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AN ERROR ESTIMATE FOR A FINITE-VOLUME SCHEME FOR THE
CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY
CONDITIONS

FLORE NABET*

Abstract. In this paper we consider a finite-volume approximation for the Cahn-Hilliard equation with
dynamic boundary conditions. The convergence of the scheme is proved in [22]|, we prove here an error estimate
for the fully-discrete scheme. We also give numerical simulations which validate the theoretical result.
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1. Introduction.

1.1. The Cahn-Hilliard model. We consider the following Cahn-Hilliard equation with
a dynamic boundary condition which describes the phase separation process of a binary mix-
ture. Find the concentration of one of the two components ¢ : (0,7) x Q2 — R and the chemical
potential p: (0,T) x Q — R such that

1a e =T, Ap; in (0,7) x Q;
1.1 0 LAup in (0,7) x 0
12
(1.1b) = —%50,,Ac + ?U,)f;(c); in (0,7) x Q;

g3 3, , 3
(1.1c) GIT.T. Oer = gs 0,0, Arcr — 60, f! (cr) — isobanc; on (0,T) x T
(1.1d) Onpe = 0; on (0,T) x T
de c(0,.) =c"; 1 343
(1.1e) 0,)=c" in Q

where Q is a connected and bounded domain of class C2 in R?, 9, is the normal derivative
operator, ¢ is the trace of ¢ on the boundary I' = 992 and Ay is the Laplace-Beltrami operator.
The Cahn-Hilliard model is a diffuse interface model that means that the interfaces have
a small but non-zero thickness € > 0 (see Fig. 1a). Several physical parameters which describe
the physical properties of the mixture components and the wall appear in the model: a diffusion
coefficient called the mobility (supposed to be constant here) ', > 0, the binary surface tension
coefficient o, > 0 between the two components (which is the density interfacial energy), a
capillarity coefficient o, > 0 and a relaxation coefficient I', > 0. The bulk and surface potentials
f» (typically f,(c) = c?(1—c)?, see Fig. 1b) and f, respectively satisfy the following dissipativity
assumption (useful to prove the bounds on the discrete solutions given in Proposition 4.5),

liminf f/'(¢) >0 and liminf f(c) > 0,

le|—o0 le|—o0
and the polynomial growth condition for f,
(1.2) [fi(@)] <C(A+]c"), VeeR,
for some C' > 0 and p € [1, +o0].

*CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France
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mailto:flore.nabet@polytechnique.edu

2 F. NABET
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Interface thickness:

(a) Interface thickness (b) Bulk potential

Fig. 1: Definition of the interface thickness and double-well structure of f,

The total Cahn-Hilliard energy is written as follows

NNE 12 3,
(1.3) F(e) /§2<450ch| +Eo,,fh(c)> +/F <165 0,0,

=Fp(c) =Fs(c)

VFC\F‘Z + 60bfs (cl“)) 5

and this energy is dissipated over time
3

(4 GFC) =T [ )P - G

/ |8 (t, )P, te[0,T]

r

We can remark that the bulk energy F, is the energy associated with the Cahn-Hilliard equation
with Neumann boundary conditions. Definition (1.3) of the total energy induces us to introduce
the function spaces H}(Q2) = {u € HY(Q) : ur € HY(I')} and H2(Q) = {u € H*(Q) : uy €
H?(T")} and the corresponding norms, for i € {1,2}

: ;
ol g = (e gy + ey )+ Y € H).

In the analysis to follow, for the sake of simplicity, all the coefficients in problem (1.1) will
be taken equal to one (expect for the numerical results given in Section 5).

1.2. Former results and outline. In the past 30 years, the Cahn-Hilliard equation
associated with the homogeneous Neumann boundary condition on the order parameter c
has been extensively studied. Recently physicists [15, 16, 20] have introduced the dynamic
boundary condition which allows to take into account the interaction between the components
and the wall, especially the contact-line dynamics (see [18]). In the case of Neumann boundary
conditions the numerical analysis with finite-difference and finite-element methods is well-
understood (see [3, 5, 6, 7, 9, 8, 10, 12, 13, 14, 17, 23] and the references therein). However,
to our knowledge, for the problem that we study here there is no error estimate for the fully-
discrete scheme on a curved domain. The only work on the numerical analysis of parabolic
problems with dynamic boundary conditions on a smooth domain that we know is given in [21].
The authors prove error estimates for several parabolic problems, including semilinear problems
such as Allen-Cahn equation, with dynamic boundary conditions on a C>° domain using finite-
element discretization in space. With regard to the Cahn-Hilliard equation, there exist finite-
difference methods but without proof of stability or convergence (see [15, 16, 20]). A numerical
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analysis for the semi-discrete scheme using a spatial finite-element scheme is done in [2] in
a slab with periodic boundary conditions in the longitudinal direction. In [22] the author
propose a finite-volume scheme and prove the convergence of the numerical scheme towards a
weak solution of problem (1.1) for a smooth non-polygonal domain. Finite-volume methods
have advantage to easily adapt to the non flat geometry of the boundary and to naturally
couple the equation in the domain and the dynamic boundary condition by the flux term 9,,c.
That is why, in order to prove an error estimate on a smooth domain €2 for this problem, we
use the same finite-volume scheme that the one introduced in [22]. Therefore in Section 2 we
present the finite-volume framework that is the finite-volume notation on a curved domain, the
associated discrete inner products and norms and the functional inequalities used in the paper.
Then Section 3 is devoted to the presentation of the numerical scheme. In Section 4 (and in
the Appendix) we prove the main result of the paper: an error estimate for the fully-discrete
scheme (Theorem 4.2). Finally in Section 5 we present a numerical error estimate for this
model in accordance with the error estimate theorem proved in the previous section. Note that
the paper is written in the two dimensional case. If we want to study the three dimensional
case, which would be a natural perspective for this work, the main difficulty is the handling of
the Laplace-Beltrami operator in a two-dimensional surface.

