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In this paper we present an eective coarse space correction addressed to accelerate the solution of an algebraic linear system. The system arises from the formulation of the problem of interpolating scattered data by means of Radial Basis Functions. Radial Basis Functions are commonly used for interpolating scattered data during the image reconstruction process in graphic analysis. This requires to solve a linear system of equations for each color component and this process represents the most time-consuming operation. Several basis functions like trigonometric, exponential, Gaussian, polynomial are here investigated to construct a suitable coarse space correction to speed-up the solution of the linear system. Numerical experiments outline the superiority of some functions for the fast iterative solution of the image reconstruction problem.

Introduction

Interpolation of scattered data is a main issue in image reconstruction theory. The use of Radial Basis Functions (RBFs) for this purpose was introduced in [START_REF] Savchenko | Function representation of solids reconstructed from scattered surface points and contours[END_REF] and [START_REF] Turk | Shape transformation using variational implicit functions[END_REF]. From these papers it appears that solving the System of Linear Algebraic Equations (SLAE) induced by this method comes out to be the most time consuming operation of the whole reconstruction process. Indeed, interpolation of an image by RBF involves performing O(N 3 ) arithmetic operations, where N denotes the number of data points. Therefore, the computation becomes impractical over several thousands of points.

In spite of this extreme computational cost, RBFs have been widely adopted because of the good results they generally provide, even in many other areas [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF][START_REF] Hardy | Theory and applications of the multiquadric-biharmonic method[END_REF]. Several advances have been made, allowing to address quite larger data sets, like the use of Compactly-Supported Radial Basis Functions (CSRBFs) proposed by Wendland in [START_REF] Wendland | Piecewise polynomial, positive denite and compactly supported radial functions of minimal degree[END_REF], from which the resulting SLAE becomes sparse. With this new property, Morse et al. carried out the reconstruction of implicit surfaces from sets of several thousands of points [START_REF] Morse | Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions[END_REF].

While direct methods used in these approaches allowed to aord less than forty thousands points, iterative methods have been successfully applied for even larger data sets [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF][START_REF] Beatson | Fast tting of radial basis functions: Methods based on preconditioned GMRES iteration[END_REF][START_REF] Ohtake | Multi-scale approach to 3D scattered data interpolation with compactly supported basis functions[END_REF]. Recently, the main attention has been centered on partition of unity method where small solutions are stickled together as proposed by Wendland [START_REF] Wendland | Fast evaluation of radial basis functions: Methods based on partition of unity[END_REF]. Ohtake et al. [START_REF] Ohtake | Multi-level partition of unity implicits[END_REF] have developped multilevel partition of unity implicit. If the density of the points is not uniform, iterative inclusion of new centers is used to estimate the small solutions. Adaptive iterative inclusion has also been proposed by Hon et al. [START_REF] Hon | Adaptive greedy algorithm for solving large rbf collocation problems[END_REF] for solving large RBF collocation problems but its convergence behavior needs improvement by preconditioning techniques. Hybrid iterative-direct methods, such as domain decomposition methods [START_REF] Smith | Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Dierential Equations[END_REF][START_REF] Quarteroni | Domain Decomposition Methods for Partial Dierential Equations[END_REF][START_REF] Toselli | Domain Decomposition methods: Algorithms and Theory[END_REF][START_REF] Magoulès | Lagrangian formulation of domain decomposition methods: a unied theory[END_REF] have been widely used to solve large scale linear systems. Additional preconditioning techniques based on transmission conditions [START_REF] Maday | Absorbing interface conditions for domain decomposition methods: a general presentation[END_REF]optimized with a continuous approach [START_REF] Chevalier | Symmetrized method with optimized second-order conditions for the Helmholtz equation[END_REF][START_REF] Magoulès | Convergence analysis of Schwarz methods without overlap for the Helmholtz equation[END_REF][START_REF] Magoulès | Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation[END_REF][START_REF] Gander | An optimized Schwarz method with twosided Robin transmission conditions for the Helmholtz equation[END_REF] or with an algebraic approach [START_REF] Roux | Approximation of optimal interface boundary conditions for two-Lagrange multiplier FETI method[END_REF][START_REF] Magoulès | Algebraic way to derive absorbing boundary conditions for the Helmholtz equation[END_REF][START_REF] Magoulès | Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity[END_REF][START_REF] Magoulès | Algebraic Dirichlet-to-Neumann mapping for linear elasticity problems with extreme contrasts in the coecients[END_REF][START_REF] Gander | Analysis of patch substructuring methods[END_REF]or on coarse space techniques [START_REF] Widlund | The development of coarse spaces for domain decomposition algorithms[END_REF][START_REF] Mandel | Coarse spaces over the ages[END_REF] have shown strong eciency and robustness. Magoulès et al. in [START_REF] Magoulès | A two-level iterative method for image reconstruction with radial basis functions[END_REF][START_REF] Magoulès | Ecient preconditioning for image reconstruction with radial basis function[END_REF] propose an ecient algorithm to solve the SLAE resulting from the formulation of the problem of image reconstruction from scattered data by means of CSRBF; but the authors did not present a suitable choice of coarse space basis. In this paper we investigate several original coarse space basis functions and compare their respective eciencies.

