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AN ERROR ESTIMATE FOR A FINITE-VOLUME SCHEME FOR THE
CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY

CONDITIONS

FLORE NABET∗

Abstract. In this paper we consider a finite-volume approximation for the Cahn-Hilliard equation with
dynamic boundary conditions. The convergence of the scheme is proved in [22], we prove here an error estimate
for the fully-discrete scheme. We also give numerical simulations which validate the theoretical result.
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1. Introduction.

1.1. The Cahn-Hilliard model. We consider the following Cahn-Hilliard equation with
a dynamic boundary condition which describes the phase separation process of a binary mix-
ture. Find the concentration of one of the two components c : (0, T )×Ω→ R and the chemical
potential µ : (0, T )× Ω→ R such that

∂tc = Γb∆µ; in (0, T )× Ω;(1.1a)

µ = −3

2
εσb∆c+

12

ε
σbf
′
b(c); in (0, T )× Ω;(1.1b)

ε3

64ΓbΓs
∂tcpΓ =

3

8
ε2σbσs∆ΓcpΓ − 6σbf

′
s(cpΓ)− 3

2
εσb∂nc; on (0, T )× Γ;(1.1c)

∂nµ = 0; on (0, T )× Γ;(1.1d)

c(0, .) = c0; in Ω;(1.1e)

where Ω is a connected and bounded domain of class C2 in R2, ∂n is the normal derivative
operator, cpΓ is the trace of c on the boundary Γ = ∂Ω and ∆Γ is the Laplace-Beltrami operator.

The Cahn-Hilliard model is a diffuse interface model that means that the interfaces have
a small but non-zero thickness ε > 0 (see Fig. 1a). Several physical parameters which describe
the physical properties of the mixture components and the wall appear in the model: a diffusion
coefficient called the mobility (supposed to be constant here) Γb > 0, the binary surface tension
coefficient σb > 0 between the two components (which is the density interfacial energy), a
capillarity coefficient σs > 0 and a relaxation coefficient Γs > 0. The bulk and surface potentials
fb (typically fb(c) = c2(1−c)2, see Fig. 1b) and fs respectively satisfy the following dissipativity
assumption (useful to prove the bounds on the discrete solutions given in Proposition 4.5),

lim inf
|c|→∞

f ′′b (c) > 0 and lim inf
|c|→∞

f ′′s (c) > 0,

and the polynomial growth condition for fb

(1.2) |f ′b(c)| ≤ C(1 + |c|p), ∀c ∈ R,

for some C > 0 and p ∈ [1,+∞[.
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Fig. 1: Definition of the interface thickness and double-well structure of fb

The total Cahn-Hilliard energy is written as follows

(1.3) F(c) =

∫
Ω

(
3

4
εσb |∇c|2 +

12

ε
σbfb(c)

)
︸ ︷︷ ︸

:=Fb(c)

+

∫
Γ

(
3

16
ε2σbσs |∇ΓcpΓ|2 + 6σbfs(cpΓ)

)
︸ ︷︷ ︸

:=Fs(c)

,

and this energy is dissipated over time

(1.4)
d

dt
F(c(t, .)) = −Γb

∫
Ω

|∇µ(t, .)|2 − ε3

64ΓbΓs

∫
Γ

|∂tcpΓ(t, .)|2 , t ∈ [0, T [.

We can remark that the bulk energy Fb is the energy associated with the Cahn-Hilliard equation
with Neumann boundary conditions. Definition (1.3) of the total energy induces us to introduce
the function spaces H1

Γ(Ω) = {u ∈ H1(Ω) : upΓ ∈ H1(Γ)} and H2
Γ(Ω) = {u ∈ H2(Ω) : upΓ ∈

H2(Γ)} and the corresponding norms, for i ∈ {1, 2}

‖u‖HiΓ(Ω) =
(
‖u‖2

Hi(Ω)
+ ‖upΓ‖2Hi(Γ)

) 1
2

, ∀u ∈ Hi
Γ(Ω).

In the analysis to follow, for the sake of simplicity, all the coefficients in problem (1.1) will
be taken equal to one (expect for the numerical results given in Section 5).

1.2. Former results and outline. In the past 30 years, the Cahn-Hilliard equation
associated with the homogeneous Neumann boundary condition on the order parameter c
has been extensively studied. Recently physicists [15, 16, 20] have introduced the dynamic
boundary condition which allows to take into account the interaction between the components
and the wall, especially the contact-line dynamics (see [18]). In the case of Neumann boundary
conditions the numerical analysis with finite-difference and finite-element methods is well-
understood (see [3, 5, 6, 7, 9, 8, 10, 12, 13, 14, 17, 23] and the references therein). However,
to our knowledge, for the problem that we study here there is no error estimate for the fully-
discrete scheme on a curved domain. The only work on the numerical analysis of parabolic
problems with dynamic boundary conditions on a smooth domain that we know is given in [21].
The authors prove error estimates for several parabolic problems, including semilinear problems
such as Allen-Cahn equation, with dynamic boundary conditions on a C∞ domain using finite-
element discretization in space. With regard to the Cahn-Hilliard equation, there exist finite-
difference methods but without proof of stability or convergence (see [15, 16, 20]). A numerical
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analysis for the semi-discrete scheme using a spatial finite-element scheme is done in [2] in
a slab with periodic boundary conditions in the longitudinal direction. In [22] the author
propose a finite-volume scheme and prove the convergence of the numerical scheme towards a
weak solution of problem (1.1) for a smooth non-polygonal domain. Finite-volume methods
have advantage to easily adapt to the non flat geometry of the boundary and to naturally
couple the equation in the domain and the dynamic boundary condition by the flux term ∂nc.
That is why, in order to prove an error estimate on a smooth domain Ω for this problem, we
use the same finite-volume scheme that the one introduced in [22]. Therefore in Section 2 we
present the finite-volume framework that is the finite-volume notation on a curved domain, the
associated discrete inner products and norms and the functional inequalities used in the paper.
Then Section 3 is devoted to the presentation of the numerical scheme. In Section 4 (and in
the Appendix) we prove the main result of the paper: an error estimate for the fully-discrete
scheme (Theorem 4.2). Finally in Section 5 we present a numerical error estimate for this
model in accordance with the error estimate theorem proved in the previous section. Note that
the paper is written in the two dimensional case. If we want to study the three dimensional
case, which would be a natural perspective for this work, the main difficulty is the handling of
the Laplace–Beltrami operator in a two-dimensional surface.

2. The finite-volume framework.

2.1. Mesh and notation. We recall here the main finite-volume notations used in the
paper (see Fig. 2). The usual notation for a polygonal domain can be found for example in [11]
and the notation associated to a curved domain in [22].

v = L|L′
xL

xK

yL

xLi

d
K,L

i

d
K
,L

dL,v

xL′
yL′

d
L ′,v

~nKLi

~nKL

~nσK(xL)

Interior vertex
Boundary vertex

Interior center
Boundary center

Interior mesh M

K
Boundary mesh ∂M

L ∈ ∂M eL chord associated with L

Fig. 2: Mesh T associated with Ω

An admissible mesh T of Ω is given by an interior mesh M and a boundary mesh ∂M.
The interior mesh M is a set of disjoint open subsets of Ω, denoted by K and called interior
control volumes, which satisfy:

• Ω = ∪K∈MK;
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• if K, L ∈M,K 6= L, then K ∩ L = ∅;
• if K, L ∈M,K 6= L such that the dimension of K̄∩ L̄ is equal to 1, then K̄∩ L̄ is the edge

of the mesh separating the control volumes K and L;
• if K ∩ Γ contains a finite number of points, then K is polygonal;
• for any K ∈M, we associate a point xK ∈ K (referred to as the center of K) such that

if K, L are two neighboring interior control volumes, the edge which separates K and
L, which is denoted by σ = K|L, is orthogonal to the straight line going through xK
and xL.

Let E be the set of edges of the interior mesh M. We decompose E into two disjoint subsets:
the set of interior (flat) edges Eint = {σ ∈ E : σ 6⊂ Γ} and the set of exterior (curved) edges
Eext = {σ ∈ E : σ ⊂ Γ}. Similarly we use the notations E intK and EextK for the edges of a given
control volume K ∈ M. For any σ ∈ E , we note mσ its length. For each edge σ ∈ E , we
associate a diamond cell D defined as follows:

• D = Dσ the quadrangle whose diagonals are the edge σ and the line segment [xK, xL]
if σ ∈ Eint;

• D = Dσ = {tx+ (1− t)xK, t ∈ [0, 1], x ∈ σ} if σ ∈ Eext ∩ EK.
We note mD the Lebesgue measure of D and D is the set of all diamond cells.

Since the domain Ω is not polygonal, we have to introduce an approximate domain Ω =
∪K∈MK of Ω where

• K = K if EK ∩ Eext = ∅;
• K is the polygon obtained by joining all the vertex of K if EK ∩Eext 6= ∅. We can notice

that in this case K may be not convex and that K may be not included in Ω.
We denote by mK (resp. mK) the Lebesgue measure of K (resp. K) and by mM ∈ RM (resp.
mM ∈ RM) the vector (mK)K∈M (resp. (mK)K∈M). The Lebesgue measures of K and K are then
related by the following relation.

Proposition 2.1. For any interior control volume K ∈ M such that the dimension of
∂K ∩ Γ is equal to 1, we have

mK −mK = O
(
diam(K)3

)
.

Therefore, there exists C1, C2 > 0 depending only on Γ such that

C1mK ≤ mK ≤ C2mK.

The boundary mesh ∂M is equal to the set of exterior edges Eext. Thus, the exterior edges
are also boundary control volumes. When we consider them as edges, we denote them by
σ ∈ Eext, and, when we consider them as control volumes of the boundary mesh, we denote
them by L ∈ ∂M (and its length by mL). The chord associated with L is then denoted by eL
(and its length by meL), and, the quantities mL and meL are related by the following relation.

Proposition 2.2. For any boundary control volume L ∈ ∂M, we have

meL −mL = O
(
m3
L

)
.

In particular, there exists C3 > 0 independent of size(T ) such that

meL ≤ mL ≤ C3meL .

Let m∂M (resp. m∂M) be the vector (mL)L∈∂M (resp. (meL)L∈∂M), then we note mT =
(mM,m∂M) ∈ RT (resp. mT = (mM,m∂M) ∈ RT ).

For any control volume L ∈ ∂M, we associate a point xL ∈ L, called the center of the
control volume. For any boundary control volume L ∈ ∂M, let be K ∈M the interior control
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volume such that L = σ is an edge of K. Then, we impose that the straight line going through
xK and xL is orthogonal to the chord eL associated with L. Moreover, we define yL as the
orthogonal projection of xL on the chord eL.

Let V be the set of vertices of the mesh M which belongs to Γ. We denote by v = L|L′
the vertex which separates the boundary control volumes L and L′. For any v = L|L′, let
dL,v = d(yL,v) be the approximation of the lengthmγLv of the arc γLv included in the boundary
control volume L whose ends are xL and v. The measure of the arc γLL′ (which is the arc whose
ends are xL and xL′ and passing through the vertex v) is then approximate by the distance
dL,L′ = dL,v + dL′,v.

If σ = K|L ∈ Eint is an interior edge, we note dK,L the distance between the centers xK and
xL; and ~nKL the normal vector to σ going from K to L. If σ = L ∈ Eext∩EK is an exterior edge,
we note dK,L the distance between the center xK and the point yL; and ~nKL the normal vector
to the chord eL outward to K. In this case, the distance d(xK, xL) and its approximation dK,L
satisfy the following relation.

Proposition 2.3. Let us consider a boundary control volume L ∈ ∂M such that L = σ ∈
EK where K ∈M is an interior control volume, then we have

d(xL, yL) = |d(xK, xL)− dK,L| = O(mLmγLv).