2. The finite-volume framework.

2.1. Mesh and notation. We recall here the main finite-volume notations used in the
paper (see Fig. 2). The usual notation for a polygonal domain can be found for example in [11]
and the notation associated to a curved domain in [22].

o e
s K
© .
ko
CZ- N/
B Interior vertex ® Interior center =~ —— Interior mesh 901
m Boundary vertex @  Boundary center s Boundary mesh 99t
A\ Kk Bl £ € O E--@ e, chord associated with ¢

Fig. 2: Mesh T associated with Q

An admissible mesh 7 of §2 is given by an interior mesh 97 and a boundary mesh 909%.
The interior mesh 91 is a set of disjoint open subsets of €2, denoted by x and called interior
control volumes, which satisfy:

® O =UcemK;
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o if K, €M,k # £, then cNc=0;
o if X, £ € M, k # £ such that the dimension of KN Z is equal to 1, then KN £ is the edge
of the mesh separating the control volumes x and £;
e if x N T contains a finite number of points, then x is polygonal;
e for any K € M, we associate a point z, € K (referred to as the center of k) such that
if k, £ are two neighboring interior control volumes, the edge which separates x and
£, which is denoted by o = |z, is orthogonal to the straight line going through z,
and x ..
Let &€ be the set of edges of the interior mesh 9. We decompose £ into two disjoint subsets:
the set of interior (flat) edges Eine = {0 € £ : 0 ¢ T'} and the set of exterior (curved) edges
Eext = {0 € £ : 0 CT}. Similarly we use the notations £** and £ for the edges of a given
control volume x € M. For any o € &£, we note m,, its length. For each edge o € &, we
associate a diamond cell D defined as follows:
e D = p, the quadrangle whose diagonals are the edge o and the line segment [z, z,]
if o € s
ep=p,={tx+ (1 —-t)zc,t €[0,1],z €0} if 0 € Eeqy N Exc.
We note my the Lebesgue measure of » and ® is the set of all diamond cells.
Since the domain 2 is not polygonal, we have to introduce an approximate domain 2 =
Uceamk of Q where
o K=K if Ex NEept = 0
e K is the polygon obtained by joining all the vertex of k if £ N &zt # 0. We can notice
that in this case £ may be not convex and that £ may be not included in €.
We denote by my, (resp. my) the Lebesgue measure of k£ (resp. k) and by mg, € R™ (resp.
Mo € R™) the vector (Mmy)icecom (resp. (Mi)cem). The Lebesgue measures of k and k are then
related by the following relation.

PROPOSITION 2.1. For any interior control volume < € M such that the dimension of
oxNT is equal to 1, we have
mye —mye = O (diam(k)?) .

Therefore, there exists Cy,Cy > 0 depending only on T' such that

Cimg < mye < Comye.

The boundary mesh 991 is equal to the set of exterior edges E.,;. Thus, the exterior edges
are also boundary control volumes. When we consider them as edges, we denote them by
0 € Eeut, and, when we consider them as control volumes of the boundary mesh, we denote
them by £ € 99 (and its length by m,). The chord associated with £ is then denoted by e,
(and its length by me, ), and, the quantities m, and me, are related by the following relation.

PROPOSITION 2.2. For any boundary control volume £ € OO, we have

Me, — M, :C’)(mi).

In particular, there exists C3 > 0 independent of size(T) such that

Me, <My < CyMe,.

Let myon (resp. myam) be the vector (my).com (resp. (Me,)ccom), then we note my =
(Maon, Moom) € RT (resp. my = (Magn, Mom) € R7).

For any control volume £ € 99, we associate a point z, € £, called the center of the
control volume. For any boundary control volume £ € 99, let be k£ € 9t the interior control
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volume such that £ = o is an edge of k. Then, we impose that the straight line going through
Ty and x, is orthogonal to the chord e, associated with £. Moreover, we define y, as the
orthogonal projection of x, on the chord e,.

