA) N (A + Z®y) iff w(p) <5 A for
any w € Wj. Hence it suffices to prove that our weight A — " _, « satisfies this
condition. For this we will work in %X; we extend the order < to this lattice by
using the same rule as above.

For any w € Wy we have

(3£ ) s 50)

acY a€eY

Since (A — pr,a") € Z>( for any «a € <I>}r, we have w(\ — pr) <5 A — p;. Hence to
prove the lemma it suffices to prove that

w (m— Za> =1 pI-

acY
However we have 1
RS SEEE D SR
agY a€(@F\Y)U(-Y)
The subset (@7 \ Y) LU (=Y contains one representative for each pair of opposite

roots in ®;. Hence the same property holds for its image under w. In other words,
there exists Z C <I>}r such that

w<p12a)2 Y. a=p-) aZip

acY a€(@\2)u(-2) acZ

=

which finishes the proof. [
Lemma 9.23. Let A € X%, We have
T (DPCoh® S (A7) <ry) € DPCoh®*Cm (N) <.
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Proof. Tt suffices to prove that for any A € X} *® the object G := HI(EM(NI()\ -

¢1))) belongs to DPCoh®*Em (N)</x. By (9.2), G has a filtration whose subquotients
are of the form ez 1. O, I(g; —2pr+v)(n) with v a weight of Ny (A—¢y). Next, the
resolution (9.5) shows that eg . O (s —2pr +v)(n) lies in the full triangulated

subcategory of DPCoh@*Cm (V) generated by the objects O (o)(k) with k € Z and
o of the form

(9.19) 0=§1—2p1—|—u—|—2a:§1+1/— Z Q,
agY acdt\Y

where Y C @] is a subset.
It is well known that if v is a weight of Ny (A—¢r), then v belongs to Conv(W(A—
¢r)). Hence the weights o as in (9.19) belong to

920 | (Conv(WI()\ )t =, a)

Zco} acZ

= U Conv (WI(/\—Q) +¢r — Za) )

ZC<I>;r acZ
Now for any w € W we have

w()\—q)—i—q—Za:w(/\)—l— Z B8 — Z o.

a€Z Bed\z a€Z
w—l(é)<0 w™ (a)>0

In particular,

w1<w(>\—q)+q—za>:>\+ Z v+ Z d.

acz ye—oF se—af
w(y)EPT\Z w(d)e—Z

This weight is of the form considered in Lemma 9.22, so it belongs to Conv(W;\).
This analysis shows that the subset of R ®z X considered in (9.20) is contained
in Conv(W;\). Hence any weight o as in (9.19) belongs to conv®(\) U WA, By
condition (9.7) and Corollary 9.11(1), we then have ¢ <’ A, and we finally deduce

that G belongs to D°Coh®*C=(A)</y, as desired. O

Proposition 9.24. Let A € X.

(1) Assume that X € Wi X", and let w € Wy be the unique element such
that w\ € X8, Then we have

I (V(N) 2 Vi(wA){(—4(w) + np)[—(w) + ng).

(2) Assume that X € Wi X", and let w € Wy be the unique element such
that w\ € X 8. Then we have

I (AMN) = Ap(wA) (U(w) = nr)[e(w) — nr).
(3) If p ¢ X" for all p € X such that u <’ domr(\), then

1, (DbCthXGm(/\N/)S/A) —0.
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Otherwise, let a(\) be the largest weight (with respect to <') such that a(\) €
X% and a(X) <" domp(N). Then

m, (DbCthXG"‘ (/\7)9) C DPCoh®*Em (N <ra(ny.

Proof. We begin with the claim that if part (1) holds for all u € X such that p <" A,
then part (3) holds for A. Indeed, D*Coh®*®=(N)</y is generated by the objects

V(p){n) with u <" X\ (see [14, Lemma 3]), so to prove the claim, we must check
that
(9.21) I (V (1)) € DPCoh®*Em (A7) <raqn)

for all such g (where by convention the subcategory is {0} if a(A) is not defined).
Part (1) and Corollary 9.21 tell us that the left-hand side either vanishes or is of
the form

Vi(domy(u))(n}[k]
with dom;(u) € X8, By (9.8) we have dom; (1) <" dom;()\), so domy () <’ a()),
so (9.21) holds.

Let us now prove part (1). We proceed by induction on dom;(\) (for the order
<’) and, within a Wr-orbit, by induction on the length of the element w € W; such
that w(A) = dom; ().

So, let us fix some A € X such that W;A N X[ "8 # @. We first consider the
case when \ € X} "8 Form the distinguished triangle

(9.22) F o 0\ (=6 —» V() 2

of Proposition 9.16. By Proposition 9.19(2), F belongs to DPCoh®*C¢m (./\7)conv0(/\).
Now, if v € conv®()\), then v <’ X by (9.7). Hence if n <’ v, then n <’ A, so
dom;(n) <" A by (9.8). Moreover 7 ¢ WA (because otherwise v € conv®(n), which
contradicts the fact that n <’ v), so that these weights even satisfy dom;(n) <’ .
By induction and the claim in the first paragraph, we deduce that part (3) of the

lemma holds for such v: II;(DPCoh®*Cm (J\~/)§/V) is either {0} or contained in the

subcategory DPCohC*Cm (./\~/1)§,a(,,). In the latter case, we have a(v) <’ dom;(v) <’
A. In all cases, we deduce that

(9.23) I1;(F) € DPCoh®*®m (A7) <.
Let us now apply the functor II;(—ns)[—ns] to (9.22). By (9.1), we obtain a
distinguished triangle
(9.24)  Tp(F)(—np)[—ni] = L, (Nr(A = 61))(=0x — nr)[-n]
1
= T (V) (—np)[—nr] B .

If G € DPCoh®*Cm (N7)</x, then using Lemma 9.4 we have
(9.25) Hom(G,II;(V(\)(—n;)[-n;]) = Hom(IT(G), V()\)) = 0,
where the last equality holds because, by Lemma 9.23, IT! (G) lies in the subcategory
DPCoh®*Cm (A1) 5.

From (9.23), (9.24), and (9.25), we see that II;(V(\))(—ns)[—ns] satisfies the
properties that uniquely characterize Vy(\), so

I (V(A) = ViA) (e,
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as desired.

Finally, suppose that w\ € X" for some nontrivial w € W;. Choose a
simple reflection s € I such that ws < w. By induction, we already know that
II;(V(sA)) = Vi(wA){—£(ws) + nr)[—l(ws) + ny]. But since s\ = A, Lemma 9.6
and Proposition 9.19(5) imply that

I (V(A) = (V(sA) (1) [-1] = Vi (wA) (= l(w) + np)[—l(w) + nil,

as desired. Part (1) of the lemma is now proved. By the claim in the first paragraph,
part (3) is proved as well.

We now turn to part (2). This time we proceed by downward induction on the
length of w € Wy such that w\ € X "8, beginning with the case where w = wy
(so ¢(w) =ny). Applying II; to the distinguished triangle

A = Og(W)(=8y) = F
(where F' € DPCoh@*Cm (N)<s») and using (9.3), we obtain a distinguished trian-
gle
- 1
I (AN) = Lig, (M (wd — 1) (=03)[=ng] — T, (F) L.
If v <’ A, then dom;(v) <" dom(A) = wsA by (9.8). In fact, in this case we even

have dom;(v) <’ wrA since v ¢ Wi by Corollary 9.11(2). Hence a(v) <" wyA if
a(v) is defined. Therefore, by part (3) of the lemma, II;(F’) lies in the subcategory

DPCoh® (A7) <rup) 5.
If € X777 and p <’ wr, then by (9.9) we have <’ A\. Lemma 9.23 and this
remark imply that
T (D Coh“*Em (A7) <1, 0) © DPCoh®Cm (AT) iy
Then, an adjunction argument similar to that in (9.25) shows that

Hom(II;(A(N)),G) =0

for all ¢ € DPCoh®*Cm (N7)<rw;x. Using Remark 9.17(2) and the fact that &, =
dwrx + 1y, we see that TI;(A(N)) satisfies the properties that uniquely characterize
Ar(wr)), so
I (A(N) = Ar(wr),

as desired.