The paper is organized as follows. In section II the formulation of the CSRBF-based interpolation problem is introduced. The coarse space correction is described in section III together with the iterative method considered in this paper. Various coarse space basis functions are proposed and compared in section IV. Finally, section V contains the conclusions.

Compactly Supported Radial Basis Functions

In a generalized form, the interpolation problem consists in reconstructing a function from a nite set of linear measurements [START_REF] Kybic | Generalized Sampling: A Variational ApproachPart I: Theory[END_REF][START_REF] Kybic | Generalized Sampling: A Variational ApproachPart II:Applications[END_REF]. This reconstructed function can be obtained by a linear combination of basis functions, such as in [START_REF] Strohmer | Computationally attractive reconstruction of bandlimited images from irregular samples[END_REF][START_REF] Lee | Scattered data interpolation with multilevel B-splines[END_REF][START_REF] Vazquez | Reconstruction of irregularly-sampled images by regularization in spline spaces[END_REF][START_REF] Arigovindan | Multigrid image reconstruction from arbitrarily spaced samples[END_REF][START_REF] Ichige | Multiwavelet-like bases for high quality image interpolation[END_REF]. The present study considers Compactly-Supported Radial Basis Functions (CSRBFs) [START_REF] Wendland | Piecewise polynomial, positive denite and compactly supported radial functions of minimal degree[END_REF], represented by the formula

s(x) = p(x) + N i=1 λ i φ( x -x i ),
where s denotes the CSRBF, p, a polynomial of degree one, φ, a radially symmetric function (called basis function), λ i 's, the CSRBF coecients, x i 's, the centers of the basis function and the symbol • , the Euclidean norm of a vector. Dening an interpolating CSRBF consists to determine the coecients λ i and the polynomial p such that, given a set of N points x i and values f i , s satises

s(x i ) = f i , i = 1, 2, . . . N (1) 
If {p 1 , . . . , p l } is a monomial basis for polynomials of the degree of p, and c = (c 1 , . . . , c l ) T the coecients of p(x) in this basis, then the interpolation conditions Equation (1) can be expressed as a System of Linear Algebraic Equations (SLAE) in the form

Φ P P T 0 λ c = f 0 , where Φ i,j = φ( x i -x j ), i = 1, . . . , N , j = 1, . . . , N , P i,j = p j (x i ), i = 1, . . . , N , j = 1, . . . , l which can be simplied to Aχ = b (2) 
where χ = (λ, c) T is the solution of the SLAE and b = (f , 0) T the values to be interpolated, padded with zeros.

Iterative solution of CSRBF interpolation

As mentionned previously, solving the linear system (2), is the main time consuming part of the image reconstruction process. Direct methods, similar to the one used in [START_REF] Savchenko | Function representation of solids reconstructed from scattered surface points and contours[END_REF][START_REF] Turk | Shape transformation using variational implicit functions[END_REF][START_REF] Morse | Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions[END_REF][START_REF] Wendland | Fast evaluation of radial basis functions: Methods based on partition of unity[END_REF],

usually fail when the size of input data exceeds a few thousands of points.

With iterative methods [START_REF] Beatson | Fast tting of radial basis functions: Methods based on preconditioned GMRES iteration[END_REF][START_REF] Beatson | Fast solution of the radial basis function interpolation equations: Domain decomposition methods[END_REF][START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF][START_REF] Ohtake | Multi-scale approach to 3D scattered data interpolation with compactly supported basis functions[END_REF][START_REF] Ohtake | Multi-level partition of unity implicits[END_REF][START_REF] Hon | Adaptive greedy algorithm for solving large rbf collocation problems[END_REF], large data sets can be addressed, although convergence is often dicult to reach, due to the conditioning of the system. An ecient way to get rid of this limitation is to increase the robustness of the algorithm by means of preconditioning techniques [START_REF] Beatson | Fast tting of radial basis functions: Methods based on preconditioned GMRES iteration[END_REF][START_REF] Hon | Adaptive greedy algorithm for solving large rbf collocation problems[END_REF][START_REF] Saad | Enhanced multi-level block ILU preconditioning strategies for general sparse linear systems[END_REF].