Let V be the set of vertices of the mesh 9t which belongs to I'. We denote by v = £|c’
the vertex which separates the boundary control volumes £ and c/. For any v = |/, let
dev = d(y., V) be the approximation of the length m.,,., of the arc .y included in the boundary
control volume £ whose ends are z, and v. The measure of the arc v, ./ (which is the arc whose
ends are z, and x, and passing through the vertex v) is then approximate by the distance
dL,L’ = dﬁ,v + dL’,v-

If o = x|z € &y is an interior edge, we note dy . the distance between the centers x, and
2.; and M, the normal vector to o going from k to 2. If 0 = £ € E.py NE is an exterior edge,
we note d . the distance between the center x. and the point y.; and .. the normal vector
to the chord e, outward to k. In this case, the distance d(z,,z.) and its approximation dy .
satisfy the following relation.

PROPOSITION 2.3. Let us consider a boundary control volume £ € O such that £ = o €
& where x € M is an interior control volume, then we have

d(ws,ye) = ld(xx, v.) —die | = O(mem,,,).

Let size(7) be the maximum of the diameters of the interior control volumes k. We
introduce a positive number reg(7 ) that measures the regularity of a given mesh and is useful
to perform the numerical analysis of finite-volume schemes

- diam(x) diam(x) dr,e
(2.1) reg(T) := max <g1€%§z< N E%nz d(ze,0)’ E%JE d(we,0) )

The number reg(7) should be uniformly bounded when size(7) — 0.
For the needs of the proof of error estimate theorem, we also define a family of quasi-
uniform meshes.

DEFINITION 2.4 (Quasi-uniform mesh family of €2).
For a given mesh T, we define the number regunir(T) as follows

: 2
regunit(7T) & sup (reg('T), sup 51ze(7')> .

Kem Mg
We say that a mesh family (T(i))ieN is quasi-uniform if regunic(T?) is bounded.

2.2. Inner-products and norms. Since the domain 2 is not polygonal, we introduce a
L2-inner product on the domain € (and on its boundary I' = ) but also on the approximate
polygonal domain © (and on its boundary 9%2).

For the space discretization, the finite-volume method associates an unknown value u, € R
(resp. u, € R) to each interior (resp. boundary) control volume x € M (resp. £ € 9M). Thus
we note

Ur = (Uamauawz) = ((U)c))cewu (UL)Leasm) €R” =R™ x R%™.

DEFINITION 2.5 (Discrete L2-inner products).
o We define the inner product (.,.) 2, on L*(Q) and the inner product (., .)
as follows: for any ey, vy € R™, we have

on L*(Q)

m

(um,vm)ﬂ(m = > MgV and  (Ugy,Vop) gy = D, MyclcUk.
reM KeM
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We denote by ||.||

and ||.||g o the associated norms.
9

L2(@)
o We define the inner product (., .) 2, on L*(T) and the inner product (.,.),,, on L*(09)
as follows: for any Uy, Voon € R?™, one has
(UBSD?7U69J1)L2(F) = Z meu v, and (uama 'Uasn)am = Z Me,UsVp.

LEOM LEOM

We denote by ||.||

Owing to Proposition 2.1 (resp. Proposition 2.2), the norms |||z, and ||.[[g o (resp. [|.l| 2,
and [|.||y ,o) are equivalent (with constants independent on the mesh size).
We also define semi-inner products in R” and R?™.

w2y and ||l oon the associated norms.

DEFINITION 2.6 (Discrete H!-semidefinite inner products). We define the H'-semidefinite
inner product in R” as follows: for any ur,v- € R7,

[[UTaUT]]l,T = Z z (U)c - UL)(U)C - ’Ug) + Z

o=K|LEEint d’Qﬂ o=LEEcqt d’C#

m Me,

(ue —ug)(ve —v,).

We also define the H'-semidefinite inner product in R?™ as follows:

1
[[uamuvam]]l,afm = Z

am
d (Uc - UL’)('UL - 'UL’)7 Vgon, Vo € R
v=c|c'ev Ye,c’

We denote by |.|, ; and |.|; ,,, the associated seminorms. Moreover, we define the H'-norms
m RT and R?™ as follows: for any ur € R7, uyen € RO,
3 3
lurllyy = (lurllgm + lurll )" and Jttomlly o = (lttom I oo + om} o)

2.3. Functional inequalities. We give here without proofs some functional inequalities
available in the literature and that we will use all along the paper. In [1] the proofs are given on
a polygonal domain using the continuous embedding of BV (Q) into L?(2). Since the properties
of the space BV (Q) used in [1] hold with a Lipschitz, bounded, connected domain of R? and
that computations performed in [1] are also true for the norms defined in Section 2.2, the
results can be adapted in our case. We consider an admissible mesh 7 of €.