Let size(T ) be the maximum of the diameters of the interior control volumes K. We
introduce a positive number reg(T ) that measures the regularity of a given mesh and is useful
to perform the numerical analysis of finite-volume schemes

(2.1) reg(T ) := max

(
max
K∈M

diam(K)
√
mK

, max
K∈M
σ∈EK

diam(K)

d(xK, σ)
, max
K∈M
σ∈EK

dK,L
d(xK, σ)

)
.

The number reg(T ) should be uniformly bounded when size(T )→ 0.
For the needs of the proof of error estimate theorem, we also define a family of quasi-

uniform meshes.

Definition 2.4 (Quasi-uniform mesh family of Ω).
For a given mesh T , we define the number regunif(T ) as follows

regunif(T )
def
= sup

(
reg(T ), sup

K∈M

size(T )2

mK

)
.

We say that a mesh family
(
T (i)

)
i∈N is quasi-uniform if regunif(T (i)) is bounded.

2.2. Inner-products and norms. Since the domain Ω is not polygonal, we introduce a
L2-inner product on the domain Ω (and on its boundary Γ = ∂Ω) but also on the approximate
polygonal domain Ω (and on its boundary ∂Ω).

For the space discretization, the finite-volume method associates an unknown value uK ∈ R
(resp. uL ∈ R) to each interior (resp. boundary) control volume K ∈M (resp. L ∈ ∂M). Thus
we note

uT = (uM, u∂M) = ((uK)K∈M, (uL)L∈∂M) ∈ RT = RM × R∂M.

Definition 2.5 (Discrete L2-inner products).
• We define the inner product (., .)

L2(Ω)
on L2(Ω) and the inner product (., .)

M
on L2(Ω)

as follows: for any uM, vM ∈ RM, we have

(uM, vM)
L2(Ω)

=
∑
K∈M

mKuKvK and (uM, vM)
M

=
∑
K∈M

mKuKvK.
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We denote by ‖.‖
L2(Ω)

and ‖.‖0,M the associated norms.
• We define the inner product (., .)

L2(Γ)
on L2(Γ) and the inner product (., .)

∂M
on L2(∂Ω)

as follows: for any u∂M, v∂M ∈ R∂M, one has

(u∂M, v∂M)
L2(Γ)

=
∑
L∈∂M

mLuLvL and (u∂M, v∂M)
∂M

=
∑
L∈∂M

meLuLvL.

We denote by ‖.‖
L2(Γ)

and ‖.‖0,∂M the associated norms.

Owing to Proposition 2.1 (resp. Proposition 2.2), the norms ‖.‖
L2(Ω)

and ‖.‖0,M (resp. ‖.‖
L2(Γ)

and ‖.‖0,∂M) are equivalent (with constants independent on the mesh size).
We also define semi-inner products in RT and R∂M.

Definition 2.6 (Discrete H1-semidefinite inner products). We define the H1-semidefinite
inner product in RT as follows: for any uT , vT ∈ RT ,

JuT , vT K1,T =
∑

σ=K|L∈Eint

mσ

dK,L
(uK − uL)(vK − vL) +

∑
σ=L∈Eext

meL

dK,L
(uK − uL)(vK − vL).

We also define the H1-semidefinite inner product in R∂M as follows:

Ju∂M, v∂MK1,∂M =
∑

v=L|L′∈V

1

dL,L′
(uL − uL′)(vL − vL′), ∀u∂M, v∂M ∈ R∂M.

We denote by |.|1,T and |.|1,∂M the associated seminorms. Moreover, we define the H1-norms
in RT and R∂M as follows: for any uT ∈ RT , u∂M ∈ R∂M,

‖uT ‖1,T =
(
‖uT ‖20,M + |uT |21,T

) 1
2

and ‖u∂M‖1,∂M =
(
‖u∂M‖20,∂M + |u∂M|21,∂M

) 1
2

.

2.3. Functional inequalities. We give here without proofs some functional inequalities
available in the literature and that we will use all along the paper. In [1] the proofs are given on
a polygonal domain using the continuous embedding of BV (Ω) into L2(Ω). Since the properties
of the space BV (Ω) used in [1] hold with a Lipschitz, bounded, connected domain of R2 and
that computations performed in [1] are also true for the norms defined in Section 2.2, the
results can be adapted in our case. We consider an admissible mesh T of Ω.

Lemma 2.7 (Discrete mean Poincaré inequality, [1, Theorem 3.6]). There exists C4 > 0
depending only on Ω such that for any uT ∈ RT ,

‖uM −mΩ (uM)‖
L2(Ω)

≤ C4 |uT |1,T with mΩ (uM) =
1

|Ω|
∑
K∈M

mKuK.

Thus, we also have

(2.2) ‖uM‖L2(Ω)
≤ C4 |uT |1,T + |Ω| 12 |mΩ (uM)|,

Comparing the mean values on Ω and Ω we also obtain a Poincaré inequality that involves
the mean value on Ω. More precisely, thanks to Propostion 2.1 and the mesh regularity (2.1),
there exists C5 > 0 depending only on Γ and reg(T ) such that for any uT ∈ RT ,

(2.3) ‖uM‖L2(Ω)
≤ C4 |uT |1,T +

|Ω| 12
C1
|mΩ (uM)|+ C5

|Ω| 12
size(T ) ‖uM‖L1(Ω)

,

with mΩ (uM) = 1
|Ω|
∑
K∈MmKuK.
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Lemma 2.8 (Poincaré-Sobolev inequality, [1, Theorem 3.2]). Let 1 ≤ q < +∞, there
exists C6 > 0 depending only on q, Ω and reg(T ) such that

(2.4) ‖uM‖Lq(Ω)
:=

( ∑
K∈M

mK|uK|q
) 1
q

≤ C6 ‖uT ‖1,T , ∀uT ∈ RT .

We can also easily prove the following Sobolev inequality on the one dimensional manifold Γ.

Lemma 2.9 ([22, Lemma A.3]). There exists C7 > 0 depending only on Γ such that for
any u∂M ∈ R∂M,

sup
L∈∂M

|uL| ≤ C7 ‖u∂M‖1,∂M .

Using the fact that the trace operator is continuous from BV (Ω) into L1(Γ), we can use similar
techniques as that in [1, Theorem 3.2] to obtain the following discrete trace theorem.

Lemma 2.10 (Trace inequality). There exists C8 > 0 depending only on Ω such that for
any uT ∈ RT we have

‖u∂M‖L2(Γ)
≤ C8

(
|uT |1,T + ‖uM‖L2(Ω)

)
.

We can also remark that for a quasi-uniform mesh family
(
T (i)

)
i∈N (see Definition 2.4)

and for any q ≥ 1, there exists a uniform constant C9 > 0 (depending on q and regunif(T ))
such that

(2.5) sup
K∈M
|uK| ≤

C9

size(T (i))2/q
‖uM‖Lq(Ω)

, ∀uM ∈ RM.

3. The finite-volume scheme . This section is devoted to the presentation of the nu-
merical scheme. We refer the reader to [22] for the proofs of the energy stability, the existence
of a discrete solution and the convergence analysis.

For the time discretization, let N ∈ N and ∆t = T
N be the time step. For any n ∈

{0, · · · , N} we define tn = n∆t. Then, at time tn, the unknowns are denoted by

cnT =

(
(cnK)K∈M
(cnL)L∈∂M

)
and µnT =

(
(µnK)K∈M
(µnL)L∈∂M

)
.

Since µ is associated with the homogeneous Neumann boundary condition, for any L ∈ ∂M we
have µnL = µnK where K ∈M is the interior control volume such that L ⊂ ∂K.

To obtain the finite-volume approximation of problem (1.1) we integrate the continuous
equations (1.1a) and (1.1b) on all interior control volumes K ∈M and we use a consistent two-
point flux approximation for the Laplace operators (associated with the Neumann boundary
condition for µ). Then we integrate dynamic boundary condition (1.1c) on all boundary control
volumes L ∈ ∂M and we use a consistent two-point flux approximation for the Laplace-Beltrami
operator.

As regards the discretization of nonlinear terms f ′b and f ′s (denoted by dfb and dfs re-
spectively) we use two different discretizations (see Definition 3.1): the classical implicit dis-
cretization and a semi-implicit discretization which enables us to obtain an energy estimate
unconditionally stable.

The problem is then written as follows. For a given cnT ∈ RT , find (cn+1
T , µn+1

T ) ∈ RT ×RT
such that for any K ∈M, L ∈ ∂M,

mK
cn+1
K − cnK

∆t
=−

∑
σ∈EintK

mσ

dK,L

(
µn+1
K − µn+1

L

)
;(3.1a)
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mKµ
n+1
K =

∑
σ∈EintK

mσ

dK,L

(
cn+1
K − cn+1

L

)
+

∑
σ∈EextK

meL

dK,L

(
cn+1
K − cn+1

L

)
(3.1b)

+mKd
fb(cnK, c

n+1
K );

meL

cn+1
L − cnL

∆t
=−

∑
v∈VL

(
cn+1
L − cn+1

L′

)
dL,L′

−meLd
fs(cnL, c

n+1
L )− meL

dK,L

(
cn+1
L − cn+1

K

)
.(3.1c)

Definition 3.1 (Discretization of nonlinear terms). The implicit discretization is defined
as follows: for any K ∈M, L ∈ ∂M,

dfb(cnK, c
n+1
K ) = f ′b(c

n+1
K ) and dfs(cnL, c

n+1
L ) = f ′s(c

n+1
L ).

As regards the semi-implicit discretization, for ∗ ∈ {b, s} we note

df∗(x, y) =
f∗(x)− f∗(y)

x− y
,∀x, y, x 6= y and df∗(x, x) = f ′∗(x),∀x.

We remark that in practice we use a polynomial function for the potential f∗ and that df∗(x, y)
is a polynomial function in the variables x, y. Thus, from a computational point of view, we
do not have numerical instability when x is too close to y.

Proposition 3.2. Using the semi-implicit discretization, the discrete energy is dissipated
as follows: if cnT is given and (cn+1

T , µn+1
T ) is solution to problem (3.1), then there exists C10 > 0

independent of ∆t and T such that for any ∆t

(3.2)
FT (cn+1

T )−FT (cnT ) + C10

(
∆t
∣∣µn+1
T

∣∣2
1,T

+
1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2

0,∂M

+
1

2

∣∣cn+1
T − cnT

∣∣2
1,T

+
1

2

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

)
≤ 0.

If we use an implicit discretization of the nonlinear terms, we also obtain (3.2) but with a
condition ∆t ≤ ∆t0 (with ∆t0 depending on the parameters of the equation).

We note that summing equation (3.1a) for all K ∈M we have the volume conservation at
the discrete level

(3.3) |Ω|mΩ (cnM) :=
∑
K∈M

mKc
n
K =

∑
K∈M

mKc
0
K := |Ω|mΩ

(
c0M
)
, ∀n ∈ {1, . . . , N}.

4. Error estimate for the fully-discrete scheme. We can now enter in the heart of
the matter. The most delicate point in the proof of the error estimate (Theorem 4.2) comes
from the nonlinear term f ′b(c) for which we have to pay special attention. For this, we are
inspired by methods described in [9, 19] for the Neumann boundary condition and a finite-
element approximation. However some supplementary difficulties arise in our case. First, the
finite-volume framework complicates the study of this term. Indeed, when we use a conform
finite-element method, we work (for the space discretization at least) on H1-conformal spaces.
That is not the case in the framework of finite-volume method where we resort to discrete
spaces. Moreover, we use here two different discretizations for the nonlinear term f ′b (see
Definition 3.1). The second one, that is the semi-implicit discretization, is more difficult to
study, which complicates again the proof of Theorem 4.2.

4.1. Main result. In this section we present the error estimate (Theorem 4.2) between
the center-value projection (see Definition 4.1) of the exact solution and the discrete solution
obtained by solving problem (3.1).
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Definition 4.1 (Center-value projection). The center-value projection PcT : C0(Ω)→ RT
is defined as follows. For any u ∈ C0(Ω), we set PcT u = (PcMu,Pc∂Mu) with

PcMu = (PcKu)K∈M = (u(xK))K∈M and Pc∂Mu = (PcLu)L∈∂M = (upΓ(xL))L∈∂M .