Finally, if A is a weight such that w\ € X} for some w € Wy, w # wr, an
induction argument using Proposition 9.19(5) shows that

I (AMN) = Ar(w) ((w) —nr) [((w) —ni]

as desired. ]

9.8. Koszul duality. For any subset I C S, we consider the algebras
Sy :=Sym(ij), Ar:= /\"n;

defined as in Section 4 (with respect to the natural Pr-module structure on fi).
Here S; will be mainly cgnsidered as a Pr x Gy-equivariant algebra, and A; will
be mainly considered as Pr-equivariant dg-algebra. Then we have the functor

fi f
KRy : Db(SI_mOd]ixGm) — D}i (/\[)
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g
b *

b GXGry D”(v}) b fg KJ fg
DPCoh (NJ) — D (SJ—modF-,JxGm DPJ(/\J)

(m)®O05F(=s1\J) (—)®k(—<r\ ) (—)®k(—=s1\s)
DPCoh®*Cm () Dh15) DP(S;-mod™® ) —"L 5 D' (A))
~ J P;XGm P

SI®§J(*) j;)l @J,I

bk GXGum D' 0G0y fg w1 fg
DPCoh (NJ7]) = D (SI_mOdPJXGm) 4>DPJ (/\I)

RInd;l RInng

J J

Db(’Y?) KT

DPCoh?r > (A7) DP(S;-mod™®

o) — = D (M)

Pr

~

FIGURE 9. From J\~/} to Af

as in §4.2. If J C I, we can also restrict the Pr-action to Py, and obtain a functor

f; f;
KJI: Db(SI—modlfijm) = D (A1)

Let v; : np — ./\71 be the inclusion map x + [l : z]. Then coherent pullback
along ~; gives rise to an equivalence of categories

75 : Con*Em (A7) = Coh™r*Em (i) = Sp-mod |

sometimes called the “induction equivalence,” see e.g. [19, Lemma 2]. We define
vg,1 2 i — Ny similarly; it induces an equivalence

’}/;J . CthXGm (./I\V/JJ) :> COhPJ XGm (nl) — SI_mOdngJxGm'

Then we set

sp =Ky o DP(}) : DPCoh@*Gm (N7) — D%, (Ap).
As for k1, there exists a natural isomorphism of functors
(9.26) s o (1)[1] & 5.

And it follows from the isomorphism in (4.2) that for any F,G € DPCoh@*Cm N?),
the functor sy and the isomorphism (9.26) induce an isomorphism

(9.27) D Hom e wem (7, (F G (m)[0]) — HomD;gI o (1 (F), 51(9)).
nez
The functors 77 and 7 ; allow us to convert the study of the functors I into
the language of S ;- and S;-modules, as shown in the left part of the diagram of
Figure 9. The right part of the diagram comes from the discussion of Koszul duality
in Section 4. It follows from the definitions that the left part of the diagram is
commutative, and from Propositions 4.4 and 4.5 that the right part is commutative.
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Proposition 9.25. The diagram below is a commutative diagram of adjoint pairs:

G ¢ B ;

DbCOhGXG (NJ) J lel (/\J)

H.7,1<d1—d1)[d1—dj]T—il’b,] eJJT_'\L@J’I
IXGm (N f

DY Coh®*Cm (AT} DEI(/\I)

Proof. This proposition is “almost” an application of Lemma 8.4, because s; and
g are close to being equivalences. More precisely we argue as follows. For brevity,
let us put I! := O/ (d; — d)[dr — dj]. The commutativity of the diagram in
Figure 9 gives us an isomorphism

CZJ{[OH]’[;@L[O%J.

Let (" : ©77 0 3¢ — 35 o II7! be the morphism constructed from ¢ as in §8.2. We
must show that ¢/ is an isomorphism.

We begin with a weaker claim: that for any F € DPCoh&*Cm (N7) and G €
DPCoh®*C=(Af)), the map

(9.28) (=) o ¢ - Hom(se T (F), 25(G)) — Hom(07 ¢/ (F), 25(G))

is an isomorphism. To prove this claim, we apply Lemma 8.2 to obtain the following
commutative diagram:

»Jj

Hom(IT*!(F), ) Hom (¢, 117 (F), 5())
adjlz i(—)océ
Hom(F, 11;,1(G)) —— Hom(0” 75/ (F), »;(G)).
In the left-hand column, let us replace G by G(n)[n] and then sum over all n € Z:
D,z Hom(I1"! (F), G (n) [n]) —=— Hom (3¢, 11" (F), ¢,(G))
(9.29) adjlz l(—)océ
D,z Hom(F, IL;,1(G{n)[n])) ———— Hom (07 3¢1(F), 5¢;(G)).

In this diagram, the top horizontal arrow is an isomorphism by (9.27). The bottom
horizontal arrow is defined to be the composition

@,z Hom(F, 1L 1(G{n)[n])) = Hom (527 (F), 5¢11L1,1(G))
e, Hom (527(F), ©.1.0561(9)) % Hom (07521 (F)., 32(G))

50 it too is an isomorphism. We conclude that the left-hand vertical arrow in (9.29),
i.e., the map in (9.28), is an isomorphism as well.

For any V € Rep(Pj), we have %J(Oﬁ] ®V) = ka, ® V, so objects of the
form 3;(G) generate D%J (Ay) as a triangulated category. Hence (9.28) and the
five-lemma actually imply that

(=) o ¢ : Hom(s¢, 117 (F),G") — Hom (071 5;(F),G")
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is an isomorphism for all G’ € D%J (As). By Yoneda’s lemma, this shows that
Ch 05 (F) — 51171 (F) is an isomorphism, as desired. O

Remark 9.26. (1) Later we will use this proposition only in the case J = &.
We treat the general case since it is not more difficult that this special case.
(2) One can also prove Proposition 9.25 by showing that each small square in
Figure 9 is a commutative diagram of adjoint pairs. (For the middle row
of squares, one can use (9.4) to describe the left adjoint of e ;; similar
descriptions are possible for the other functors in that row.)
(3) As noticed (in a special case) in Remark 8.19, the functor ©7 is also
right adjoint to © ; ;. There is also a commutative diagram of adjoint pairs
involving this adjunction:

G £ o ;
DPCoh®*Cm (A7) - D (Ar)

HJ‘IT—(lH‘]’I(d,;dﬁ[djdl] @u%i@“
DPCoh®*Em (7)) — DE (Ay).

However, this version will not be useful to us: unlike the diagram in Propo-
sition 9.25, this version cannot be combined with Theorem 8.16.

Applying Lemma 8.5 we deduce from Proposition 9.25 the following corollary,
which is the result we will use in Section 10.

Corollary 9.27. There exists an isomorphism of functors

%JO(HJ’I<dI—dJ>[d[—dJDOHJ’[ ;@J’IOGJ’IO%J

such that for any F in DPCohC*Cm (.A7J) the following diagram commutes, where
the vertical arrows are induced by our isomorphism of functors and the other arrows
are induced by adjunction:

¥y o0 (HJ’I<d1 —dj)[dr —dj]) oIy 1 (F)

| T

0710010 (F) 27 (F).

10. THE INDUCTION THEOREM

10.1. Combinatorics of weights. Let “W,g C W.g be the subset consisting of
the elements w which are minimal in Ww. Then it is well known that the assignment
w +— w e 0 induces a bijection

Wag = (Wag 00)NXT.