LEMMA 2.7 (Discrete mean Poincaré inequality, [1, Theorem 3.6]). There exists Cy > 0
depending only on Q such that for any u,r € R7,

. 1
|y — mq (“m)”L?(sz) < Cylurly o with mg (Um) = = > Mxlx.
’ |Q| KreM

Thus, we also have
(2.2) [tmll 20, < Calurly ;- + Q2 [ma (uam)l,

Comparing the mean values on 2 and €2 we also obtain a Poincaré inequality that involves
the mean value on Q. More precisely, thanks to Propostion 2.1 and the mesh regularity (2.1),
there exists Cs > 0 depending only on I" and reg(7) such that for any u, € R7,
22

Cs .
(23) ||u9ﬁ||L2(m S 04 |’LL7—|1)T + Tl|mg (Uzim)| + @SIZQ(T) ||u9ﬁ||L1(Q) )

with mg (ug) = @ > e M-
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LEMMA 2.8 (Poincaré-Sobolev inequality, [1, Theorem 3.2]). Let 1 < q < 400, there
exists Cg > 0 depending only on q, Q and reg(T) such that

1

q

(24) fimllni = 5 meluel?)” < Callurly, o Vur € R
reM

We can also easily prove the following Sobolev inequality on the one dimensional manifold T'.

LEMMA 2.9 (|22, Lemma A.3]). There exists C7 > 0 depending only on I such that for
any Uy € R,

sup |u| < Cr ||“69n||1,asm :

Leom
Using the fact that the trace operator is continuous from BV (Q) into L (T'), we can use similar
techniques as that in [1, Theorem 3.2] to obtain the following discrete trace theorem.

LEMMA 2.10 (Trace inequality). There exists Cg > 0 depending only on Q such that for
any ur € R™ we have

tomll oo, < Cs (furlyy + a2 ) -

We can also remark that for a quasi-uniform mesh family (7)), _ (see Definition 2.4)
and for any ¢ > 1, there exists a uniform constant Cy > 0 (depending on ¢ and regunis(7))
such that

C
25) sup fux < m ttonll o »
3. The finite-volume scheme . This section is devoted to the presentation of the nu-
merical scheme. We refer the reader to [22] for the proofs of the energy stability, the existence
of a discrete solution and the convergence analysis.
For the time discretization, let N € N and At = % be the time step. For any n €
{0,--- , N} we define t" = nAt¢. Then, at time ¢", the unknowns are denoted by

= <(02)mem> and " = ((Hﬁ)nemz)
T n T :

(C[;)CE(')DJI (,UZ)Leasm

Vg, € R™.

Since p is associated with the homogeneous Neumann boundary condition, for any £ € 99 we
have p? = p? where x € 9 is the interior control volume such that £ C Ok.

To obtain the finite-volume approximation of problem (1.1) we integrate the continuous
equations (1.1a) and (1.1b) on all interior control volumes K € 9t and we use a consistent two-
point flux approximation for the Laplace operators (associated with the Neumann boundary
condition for ). Then we integrate dynamic boundary condition (1.1¢) on all boundary control
volumes £ € 999 and we use a consistent two-point flux approximation for the Laplace-Beltrami
operator.

As regards the discretization of nonlinear terms f/ and f’ (denoted by dfe and dfs re-
spectively) we use two different discretizations (see Definition 3.1): the classical implicit dis-
cretization and a semi-implicit discretization which enables us to obtain an energy estimate
unconditionally stable.

The problem is then written as follows. For a given ¢ € R, find (¢!, u2*1) € R7 x R”
such that for any k£ € M, £ € M,

n+1l _ cn

(3.1a) mﬁc’ci’C == Y

= (
At aeg)icnt M

d)c,z:

n+1 n+1\ .
K — M ) )



8 F. NABET

(3.1b) T D i B D DI (SAsEt/asy
cegint dic,c cEELT d)c c
+med’ (6, )
Cn+1 —c" cn+1 _n+l

c ’
(3.1c) me,=—L=— ( £ £ ) _megdfs(cn cn+1) Me, ( nt+l

—C
£rve
At vev, dc,c/ d)c c

n+1) .

DEFINITION 3.1 (Discretization of nonlinear terms). The implicit discretization is defined
as follows: for any x € M, £ € OM,

AT (R, i) = fi(EEY) and dP(cf, et = fl(e™).
As regards the semi-implicit discretization, for x € {b, s} we note

d’ (z,y) = W,Vm,y,x £y and d'*(z,2) = fl(z),Vz

T —
We remark that in practice we use a polynomial function for the potential f, and that d/* (z,v)
is a polynomial function in the variables x,y. Thus, from a computational point of view, we
do not have numerical instability when z is too close to y.

PROPOSITION 3.2. Using the semi-implicit discretization, the discrete energy is dissipated
as follows: if ¢ is given and (¢, u™*1) is solution to problem (3.1), then there exists Cio > 0

independent of At and T such that for any At

Fr(@th) - Frle >+clo<At\u1“!”+ s = ol oo
(3.2)

+ 1 cn+1

n+1l | —c |
Cr 1,7 9 Imom oM |1 om

|c <0.
If we use an implicit discretization of the nonlinear terms, we also obtain (3.2) but with a
condition At < Aty (with Aty depending on the parameters of the equation).