Theorem 4.2 (Error estimate). Let (c, µ) ∈ C3([0, T ]× Ω)× C2([0, T ]× Ω) be a solution
to the Cahn-Hilliard equation (1.1) associated with the initial data c0 ∈ C2(Ω). Let M > 0
be such that ‖c‖L∞(0,T ;L∞(Ω)) ≤ M and M ′ > M . Then setting c0T = PcT c0, for any solution
(cnT , µ

n
T ) to problem (3.1) satisfying

(4.1) sup

(
sup
K∈M
|cnK|, sup

L∈∂M
|cnL|
)
≤M ′, ∀n ∈ J0, NK,

there exists C11 > 0 (depending on M and M ′) such that the following estimate holds (with ∆t
small enough),

(4.2) sup
n∈J0,NK

‖PcT c(tn)− cnT ‖1,T + sup
n∈J0,NK

‖Pc∂Mc(tn)− cn∂M‖1,∂M ≤ C11(∆t+ size(T )).

Note that the proof given in Section 4.3 does not use assumption (4.1). Thus, in this case,
to perform the proof we need some Lipschitz type regularity properties on the potentials and
so we work with truncated Lipschitz potentials instead of initial potentials. However note that,

• If we observe (numerically for instance) that bound (4.1) is satisfied, then Theorem 4.2
holds with the initials potentials.

• Otherwise, Corollary 4.3 proves that we can carry out the proof of Theorem 4.2 with the
truncated functions (which satisfy all the necessary regularity assumptions) and then,
for a quasi-uniform mesh family, we obtain Theorem 4.2 with the initial potentials.

Corollary 4.3. For a quasi-uniform mesh family, if ∆t and size(T ) are so that ∆t ≤
size(T )α (for an arbitrary value α > 0), then assumption (4.1) is still satisfied for ∆t and
size(T ) small enough. Therefore there exists at least one solution cnT to discrete problem (3.1)
which satisfies (4.1) and Theorem 4.2 holds for this solution.

Note that there may exist solutions of problem (3.1) for which (4.1) does not hold.

Proof. The main steps are the following:
1. We introduce truncated Lipschitz continuous functions in the following way. The

exact solution c of continuous problem (1.1) is supposed to belong to C3([0, T ] × Ω).
Thus, there exists M > 0 such that ‖c‖L∞(0,T ;L∞(Ω)) ≤ M . Let M ′ > M , we choose
truncated potentials f̃b and f̃s of the initial potentials fb and fs satisfying f̃b = fb
and f̃s = fs on [−M ′,M ′], and which are constant at the infinity. These truncated
functions, and all their derivatives, are Lipschitz continuous. Moreover, the definition
of the semi-implicit discretization of nonlinear terms implies

dfb(x, y) =

∫ 1

0

f ′b(x+ s(y − x))ds and dfs(x, y) =

∫ 1

0

f ′s(x+ s(y − x))ds.

Thus the semi-implicit discretization of f̃ ′b (resp. f̃ ′s) coincides with dfb (resp. dfs) on
[−M ′,M ′]2 and is Lipschitz continuous.

2. We can derive the proof of Theorem 4.2 with the truncated potentials (see Section 4.3)
instead of the initial potentials (and so with cnT a solution to discrete problem (3.1)
but with the truncated potentials). We obtain estimate (4.2) for this problem with
constant C11 depending on M ′.
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3. For a mesh belonging to a quasi-uniform mesh family, gathering estimate (2.5), Lemma 2.8
and Theorem 4.2 we deduce

sup
K∈M
|PcKc(tn)− cnK| ≤ C6C11C9

(
∆t

size(T )2/q
+ size(T )1−2/q

)
.

Moreover, thanks to Lemma 2.9 and Theorem 4.2 we also have

sup
L∈∂M

|PcLc(tn)− cnL| ≤ C7C11(∆t+ size(T )).

Thus, if ∆t and size(T ) tend to 0 with ∆t ≤ Csize(T )α for some α > 0, we have that
bound (4.1) is satisfied for any approximate solution. Moreover, since the functions
fb (resp. fs) and f̃b (resp. f̃s) coincide on [−M ′,M ′], if cnT is solution to discrete
problem (3.1) with the truncated potentials, it also holds with the initial potentials
(and reciprocally).

Remark 4.4. From a computational point of view, we can check that assumption (4.1)
holds when we use the potentials fb and fs.

In order to prove the error estimate theorem we have to use a priori bounds on the discrete
solution (obtained thanks to the discrete energy estimate given in Proposition 3.2).

Proposition 4.5 (Bounds of the discrete solutions, [22, Proposition 4.4]). For any c0 ∈
C2(Ω), let c0T = PcT c0 and (cnT , µ

n
T ) ∈ RT ×RT be a solution to problem (3.1). Then, there exist

positive constants M1, M2, M3, M4 and M5 independent of ∆t and size(T ) such that

sup
n≤N
‖cnT ‖1,T ≤M1, sup

n≤N
‖cn∂M‖1,∂M ≤M2,

N−1∑
n=0

∆t
∥∥µn+1
T

∥∥2

1,T
≤M3,

N−1∑
n=0

∆t

∥∥∥∥cn+1
T − cnT

∆t

∥∥∥∥2

1,T

≤ M4

∆t
,

and
N−1∑
n=0

∆t

∥∥∥∥cn+1
∂M − cn∂M

∆t

∥∥∥∥2

0,∂M

+ ∆t2
N−1∑
n=0

∣∣∣∣cn+1
∂M − cn∂M

∆t

∣∣∣∣2
1,∂M

≤M5.

We can remark that in [22] the proposition is proved by choosing the mean-value projec-
tion on all control volumes as discrete initial data for the initial concentration c0. In fact,
when the initial data is not enough regular, we have to choose this projection to obtain the a
priori bounds. However, when the initial data belongs to C2(Ω) the center-value projection is
sufficient. Indeed, thanks to the mean-value theorem, we obtain a bound on the H1-seminorm
of c0T which allows us to prove the proposition as in [22].

4.2. Discrete projections. To prove Theorem 4.2 we have to define another projection:
the elliptic projection. These projection is in fact the solution of a suitable Laplace problem and
thus depends on the boundary condition that we want to impose. Therefore, the definition of
the elliptic projection for the chemical potential (see Definition 4.6) and for the order parameter
(see Definition 4.7) are different.

Definition 4.6 (Elliptic projection with Neumann boundary conditions).
We define the space H2

N (Ω) = {u ∈ H2(Ω) : ∇u ·~n = 0 on Γ}, then the elliptic projection
Pell,N
T : H2

N (Ω) → RT is defined as follows. For any u ∈ H2
N (Ω), Pell,N

T u is the solution to the
following discrete Laplace problem.
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Find vT ∈ RT such that
∑
K∈M

mKvK =

∫
Ω

u and

(4.3)
∑

σ∈EintK

mσ

vK − vL
dK,L

= −
∫
K

∆u(x)dx, ∀K ∈M.

Definition 4.7 (Elliptic projection with Ventcell boundary conditions).
The elliptic projection Pell,D

T : H2
Γ(Ω) → RT is defined as follows. For any u ∈ H2

Γ(Ω),
Pell,D
T u is the solution to the following discrete Laplace problem.

Find vT ∈ RT such that
∑
K∈M

mKvK =

∫
Ω

u and for any K ∈M, L ∈ ∂M,

(4.4)


∑

σ∈EintK

mσ

vK − vL
dK,L

+
∑

σ∈EextK

meL

vK − vL
dK,L

= −
∫
K

∆u(x)dx;

∑
v∈VL

vL − vL′
dL,L′

+meL

vL − vK
dK,L

= −
∫
L

∆ΓupΓ(x)dσ(x) +

∫
L
∇u(x) · ~n(x)dσ(x).

Remark 4.8. The elliptic projection is the solution to the finite-volume two-point flux
approximation of the continuous problem

(4.5)

{
−∆v = f in Ω,

−α∆Γv + ∂nv = g on Γ,

with f = −∆u and
• α = 0, g = 0 for the elliptic projection Pell,N

T ;
• α = 1, g = −∆Γu+ ∂nu for the elliptic projection Pell,D

T .

When u is a time-dependent function, for a fixed time t ∈ R, we denote Pell,N
T (u(t)) and

Pell,D
T (u(t)) the elliptic projections of the function v = u(t, .).

In order to prove Theorem 4.2 we have to relate the different discrete projections to the
solution of the continuous problem (1.1). With this in mind we give below several properties
which will be used all along the proof in Section 4.3.

Thanks to the Taylor’s formulas and the Jensen inequality we can easily prove the following
estimates between an arbitrary function and its center-value projection.

Lemma 4.9. Let u ∈ H2(Ω), there exists C12 > 0 independent of size(T ) such that

‖u− PcMu‖L2(Ω)
≤ C12size(T ) ‖∇u‖

H1(Ω)
.

Moreover, there exists C13 > 0 independent of size(T ) such that for any upΓ ∈ H1(Γ),

‖upΓ − Pc∂MupΓ‖L2(Γ)
≤ C13size(T ) ‖∇ΓupΓ‖L2(Γ)

.

Since the introduction of the elliptic projection is essential to prove the error estimate theorem,
we also need to control this projection.

Proposition 4.10. Let u ∈ H2
N (Ω) be a Lipschitz continuous function, there exists C14 >

0 depending only on Ω such that∥∥Pell,N
M u− u

∥∥
L2(Ω)

+
∣∣Pell,N
T u− PcT u

∣∣
1,T
≤ C14size(T ) ‖u‖H2(Ω) .
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Proof. Thanks to Definition 4.6 of the elliptic projection, Pell,N
T u is solution to discrete

problem (4.3). Thus the difference Pell,N
T u− PcT u is the error associated to problem (4.5) with

α = g = 0. Thanks to the error estimate for the Laplace problem (4.5) for the two-point flux
approximation scheme (see for example [11, Section 10.3]) we obtain the expected estimates.

As regards the analogous proposition in the case of Ventcell boundary condition, the proof
does not seem available in the literature and so we propose a complete proof in the Appendix.

Proposition 4.11. Let u ∈ H2
Γ(Ω) be a Lipschitz continuous function, there exists C15 > 0

depending only on Ω and reg(T ) such that∥∥Pell,D
T u− u

∥∥
L2(Ω)

+
∥∥Pell,D

∂M u− u
∥∥
L2(Γ)

≤ C15size(T ) ‖u‖H2
Γ(Ω)

and ∣∣Pell,D
T u− PcT u

∣∣
1,T

+
∣∣Pell,D

∂M u− Pc∂Mu
∣∣
1,∂M

≤ C15size(T ) ‖u‖H2
Γ(Ω) .

4.3. Proof of Theorem 4.2. This section is devoted to the proof of Theorem 4.2. We
decompose the proof in three steps. First, we use the scheme to decompose the different
components of the error. Then, we control all the terms and prove that they tend to 0 when
the mesh size and the time step tend to 0. Finally we use the discrete Gronwall lemma to
conclude the proof.

In the proof different components of the total error appear. Thus we decompose the error
as follows.

Definition 4.12 (Error). Let u : (0, T )×Ω→ R and unT be a finite-volume approximation
of u at time tn. We denote by eu,nT ∈ RT the error associated with u at time t = tn defined as
follows

eu,nT = ëu,nT + ėu,nT with ëu,nT = PcT u(tn)− Pell,∗
T u(tn) and ėu,nT = Pell,∗

T u(tn)− unT ,

with ∗ = {N,D} depending on the boundary condition associated with u.
We also define ēu,nT = u(tn, ·)− mT

mT
Pell,∗
T u(tn).

4.3.1. Different contributions of the error. First, subtracting the scheme and the
continuous problem we identify the different components of the error (Proposition 4.13). Then,
we separate the error into two parts: the error ėT between the elliptic projection of the exact
solution and the approximate solution in the left-hand side, and all the other contributions in
the right-hand side (Proposition 4.14).