Hybrid methods, like the non-overlapping Schwarz domain decomposition method [START_REF] Arigovindan | Multigrid image reconstruction from arbitrarily spaced samples[END_REF] and the multigrid methods [START_REF] Axelsson | Algebraic multilevel iteration method for stieltjes matrices[END_REF] have also been used. These algorithms oer powerful tools for the ecient solution of the interpolation problem, apart from the fact that their implementation in existing software requires a quite high degree of skills.

In the following a simple iterative method with a coarse space correction issued from domain decomposition methods is proposed to solve the linear system (2). This approach consists of a coarse space correction [START_REF] Mandel | Coarse spaces over the ages[END_REF][START_REF] Widlund | The development of coarse spaces for domain decomposition algorithms[END_REF] applied to the solution of the interface problem arising from the domain decomposition method. In references [START_REF] Magoulès | A two-level iterative method for image reconstruction with radial basis functions[END_REF][START_REF] Magoulès | Ecient preconditioning for image reconstruction with radial basis function[END_REF] for graphic analysis this approach is applied directly to the solution of the linear system [START_REF] Axelsson | Algebraic multilevel iteration method for stieltjes matrices[END_REF]. Each iteration of the algorithm involves a projection of the residual on a coarse space basis. With a suitable coarse space, this projection accelerates the convergence of the iterative method.

The GCR (Generalized Conjugate Residual) algorithm is here considered. Not only does the GCR present similar convergence properties than the GMRES (Generalized Minimal RESidual) but it is also easier to implement in an existing software, albeit that adds some extra computation. The GCR algorithm for solving the system Aχ = b can be written as:

1: Initialize r 0 = b -Aχ 0 ; w 0 = r 0 2: Iterate k = 0, 1, 2, ... until convergence α k = (r k ,Aw k ) (Aw k ,Aw k ) χ k+1 = χ k + α k w k r k+1 = r k -α k Aw k β ik = -(Ar k+1 ,Awi) (Awi,Awi) , for i = 0, 1, . . . , k w k+1 = r k+1 + k i=0 β ik w i
where k denotes the iteration number, χ k the approximate solution, r k = b -Aχ k the residual vector, and w k the search direction.

As it is clear from this algorithm, each iteration requires a matrix-vector product, dot products and linear combination of vectors; the matrix-vector product representing the most expensive task.

The proposed method consists in projecting at each iteration, the system (2) onto a proper coarse space, this projection involving the solution of a small additional problem.

Let r k denotes the k-th GCR residual, that is

r k = b -Aχ k (3)
The GCR algorithm can converge faster if, at each iteration, r k is made orthogonal to a subspace represented by a matrix Q, that is

Q T r k = 0 (4)
Indeed, if A is symmetric, then this weighted weak form of r k = 0 will reduce the error r k and thus accelerate the convergence. For instance, a matrix Q with N + 4 linearly independent columns makes the GCR method equipped with a coarse space correction converge in one iteration. Yet, it might be reminded that the subspace represented by the matrix Q should be coarse enough. Otherwise, the process of enforcing Q T r k = 0 introduces a high unnecessary overhead. Enforcing Q T r k = 0 at each GCR iteration can be achieved by means of a vector of the form µ = Qγ, where γ is a vector of additional unknowns. Precisely, the vector χ k of a GCR iteration will be replaced by a vector χk as follows

χk = χ k + µ k = χ k + Qγ k (5)
Then, the correction term µ k = Qγ k enforces exactly at each iteration k the optional admissible constraint Q T r k = 0. Substituting Equation (5) into Equation (3) and Equation [START_REF] Beatson | Fast solution of the radial basis function interpolation equations: Domain decomposition methods[END_REF] shows out a projection of the initial problem Equation ( 2) onto the subspace represented by Q; this new problem called second-level CSRBF interpolation problem is given by:

Q T AQγ k = Q T (b -Aχ k ) (6)
From Equation ( 5) and Equation ( 6), it follows that χk can be computed as χk = χ 0 + P χ k [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF] where P is the projector given by P = I -Q(Q T AQ) -1 Q T A and χ 0 is the initial vector given by χ 0 = Q(Q T AQ) -1 Q T b Finally, by substituting χ in Equation ( 7) by χ in Equation ( 2) and multiplying the result by P T , we replace the original CSRBF interpolation problem by the alternative problem P T AP χ = P T b The whole process is summarized in the following algorithm, where matrix-vector products surrounded by parentheses are simple vector variables and not actual computation. If so, only one projection of the form P s and one matrix-vector product are performed per iteration.