On the other hand, we also have bijections ‘W,z — W\W,g = X. Recall (see §9.4)
that for A € X, the inverse image of A under this bijection is denoted wy. This
element is described explicitly in [43, Lemma 2.4]: if vy € W is the element of
minimal length such that vy(\) € XT, then wy = vy-t)x. Combining these bijections
we obtain a bijection

(101) X;(WafoO)ﬂX—i_Z)\'—>U))\.O:’U)\.O+£"U)\(>\).
Now, consider the order 1 on X as defined in [34, §6.4].
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Lemma 10.1. For A\, u € X, we have
wye0tw,e0 & A<

Proof. In case G is semisimple, this statement is equivalent to the main results
of [59, 54] (see also [33, §5] for a discussion of this result in English). Since here we
work with a reductive group, we have to be slightly more careful.

First, let us assume that A,y € Z®. Then wy,w, € WS, Let us consider
V =7Z® ®z R, and denote by 27 the intersection of the fundamental alcove for G
(as defined in [34, I1.6.2(6)]) with V. In other words, <% is the fundamental alcove
for the group G/Z(G). The restriction of the order 1 to Z® is clearly the order 1
for the group G/Z(G). We deduce that, if we consider the order 1 on alcoves of
G/Z(G) defined as in [34, §I1.6.5], then by [34, I1.6.5(1)] we have

wye0Tw,e0 & wyedTw,eH.
Then by [59, 54] this condition is equivalent to wy < w,,, hence by definition to
A< .

Now we treat the general case. If A\ — 1 ¢ Z®, then neither of the conditions
in the statement hold, so the equivalence is guaranteed. So, let us assume that
A—p € Z®. Then there exists a unique w € Wog with £(w) = 0 and wyw™! € WSP*
and w#w’l € WSCEX. Since these elements belong to “W,g, there exist X,y € Z®
such that

Wy = Wyw, Wy = Wyrw.
By definition of the Bruhat order on W,g, we have wy < w,, iff wy < w,, hence
A < piff ¥ < /. By the case already treated, this condition is equivalent to
wy 01w, 0. And since 0 and w e 0 both belong to the fundamental alcove (for
G), using [34, I1.6.5(1)] we see that this condition is equivalent to wy 0 1 w, 0,
and the proof is complete. O

It follows in particular from Lemma 10.1 that the order on (W,ge0)NX™ induced
by any order <’ as in §9.4 via the bijection (10.1) refines the order 7.
If I C S, then we define

OWHIH = {w € Wag | w is maximal in wWj and wv € Wg for all v € Wi}

(In fact, using the same trick from [51, p. 86] as in the proof of Lemma 9.10, one
can check that if w is maximal in wW; and w € ‘W,g, then wv € "W,og for all
RS W[)

Lemma 10.2. Let A € X. Then X belongs to Xj’reg iff wy € Wi

Proof. First, let us assume that A € X} "**®. Then for any v € Wy, and any reduced
expression v = s1 - - - 5., we have

A= 5p(A) = sp_18p(A) = - = v(A).
As explained in the proof of Lemma 9.10, this implies that
W) > WASy > WASpSp—1 > + -+ > W)EV,

and that all these elements belong to “W,s. Hence wy € 0Walff.

On the other hand, assume that A ¢ X "°®. Then there exists s € I such that
sA = A If sA = A, then as above by Lemma 9.10 and its proof we have w) < wys,
and hence wy ¢ ‘Wl And if s\ = X\ we have

WxS = VLS = UpSt) = (UAsvgl)w)\ > wy,



94 PRAMOD N. ACHAR AND SIMON RICHE

and so again wy ¢ Wi, O

From Lemma 10.2 we obtain a bijection

X 2 Ol N s .

a

On the other hand, it is clear that the assignment w +— w e (—¢;) defines a bijection
Wl = (Wag o (—s7)) N XT; combining these bijections we obtain a bijection

(10.2) X% 2 (Wag o (1)) N X Tt X wy o (—c7) = vy @ (—s1) + £-va(N).

10.2. Images of standard and costandard objects. From now on, for any
subset I C S with I # @, we assume that the objects A;(A) and V(\) are defined
with respect to the an order constructed as in §9.4. (In particular, this order
depends on I.) In the case I = &, the objects A(A) and V(A) are independent of
the choice of order satisfying (9.7), by Proposition 9.19(1).

Proposition 10.3. For any A € X} "%, we have isomorphisms
Qe (Vi(A) = N(wx o (=<1)), Qe (Ar(N) = M(wy o (=)

Proof. We begin with the first isomorphism. Suppose first that I = &. In this case,
we will prove the isomorphism by induction on Jy. If 6y = 0, i.e. if )\ is dominant,
then V(A) = O (A) (see [13, Corollary 3.4]), so

Q5 (55 (V(A))) 2 Qa(ks(A)) = RIndG (1) 2= N(€A)

by Kempf’s vanishing theorem. This proves the claim since wy = ty.

Otherwise, we have £(vy) > 0. Let s € S be such that ¢(vys) < ¢(vy). Then
SA = A dsn = 0x — 1, and wsy = wys with £(wy) = f(wsy) — 1 (see Lemma 9.10
and its proof). Consider the first distinguished triangle in Proposition 9.19(4):

VO (1) [=1] = IPIL(V(sA)(—1)[=1] 5 V(sn) 2 .

Applying Qg o3z to this triangle, and using induction and Corollaries 8.18 and 9.27,
we obtain a distinguished triangle

(103)  Qo(x(V(N) = T2, T (N(was © 0)) 5 N(was 0 0) 15,
in which the second arrow is induced by adjunction. By [34, Proposition I1.7.19(a)

and I1.7.21(8)], this distinguished triangle is actually a short exact sequence in
Rep(G) whose first term is isomorphic to N(w, e 0), as desired.

We now turn to the case of general I. Let A € X", Using Proposition 9.24(1),
we have

Qr(5er (Vi(N) = QpoegIl (V(A) (—np)[—n1)).
Then, using Proposition 9.25 and Lemma 8.14 we obtain isomorphisms
Qe (Vi(N) 2 Q104 1505 (VN (=n1)[~11]) = T5 Qe (V(A) (—np)[~1n1)).
Next, using (9.26) and the case I = &, we obtain an isomorphism
Qr(er(V1(N)) = TzN(wy ¢ 0).

Finally, by [34, Proposition I1.7.11] we have TAN(w) ¢ 0) = N(w ¢ (—c;)), and the
proof is complete.
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Now we consider the case of Aj(\), first in the case when I = @ and A is
antidominant. In this case we have A(\) = O(A)(—6x) by [43, Proposition 3.6(2)].
As in the case of the objects Vi(A), we deduce that

Qg 0 325 (A(N) = RInd$ (00)[6,].

Now, since A is antidominant, its stabilizer in W is Wg, where K := {s € S |
s(A) = A}. It follows in particular that vy = wswg and 6y = dx. We also deduce
that RInd§(0)) = RIndgK (X). Now using [34, I1.4.2(8)], for any i € Z we have

R'Ind§_(£\) = (R~ Ind§,_(—0\ — (2p — 2pK))*
&~ (R~ IndG(—0X — (2p — 2pK))*.

The weight —¢\ — (2p — 2pk) is dominant, so by Kempf’s vanishing theorem the
third term vanishes unless i = dg, and we finally obtain that

RInd$(X\)[6x] = (IndG(—X — 2p + 2p))* = M(wg(EX + 2p — 2pk ).

Since wy ¢ 0 = wgwr ({X + p) — p = ws(¢A + 2p — 2pk ), this proves the desired
isomorphism in this case.

We continue to assume that I = &, and prove the isomorphism by downward
induction on ¢, within a given W-orbit. The case when 4, is maximal is the
case when A is antidominant, which was treated above. If A is not antidominant,
there exists s € S such that s\ < A, so that dsx = dy + 1 and w,) = wys with
Lwsy) = L(wy) — 1 (see again Lemma 9.10 and its proof). Consider the second
distinguished triangle in Proposition 9.19(4):

A (—1)[=1] = TPIL(A(sA)(—1)[=1] 5 A(sh) 2 |

As above, applying the functor Qg o sy and using induction and Corollaries 8.18
and 9.27 (together with (9.26)), we obtain a distinguished triangle

Qp 0 525 (A(N) = T2, T (M(wys # 0) 5 M(uwas 0 0)
where the second morphism is induced by adjunction. This implies that the first
term is isomorphic to M(wy e 0), and finishes the proof in this case.