Proposition 4.13. Let us consider a couple (c, µ) solution to the continuous Cahn-Hilliard
equation (1.1) and a couple (cn+1

T , µn+1
T ) solution to the finite-volume scheme (3.1). Then, the
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following equality holds

(4.6)

∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
1

2

(∣∣ėc,n+1
T

∣∣2
1,T
− |ėc,nT |

2
1,T +

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

)
+

1

∆t

∥∥ėc,n+1
∂M − ėc,n∂M

∥∥2

0,∂M
+

1

2

(∣∣ėc,n+1
∂M

∣∣2
1,∂M

− |ėc,n∂M|
2
1,∂M +

∣∣ėc,n+1
∂M − ėc,n∂M

∣∣2
1,∂M

)
=∆t

(
Rn+1
c , ėµ,n+1

M

)
L2(Ω)

−
(
ēc,n+1
M − ēc,nM , ėµ,n+1

M

)
L2(Ω)

+
(
ēµ,n+1
M , ėc,n+1

M − ėc,nM

)
L2(Ω)

+
(
Rn+1
cpΓ , ėc,n+1

∂M − ėc,n∂M
)
L2(Γ)

−

(
ēc,n+1
∂M − ēc,n∂M

∆t
, ėc,n+1
∂M − ėc,n∂M

)
L2(Γ)

−
(
f ′b(c(t

n+1, ·))− mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

)
L2(Ω)

−
(
f ′s(cpΓ(tn+1, ·))− m∂M

m∂M

dfs(cn∂M, c
n+1
∂M ), ėc,n+1

∂M − ėc,n∂M
)
L2(Γ)

;

where the terms Rn+1
c and Rn+1

cpΓ are defined as follows

(4.7) Rn+1
c(pΓ)

=
c(pΓ)(t

n+1, x)− c(pΓ)(t
n, x)

∆t
− ∂tc(pΓ)(t

n+1, x).

Proof. Let (c, µ) be a solution to the Cahn-Hilliard equation (1.1). Applying Definition 4.6
of the elliptic projection with Neumann boundary condition to µ, for any K ∈M we have

(4.8)
∫
K
∂tc(t

n+1, x)dx+
∑

σ∈EintK

mσ

Pell,N
K µ(tn+1)− Pell,N

L µ(tn+1)

dK,L
= 0.

In the same way, applying Definition 4.7 of the elliptic projection with Ventcell boundary
condition to c, for any K ∈M we have

(4.9)
∑

σ∈EintK

mσ

Pell,D
K c(tn+1)− Pell,D

L c(tn+1)

dK,L
+

∑
σ∈EextK

meL

Pell,D
K c(tn+1)− Pell,D

L c(tn+1)

dK,L

+

∫
K
f ′b(c(t

n+1, x))dx−
∫
K
µ(tn+1, x)dx = 0,

and for any L ∈ ∂M,

(4.10)
∑

v∈VL

Pell,D
L c(tn+1)− Pell,D

L′ c(tn+1)

dL,L′
+meL

Pell,D
L c(tn+1)− Pell,D

K c(tn+1)

dK,L

+

∫
L
f ′s(cpΓ(tn+1, x))dσ(x) +

∫
L
∂tcpΓ(tn+1, x)dσ(x) = 0,

where K ∈ M is the interior control volume such that L ∈ ∂K. Subtracting equation (3.1a) of
discrete problem and equation (4.8) and using definition (4.7) of Rn+1

c imply

(4.11)
∑

σ∈EintK

mσ

ėµ,n+1
K − ėµ,n+1

L

dK,L
+mK

ėc,n+1
K − ėc,nK

∆t
=

∫
K
Rn+1
c (x)dx

−
∫
K

ēc,n+1
K (x)− ēc,nK (x)

∆t
dx.
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Now, we subtract equation (3.1b) of the discrete problem and equation (4.9), then we obtain

(4.12)
∑

σ∈EintK

mσ

ėc,n+1
K − ėc,n+1

L

dK,L
+

∑
σ∈EextK

meL

ėc,n+1
K − ėc,n+1

L

dK,L
−mKėµ,n+1

K

=

∫
K
ēµ,n+1
K dx−

∫
K

(
f ′b(c(t

n+1, x))− mK
mK

dfb(cnK, c
n+1
K )

)
dx.

Subtracting equation (3.1c) of the discrete problem and equation (4.10) we have

(4.13)
∑

v∈VL

ėc,n+1
L − ėc,n+1

L′

dL,L′
+meL

ėc,n+1
L − ėc,n+1

K

dK,L
+meL

ėc,n+1
L − ėc,nL

∆t
=

∫
L
Rn+1
cpΓ (x)dσ(x)

−
∫
L

ēc,n+1
L (x)− ēc,nL (x)

∆t
dσ(x)−

∫
L

(
f ′s(cpΓ(tn+1, x))− meL

mL
dfs(cnL, c

n+1
L )

)
dσ(x).

We multiply equation (4.11) by vK and we sum up over all interior control volumes K ∈M, we
obtain

(4.14) Jėµ,n+1
T , vT K1,T +

(
ėc,n+1
M − ėc,nM

∆t
, vM

)
M

=
(
Rn+1
c , vM

)
L2(Ω)

−

(
ēc,n+1
M − ēc,nM

∆t
, vM

)
L2(Ω)

.

Now, we first multiply equation (4.12) by uK and we sum up over all interior control volumes
K ∈ M. Then, we multiply equation (4.13) by uL and we sum up over all boundary control
volumes L ∈ ∂M. Summing the resulting equalities, we have

(4.15)

Jėc,n+1
T , uT K1,T −

(
ėµ,n+1
M , uM

)
M

+ Jėc,n+1
∂M , u∂MK1,∂M +

(
ėc,n+1
∂M − ėc,n∂M

∆t
, u∂M

)
∂M

=
(
ēµ,n+1
M , uM

)
L2(Ω)

+
(
Rn+1
cpΓ , u∂M

)
L2(Γ)

−

(
ēc,n+1
∂M − ēc,n∂M

∆t
, u∂M

)
L2(Ω)

−
(
f ′b(c(t

n+1, ·))− mM

mM

dfb(cnM, c
n+1
M ), uM

)
L2(Ω)

−
(
f ′s(cpΓ(tn+1, ·)− m∂M

m∂M

dfs(cn∂M, c
n+1
∂M ), u∂M

)
L2(Γ)

.

By choosing vT = ∆tėµ,n+1
T in equation (4.14) and uT = ėc,n+1

T − ėc,nT in equation (4.15) and
adding the two resulting equalities the claim follows.

Proposition 4.14. Let (c, µ) be solution to the Cahn-Hilliard equation (1.1) and (cn+1
T , µn+1

T )
be solution to the discrete scheme (3.1). Then, for any n0 ∈ J0, NK we have

(4.16)
1

2

n0∑
n=0

∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
1

2

(
1

2

∣∣ėc,n0+1
T

∣∣2
1,T
−
∣∣ėc,0T ∣∣21,T +

n0∑
n=0

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

)

+
1

2

n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+
1

2

(∣∣ėc,n0+1
∂M

∣∣2
1,∂M

−
∣∣ėc,0∂M∣∣21,∂M +

n0∑
n=0

∣∣ėc,n+1
∂M − ėc,n∂M

∣∣2
1,∂M

)
≤ Tc0 +

n0∑
n=1

∆t |ėc,nT |
2
1,T + TRn+1

c
+ TēT + TgT + Tfb + Tfs

+
(T + 1)C2

5

2

(
M1 + (C15 + 1) ‖c‖L∞(0,T ;H2

Γ(Ω))

)
size(T )2,
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where the different error terms are defined as follows

Tc0 =
∥∥ėc,0M

∥∥2

L2(Ω)
+
|Ω|(T + 1)

2C2
1

mΩ

(
ėc,0M

)2
,

TRn+1
c

=3C2
4

n0∑
n=0

∆t
∥∥Rn+1

c

∥∥2

L2(Ω)
+ 2C3

n0∑
n=0

∆t
∥∥∥Rn+1

cpΓ

∥∥∥2

L2(Γ)

,

TēT =3C2
4

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)

+ 2C3

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
∂M − ēc,n∂M

∆t

∥∥∥∥∥
2

L2(Γ)

+
1

2

∥∥ēµ,1M

∥∥2

L2(Ω)
+ 2C2

4

∥∥ēµ,n0+1
M

∥∥2

L2(Ω)
+
C2

4

2

n0∑
n=1

∆t

∥∥∥∥∥ ēµ,nM − ēµ,n+1
M

∆t

∥∥∥∥∥
2

L2(Ω)

,

TgT =
1

2

∥∥gM(t1, ·)
∥∥2

L2(Ω)
+ (2C2

4 + 1)
∥∥gM(tn0+1, ·)

∥∥2

L2(Ω)

+ (
C2

4

2
+ 1)

n0∑
n=1

∆t

∥∥∥∥gM(tn, ·)− gM(tn+1, ·)
∆t

∥∥∥∥2

L2(Ω)

+ 2C3

n0∑
n=0

∆t
∥∥g∂M(tn+1, ·)

∥∥2

L2(Γ)
,

Tfb =3
n0∑
n=0

∆t
(∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1

T )
∣∣2
1,T

+
∣∣dfb(cn+1

T , cn+1
T )− dfb(cnT , cn+1

T )
∣∣2
1,T

)
,

Tfs =2
n0∑
n=0

∆t
∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥2

L2(Γ)
.

The term gM (resp. g∂M) is such that for any K ∈M (resp. L ∈ ∂M),

(4.17)
gM(t, x) = f ′b (c(t, x))− mK

mK
f ′b (c(t, xK)) , ∀x ∈ K, t ∈ R;

g∂M(t, x) = f ′s (cpΓ(t, x))− meL

mL
f ′s (cpΓ(t, xL)) , ∀x ∈ L, t ∈ R.

Proof. To begin we sum identity (4.6) for n going from 0 to n0 and we use definition (4.17)
of the functions gM and g∂M for the terms where the nonlinear potentials appear. To obtain
estimate (4.16), we have to apply the Young inequality to all the terms in the right-hand side
of the resulting equality.

• Let us begin by the terms where the L2-inner product with ėµ,n+1
M appears. Noting

that if vM ∈ RM has a zero mean-value, for any uM ∈ RM, we have

(uM, vM)
L2(Ω)

= (uM −mΩ (uM), vM)
L2(Ω)

≤ ‖uM −mΩ (uM)‖
L2(Ω)

‖vM‖L2(Ω)
,

then thanks to the discrete mean Poincaré inequality given in Lemma 2.7, we obtain

(4.18) (uM, vM)
L2(Ω)

≤ C4 |uT |1,T ‖vM‖L2(Ω)
.

The couple (c, µ) is solution to the Cahn-Hilliard equation (1.1) with the homogeneous
Neumann boundary condition for µ so for any n ∈ J0, n0K, mΩ

(
Rn+1
c

)
= 0. In the

same way, thanks to Definition 4.7 of the elliptic projection, for any n ∈ J0, n0K we
have mΩ (ēc,nM ) = 0 and so mΩ

(
ēc,n+1
M − ēc,nM

)
= 0. Thus, owing to estimate (4.18) and

the Young inequality, for any n ∈ J0, n0K one has

(4.19) ∆t
(
Rn+1
c , ėµ,n+1

M

)
L2(Ω)

≤ 1

8
∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+ 2C2
4∆t

∥∥Rn+1
c

∥∥2

L2(Ω)
,

and

(4.20)
(
ēc,n+1
M − ēc,nM , ėµ,n+1

M

)
L2(Ω)

≤ 1

8
∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+ 2C2
4∆t

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)

.
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• Now we focus on the terms whose term ėc,n+1
M − ėc,nM appears in the inner product on

L2(Ω). For the two first we perform a discrete time integration by parts.
Let us begin by the term where the function ēµ,n+1

M intervenes.
n0∑
n=0

(
ēµ,n+1
M , ėc,n+1

M − ėc,nM

)
L2(Ω)

=−
(
ēµ,1M , ėc,0M

)
L2(Ω)

+
(
ēµ,n0+1
M , ėc,n0+1

M

)
L2(Ω)

+
n0∑
n=1

(
ēµ,nM − ēµ,n+1

M , ėc,nM

)
L2(Ω)

.