We note that summing equation (3.1a) for all £ € 9t we have the volume conservation at
the discrete level

(3.3) 1Qmg () = 3 myecl = 3 mec == |Qmg (%), Vne{l,...,N}.
KeEM KEM

4. Error estimate for the fully-discrete scheme. We can now enter in the heart of
the matter. The most delicate point in the proof of the error estimate (Theorem 4.2) comes
from the nonlinear term f/(c) for which we have to pay special attention. For this, we are
inspired by methods described in [9, 19] for the Neumann boundary condition and a finite-
element approximation. However some supplementary difficulties arise in our case. First, the
finite-volume framework complicates the study of this term. Indeed, when we use a conform
finite-element method, we work (for the space discretization at least) on H!-conformal spaces.
That is not the case in the framework of finite-volume method where we resort to discrete
spaces. Moreover, we use here two different discretizations for the nonlinear term f; (see
Definition 3.1). The second one, that is the semi-implicit discretization, is more difficult to
study, which complicates again the proof of Theorem 4.2.

4.1. Main result. In this section we present the error estimate (Theorem 4.2) between
the center-value projection (see Definition 4.1) of the exact solution and the discrete solution
obtained by solving problem (3.1).
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DEFINITION 4.1 (Center-value projection). The center-value projection P : C°(Q) — RT
is defined as follows. For any u € C°(Q), we set Péu = (PS,u, PS, u) with

oM

Pgnu = (Piu);cem = (u(xK»)cgsm a’nd Pganu = (PZU)Leam = (u\F(xﬁ))Lgamt'

THEOREM 4.2 (Error estimate). Let (c, ) € C3([0,7T] x Q) x C2([0,T] x Q) be a solution
to the Cahn-Hilliard equation (1.1) associated with the initial data c® € C*(2). Let M > 0
be such that |[c|| oo 1.1y < M and M' > M. Then setting & =P, for any solution
(cr, ) to problem (3.1) satisfying

(4.1) sup <sup |ck], sup |C’Z|> <M', Vne][o0,N],

Kem LecoMm
there exists C11 > 0 (depending on M and M') such that the following estimate holds (with At
small enough),

(4'2> ES[[%pN]] ||[P>§_c(t") - C?’HLT + GS[[l(l)pN]] H]Pgsmc(tn) - cgmHl,asm < 011<At + SiZG(T)).

Note that the proof given in Section 4.3 does not use assumption (4.1). Thus, in this case,
to perform the proof we need some Lipschitz type regularity properties on the potentials and
so we work with truncated Lipschitz potentials instead of initial potentials. However note that,

e If we observe (numerically for instance) that bound (4.1) is satisfied, then Theorem 4.2
holds with the initials potentials.

e Otherwise, Corollary 4.3 proves that we can carry out the proof of Theorem 4.2 with the
truncated functions (which satisfy all the necessary regularity assumptions) and then,
for a quasi-uniform mesh family, we obtain Theorem 4.2 with the initial potentials.

COROLLARY 4.3. For a quasi-uniform mesh family, if At and size(T) are so that At <
size(T)* (for an arbitrary value o > 0), then assumption (4.1) is still satisfied for At and
size(T) small enough. Therefore there exists at least one solution ¢} to discrete problem (3.1)
which satisfies (4.1) and Theorem 4.2 holds for this solution.

Note that there may exist solutions of problem (3.1) for which (4.1) does not hold.

Proof. The main steps are the following:
1. We introduce truncated Lipschitz continuous functions in the following way. The
exact solution ¢ of continuous problem (1.1) is supposed to belong to C3([0,T] x ).
Thus, there exists M > 0 such that |[c|[ o 7.1y < M. Let M" > M, we choose

truncated potentials ﬁ and f of the initial potentials f, and f, satisfying ﬁ = f,
and f, = f, on [-M’', M’'], and which are constant at the infinity. These truncated
functions, and all their derivatives, are Lipschitz continuous. Moreover, the definition
of the semi-implicit discretization of nonlinear terms implies

1 1
@ (z,y) = / S+ sy — 2))ds and d¥(z,y) = / £ + s(y — 2))ds.

Thus the semi-implicit discretization of f/ (resp. f!) coincides with d/* (resp. d'*) on
[~M’, M']? and is Lipschitz continuous.

2. We can derive the proof of Theorem 4.2 with the truncated potentials (see Section 4.3)
instead of the initial potentials (and so with ¢} a solution to discrete problem (3.1)
but with the truncated potentials). We obtain estimate (4.2) for this problem with
constant C7; depending on M’.
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3. For a mesh belonging to a quasi-uniform mesh family, gathering estimate (2.5), Lemma 2.8]]
and Theorem 4.2 we deduce

C n n At . P q
;ilelgx IPec(t”) — c¢| < C6C11Co (mze(T)z/Q + size(T)' > .

Moreover, thanks to Lemma 2.9 and Theorem 4.2 we also have

sup |PSe(t”) — | < C7C11 (At + size(T)).