Finally, as in the case of the objects V;(\), the case of a general subset I follows

from the case I = @ using Proposition 9.24(2). O

Lemma 10.4. For any A € X} "%, the image under Qp o »; of any nonzero map
Ar(A) = V1(A) is nonzero.

Proof. First, let us consider the case I = &. We still denote by <’ the order
on (W,g @ 0) N X* induced by the order <’ on X via the bijection (10.1). As
explained after Lemma 10.1, this order is a refinement of the order 1; in particular,
Rep(G) is a highest weight category for this order, with standard objects M(\)
and costandard objects N()\) (for A € (W,z@0)NXT). For € (W,og00)NXT, we
denote by DRep,(G)</, the triangulated subcategory of DPRepy(G) generated
by the objects N(v) with v <’ u, or equivalently by the objects M(v) with v <’ .
With this notation, Proposition 10.3 implies that for any p € X we have

(10.4) Qg 0 325 (DPCoh“ En (N) 21,.) C DPRepy (G) <ray, 00-

Now, let us fix A € X. There exists only one (up to scalar) nONZero morphism
f: A(X) = V(\); let C be its cone. Then C belongs to D*Coh®* €= (A7) y. The
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cone of Qg 0 54 (f) is Qg 0 24 (C), and by (10.4) it belongs to DPRepy(G)</u)e0-
Now we have

Qg 0 35(A(N)) = M(wxr 00), Qg oxz(V(A)) = N(w,e0),

50 Qg 0 25 (f) is a morphism from M(w) @ 0) to N(wy e 0). The fact that its cone
belongs to DPRep(G) <14, 0 forces this morphism to be nonzero, and the claim is
proved in this case.

Now let I be arbitrary, and let A € X", Consider a nonzero morphism
f:A(wrA) = V(wrA). By Proposition 9.24 we have

O (A(wrA) = Ar(A), I (V(wrd)) = Vi(A),

so II;(f) is a morphism from Aj(A) to Vi(A). By the case treated above, the
morphism Qg o 5(f) is a nonzero morphism from M(wywr @ 0) to N(wywr e 0).
(Here we use that wy,,;» = wyw;.) Now since wyw; is minimal in wyxw Wi = wy\Wi,
by [34, Proposition I1.7.15] we have

T (L(wxwy 0 0)) = L{wywy @ (—¢7)) = L(wy @ (=<7)).

This implies that the image under T of any nonzero morphism from M(wyw; e 0)
to N(wywy e 0), in particular of Qg o s4(f), is nonzero. But as in the proof of
Proposition 10.3 we have an isomorphism of functors

Téong%g’EQIO%[oHI;

hence Qj o sy o II;(f) is nonzero. This implies that II;(f) is nonzero. In other
words, it forms a basis of Hom(A;(\), Vi())), and the desired claim is proved. O

Remark 10.5. We have seen in the course of the proof of Lemma 10.4 that, if
A € X" the image under IT; of any nonzero morphism from A(wr\) to V(wr))
is nonzero. This property can also be deduced directly from Proposition 9.24.

10.3. The parabolic induction theorem.
Proposition 10.6. For any F, G in DPCoh&*Cm (J\71), the functor
Q1 0 5¢r : DPCoh®*®m (A7) — DPRep,(G)

and the isomorphism (9.26) induce an isomorphism

D Hom e (7, (F> G(n)[n]) =+ Homprpep (21 (321 (F)), Qu (41(G))).
nez

Proof. Tt suffices to check this property in the case when F = Aj(A) and G =
Vr(w)[k] for some A, p € X7 "% and k € Z, since these objects (together with their

grading shifts) generate DPCoh®*®m (A7) as a triangulated category (see Lemma 9.3
and [14, Lemma 3]). If A # p, or if A = p but k # 0, then the left-hand side vanishes
by Corollary 9.18, and the right-hand side vanishes by Proposition 10.3 and [34,
Proposition 11.4.13] (see also the bijection (10.2)).

Suppose now that A = y and that k = 0. Then Corollary 9.18 tells us that there
is only one nonzero summand in the left-hand side, corresponding to n = 0, and
that that term is 1-dimensional. The right-hand side is also 1-dimensional, and
Lemma 10.4 tells us that the induced map in this case is an isomorphism. (I
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Recall from Lemma 8.8 that for M € D&, (Pr), the object RIndIGDI (M) €
DPRep(G) actually lies in the subcategory DPRep;(G). In a minor abuse of nota-
tion, we henceforth denote the composition

; RInd§ r
DY (Pr) 2% DPRep(Pr) ——2 DPRep(G) 25 DPRep; (G)
simply by RInng : D8, oin(Pr) — DPRep;(Q).
Theorem 10.7 (Induction theorem). The functor
RInd§, : D8y (Pr) — D Rep;(G)
is an equivalence of triangulated categories.

Proof. Let F,G € DPCoh&* G (N7), and consider the commutative diagram

Dz Hom e (J\71)(]:’ G(n)n)) — HomePgI (/\I)(%I(]:), #1(G))

|

(P (Y11 (F), ¢ (G))
lRInng
Hom pugep, (c) (2 (321 (F)), Qr (51(9)))

By Theorem 6.1, (9.27), and Proposition 10.6, the arrows labelled 1, s, and
1y 0 51 are isomorphisms, so the remaining arrow is an isomorphism as well. Recall
that if 7 = Og ® V with V € Rep(F), then ¢;3¢/(F) = St; @ Forp! (V). As
observed in the proof of Lemma 8.1, such P;-modules generate D&, (Pr) as a
triangulated category. So we deduce that the map

Hompy, (p,) (M, N) = Hompugep, (c) (RInd$, (M), RInd§, (N))

HOme

Stein
Qrosey

induced by RIndIGDI is an isomorphism for all M, N € Dg, .. (Pr). In other words,
RInd§, : D8 (Pr) — D"Rep;(G)

is fully faithful. The category DPRep;(G) is generated by the Weyl modules (or
dual Weyl modules) appearing in Proposition 10.3, so our functor is essentially
surjective as well, and hence an equivalence. (Il

11. THE GRADED FINKELBERG—MIRKOVIC CONJECTURE

11.1. Mixed derived category and mixed perverse sheaves on affine Grass-
mannians. Let TV be the complex torus which is Langlands dual to T (i.e. whose
weight lattice is dual to the weight lattice of T), and let GV be the unique (up
to isomorphism) connected complex reductive group with maximal torus TV such
that the root datum of (GVY,TV) is dual to that of (G,T). Let also BY C G,
resp. BY C GV, be the Borel subgroup whose set of roots is ®Y, resp. —®Y. (Re-
call that we have identified characters of 7" with characters of T; in this way ® is
also the root system of (G, T).)