Noting that by definition of the elliptic projection (see Definition 4.6) mΩ (ēµ,nM ) = 0,
the Cauchy-Schwartz inequality, inequality (4.18) and the Young inequality give

(4.21)

∣∣∣∣ n0∑
n=0

(
ēµ,n+1
M , ėc,n+1

M − ėc,nM

)
L2(Ω)

∣∣∣∣ ≤ 1

2

∥∥ēµ,1M

∥∥2

L2(Ω)
+

1

2

∥∥ėc,0M

∥∥2

L2(Ω)

+
C2

4

2

n0∑
n=1

∆t

∥∥∥∥∥ ēµ,nM − ēµ,n+1
M

∆t

∥∥∥∥∥
2

L2(Ω)

+
1

2

n0∑
n=1

∆t |ėc,nT |
2
1,T

+
1

8

∣∣ėc,n0+1
T

∣∣2
1,T

+ 2C2
4

∥∥ēµ,n0+1
M

∥∥2

L2(Ω)
.

Considering now the inner product with the term gM(tn+1, ·). Since the mean-value
of the function gM(t, ·) is not equal to 0, we cannot apply exactly the same reasoning.
Definition 4.7 of the elliptic projection and the discrete volume conservation (3.3) imply
that for any n ∈ J0, NK, mΩ (ėc,nM ) = mΩ

(
ėc,0M

)
. Then the Cauchy-Schwarz inequality,

Proposition 2.1, Poincaré inequality (2.3) and the Young inequality get

(4.22)

∣∣∣∣ n0∑
n=0

(
gM(tn+1, ·), ėc,n+1

M − ėc,nM

)
L2(Ω)

∣∣∣∣ ≤ 1

2

∥∥gM(t1, ·)
∥∥2

L2(Ω)
+

1

2

∥∥ėc,0M

∥∥2

L2(Ω)

+ (2C2
4 + 1)

∥∥gM(tn0+1, ·)
∥∥2

L2(Ω)
+

1

8

∣∣ėc,n0+1
T

∣∣2
1,T

+
|Ω|(T + 1)

2C2
1

mΩ

(
ėc,0M

)2
+

1

2

n0∑
n=1

∆t |ėc,nT |
2
1,T + (

C2
4

2
+ 1)

n0∑
n=1

∆t

∥∥∥∥gM(tn, ·)− gM(tn+1, ·)
∆t

∥∥∥∥2

L2(Ω)

+
C2

5

2
size(T )2

(∥∥ėc,n0+1
M

∥∥2

L2(Ω)
+

n0∑
n=1

∆t ‖ėc,nT ‖
2
L2(Ω)

)
.

Thanks to the bounds on the discrete solutions (Proposition 4.5) and Proposition 4.11,
for any n ∈ J0, NK, one has

(4.23) ‖ėc,nT ‖L2(Ω)
≤M1 + (C15 + 1) ‖c‖L∞(0,T ;H2

Γ(Ω)) .

As regards the last term where the inner product with ėc,n+1
M − ėc,nM appears we have to

use the scheme. Choosing vT = ∆t
(
f ′b(PcT (c(tn+1)))− dfb(cnT , cn+1

T )
)
in identity (4.14)

we obtain(
f ′b
(
PcM(c(tn+1))

)
− dfb(cnM, cn+1

M ), ėc,n+1
M − ėc,nM

)
M

= −∆tJėµ,n+1
T , f ′b(PcT (c(tn+1)))− dfb(cnT , cn+1

T )K1,T

+∆t
(
Rn+1
c , f ′b(PcM(c(tn+1)))− dfb(cnM, cn+1

M )
)
L2(Ω)

−
(
ēc,n+1
M − ēc,nM , f ′b(PcM(c(tn+1)))− dfb(cnM, cn+1

M )
)
L2(Ω)

.
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Since mΩ

(
Rn+1
c

)
= mΩ

(
ēc,n+1
M − ēc,nM

)
= 0, the Cauchy-Schwarz inequality and in-

equality (4.18) imply(
f ′b
(
PcM(c(tn+1))

)
− mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

)
L2(Ω)

≤ ∆t

∣∣ėµ,n+1
T

∣∣
1,T

+ C4

∥∥Rn+1
c

∥∥
L2(Ω)

+ C4

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
L2(Ω)


×
∣∣f ′b(PcT (c(tn+1)))− dfb(cnT , cn+1

T )
∣∣
1,T

.

Recalling that for any x ∈ R, dfb(x, x) = f ′b(x) (see Definition 3.1) and applying the
Young inequality we deduce

(4.24)

(
f ′b
(
PcM(c(tn+1))

)
− dfb(cnM, cn+1

M ), ėc,n+1
M − ėc,nM

)
M

≤ 1

4
∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+ C2
4∆t

∥∥Rn+1
c

∥∥2

L2(Ω)
+

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)


+ 3∆t

∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1
T )

∣∣2
1,T

+ 3∆t
∣∣dfb(cn+1

T , cn+1
T )− dfb(cnT , cn+1

T )
∣∣2
1,T

.

• Finally we focus on the terms due to the dynamic boundary condition, that is the
terms where the inner product in L2(Γ) appears.
According to the Cauchy-Schwarz inequality, the Young inequality and the equivalence
of norms ‖.‖0,∂M and ‖.‖

L2(Γ)
, for any u∂M ∈ R∂M we have

(4.25)
(
u∂M, ė

c,n+1
∂M − ėc,n∂M

)
L2(Γ)

≤ 1

8
∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+ 2C3∆t ‖u∂M‖2L2(Γ)
.

Choosing u∂M = Rn+1
cpΓ , then u∂M =

ēc,n+1
∂M −ēc,n∂M

∆t and finally u∂M = g∂M(tn+1, ·) in
equation (4.25) we can control the first three terms.
For the last term, setting u∂M = f ′s

(
Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M ) in the same way
as for equation (4.25) one has

(4.26)

−
(
f ′s
(
Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M ), ėc,n+1
∂M − ėc,n∂M

)
∂M

≤1

8
∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+ 2∆t
∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥2

L2(Γ)
.

Gathering inequalities (4.19)–(4.26), we obtain estimate (4.16).

4.3.2. Estimate of the residual terms. In order to apply the discrete Gronwall lemma,
we have to estimate all the terms in the right-hand side of inequality (4.16) independently of n.

We begin by a bound on the initial data.

Proposition 4.15. Let c0 ∈ C2(Ω) and c0T = PcT c0. Then for some C16 > 0 we have

mΩ

(
ėc,0M

)
+mΩ

(
ėc,0M

)
+
∥∥ėc,0M

∥∥
L2(Ω)

+
∣∣ėc,0T ∣∣1,T +

∣∣ėc,0∂M∣∣1,∂M ≤ C16size(T )
∥∥c0∥∥

H2
Γ(Ω)

.
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Proof. Estimates of the (semi)norms are only a direct consequence of the definition of c0T
and Proposition 4.11 (associated with Lemma 4.9 for the L2-norm).

Then owing to Proposition 2.1 and the Cauchy-Schwarz inequality we deduce

mΩ

(
ėc,0M

)
≤
(

C2

C1|Ω|

) 1
2 ∥∥ėc,0M

∥∥
L2(Ω)

and mΩ

(
ėc,0M

)
≤ 1

|Ω| 12
∥∥ėc,0M

∥∥
L2(Ω)

,

and the L2-estimate gives the claim.

Applying the Taylor’s theorem to the term Rn+1
c defined by (4.7) we can easily obtain the

following estimates on the term TRn+1
c

about the error of the time discretization.

Proposition 4.16. For any n0 ∈ J0, NK, the remainder terms Rn+1
c and Rn+1

cpΓ defined
by (4.7) satisfy

(4.27)

n0∑
n=0

∆t
∥∥Rn+1

c

∥∥2

L2(Ω)
≤ ‖∂ttc‖2L2(0,T ;L2(Ω)) ∆t2,

n0∑
n=0

∆t
∥∥∥Rn+1

cpΓ

∥∥∥2

L2(Γ)

≤ ‖∂ttcpΓ‖2L2(0,T ;L2(Γ)) ∆t2.

Now we are interested in the term TēT concerning the error between the exact solution and its
elliptic projection.

Proposition 4.17. There exists C17 > 0 such that for any n0 ∈ J0, NK the following
estimates hold

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)

≤ C2
17size(T )2 ‖∂tc‖2L2(0,T ;H2

Γ(Ω)) ,(4.28a)

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
∂M − ēc,n∂M

∆t

∥∥∥∥∥
2

L2(Γ)

≤ C2
17size(T )2 ‖∂tc‖2L2(0,T ;H2

Γ(Ω)) ,(4.28b)

n0∑
n=0

∆t

∥∥∥∥∥ ēµ,n+1
M − ēµ,nM

∆t

∥∥∥∥∥
2

L2(Ω)

≤ C2
17size(T )2 ‖∂tµ‖2L2(0,T ;H2(Ω)) .(4.28c)

Moreover, for any n ∈ J0, NK we have

(4.29) ‖ēµ,nM ‖L2(Ω)
≤ C17size(T ) ‖µ‖L∞(0,T ;H2(Ω)) .

Proof. We begin by proving estimates (4.28). Thanks to Definition 4.12 we have∥∥ēc,n+1
M − ēc,nM

∥∥2

L2(Ω)
≤ 2

∥∥(c(tn+1, ·)− c(tn, ·)
)
−
(
Pell,D

M c(tn+1, ·)− Pell,D
M c(tn, ·)

)∥∥2

L2(Ω)

+2
∑
K∈M

∫
K

(
mK −mK

mK

)2 (
Pell,D
K c(tn+1, ·)− Pell,D

K c(tn, ·)
)2
.

Owing to the linearity of the elliptic projection (see Definition 4.7) and Proposition 4.11, the
first term in the right-hand side satisfies

(4.30)
∥∥(c(tn+1, ·)− c(tn, ·)

)
−
(
Pell,D

M c(tn+1, ·)− Pell,D
M c(tn, ·)

)∥∥2

L2(Ω)

≤ C2
15∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω) dt.
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Moreover, thanks to Proposition 2.1 and the mesh regularity (2.1) for any K ∈ M we have
mK −mK ≤ Creg(T )2mKdiam(K). Thus Proposition 4.11 yields

(4.31)

∑
K∈M

∫
K

(
mK −mK

mK

)2 (
Pell,D
K c(tn+1, ·)− Pell,D

K c(tn, ·)
)2

≤ 2C(reg(T ))(C2
15 + 1)∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω) dt.

Summing inequalities (4.30) and (4.31) for n going from 0 to n0 provides estimate (4.28a).
Estimate (4.28c) is obtained with exactly the same reasoning using Definition 4.6 of the

elliptic projection (instead of Definition 4.7) and Proposition 4.10 (instead of Proposition 4.11).
In the same way we deduce estimate (4.28b) with a similar reasoning on Γ and Proposi-

tion 2.2 instead of Proposition 2.1.
It remains to prove estimate (4.29). For any n ∈ J0, NK,

‖ēµ,nM ‖
2
L2(Ω)

≤ 2
∥∥µ(tn, ·)− Pell,N

M µ(tn, ·)
∥∥2

L2(Ω)
+ 2

∑
K∈M

∫
K

(
mK −mK

mK

)2 (
Pell,N
K µ(tn, ·)

)2
.

Then, applying Proposition 4.10 to the function µ(tn, ·) the first term in the right-hand side is
written as follows∥∥µ(tn, ·)− Pell,N

M µ(tn)
∥∥
L2(Ω)

≤ C14size(T ) ‖µ‖L∞(0,T ;H2(Ω)) .

The second term is treated as estimate (4.31) that concludes the proof.

We can now we concentrate on the error due to the discretization of nonlinear terms. In this
way we begin with the term TgT related to the terms gM and g∂M.