LeoMm
Thus, if At and size(7T) tend to 0 with At < Csize(T)* for some « > 0, we have that
bound (4.1) is satisfied for any approximate solution. Moreover, since the functions
f» (resp. f.) and £ (resp. f) coincide on [—M', M’], if ¢ is solution to discrete
problem (3.1) with the truncated potentials, it also holds with the initial potentials
(and reciprocally). 0

Remark 4.4. From a computational point of view, we can check that assumption (4.1)
holds when we use the potentials f, and f,.

In order to prove the error estimate theorem we have to use a priori bounds on the discrete
solution (obtained thanks to the discrete energy estimate given in Proposition 3.2).

PROPOSITION 4.5 (Bounds of the discrete solutions, [22, Proposition 4.4]). For any c* €

C%(Q), let & =P and (¢, u) € R™ xR be a solution to problem (3.1). Then, there exist
positive constants My, My, M3, My and Ms independent of At and size(T) such that

sup HCZHLT < M, SUP Hcafm”l am < Mo,
n<N
N-1 n+1 n 2 M.
+1 2 4
S sl < X At\ <2
n=0 1,7
2 N1y n41 _ on 2
and Z At amz am + Atz Z am oM < Ms-
0,6 n=0 At 1,0m

We can remark that in [22] the proposition is proved by choosing the mean-value projec-
tion on all control volumes as discrete initial data for the initial concentration ¢®. In fact,
when the initial data is not enough regular, we have to choose this projection to obtain the a
priori bounds. However, when the initial data belongs to C2(Q) the center-value projection is
sufficient. Indeed, thanks to the mean-value theorem, we obtain a bound on the H'-seminorm
of ¢ which allows us to prove the proposition as in [22].

4.2. Discrete projections. To prove Theorem 4.2 we have to define another projection:
the elliptic projection. These projection is in fact the solution of a suitable Laplace problem and
thus depends on the boundary condition that we want to impose. Therefore, the definition of
the elliptic projection for the chemical potential (see Definition 4.6) and for the order parameter
(see Definition 4.7) are different.

DEFINITION 4.6 (Elliptic projection with Neumann boundary conditions).

We define the space H%(Q) = {u € H*(Q) : Vu- =0 on '}, then the elliptic projection
PN HE(Q) — R s defined as follows. For any u € H%(Q), PS"Nu is the solution to the
following dzscrete Laplace problem.
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Find vy € R such that Y myve = / u and
KeM

(4.3) >om, /Au dz, VeeM

Uegmlt

DEeFINITION 4.7 (Elliptic projection with Ventcell boundary conditions).
The elliptic projection PSP H2(Q) — R7 is defined as follows. For any u € H2(S),
IP’?,H’Du is the solution to the following discrete Laplace problem.

Find vy € R such that Y myve = / u and for any K € M, £ € O,
reM Q

A
Zmdn,c+zmeﬁdm /“

. int gr'rf
(4‘4) €EY €
) % + m% d / Aruy(z)do(z / Vu(z do(z).
vEV, c,c’ K,L

Remark 4.8. The elliptic projection is the solution to the finite-volume two-point flux
approximation of the continuous problem

—Av=f inQ,
(4.5)
—aApv+0,v=g onl,

with f = —Awu and
e a =0, g =0 for the elliptic projection H”en N
e a=1,9=—Aru+ Jdyu for the elliptic prOJectlon P ellb

When v is a time-dependent function, for a fixed time ¢ € R, we denote PN (u(t)) and
PP (wu(t)) the elliptic projections of the function v = u(t,.).

In order to prove Theorem 4.2 we have to relate the different discrete projections to the
solution of the continuous problem (1.1). With this in mind we give below several properties
which will be used all along the proof in Section 4.3.

Thanks to the Taylor’s formulas and the Jensen inequality we can easily prove the following
estimates between an arbitrary function and its center-value projection.

LEMMA 4.9. Let u € H?(Q), there exists C12 > 0 independent of size(T) such that

”u DJIUHL 2(Q) < ClQSize(T) ||vu||H1(Q) :

Moreover, there exists Ci3 > 0 independent of size(T) such that for any u, € H'(T'),

|ur — P

6zmu\1“||L2(r)

< C13$iZ6(T) ||VFU|F||L2(F) .
Since the introduction of the elliptic projection is essential to prove the error estimate theorem,
we also need to control this projection.

PROPOSITION 4.10. Let u € H%(Q) be a Lipschitz continuous function, there exists Ci4 >
0 depending only on ) such that

||P§31117Nu — uH + |IP"3TH’Nu — IF’CTu}LT < Chgsize(T) Hu||H2(Q) .

L2(0)
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Proof. Thanks to Definition 4.6 of the elliptic projection, IF’ETH’Nu is solution to discrete
problem (4.3). Thus the difference P$"Nu — PSu is the error associated to problem (4.5) with
a = g = 0. Thanks to the error estimate for the Laplace problem (4.5) for the two-point flux
approximation scheme (see for example [11, Section 10.3]) we obtain the expected estimates.0

As regards the analogous proposition in the case of Ventcell boundary condition, the proof
does not seem available in the literature and so we propose a complete proof in the Appendix.