Let .# := C((z)), and € := C[z], and consider the loop group GV (%) and
its subgroup GV (). Recall that the affine Grassmannian for GV is a complex
ind-variety Gr whose set of C-points identifies in a natural way with the quotient
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GV (H)/GY(0). We let Tw C GV(O) be the Iwahori subgroup associated with
BY, i.e. the inverse image of BY under the natural morphism GY (&) — GV. To
any A € X (considered as a cocharacter of 7V) one can associate in a natural
way an element z* € TV(J¢), hence a point Ly = 2*GY (&) € Gr, and if we set
Gry := Iw - L), then each Gr) is isomorphic to an affine space and we have the
Bruhat decomposition

Gr = |_| GI‘>\.
Aex
Following [1], we define the mixed derived category D?fié‘)(Gr, k) of Iw-construc-

tible k-sheaves on Gr as K b(Parity(Iw)(Gr,k)), the bounded homotopy category
of the additive category of Iw-constructible parity complexes on Gr (in the sense
of [36]). As explained in [4, §3.1], this category admits a natural t-structure, called
the perverse t-structure, and whose heart will be denoted Perv?fif)((}r, k). It also
admits a “Tate twist” autoequivalence (1) which is t-exact, see [1, §2.2]. With re-
spect to this autoequivalence, the category Perv?f‘i,f)(Gr, k) has a natural structure
of a graded quasi-hereditary category with poset X (for the order induced by in-
clusion of closures of orbits Gry); see [4, §3.2]. (Note that the assumption [1, (A2)]
holds in the present setting by [4, Corollary 4.8].) We will denote by J1(\), J«(N),
ZCY™ and T () the corresponding standard, costandard, simple, and tilting objects
respectively. (In the conventions of [4], the objects Ji(\), Jx(N), T(A) would rather
be denoted ARix, Vipix mix )

Remark 11.1. It follows from the proof of Lemma 9.12 and Remark 11.3(2) that
the order on X induced by inclusions of closures of orbits Gr) is precisely the order
< introduced in §9.4.

Now that this notation is introduced, we can finally give the proof of Lemma 9.12.

Proof of Lemma 9.12. Let Iw_ C G’V(ﬁ) be the Iwahori subgroup associated with
the Borel subgroup BY, and consider the “opposite” affine Grassmannian

Cr' = GV(O\GY (X).
This ind-variety is endowed with natural actions of Iw_ and Gv(ﬁ) induced by
right multiplication on GV (.#"). For any A € X we set Gry := GV(O)\GV(0) -
2 - Tw_. Then the length function and Bruhat order on W,g describe dimensions

of Iw_-orbits and inclusions between the closures of these orbits, respectively, in
Iw_\GY (). We deduce that we have

(11.1) ((wy) =dim(Gry) and (A<p & Grh C @)

When A € Xt we also set (Gr')* = GV (0)\GV(0)z*GY (0). Then it is well known
that

(11.2) (Gr') C (Gr')* & A= p.

Moreover, Gr) is dense in (Gr")*.

Now we can prove part (1). Let A,y € XT*. Then as explainedibove Gr) is
dense in (Gr’)* and Gr), is dense in (Gr’)*. We deduce that Gr C Gr, if and only
if (Gr")* C (Gr')~. Comparing with (11.1) and (11.2), we deduce that A < u if and
only if A\ < pu.
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Then we prove part (2). Let PY be the stabilizer in GV of the point GV (&) -
2wsN) ¢ Gr'. Then P)\\/ is the parabolic subgroup containing BY associated with
the subset K = {wgswg, s € I} of S. Moreover there exists a natural morphism
(Gr')* — PY\GV which is an affine fibration and sends the point GV (&) - z*s)
to the base point PAv - 1. For any w € W, this fibration restricts to a fibration
Griy(n) = PY\PY(wsw™1)BY with the same fiber. Hence the inclusions between
closures of orbits in (Gr')* are governed by the inclusions between closures of BY-
orbits in P/Q/ \GV7 which is itself governed by the Bruhat order on Wx\W. More
precisely, let v,w € W be such that v = min(vW;) and w = min(wW;). Then
using (11.1) we have

U()\) S ’LU()\) <~ GI‘;()\) C Gr{w(k) <~ Gr;()\) n ((J‘II'/)A C Gr;)()\) N (GI‘/))\

& PY\PY(wsv=1)BY C PY\PY (wsw~1)BY.

1 1

Now we have wgv™! = max(Wgwgv™!) and wsw™ = max(Wxgwsw™'). Hence
this last condition is equivalent to wgv™! < wgw™!, and finally to w < v, which
finishes the proof.

Finally we prove part (3). If A < pu then Gr) C Gr}, (see (11.1)), hence Gr) C
(Gr")dem(m)  which implies that (Gr’)dem(}) C (Gr’)dom(1), and finally that dom()) <
dom(p) (see (11.2)). By (9.6), this implies that A € conv(u). O

11.2. Geometric Satake equivalence. Let Pervg,,(Gr, k) be the abelian cate-
gory of (ordinary, i.e. non-mixed) G (&)-equivariant perverse sheaves on Gr. (The
GV (0)-orbits on Gr are sometimes called the spherical orbits, and the objects of
Pervgpn (Gr, k) are then called spherical perverse sheaves.) This category is equipped
with a symmetric monoidal structure given by the convolution product *; moreover
there exists an equivalence of abelian tensor categories

(11.3) S : (Pervepy (Gr, k), +) = (Rep! (@), ®),

which sends the intersection cohomology sheaf associated with an orbit G’V(ﬁ )- Ly
with A € X7 to the simple G-module with highest weight A. This equivalence is
known as the geometric Satake equivalence; in this generality, it is due to Mirkovié¢—
Vilonen [47].

Following [0, §2.4], one can define a right action of Pervg,, (Gr, k) on D‘(‘f“;‘) (Gr, k)
as follows. Let PervParity., (Gr, k) be the subcategory of Pervy,,(Gr, k) consisting
of objects which are parity. In view of the geometric Satake equivalence (11.3), the
category Pervg,n (Gr, k) admits a natural structure of highest weight category, and
the objects PervParity;, (Gr, k) are exactly the tilting objects for this structure. (In
most cases, this follows from the main result of [37]. The general case is discussed
in detail in [44, §1.5].) In particular, the natural functor

Kb(PervParitysph(Gr, k)) — D"Pervy,p,(Gr, k)

is an equivalence of categories, so that we can consider Pervgp, (Gr, k) as a full sub-
category in K" (PervParity,; (Gr,k)). The convolution product induces a symmetric
monoidal structure on PervParity,, (Gr, k), and hence on K" (PervParity_;, (Gr, k)),
so that the monoidal structure can also be recovered from this equivalence (see [37]).
In conclusion, to construct an action of Pervgy, (Gr, k) on DE‘I‘Vif)(Gr, k) it suffices to
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construct an action of K b(PervParitysph(Gr, k)) on D?I“Vii‘)(Gr, k). Now the convolu-
tion product also restricts to a bifunctor

Parity(IW)(Gr,]k) x PervParity ;, (Gr, k) — Parity(lw)(Gr,k);

see [36, Theorem 4.8]. Passing to bounded homotopy categories we deduce the
desired action of the monoidal category K" (PervParity,,;,(Gr,k)) on D?fvif)(Gr, k).

11.3. Relation with coherent sheaves on the Springer resolution. The fol-
lowing theorem is the main result of [6]; see also [14] for a different construction
of such an equivalence. (See Remark 11.3(2) below for a comparison of the two
constructions.)

Theorem 11.2. There exists an equivalence of triangulated categories
mix ~ GXGm / K7
P : D1 (Gr, k) = DPCoh® %= (N

with the following properties:

(1) there exists an isomorphism of functors P o (1) = (1)[1] o P;
(2) for any A € X, there exist isomorphisms

P((N) =AM, P(J.(N) =V

(3) for any F in DE’I‘S‘)(Gr, k) and any G € Pervepn(Gr, k), there exists o bi-
functorial isomorphism P(F xG) = P(F) @ §(G).

Remark 11.3. (1) The difference of sign between property (1) in Theorem 11.2
and the statement of [6, Theorem 1.1] is due to the difference of conventions
in the definition of the functor (1) for coherent sheaves in [6] and in the
present paper. Property (2) is not stated explicitly in [6, Theorem 1.1], but
it appears in the proof of [6, Theorem 8.3].