Proposition 4.18. For any t ∈ [0, T ], the functions gM and g∂M defined by (4.17) satisfy
the following estimates with C18 (respectively C19) depending on fb (repectively fs) but not on
∆t and size(T ),

‖gM(t, ·)‖2
L2(Ω)

≤ C18size(T )2
(
‖∇c(t, ·)‖2

H1(Ω)
+ ‖c(t, ·)‖2p

L∞(Ω)
+ 1
)
,(4.32a)

‖g∂M(t, ·)‖2
L2(Γ)

≤ C19size(T )2

(
‖∇ΓcpΓ(t, ·)‖2

L2(Γ)
+
(

max
B(0,‖c(t,·)‖L∞(Γ))

|f ′s|
)2
)
.(4.32b)

Moreover, there exists C20 > 0 depending only on fb (and on its derivatives) such that for
any n0 ∈ J0, NK,

(4.33)
n0∑
n=0

∆t

∥∥∥∥gM(tn+1, ·)− gM(tn, ·)
∆t

∥∥∥∥2

L2(Ω)

≤ C20M
c
∞ ‖∂tc‖

2
L2(0,T ;H2(Ω)) size(T )2,

where

M c
∞ = max

(
1, ‖∇c‖4L∞(0,T ;L∞(Ω)) ,

∥∥D2c
∥∥2

L∞(0,T ;L∞(Ω))

)
.

Proof. Thanks to definition (4.17) of gM and g∂M and since f ′b and f ′s are Lipschitz con-
tinuous functions, Propositions 2.1 and 2.2, the mesh regularity (2.1), the polynomial growth
assumption (1.2) for fb, the bounds on the discrete solutions in Proposition 4.5 and Lemma 4.9
yield estimates (4.32).
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We concentrate now on estimate (4.33). For any n ∈ J0, N − 1K we define the function hn
such that for any x ∈ Ω,

hn(x) = f ′b(c(t
n+1, x))− f ′b(c(tn, x)).

Therefore, for any K ∈M and for any n ∈ J0, N − 1K,

gM(tn+1, x)− gM(tn, x) = hn(x)− mK
mK

hn(xK), ∀x ∈ K.

Thus, thanks to Lemma 4.9, Proposition 2.1 and the mesh regularity (2.1), there exists C > 0
depending only on Γ, reg(T ) and the Lipschitz constant of f ′b such that

∥∥gM(tn+1, ·)− gM(tn, ·)
∥∥2

L2(Ω)
≤ 2C2

12size(T )2 ‖∇hn‖2
H1(Ω)

+ Csize(T )2∆t

∫ tn+1

tn
‖∂tc‖2H2(Ω) .

Moreover, there exists Mfb depending only on the Lipschitz constants of the derivatives of fb
(up to 3) such that

‖∇hn‖2
H1(Ω)

≤Mfb∆t

((
‖∇c‖4L∞(0,T ;L∞(Ω)) +

∥∥D2c
∥∥2

L∞(0,T ;L∞(Ω))

)∫ tn+1

tn
‖∂tc‖2L2(Ω)

+ ‖∇c‖2L∞(0,T ;L∞(Ω))

∫ tn+1

tn
‖∂t∇c‖2L2(Ω)

+

∫ tn+1

tn
‖∂tc‖2H2(Ω)

)
.

Summing these inequalities for n going from 0 to n0 gives estimate (4.33).

Now we have to deal with the main difficulty of the discretization of nonlinear terms. In
each case the reasoning is similar. Thus we begin by proving the following general result.

Lemma 4.19. Let us consider a function φ ∈ C2(R2,R) such that all the derivatives up to
the second order are bounded. Then, there exists C21 > 0 depending only on φ and on the mesh
regularity reg(T ), such that for any aT , bT ∈ RT the following estimates hold

(4.34) |φ(aT , bT )|1,T ≤ C21

(
|aT |1,T + |bT |1,T

)
.

Moreover for any b̃T ∈ RT , one has

(4.35) |φ(aT , bT )− φ(bT , bT )|21,T

≤ C21

(
|aT − bT |21,T +

∣∣∣bT − b̃T ∣∣∣2
1,T

+ LipT

(
b̃T

)2

‖aM − bM‖2L2(Ω)

)
,

where LipT

(
b̃T

)
= supσ∈E

∣∣∣ b̃K−b̃LdK,L

∣∣∣.
Furthermore for any a∂M, b∂M ∈ R∂M we have

(4.36) ‖φ(a∂M, b∂M)− φ(b∂M, b∂M)‖
L2(Γ)

≤ C21 ‖a∂M − b∂M‖L2(Γ)
.

Proof. We first give the proof of estimate (4.35). Thanks to the definition of the discrete
H1-seminorm we have

|φ(aT , bT )− φ(bT , bT )|21,T =
∑

σ=K|L∈Eint

mσ

dK,L
(φσ(aT , bT ))

2
+

∑
σ=L∈Eext

meL

dK,L
(φσ(aT , bT ))

2
,
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where for any σ = K|L ∈ Eint or σ = L ∈ Eext ∩ EK (with K ∈M) we note

φσ(aT , bT ) = [φ(aK, bK)− φ(aL, bL)]− [φ(bK, bK)− φ(bL, bL)] .

One has

(4.37) φ(aK, bK)− φ(aL, bL) =

∫ 1

0

(
(aK − aL)∂1φ(aL + s(aK − aL), bL + s(bK − bL))

+ (bK − bL)∂2φ(aL + s(aK − aL), bL + s(bK − bL))

)
ds

and

φ(bK, bK)− φ(bL, bL) =

∫ 1

0

(
(bK − bL)∂1φ(bL + s(bK − bL), bL + s(bK − bL))

+ (bK − bL)∂2φ(bL + s(bK − bL), bL + s(bK − bL))

)
ds.

Then for any σ ∈ E the term φσ(aT , bT ) can be written as follows

(4.38) φσ(aT , bT ) = φ1
σ(aT , bT ) + φ2

σ(aT , bT ),

with

φ1
σ(aT , bT ) =

∫ 1

0

(bK − bL)

×
(
∂2φ(aL + s(aK − aL), bL + s(bK − bL))− ∂2φ(bL + s(bK − bL), bL + s(bK − bL))

+∂1φ(aL + s(aK − aL), bL + s(bK − bL))− ∂1φ(bL + s(bK − bL), bL + s(bK − bL))

)
ds

and

φ2
σ(aT , bT ) =

∫ 1

0

(
(aK − aL)− (bK − bL)

)
∂1φ(aL + s(aK − aL), bL + s(bK − bL))ds.

For the term φ2
σ(aT , bT ), since the function ∂1φ is bounded we obtain∣∣φ2

σ(aT , bT )
∣∣
1,T
≤ ‖∂1φ‖L∞ |aT − bT |1,T .

As regards the term φ1
σ(aT , bT ), we write

φ1
σ(aT , bT ) = φ1,1

σ (aT , bT ) + φ1,2
σ (aT , bT ),

with

φ1,1
σ (aT , bT ) =

∫ 1

0

(
(bK − b̃K)− (bL − b̃L)

)
×
(
∂2φ(aL + s(aK − aL), bL + s(bK − bL))− ∂2φ(bL + s(bK − bL), bL + s(bK − bL))

+∂1φ(aL + s(aK − aL), bL + s(bK − bL))− ∂1φ(bL + s(bK − bL), bL + s(bK − bL))

)
ds,
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and

φ1,2
σ (aT , bT ) =

∫ 1

0

(̃bK − b̃L)

×
(
∂2φ(aL + s(aK − aL), bL + s(bK − bL))− ∂2φ(bL + s(bK − bL), bL + s(bK − bL))

+∂1φ(aL + s(aK − aL), bL + s(bK − bL))− ∂1φ(bL + s(bK − bL), bL + s(bK − bL))

)
ds.

Since the functions ∂1φ and ∂2φ, are bounded we get∣∣φ1,1
σ (aT , bT )

∣∣
1,T
≤ max (‖∂1φ‖L∞ , ‖∂2φ‖L∞)

∣∣∣bT − b̃T ∣∣∣
1,T

.

Finally we have to deal with the term φ1,2
σ (aT , bT ). For any i = 1, 2, since ∂1,iφ is bounded we

have

|∂iφ(aL + s(aK − aL), bL + s(bK − bL))− ∂iφ(bL + s(bK − bL), bL + s(bK − bL))|
≤ ‖∂1,iφ‖L∞ |(1− s)(aL − bL) + s(aK − bK)| ,

and so for any σ ∈ E , we obtain

(
φ1,2
σ (aT , bT )

dK,L

)2

≤ 2
(
max

(
‖∂1,1φ‖L∞ , ‖∂1,2φ‖L∞

))2 ∣∣∣∣∣ b̃K − b̃LdK,L

∣∣∣∣∣
2 (
|aK − bK|2 + |aL − bL|2

)
.

Since dK,L ≤ reg(T )d(xK, σ) for any K ∈M, for any σ ∈ EK (see definition (2.1)), there exists
C(reg(T )) such that∣∣φ1,2

σ (aT , bT )
∣∣
1,T
≤ C(reg(T )) max

(
‖∂1,1φ‖L∞ , ‖∂1,2φ‖L∞

)
LipT

(
b̃T

)
‖aM − bM‖L2(Ω)

,

and estimate (4.35) yields.
Owing to (4.37) we also obtain estimate (4.34) and a similar reasoning gives estimate (4.36).

With this result at hand we can now bounded the terms Tfb (Proposition 4.20) and Tfs (Propo-
sition 4.21).

Proposition 4.20. For any n0 ∈ J0, NK, there exists C22 > 0 (depending on fb but not on
∆t and size(T )) such that

n0∑
n=0

∆t
(∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1

T )
∣∣2
1,T

+
∣∣dfb(cn+1

T , cn+1
T )− dfb(cnT , cn+1

T )
∣∣2
1,T

)
≤C22

(
1 + ‖∇c‖2L∞(0,T ;L∞(Ω))

)(n0+1∑
n=1

∆t |ėc,nT |
2
1,T +

n0∑
n=0

∆t
∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

)
+ C22size(T )2 ‖c‖2L∞(0,T ;H2

Γ(Ω))

+ C22 ‖∇c‖2L∞(0,T ;L∞(Ω))

(
1 +

∥∥c0∥∥2

H2
Γ(Ω)

+ ‖c‖2L∞(0,T ;H2
Γ(Ω))

)
size(T )2

+ C22

(
1 + ‖∇c‖2L∞(0,T ;L∞(Ω))

)
‖∂t∇c‖2L2(0,T ;L∞(Ω)) ∆t2

+ C22

(
1 + ‖∇c‖2L∞(0,T ;L∞(Ω))

)
‖∂tc‖2L2(0,T ;H2

Γ(Ω)) ∆t2size(T )2.
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Proof. We will apply Lemma 4.19 twice with a good choice of the functions which intervene.
First, we apply the lemma to the function φ defined by φ(x, y) = f ′b(x) for any x, y ∈ R. Then
we choose aT = cn+1

T and bT = b̃T = PcT (c(tn+1)), and so thanks to (4.35) we obtain

(4.39)
∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1

T )
∣∣2
1,T

≤ C21

(∣∣ec,n+1
T

∣∣2
1,T

+ LipT
(
PcT (c(tn+1))

)2 ∥∥ec,n+1
M

∥∥2

L2(Ω)

)
.

Now we apply Lemma 4.19 to the function φ = dfb with aT = cnT , bT = cn+1
T and b̃T =

PcT (c(tn+1)). Inequality (4.35) implies

(4.40)
∣∣dfb(cn+1

T , cn+1
T )− dfb(cnT , cn+1

T )
∣∣2
1,T

≤ C21

(∣∣cn+1
T − cnT

∣∣2
1,T

+
∣∣ec,n+1
T

∣∣2
1,T

+ LipT
(
PcT (c(tn+1))

)2 ∥∥cn+1
M − cnM

∥∥2

L2(Ω)

)
.