1: Initialize χ 0 = Q[Q T AQ] -1 Q T b r 0 = b -Aχ 0 ; y 0 = P r 0 w 0 = y 0 , (Aw) 0 = Aw 0 2: Iterate k = 1, 2, ... until convergence ζ k = ((Aw) k-1 ,r k-1 ) ((Aw) k-1 ,(Aw) k-1 ) χ k = χ k-1 + ζ k w k-1 r k = r k-1 -ζ k (Aw) k-1 y k = P r k (Ay) k = Ay k w k = y k - i=k-1 i=0 
((Aw)i,(Ay) k ) ((Aw)i,(Aw)i) w i (Aw) k = (Ay) k - i=k-1 i=0 ((Aw)i,(Ay) k ) ((Aw)i,(Aw)i) (Aw) i

Coarse Space construction

In [START_REF] Mandel | Coarse spaces over the ages[END_REF], Mandel and Sousedík explain the principles of the design of a coarse space in a simplied way. In [START_REF] Widlund | The development of coarse spaces for domain decomposition algorithms[END_REF], Widlund shows a historically complete presentation about the development of coarse spaces for domain decomposition algorithms. The eciency of the coarse space correction is closely related to its key ingredient: the choice of an appropriate coarse space. Our goal here is to build such a coarse space in the context of image interpolation problem with CSRBF.

The rst tentative of coarse space correction to solve CSRBF interpolation problem has been presented in [START_REF] Magoulès | A two-level iterative method for image reconstruction with radial basis functions[END_REF]. Choosing as a coarse space basis the eigenvectors of the CSRBF interpolation problem denitely improves the convergence of the iterative method. Only few eigenvectors associated with clustered eigenvalues are enough to accelerate the convergence of the algorithm. Unfortunately, such a choice can not be done in practice since these exact eigenvectors are too expensive to compute. Thus, a rst idea is to approximate these eigenvectors numerically. An another idea presented in [START_REF] Magoulès | Ecient preconditioning for image reconstruction with radial basis function[END_REF] consists of choosing as a coarse space basis some particular RBF. These RBF are chosen upon the RBF as the minimum set of functions required to reconstruct some basic black and white images. This choice leads to a better convergence of the iterative algorithm with the coarse space correction. A more ecient preconditioning for the CSRBF interpolation problem was also presented in [START_REF] Magoulès | Ecient preconditioning for image reconstruction with radial basis function[END_REF].

The authors reconstructed simple images considering as coarse space basis functions square waveforms with dierent frequencies and some radial basis functions with a bigger radius joined to the basis of the linear polynomial p(x). For more complex images, Daubechies wavelet basis (D4) was used. However, as the authors noted, neither the eigenvectors associated to non-clustered eigenvalues of the RBF interpolation problem, neither radial basis functions seems to be ecient, and the choice of a good coarse space is still an open issue.

In the following, several basis functions including trigonometric, exponentials and polynomials are investigated for CSRBF-based image reconstruction.

The Lena image with 262.144 pixels, displayed Figure 1, is used to compare the eciency of the coarse space basis. Former experiments applied to acoustic scattering problem [START_REF] Magoulès | Algebraic approach to absorbing boundary conditions for the Helmholtz equation[END_REF] have shown the good convergence properties of the algorithm with a coarse space composed with trigonometric functions. Besides by the fourier analysis they can represent the dominant frequencies very accurately in the solution, and thus improve the convergence of the algorithm. Table 1 shows the number of iterations requiered by the GCR with coarse space correction based on such trigonometric functions for two dierent stopping criteria. The best results with the trigonometric functions are obtained with the sinc and exp functions.

As explained previously, the iterative method with coarse space correction converges quickly when composed of orthogonal search direction vectors. For this reason, Gaussian functions and Tchebychev functions are considered and the results reported in Table 1. Despite evaluating these functions represents almost the same computational cost than the trigonometric functions, these coarse space basis functions outperform the later one.

Conclusions

In this paper, a coarse space correction is presented to solve iteratively the Radial Basis Functions interpolation problem. The method consists of an iterative method involving at each iteration a projection of the residual onto a suitable coarse space. Numerical results illustrate the convergence properties of the proposed method for dierent coarse space basis for image reconstruction.
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 1 Figure 1: Lena image (512 × 512) used for the test case.
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