(2) In [14], a different construction of an equivalence between D?fx‘)(Gn k) and

DPCoh&*Cm (/\7 ) is given. The main difference between the two construc-
tions is that the compatibility with the geometric Satake equivalence (Prop-
erty (3)) is not clear from the proof in [44]. Another difference appears in
the labeling of objects: the equivalence of [11] exchanges the (co)standard
mixed perverse sheaf labeled by A and the (co)standard exotic sheaf labeled
by —A. To resolve this apparent contradiction, one should recall that the
Iwahori subgroup used in [44] is the negative one, denoted Iw_ in the proof
of Lemma 9.12. Hence, if ¢ is an automorphism of GV as in the proof of [34,
Corollary I1.1.16], then we have ¢(BY) = BY and ¢(t) = t~* for t € T,
so that the induced automorphism of Gr sends the orbit Iw_ - Ly to the
orbit denoted Gr_, in the present paper; hence the induced equivalence
D?f\i’i)(Gr,k) = D?f;j‘)(GLk) will send the object denoted AR in [14]
to the object Ji(—A) of the present paper, and similarly for costandard
objects. Using the notation introduced in the proof of Lemma 9.12, this
comment also shows that the anti-automorphism g — ¢(g)~! induces an
isomorphism of varieties Gr — Gr’ which sends Gry to Gr).
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11.4. The Finkelberg-Mirkovié conjecture. The category Rep'(G) embeds in
the category Repy(G) via the functor V — For& (V) associated with the Frobe-
nius morphism G — G. On the other hand, according to [47, Proposition 2.1],
the category Pervgpn(Gr, k) is equivalent (via the natural forgetful functor) to the
category of perverse sheaves on Gr constructible with respect to the Gv(ﬁ )-orbits,
so it embeds in the category Perv iy (Gr, k) of (ordinary) Iw-constructible perverse
sheaves. In [20, §1.5], M. Finkelberg and I. Mirkovié conjectured that (11.3) can
be extended to an equivalence between these larger categories. In the statement
below, we denote by ZC, the simple perverse sheaf associated with the Iw-orbit
Gry. Recall also that the convolution action of the category Pervypn(Gr, k) on
the Iw-constructible derived category D](OIW)(Gr,]k) restricts to a right action of
Pervypn (Gr, k) on Perv(iy)(Gr,k). (This fact is proved for Q-coefficients in the
étale setting in [28, Comments after Proposition 6]; the same proof applies also in
our setting.)

Conjecture 11.4 (Finkelberg—Mirkovié¢ [26]). There exists an equivalence of high-
est weight categories
Q : Perv(1y)(Gr, k) = Repg (G)
such that
(1) for any A € X, we have Q(ZCy) = L(wy @ 0);
(2) for any F € Perv(iy(Gr,k) and any G € Pervg,,(Gr, k), there exists a

bifunctorial isomorphism Q(F « G) = Q(F) @ For&(S(G)).

A characteristic-zero analogue of this conjecture (involving the principal block
of a quantum group at a root of unity) was proved in [9].

11.5. A graded version of the Finkelberg—Mirkovié conjecture. Conjec-
ture 11.4 remains open at the moment. Our goal in this section is to establish a
“oraded version” of it, involving the following notion from [12].

Definition 11.5. Let A be a k-linear abelian category in which every object has
finite length. A grading on A is a triple (M, v,e) where M is a k-linear abelian
category equipped with an autoequivalence (1) : M — M, v: M — A is an exact
functor whose essential image includes all simple objects in A, and ¢ : v = v o (1)
is an isomorphism of functors such that the induced map

@B Exti (M, N (n)) — Ext’y (v(M),v(N))
ne”Z

is an isomorphism for all M, N € M and all k € Z.

Our first result is that the convolution action of Pervgyn(Gr, k) on D?f&j‘)(Gnk)

introduced in §11.2 is t-exact, in the following sense.
Proposition 11.6. For any F € Perv?}‘iff) (Gr,k) and any G € Pervgp, (Gr, k), we
have F * G € Perv{iy (Gr, k).

This proposition will be proved simultaneously with the following theorem, which
we view as a “graded version” of Conjecture 11.4. In this statement, for yu € Xt
we denote by T(u) the tilting G-module with highest weight p.
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Theorem 11.7. There exists an exact functor
Q: Perv?f\l;‘ (Gr,k) — Repy(G)

together with an isomorphism ¢ : Q = Qo (1) such that (Perv“f;’,‘)(Gr k), Q,¢) is
a grading on Repy(G). In addition,
(1) for any A € X, we have

QUTA(N) = M(wy 0), QT (M) = N(wy o 0),
Q(ZCY™) = L(wx00), Q(T(N) = T(wy 0);
(2) for any F € Perv?f‘i:)(Gr,k) and any G € Pervg,n(Gr, k), there exists a
bifunctorial isomorphism Q(F x G) = Q(F) ® For&(S(G)).

Remark 11.8. We expect that there also exists a functor v : Perv x ) (Gr. k) —
Perv(1w)(Gr,k) and an isomorphism € : v o (1) = v such that (Pervﬁ‘g‘)((}r,k), ,€)
is a grading on Perv(ry(Gr, k). However, this fact is not known at present. (In [4]
we have constructed such a structure for finite-dimensional flag varieties of reductive
groups and coefficients of good characteristic.)

Proof of Proposition 11.6 and Theorem 11.7. Define
Q : D (Gr, k) — D"Repy (G)
to be the composition
B (Gr, k) £ DPCoh®*Cm (N) 22 DE(Ay) 2 DPRep, (G).
In view of Property (1) in Theorem 11.2 and (9.26), we have functorial isomorphisms

Q(F (1)) = Qg (55 (P(F)(H[1])) = Qs (3 (P(F))) = Q(F)
for any F in DE?;;‘)(Gr k). In other words, there exists a natural isomorphism

£:Q 5 Qo).

Let us next show that Q is exact. In view of [4, Proposition 3.4], it is enough to
show that Q(J1(\)) and Q(J.(N)) lie in Repy(G). However, by Proposition 10.3
and Property (2) in Theorem 11.2, we have

(11.4) QIAMN) = M(wy90), Q) = N(wy »0).
This proves the desired exactness, and also the first two isomorphisms in (1).

Proposition 10.6 and Theorem 11.2 imply that for any F,G € Pervmlx (Gr, k), Q
induces an isomorphism

(11.5) @Hong;;()(Gr,k) (F,G(n)[k]) = EXtEepg(G)<Q<]:)7 Q(9))-
neL
On the other hand, we know from [4, Lemma 3.15] that the realization functor pro-

vides an equivalence DP Perv“f“:f) (Gr, k) = Dz’féf) (Gr, k). This means that on the left-

hand side of (11.5), we can replace Hom(F, G(n})[k]) by Ethlgerv?;;‘)(Gr,k) (F,G(nY).

Next, the simple object ZCY™ is the image of any nonzero morphism J(\) —

J«(N\), while the simple obJect L(wy e 0) is the image of any nonzero morphism
M(wy @ 0) — N(wy @ 0). In view of (11.4), and since Q is exact and faithful (as
follows from (11.5)), we find that

QICY™) = L(ws »0).
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We have thus shown that (Perv?fif)((}r,k), Q,¢) is a grading on Rep,(G).

We now turn to the fourth isomorphism in (1). The exactness of Q and (11.4)
(together with Lemma 10.1 and Remark 11.1) imply that Q(7()\)) is a tilting G-
module which admits T(w) 0) as a direct summand. Using the isomorphism (11.5)
for F =G = T()\) and k = 0, together with [29, Theorem 3.1], we see that the ring
End(Q(7 (X)) is local, and hence that Q(7()\)) is indecomposable, which proves
that Q(T (X)) = T(wy ¢0).