PROPOSITION 4.11. Letu € H2(Y) be a Lipschitz continuous function, there exists Cy5 > 0
depending only on Q0 and reg(T) such that

PSP = ul] o g + |[Po0” =

am

< Cissize(T) ||ull g2

L2(Q) L2(T)

and

PPy, — IP’CTu‘LT + |PehPu — Pgmullﬁm < Cyssize(T) ||ull gz g -

4.3. Proof of Theorem 4.2. This section is devoted to the proof of Theorem 4.2. We
decompose the proof in three steps. First, we use the scheme to decompose the different
components of the error. Then, we control all the terms and prove that they tend to 0 when
the mesh size and the time step tend to 0. Finally we use the discrete Gronwall lemma to
conclude the proof.

In the proof different components of the total error appear. Thus we decompose the error
as follows.

DEFINITION 4.12 (Error). Letw: (0,7)xQ — R and ul be a finite-volume approzimation
of u at time t". We denote by e’ € R” the error associated with u at time t = t™ defined as
follows

un __ sun su,M . SUM _ TDC n ell,* n cu,n __ pell,x n n
ep™ =X 4 " with 65" = PLu(t"™) — P u(t™) and " =PStu(t") — ul,

with * = {N, D} depending on the boundary condition associated with wu.

We also define 5™ = u(t",-) — %P?H’*u(t").

4.3.1. Different contributions of the error. First, subtracting the scheme and the
continuous problem we identify the different components of the error (Proposition 4.13). Then,
we separate the error into two parts: the error é- between the elliptic projection of the exact
solution and the approximate solution in the left-hand side, and all the other contributions in
the right-hand side (Proposition 4.14).

PROPOSITION 4.13. Let us consider a couple (¢, i) solution to the continuous Cahn-Hilliard
equation (1.1) and a couple (c™T1, u1) solution to the finite-volume scheme (3.1). Then, the
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following equality holds

. 2 . 2 . . 2
At ’el#nﬂ‘LT (’ec n+1‘1 T |e?n|1,T + ’e?n“ - eff"‘lf)
. 2
+ N7 Heg;ﬁH meo om T 9 (’ gﬁﬂh om |€5om 1 om T ‘eg;ﬂ €om 1,asm)
—At (R?H’ ) paggy — (€T =G ) o+ (ETESTT = 65T o,
éC ,n+1 _ éc ,n
(4.6) (RZ;”, e+l _ égv;)ﬁ I M
™ .
- (et = Tt . e - )
m L2(2)
m . .
- (e ) - B et et - o)
Moon £2(r)

where the terms Ry and RYTY are defined as follows

1

n—+ n
n+l __ C(ir)(t ,iC) - C(IF)(t 71')
(4.7) Reiry = At

Proof. Let (c, u) be a solution to the Cahn-Hilliard equation (1.1). Applying Definition 4.6
of the elliptic projection with Neumann boundary condition to pu, for any x € 9t we have

- (9tC(,F) (tn+1, .’b)

P?I’Nu(t”“) — P N (et
de,c

(4.8) / Ope(t™ ™ x)dz+ S m = 0.

ceEMt

In the same way, applying Definition 4.7 of the elliptic projection with Ventcell boundary
condition to ¢, for any £ € 9t we have

]PE’CH,DC(tn+1) _ Pin’DC(thrl) IF)?CH»DC(thrl) _ ]P)iH’DC(thrl)
4.9 m, + Me
@) ¥ > e -

cegint dx.c ceELrt )

i /IC File@™ )de - /}C“(tnﬂ, z)dz = 0,

and for any £ € 99,

Pell,DC(tn+1) _ Pel/l,Dc(tn_t,_l) ]Pell,D (tn+1) _ ]P)ell,D (tn+1)
(4.10) > = = + Mo, —=

vev, dﬂ,z:/
/f cr (™ 2))do(x /&c, (" 2)do(x) =

where © € 9 is the interior control volume such that £ € dx. Subtracting equation (3.1a) of
discrete problem and equation (4.8) and using definition (4.7) of R?*! imply

ép,,n-i—l _ eu n+1 ec n+1 éc,n
@iy ¥ ma¥+mm¥=/R2+l(@dx
K

ceEint d&ﬁ B At
/ @) — " @)
- x.
. At
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Now, we subtract equation (3.1b) of the discrete problem and equation (4.9), then we obtain

(4.12) > My ————— + > meﬁd; — mycelntt
KoL t K,L

= [ermtan— [ (fetwt ) - BEaner ) ) as
K K My

Subtracting equation (3.1c) of the discrete problem and equation (4.10) we have

ccn+l  centl éc,n+1 _ éc,n—i-l éc,n-i-l _ éc,n

e €.
(413) ¥ et e S = / Ry (@)do(x)
VEV, L,L K,L L

- /,c ewl(x)m 40 0) - /ﬁ (f:<cr<tn+l, 2)) - —e2df (el C?”l)) A7)

me

We multiply equation (4.11) by v, and we sum up over all interior control volumes x € 9, we
obtain