Thanks to the mean-value theorem, we have

(4.41) LipT
(
PcT (c(tn+1))

)
≤ ‖∇c‖L∞(0,T ;L∞(Ω)) .

The definition of the elliptic projection and the volume conservation at the discrete level (3.3)
imply mΩ (ėc,nM ) = mΩ

(
ėc,0M

)
, thus thanks to the Poincaré inequality (2.3), the bound on the

initial data (Proposition 4.15), and equation (4.23) we deduce

(4.42)
‖ėc,nM ‖

2
L2(Ω)

≤3C2
4 |ėc,nT |

2
1,T +

3C2
16

C2
1

|Ω|size(T )2
∥∥c0∥∥2

H2
Γ(Ω)

+ 3C2
5

(
M1 + (C15 + 1) ‖c‖L∞(0,T ;H2

Γ(Ω))

)2
size(T )2.

Moreover Lemma 4.9 and Proposition 4.11 give

(4.43)
‖ëc,nM ‖L2(Ω)

≤ (C12 + C15)size(T ) ‖c(tn, ·)‖H2
Γ(Ω) ,

|ëc,nM |1,T ≤ C15size(T ) ‖c(tn, ·)‖H2
Γ(Ω) .

Thus, gathering estimates (4.42) and (4.43) there exists C23 > 0 such that for any n ∈ J0, NK,

(4.44) ‖ec,nM ‖
2
L2(Ω)

≤ C23 |ėc,nT |
2
1,T + C23size(T )2

(
1 +

∥∥c0∥∥2

H2
Γ(Ω)

+ ‖c‖2L∞(0,T ;H2
Γ(Ω))

)
.

Now, we have to deal with the terms on the right-hand side of (4.40). First, we write∣∣cn+1
T − cnT

∣∣
1,T
≤
∣∣ėc,n+1
T − ėc,nT

∣∣
1,T

+
∣∣ëc,n+1
T − ëc,nT

∣∣
1,T

+
∣∣PcT c(tn+1)− PcT c(tn)

∣∣
1,T

.

Since the projections Pell,D
T and PcT are linear we can apply Proposition 4.11 that implies

∣∣ëc,n+1
T − ëc,nT

∣∣2
1,T
≤ C2

15∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω) dt.

Moreover, thanks to Proposition 2.3 there exists C > 0 depending only on Ω and reg(T ) such
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that ∣∣∣∣PcT c(tn+1)− PcT c(tn)

∣∣∣∣2
1,T

≤∆t
∑

σ=K|L∈Eint
mσdK,L

∫ tn+1

tn

∣∣∣∣∫ 1

0

∂t∇c(t, xL + s(xK − xL)) · ~nKLds

∣∣∣∣2 dt

+ ∆t
∑

σ=L∈Eext
meLdK,L

∫ tn+1

tn

∣∣∣∣d(xK, xL)

dK,L

∫ 1

0

∂t∇c(t, xL + s(xK − xL)) · ~nKLds

∣∣∣∣2 dt

≤C∆t

∫ tn+1

tn
‖∂t∇c(t, ·)‖2L∞(Ω)

dt.

Therefore we have

(4.45)

∣∣cn+1
T − cnT

∣∣2
1,T
≤3
∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

+ 3C2
15∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω)

+ 3C∆t

∫ tn+1

tn
‖∂t∇c(t, ·)‖2L∞(Ω)

dt.

Finally, the discrete conservation of the volume (3.3) implies mΩ

(
cn+1
M − cnM

)
= 0 and so the

Poincaré inequality (2.3) and the bound on the discrete solutions in Proposition 4.5 give

(4.46)
∥∥cn+1

M − cnM
∥∥
L2(Ω)

≤ C4

∣∣cn+1
T − cnT

∣∣
1,T

+ 2C5M1size(T ).

Summing (4.39) and (4.40), gathering estimates (4.41), (4.43), (4.44), (4.45) and (4.46) and
summing the resulting inequality for n going from 0 to n0 conclude the proof.

Proposition 4.21. For any n0 ∈ J0, NK, there exists C24 > 0 independent of ∆t and
size(T ) (but depending on fs) such that

n0∑
n=0

∆t
∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥
L2(Γ)

≤ C24

n0∑
n=0

∆t
∣∣ėc,n+1
T

∣∣2
1,T

+C24∆t2

 n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+ size(T )2 ‖∂tc‖2L2(0,T ;H2
Γ(Ω)) + ‖∂tcpΓ‖2L2(0,T ;H1(Γ))


+C24size(T )2

(∥∥c0∥∥2

H2
Γ(Ω)

+ ‖c‖2L∞(0,T ;H2
Γ(Ω))

)
.

Proof. Applying inequality (4.36) to the function φ = f ′s at first, and then, to φ = dfs give∥∥f ′s (Pc∂M(c(tn+1))
)
− dfs(cn∂M, cn+1

∂M )
∥∥
L2(Γ)

≤ C21

(∥∥ec,n+1
∂M

∥∥
L2(Γ)

+
∥∥cn+1

∂M − cn∂M
∥∥
L2(Γ)

)
.

Owing to Lemma 2.10 and estimate (4.42) we have

∥∥ėc,n+1
∂M

∥∥2

L2(Γ)
≤ 2C2

8

(
(1 + 2C2C

2
4 )
∣∣ėc,n+1
T

∣∣2
1,T

+
2C2C

2
16

C1
|Ω|size(T )2

∥∥c0∥∥2

H2
Γ(Ω)

)
.

Moreover, thanks to Lemma 4.9 and Proposition 4.11 we obtain∥∥ëc,n+1
∂M

∥∥
L2(Γ)

≤ (C13 + C15)size(T )
∥∥c(tn+1, ·)

∥∥
H2

Γ(Ω)
.
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Finally we write∥∥cn+1
∂M − cn∂M

∥∥
L2(Γ)

≤
∥∥ėc,n+1

∂M − ėc,n∂M
∥∥
L2(Γ)

+
∥∥ëc,n+1

∂M − ëc,n∂M
∥∥
L2(Γ)

+
∥∥Pc∂Mc(tn+1)− Pc∂Mc(tn)

∥∥
L2(Γ)

.

Then, the linearity of the projection Pell,D
∂M and Pc∂M, Lemma 4.9 and Proposition 4.11 give

∥∥ëc,n+1
∂M − ëc,n∂M

∥∥2

L2(Γ)
≤ (C13 + C15)2size(T )2∆t

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω) dt,

and ∥∥Pc∂Mc(tn+1)− Pc∂Mc(tn)
∥∥2

L2(Γ)
≤ 2(C2

13 + 1)∆t

∫ tn+1

tn
‖∂tcpΓ(t, ·)‖2

H1(Γ)
dt.

Thus gathering these estimates and summing the resulting inequality between 0 and n0 conclude
the proof.

4.3.3. End of the proof of Theorem 4.2. We are now able to apply the discrete
Gronwall lemma and to conclude the proof. Gathering Propositions 4.15, 4.16, 4.17, 4.18,
4.20 and 4.21, we can estimate term (4.16) (see Proposition 4.14). Thus, there exists C25 > 0
(depending on c and µ) independent of size(T ) and ∆t such that for any n0 ∈ J0, N − 1K,

1

2

n0∑
n=0

∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
1

4

∣∣ėc,n0+1
T

∣∣2
1,T

+
1

2

∣∣ėc,n0+1
∂M

∣∣2
1,∂M

+
1

2

n0∑
n=0

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

+
1

2

n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+
1

2

n0∑
n=0

∣∣ėc,n+1
∂M − ėc,n∂M

∣∣2
1,∂M

≤C25

(
size(T )2 + ∆t2

)
+ C25∆t

∣∣ėc,n0+1
T

∣∣2
1,T

+ (1 + C25)
n0∑
n=0

∆t |ėc,nT |
2
1,T

+ C25∆t
n0∑
n=0

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

+ C25∆t2
n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

.

Thus by choosing ∆t ≤ min
(

1
8C25

, 1
2
√
C25

)
we deduce

1

8

∣∣ėc,n0+1
T

∣∣2
1,T
≤ (1 + C25)

n0∑
n=0

∆t |ėc,nT |
2
1,T + C25

(
size(T )2 + ∆t2

)
.

Thanks to the discrete Gronwall lemma associated with estimates (4.42) and (4.43), Proposi-
tion 4.15 on the initial data and Proposition 4.11 we conclude the proof of Theorem 4.2.

5. Numerical error estimate. In the section we present numerical error estimate which
illustrate the previous result. Several qualitative numerical results which show the different
behaviours of the scheme in function of the properties of the components and the wall are
performed in [22].

The domain Ω is the unit circle and we consider a Delaunay triangular mesh for which
for any K ∈M the center xK is the circumcenter of the triangle K (or K if ∂K ∩ Eext 6= ∅) and
for any L ∈ ∂M, yL is the middle of the chord eL. Since we do not know non-trivial solution
of problem (1.1), we compute a reference solution on a very fine mesh Tref whose mesh size is
size(Tref) ∼ 0.01 and a very small time step ∆tref = 10−5. The initial concentration is given
by

c0(x, y) =
1

2
(1 + 0.01 (sin(4πx) + sin(4πy))) ,
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Fig. 3: Reference solution at time T = 0.5

and the reference solution at final time T = 0.5 is plotted in Fig. 3.
In equation (1.1) we choose the following parameters: the interface thickness ε = 0.5, the

mobility and the surface tension Γb = σb = 0.1, the capillarity coefficient σs = 5 and the
relaxation coefficient Γs = 10. As regards the non-linear potentials we set fb(c) = fs(c) =
c2(1− c)2 (see Fig. 1b) and we use the semi-implicit discretization.

To compare the approximate solution (computed on a coarse mesh) with the reference
solution (computed on a fine mesh), we have to interpolate the reference solution on the coarse
mesh. Then, at final time T = 0.5, we plot the relative error between the interpolate of the

reference solution IT (c
Nref
T ref

) and the approximate solution cNT , namely
‖IT (c

Nref
T ref

)−cNT ‖

‖IT (c
Nref
T ref

)‖
, for the

L2-norm and the H1-seminorm in Ω and on ∂Ω in two cases:
• when the time step tends to 0 and a fixed mesh size (see Fig. 4 and 5);
• when the mesh size tends to 0 and a fixed time step (see Fig. 6 and 7).
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Fig. 4: First-order convergence in time for the L2-norms

First we observe that, as expected, we obtain a first-order convergence in time in each case
(see Fig. 4 and 5).

For the space convergence we have several behaviours. Noting that when we study the
Laplace problem with a finite-volume two-point flux approximation, from a computational
point of view we observe a second-order convergence for the L2-norm while at the theoretical
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Fig. 5: First-order convergence in time for the H1-seminorms
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Fig. 6: Second-order convergence in space for the L2-norms

level, we are only able to prove the first-order convergence. A proof of this super-convergence
phenomena is given in a recent work [4] for particular triangular meshes used in benchmarking.
To our knowledge, the case of a general 2D triangular mesh, is still an open problem. We
observe here the same super-convergence phenomena for the L2-norms (see Fig. 6). As regards
the H1(Ω)-seminorm (see Fig. 7a), although we observe a second-order convergence when the
mesh size is coarse, we recover asymptotically the expected first-order convergence. However
for the H1(Γ)-seminorm (see Fig. 7b) we observe a second-order convergence instead of the
first-order. We can assume that this super-convergence phenomena is due to the uniform
geometry of the boundary mesh.