Finally, using Property (3) in Theorem 11.2, (6.1), and the tensor identity, one
can check that for any F € D?fvif)(Gr, k) and G € Pervgpn(Gr, k), there exists a
bifunctorial isomorphism

Q(F G) = Q(F) ® For&(S(9))

in DPRep(G). In particular, if F € Perv?fif)((}r,k), then Q(F*G) lies in Rep,(G).
Now, Q is t-exact, and (11.5) implies that Q kills no nonzero object. Since Q(F*G)
has cohomology only in degree 0, F x G must have perverse cohomology only in
degree 0. In other words, F x G is perverse. This proves Proposition 11.6, and also
Property (2) of the theorem. O

11.6. Application to characters of simple G-modules. It is well known that
the classes of the modules N(wy e 0) form a Z-basis of the Grothendieck group
[Repgy(G)] of the abelian category Repy(G). As a direct application of Theo-
rem 11.7, we obtain the following result.

Proposition 11.9. For any A\, p € X, the coefficients of [N(wy0)] in the expansion
of [L(w, ®0)] on the basis ([N(w, ¢ 0)] : v € X) of [Repy(G)] is

i,jez
Proof. 1t is clear that the classes [J.(v)(j)] for v € X and j € Z form a basis of
the Grothendieck group [Perv(iy)(Gr, k)], and that the coefficient of [J.(v)(j)] in
the expansion of the class of an object F in this basis is equal to

(1) i (Hom ps (010 (), F(—3) ).

i€,
Applying Q to the expansion of [ICL“iX], we obtain the desired equality. O

Remark 11.10. (1) Since the characters of the induced modules N(w) o 0) are
given by Weyl’s character formula, see [34, Proposition I1.5.10], determining
the character of a module is equivalent to expressing the class of this module
in terms of the classes [N(wy e 0)]. In particular, this proposition gives a
geometric character formula for all simple G-modules in Repy(G) (which,
admittedly, is not computable in practice).

(2) Using adjunction, the sum in Proposition 11.9 can be interpreted (up to
sign) as the Euler characteristic of the costalk at Ly of ICL“iX7 in the sense
of mixed derived categories.

Let Y7 C Gr be the union of the Iw-orbits Gry such that w) e 0 is restricted,
i.e. satisfies 0 < (wy 0, ") < £ for any simple root o. (This subvariety is indepen-
dent of ¢ under our assumptions, but is not closed in general.) On the other hand,
let Y2 C Gr be the union of the Iw-orbits Gry such that (wye0+p,a") < £({—h+2)
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for any positive root «. (This subvariety is closed, but depends on £.) We will as-
sume that ¢ > 2h — 3, so that Y7 C Ys (see [57, §1.13]). For any A € X, we will
denote by &y € Parity 1, (Gr, k) the indecomposable object supported on Gry and
whose restriction to Gry is kg, [dim(Gry)], and by ZCy the (ordinary) intersection
cohomology complex associated with the constant rank-1 local system on Gry.
Let (hyq @ @,y € Wag) be the affine Kazhdan-Lusztig polynomials for Wag
normalized as in [51]. (To be really precise, the setting we consider does not fit
exactly with the setting of [51] since Wag is not a Coxeter group. However a direct
generalization applies, see e.g. [58, §1.8].) Lusztig’s conjecture [41] predicts that

[L(we0)] = Z (_1)8(1U)+£(y)hwsy,wsw(l) -[N(y  0)]

YE Wase
y<w

for any w € "W,g such that (we0+ p,a") < ¢(¢ —h+2) for any positive root a. It
was proved by Kato that it is equivalent to require this formula for any w € ‘W,g
such that w e 0 is restricted, see [39, §5.4]
Theorem 11.11. Assume that £ > 2h — 3 and £ > h.

(1) If Ex = ZCy for any A € X such that Gry C Y1, then Lusztig’s conjecture

holds.
(2) If Lusztig’s conjecture holds, then for any X\ such that Gry C Ya, we have
E\2IC,.
Remark 11.12. (1) Tt is well known that the condition in (1) holds if £ > 0,

see [50]. Hence Theorem 11.11 provides a new proof of Lusztig’s conjecture
in large characteristic.

(2) The criterion (1) is similar to a criterion obtained by Fiebig, see [25, §7.5].
In his setting, no analogue of (2) is obtained, however. (Note that Fiebig’s
criterion is in terms of the affine flag variety of GV, while ours is in terms
of the affine Grassmannian.)

(3) Theorem 11.11 can also be compared with [52, Corollary 1.0.3], which gives
a similar result relating Lusztig’s conjecture “around the Steinberg weight”
and parity complexes on the finite flag variety.

(4) Combining (1) and (2), we see that the absence of ¢-torsion in stalks and
costalks of intersection cohomology complexes associated with orbits in Y;
(which is equivalent to the condition £ = ZCj, see [56]) implies the same
condition on Y3, a portion which might be much larger (in particular if
£>> 0). The fact that this property follows from the “ordinary” Finkelberg—
Mirkovié conjecture was noted in [57, Remarks after Theorem 2.14]. This
property has no known geometric explanation.

Before proving this statement we need a preliminary result. Recall that for any
complex algebraic variety X endowed with a finite algebraic stratification

X = |_| X,
ses

where each X, is isomorphic to an affine space, and for any field F, we define
the mixed derived category D'S*(X,F) as the bounded homotopy category of the
additive category Parity o,(X,F) of parity complexes on X. This category has an
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autoequivalence {1} induced by the cohomological shift in parity complexes, an-
other autoequivalence [1] given by the cohomological shift of complexes, and the
Tate twist (1) = {—1}[1].

In particular, if s € ., the category D?;i]f‘(XS,IF) is equivalent to the bounded
derived category of the category of graded k-vector spaces, with k (concentrated
in internal degree 0 and considered as a complex in degree 0) corresponding to
Fy {dim(X,)}, regarded as a complex concentrated in degree 0, see [, Lemma 3.1].
Here the Tate twist (1) corresponds to the shift-of-grading functor normalized as
in [4, §3.1], which we will also denote (1).

If we denote by iy : Xy — X the embedding, then we have a standard object
AT = (i) Fx {dim(X,)} and a costandard object V2™ = (i5),Fx {dim(X,)} in
the category DW™*(X,F). (See [1, §§2.4-2.5] for the definition of the functors (is)«
and (is)1; these functors are part of a “recollement” formalism.)

Lemma 11.13. Let F € D'Z*(X,F) be an object which satisfies
Home;ix(X,F)(ATixvF{i}[j]) = HOIan;}X(X,JF) (F, Ve {iy[j]) = 0

unless j = 0. Then F is isomorphic to an object of Parity o, (X,F), considered as a
complex concentrated in degree 0.

Proof. We prove the claim by induction on #.7.

We can assume that F is indecomposable. We choose s € . such that X is
closed in X, and set U := Utey\{s} X;. We denote by j : U — X the embedding.
If 5*F = 0, then using the canonical triangle

GJF = F = (ig).iiF 2

in DB*(X,F) we see that F = (is),i*F. The assumption implies that i*F is
isomorphic to a complex concentrated in degree 0, and the claim follows.

From now on we assume that j*F # 0. By induction, there exists a parity
complex &y on U such that j*F = £y. By the classification of parity complexes on
X (see [30]), there exists a parity complex £ on X such that &y = j*£. Then we
have canonical distinguished triangles

() F = F o F L and (i)e = €= e

in DZX(X,F).
We claim that the functor j* induces a surjection

(11.6) Hom pmix (x ) (H, H') = Hom puix ) (1 H, j*H')

when H and H’ are either F or £. Indeed, using the distinguished triangle above
for H' we obtain an exact sequence

Home;iX(X,]F) (H,H') — Home;iX(X,[F) (H,4g*H")
— Hom puix(x r) (H, (is)4 i, H'[1]),

where the first map is the morphism appearing in (11.6). Hence to conclude it
suffices to prove that the third term in this exact sequence vanishes. However, by
adjunction we have

Home;iX(X,IF) (H, (is)*i!sHl[l]) = HomDﬂi;‘(Xs JF) (15H, i!sH/[l])-
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And either by our assumption (for the case of F) or by [4, Remark 2.7] (for the case
of £), the objects i*H and i'H’, considered as complexes of graded k-vector spaces
(see above), are direct sums of objects of the form k(n)[—n] with n € Z. Hence the
desired vanishing indeed holds.