Appendix A. Proof of Proposition 4.11. For f ∈ L2(Ω) and g ∈ L2(Γ), we consider
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Fig. 7: Convergence in space for the H1-seminorms

the following problem: find u : Ω→ R such that
∫

Ω
u = α and

−∆u = f in Ω;(A.1a)
−∆ΓupΓ + ∂nu = g on Γ.(A.1b)

By integrating equation (A.1a) on all interior control volumes K ∈ M and the boundary con-
dition (A.1b) on all boundary control volumes L ∈ ∂M, the two-point flux approximation of
problem (A.1) writes as follows. Find uT ∈ RT such that

∑
K∈MmKuK = α and

∑
σ∈EintK

mσ

uK − uL
dK,L

+
∑

σ∈EextK

meL

uK − uL
dK,L

= mKPmK f, ∀K ∈M;(A.2a)

∑
v∈VL

uL − uL′
dL,L′

+meL

uL − uK
dK,L

= mLPmL g, ∀L ∈ ∂M.(A.2b)

We can prove that this problem admits a unique solution.
Because of the complex geometry of Ω, it is possible to take into account some points

x ∈ Ωc in the proof of the error estimate. To ensure that all the quantities used in the proof
of Theorem A.3 are well defined, we will use an extension in R2 of the function u. Since
u ∈ H2(Ω), there exists an extension ũ ∈ H2(R2) (that we fix in the sequel) such that

(A.3) ũ(x) = u(x), ∀x ∈ Ω and ‖ũ‖H2(R2) ≤ C26 ‖u‖H2(Ω) ,

with C26 > 0 depending only on Ω.

Proposition A.1. The tangential gradient of u : Γ→ R to the vertex v = L|L′ satisfies∣∣∣∣u(xL′)− u(xL)

mγLL′
−∇Γu(v) · ~τ v,L(v)

∣∣∣∣ ≤ ∫
γLL′

∣∣(u ◦ ϕ)′′(ϕ−1(x))
∣∣dσ(x),

where ϕ is an arc-length parametrization of the curve Γ and ~τ v,L(v) is the unit tangent vector
to Γ at point v = L|L′ going from L to L′.
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Proof. Let us consider the points tL, tL′ , tv ∈ R such that xL = ϕ(tL), xL′ = ϕ(tL′) and
v = ϕ(tv), then the Taylor’s formulas give

u(xL′)− u(xL) =(tL′ − tv)(u ◦ ϕ)′(tv) +

∫ tL′

tv

(tL′ − s)(u ◦ ϕ)′′(s)ds

− (tL − tv)(u ◦ ϕ)′(tv)−
∫ tL

tv

(tL − s)(u ◦ ϕ)′′(s)ds.

Noting that |tL′ − tL| = mγLL′
we conclude the proof.

Thanks to the Taylor’s formulas we can prove the following proposition.

Proposition A.2. Let L ∈ ∂M be a boundary control volume and v be a vertex of L, then
the following equality holds

mγLv − dL,v = O (mLmγLv) .

Moreover for any point x ∈ σ = L ∈ Eext, one has

~nσK(x)− ~nKL = O(mL),

where ~nσK(x) is the unit normal vector to σ outward to K at point x.

We are now in position to prove the main result of the appendix.

Theorem A.3. Let us assume that the solution u of the continuous problem (A.1) belongs
to H2

Γ(Ω). Let us consider the solution uT to discrete problem (A.2). Then, there exists C27 > 0
independent of size(T ) such that

(A.4) |eT |21,T + |e∂M|21,∂M ≤ C27size(T )2 ‖u‖2H2
Γ(Ω) ,

with eT = PcT u− uT .
We decompose the proof of Theorem A.3 into two steps. As a first step, we prove (see

Proposition A.4) that the left-hand side of inequality (A.4) is bounded from above by the
different consistency errors which intervene in the problem. In a second phase, we have to
estimate these different consistency errors.

Proposition A.4. Let us consider the solution u to problem (A.1) and the solution uT to
discrete problem (A.2). Then the following estimate holds

(A.5)

|eT |21,T + |e∂M|21,∂M ≤
∑

σ=K|L∈Eint
mσdK,L(Rintσ,K)2 +

∑
σ=L∈Eext

meLdK,L(Rextσ,K)2

+
∑

v=L|L′∈V

Rv,L
2

dL,L′
;

where,

Rintσ,K =
1

mσ

∫
σ

∇u(x) · ~nKLdx− u(xL)− u(xK)

dK,L
, ∀σ = K|L ∈ EK ∩ Eint;

Rextσ,K =
1

meL

∫
σ

∇u(x) · ~nσK(x)dx− u(xL)− u(xK)

dK,L
, ∀σ = L ∈ EK ∩ Eext;

Rv,L = dL,L′∇ΓupΓ(v)~τ v,L − upΓ(xL′)− upΓ(xL), ∀v = L|L′ ∈ V.
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Proof. Let K ∈M, we integrate equation (A.1a) on K and we subtract the resulting equality
with equation (A.2a). Thanks to definitions of Rintσ,K and Rextσ,K given in Proposition A.4 imply

(A.6)

∑
σ=K|L∈Eint

mσ

dK,L
(eK − eL) +

∑
σ=L∈Eext

meL

dK,L
(eK − eL)

=
∑

σ∈EintK

mσR
int
σ,K +

∑
σ∈EextK

meLR
ext
σ,K, ∀K ∈M.

In the same way let L ∈ ∂M, we integrate equation (A.1b) on L and we subtract the resulting
equality with equation (A.2b). Then we obtain

(A.7)
∑

v∈VL

eL − eL′
dL,L′

+meL

eL − eK
dK,L

=
∑

v∈VL

Rv,L

dL,L′
−meLR

ext
σ,K, ∀L ∈ ∂M.

Now we multiply equation (A.6) by eK and summing up over K ∈ M and we multiply equa-
tion (A.7) by eL and summing up over L ∈ ∂M. Then, summing the resulting equalities we
have

|eT |21,T + |e∂M|21,∂M =
∑

σ=K|L∈Eint
mσ(eK − eL)Rintσ,K +

∑
σ=L∈Eext

meL(eK − eL)Rextσ,K

+
∑

v=L|L′∈V

Rv,L
eL − eL′
dL,L′

.

Owing to the Cauchy-Schwarz and the Young inequalities, we obtain estimate (A.5).

With this proposition at hand we are now able to prove Theorem A.3 by estimating all the
terms of the right-hand side of (A.5).

Proof. First, let σ = K|L ∈ Eint thanks to the Taylor’s formulas we have

Rintσ,K =
1

mσdK,L

∫
σ

∫ 1

0

(1− t)
〈
D2u ((1− t)x+ txK) (xK − x), (xK − x)

〉
− 1

mσdK,L

∫
σ

∫ 1

0

(1− t)
〈
D2u ((1− t)x+ txL) (xL − x), (xL − x)

〉
.

Owing to the Jensen inequality and the change of variables (t, x) ∈ [0, 1]×σ 7→ y = x+t(xK−x)
(or (t, x) ∈ [0, 1] × σ 7→ y = x + t(xL − x) for the second term) and since for any K ∈ M,
diam(K) ≤ reg(T )d(xK, σ), for any σ ∈ EK (see Definition 2.1) one has

(Rintσ,K)2 ≤ C(reg(T ))
size(T )2

mD

∫
D
|D2u(y)|2dy.

Noting that mD =
mσdK,L

2 we obtain

(A.8)
∑

σ=K|L∈Eint
mσdK,L(Rintσ,K)2 ≤ C(reg(T ))size(T )2

∥∥D2u
∥∥2

L2(Ω)
.

Secondly let σ = L ∈ ∂M, thanks to definition (A.3) of ũ we have u(xL) = ũ(xL) and
u(xK) = ũ(xK), thus since xL−xK = d(xK, xL)~nKL, the definition of Rextσ,K, the Jensen inequality
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and the Taylor’s formulas imply

meLdK,L(Rextσ,K)2 ≤5dK,L
(mL −meL)2

meLmL

∫
L
|∇ũ(x)|2 dσ(x)

+ 5
(dK,L − d(xK, xL))2

dK,L

meL

mL

∫
L
|∇ũ(x)|2 dσ(x)

+ 5dK,L
meL

mL

∫
L
|∇ũ(x)|2 |~nKL − ~nσK(x)|2dσ(x)

+
5meL

dK,Lmσ

∫
σ

∫ 1

0

(1− t)2
∣∣D2ũ ((1− t)x+ txK)

∣∣2 |xK − x|4dtdσ(x)

+
5meL

dK,Lmσ

∫
σ

∫ 1

0

(1− t)2
∣∣D2ũ ((1− t)x+ txL)

∣∣2 |xL − x|4dtdσ(x).

Thanks to Propositions 2.2, 2.3 and A.2, there exists CΓ > 0 independent of size(T ) such that

|d(xK, xL)− dK,L| ≤ CΓmLmγLv , |meL −mL| ≤ CΓm
3
L and |~nKL − ~nσK(x)| ≤ CΓmL.

Thus, thanks to a change of variables in the last two integrals we have

meLdK,L(Rextσ,K)2 ≤CΓ(reg(T ))size(T )3

∫
L
|∇ũ(x)|2 dσ(x)

+ C(reg(T ))size(T )2

(∫
DL

∣∣D2ũ(y)
∣∣2 dy +

∫
D

∣∣D2ũ(y)
∣∣2 dy

)
,

where DL = {(1− t)x+ txL : t ∈ [0, 1], x ∈ σ = L}. Then, owing to (A.3) we obtain

(A.9)
∑

σ=L∈Eext
meLdK,L(Rextσ,K)2 ≤ CΓ(reg(T ))C26size(T )2 ‖u‖2

H1(Ω)
.

Finally, using definition of Rv,L for any v = L|L′ ∈ V we have

Rv,L
2

dL,L′
≤ 2dL,L′

(
∇Γu(v)~τ v,L −

u(xL′)− u(xL)

mγLL′

)2

+ 2
(u(xL′)− u(xL))2

mγLL′

(dL,L′ −mγLL′
)2

dL,L′mγLL′
.

Thanks to Proposition A.1 and A.2, we obtain

(A.10)
∑

v=L|L′∈V

Rv,L
2

dL,L′
≤ 2CΓsize(T )2 ‖upΓ‖2H2(Γ) .

Gathering estimates (A.8), (A.9) and (A.10) the claim follows.

We have obtained an error estimate between the center-value projection of the exact solu-
tion PcT u and the approximate solution uT for the Laplace problem with Ventcell boundary
conditions for the H1-seminorms. However in order to prove Proposition 4.11 we also need
to prove an estimate between the exact solution u and the approximate solution uT for the
L2-norms. To conclude we adopt here the same reasoning as that given in [11, Theorem 10.1]
for the Laplace problem with Neumann boundary conditions, apart from the fact that here the
domain is not polygonal.

Let βT ∈ R such that
∑
K∈MmKū(xK) = α with ū = u + βT . Setting ēK = ū(xK) − uK

for any K ∈ M and ēL = ū(xL) − uL for any L ∈ ∂M, estimate (A.4) is also satisfied for



32 F. NABET

ēT . However, thanks to its definition the error ēM has now zero mean-value on Ω. Thus if
size(T ) ≤ 1

2C5
, the discrete Poincaré inequality (2.3) gives

‖ēM‖2L2(Ω)
≤ 4C2

4C27size(T )2 ‖u‖2H2
Γ(Ω) ,

and thanks to the trace inequality (Lemma 2.10) we have

‖ē∂M‖2L2(Γ)
≤ (1 + 2C4)2C2

8C27size(T )2 ‖u‖2H2
Γ(Ω) .

Thanks to the regularity of the function u, denoting by Lu the Lipschitz constant of u, one has

‖u− uT ‖2L2(Ω)
≤ 3|Ω|L2

usize(T )2 + 3|Ω|β2
T + 3 ‖ēM‖2L2(Ω)

.

We recall that
∫

Ω
u =

∑
K∈MmKū(xK) = α and βT = ū− u, thus one has

|Ω|βT = α−
∑
K∈M

mKu(xK)

and ∑
K∈M

mKu(xK) =
∑
K∈M

(mK −mK)u(xK) +
∑
K∈M

∫
K

(u(xK)− u(x)) + α.

Thus thanks to the regularity of u, Proposition 2.1 and the mesh regularity (2.1) we can claim
that |βT | ≤ Csize(T ) that concludes the proof.

The reasoning is exactly the same for the L2(Γ)-norm that concludes the claim.
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