From this surjectivity we deduce that j*F = & is indecomposable, hence that £
can be chosen to be indecomposable also. Next we fix isomorphisms j*F — £ and
&y = j*F. By surjectivity again, these isomorphisms can be lifted to morphisms
f:F—=>E&andg:E& — F. Since g o f does not belong to the maximal ideal in
End(€), it must be invertible. Similarly f o g is invertible, and finally F = &. O

Proof of Theorem 11.11. (1) Assume that £, = ZC, for any A € X such that
Gry C Y7. Then, by [4, Lemma 3.7], in DE}‘%(GI,H&L for any A such that Gry C Y1,

the simple mixed perverse sheaf ICTix is simply &y, considered as a complex con-
centrated in degree 0. Hence, using [4, Remark 2.7] and Proposition 11.9, we see
that

Llwae0)] = > (-t (Z dimHi(Grme)) [N(w, 0 0))
HEX i€
wy Swx
where i, : Gr, — Gr is the embedding. However, it is easy to see (using the
defining property of Kazhdan—Lusztig elements) that if £, = ZC, then we have

Z dim Hz(Gr#v ZL (EA)) = hwswmwswx (1)7

ez
see [56, Implication (3) = (4) in Proposition 3.11]. Hence Lusztig’s formula holds
for any A € X such that w) @0 is restricted. As noted above, this is known to imply
Lusztig’s conjecture via results of Kato [39].

(2) We assume now that Lusztig’s conjecture holds. The theory of mixed derived
categories developed in [1] also applies to coefficients Z; or Q. In particular we will
consider the mixed derived categories Dz?ii‘)(l/g, E), for any E € {Qy, Zs,k}. (Here
the subscript (Iw) means constructible with respect to the stratification by orbits
of Iw.) In each case we have standard and costandard perverse sheaves Ji(\E)
and J,(\,E), and an intermediate extension ZCY™*(E). We also have “extension of
scalars” functor

k: D (Ya, Zo) — D (Ya, k), Qr: D (Ya, Ze) — D (Ya, Qu),

which satisfy

(11.7) k(AN Ze)) 2 T(NK), Qe(A(NZe)) =2 (N Qp),
(11.9) Qu(ZCY™(Zy)) = TCY™(Qy).

(To be precise, in [1] we only consider triples (K, Q,F) such that F is the residue
field of @. But the same constructions apply for our present triple (Qy, Z, k).)
We will also consider the indecomposable parity complex €,(Qy) and the “ordi-
nary” intersection cohomology complex ZC(Qy) with coefficients in Q,. Note that,
as in the proof of (1), ZCY"™(Qy) is isomorphic to £x(Qr) = ZCx(Qy), considered as a
complex concentrated in degree 0. In particular, the coefficients of Zi I)\nix((@g) in the
basis of costandard perverse sheaves are given by (fl)e(“’*)*é(“’“)hwswwuswA (1).
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First, we claim that
(11.10) K(ZCY™(Zy)) = TCY™ (k)

for any A € X such that Gry C Y. In fact, as in the proof of Proposition 11.9, it is
not difficult to see that the classes of the objects J. (A, E) (i) form a Z-basis of the
Grothendieck group [Df‘i“‘)‘i‘) (Y3, E)], for any E € {Qg, Z¢, k}. In view of (11.8), this

implies that the functors k and Q, induce canonical isomorphisms
i e i T mix
(D (Ya, Qo)) <=<— [D{ (Ya, Ze)] — [Df1i (Ya, k),

such that r(rg, ([ZCY™(Qe)])) = [k(ZCY™(Z))]. Now, if we consider these Gro-
thendieck groups as Z[v,v~!]-modules where v acts via (1), Lusztig’s conjecture
and the existence of Q imply that

re(rg, ([ZCX™(Q0))jp=1 = [ZCX™ ()]ju=1,

where (—)j,—; is the map to the quotient by the submodule generated by v — 1.
Hence the mixed perverse sheaf k(ZCY"™(Z)) has only one composition factor,

which is a Tate twist of ZCY™(k). Considering the restrictions to Gry, we de-
duce (11.10).
Next, we claim that

(11.11)  Hom pumix v, 2, (J1(A, Z4), ZC™ (Ze) () [1]) and
Hom pmix (v, z,) (ZCI™(Ze), T (N, Z) (j)i]) are Zy-free

for any 4,5 € Z and any A, € X such that Gry,Gr, C Y. We treat the second
case; the first one is similar. First we remark that we can replace Dgx‘)(iﬁ,Zg)

by DZ?%(YQ,ZZ) in these Hom-spaces. Now, assume that the finitely generated
Zg-module HomDm{)(anz)(ICZ“X(Zg),j*()\,Zg)Q’)[i]) has torsion. Using (11.10)
and [4, Lemma 2.10], we deduce that Hong‘;;(Gr,k) (ZC™(k), Tu(A k) (5) [K]) is
nonzero for k € {i,7 + 1}. Then applying Q we obtain that the k-vector space
Extﬁepg(c)(L(u})\ e 0),N(wy e 0)) is nonzero for k € {i,i + 1}. This contradicts
a parity-vanishing result of Andersen [7] (obtained as a consequence of Lusztig’s

conjecture), see [34, Proposition C.2(b)].
From (11.7), (11.10), (11.11) and [4, Lemma 2.10], we deduce that

dimy (Hom pusx (v, 1 (J1(A, k), ZC;™ (k) (1) [i]))
= dimg, (Homppix (v, g, (Z1(A, Qe), ZC™(Qe) () 1))
and that
dimny (Hom pumix (v 1 (ZC,™ (), T (A, k) (5)[a]))
= dimg, (Hong;;x)(Y2,Qg) (ZCI™(Qe), T (X, Qo) (5)1d))

for any 4,5 € Z and A\, u € X such that Gry,Gr, C Y. Since, in the case of
Qy, we know that these spaces vanish unless ¢ + j = 0 (see above), we deduce the
same property over k. Then, Lemma 11.13 implies that ICf\nix(k) is isomorphic to
a parity complex considered as a complex concentrated in degree 0, for any A € X



108 PRAMOD N. ACHAR AND SIMON RICHE

such that Gry C Y3. By indecomposibility and considering supports, we even have
ICY™X(Kk) = &, (k) for any such \.

By the well-known characterization of simple objects in the recollement formal-
ism, see [1 1, Corollaire 1.4.24], the fact that ZCY™ (k) = &, (k) implies that i (Ex(k))
is in perverse degrees < —1 and that iit(é}\ (k)) is in perverse degrees > 1, for any
p# € X such that Gr, C Gry ~ Gry C Y. On the other hand, these complexes
are just the ordinary restriction and corestriction of £5(k) to Gr,, considered as
complexes concentrated in degree 0; see [1, Remark 2.7]. Hence these conditions
mean that %, (€x(k)) belongs to D=~ dim(Gru)=1(Gr,, k), and that iL(EA(k)) belongs
to DZ_dim(GrM)"’l(er k), where iy, and ZL now mean the ordinary restriction and
corestriction functors. Using the characterization of ordinary intersection cohomol-
ogy complexes given by [11, Corollaire 1.4.24], it follows that ZCy (k) = Ex(k). O

Remark 11.14. Theorem 11.11(2), [4, Lemma 3.7] and [5, Corollary 3.17] imply
that if Lusztig’s conjecture holds, then the category Perv?f‘i;)(Yg?k) (which is part
of a grading on the Serre subcategory of Repy (G) generated by the simple objects
L(w e 0) with w € “W,g such that (w e 0+ p,a) < £(f — h + 2) for any positive
root «) is a Koszul category.
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