(4.14) [ekmtt 763”%1 — G = (R, 0, e — e
. [[67— a'UT]]l,T‘f' Al ; Uon )L 20y Al ; Uon .
m L%(@)

Now, we first multiply equation (4.12) by u, and we sum up over all interior control volumes
Kk € M. Then, we multiply equation (4.13) by w, and we sum up over all boundary control
volumes £ € 9. Summing the resulting equalities, we have

) ] ec ,n+1 é
[efr’n 17 UT]]LT (69_7; 1 ) [[egm i uaim]]l,afm ( 2 At o s Upom
oM

éc n+1 éc n
_ (=p,ntl om  — €om
= (6‘9}” ;Umt)L2 . Rnlp y oo — | T a7 Uam
) L2(r) At
(4.15) L2(2)

- (e -

Mon

dfb( 7};1), th)
L2(2)

m
- (fs/(ch(tn+17') - = dfs( 69n7cgz;;1)au6m> .
Moo £2(r)
By choosing v, = Atéf" ! in equation (4.14) and u, = 2" — 9™ in equation (4.15) and
adding the two resulting equalities the claim follows. |

PROPOSITION 4.14. Let (c, i) be solution to the Cahn-Hilliard equation (1.1) and (¢, |
be solution to the discrete scheme (3.1). Then, for any ng € [0, N| we have

1 no . 1/1,. ) L .
(416) 5 >0 Atferm [ 43 (2 R e&"liT)
n=0 n=0

.c,n+1 .cm
Com ~ — Com

1
LSt A
P Al

1
+5 <|€C n0+1|1,asm |6891r|1 om + Z |6<'C)971Lr+1 689ﬁ f avn)

0,60
no

<Too + 30 AL o+ Tynor + Tey + Ty + T5, + T,
n=1

(T +1)C? :
+ % <M1 +(C15 +1) ||C||L°°(0,T;H12(Q))) size(T)?,
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where the different error terms are defined as follows

, oAT+1) .
Teo = Heg;?OHi?(Q) %mﬂ (em,}O) )

Typsr =3C3 2 At||REFY,., +2Cs Z AtHR”“

L2(Q) 2 (F)
_c n+1 e 2 _c n+1 éc n 2
_ A m 9 A €om am
L2(Q) L2(1)
C2 no ghem _ gty n+1
1 +1 4 o m
||6H ||L2(Q)+204 Heﬂ 0 HL2(Q) +7n§1At At ’
L2()
2
Tg Hgsm tl’ )HL2(Q) (203 + 1) Hgfm(tno—i_l’ .)HLZ(Q)
2
Ci 2 g (") — g (t"F1, ) 2
+ (?4 P At‘ — AtEm ’ +2Cs Z AtHga tn+1’.)||L2(F)’
n=1 L2(Q) n=0

no . n . 2 n n n o .n
Ty, =8 3 A (|AUBGel™™)) = filer I+ (e ) = d (e, )

(Bt 1) = 4% (s !

Com> Com )HLz(F) .
The term gon (T€SP. gom) s such that for any k € M (resp. £ € IM),
m
gsﬂ(tvx) = fz: (C(t’x)) - miﬁfb/ (C(ta mIC)) ) Vz € ]Cat € R;
K

Gom(t, ) = f' (cu(t,z)) — 7:;‘: fert,ze)), Vrec,teR.

)

(4.17)

Proof. To begin we sum identity (4.6) for n going from 0 to ng and we use definition (4.17)
of the functions g,, and gy, for the terms where the nonlinear potentials appear. To obtain
estimate (4.16), we have to apply the Young inequality to all the terms in the right-hand side
of the resulting equality.

e Let us begin by the terms where the L2inner product with %" "
that if vy, € R™ has a zero mean-value, for any u,, € R™, we have

appears. Noting

(uEUHUWI)L 2() = (U — Mg (uSﬂ)7U9ﬂ)L2(Q) < luam —maq (u‘m)HL2(Q) HUmeLQ(Q) ’

then thanks to the discrete mean Poincaré inequality given in Lemma 2.7, we obtain

(418) (um’UmT)Lz(sz) S C4 |u7’|1,7’ HUEWHLZ(Q) .

The couple (¢, p) is solution to the Cahn-Hilliard equation (1.1) with the homogeneous
Neumann boundary condition for x so for any n € [0,no], mqo (R2T') = 0. In the
same way, thanks to Definition 4.7 of the elliptic projection, for any n € [0,n0] we

have mg, (€5;") = 0 and so mq (ec mt+l_ g ") = 0. Thus, owing to estimate (4.18) and

the Young inequality, for any n € [0,n¢] one has

(4.19) At (RyTH el ™) L ) < fAt| #"+1|1 +2C; At HR”+1||L2(Q>,
and
_c,ntl e
(4.20) (et —egm ety L, < Iat e t]) 4203 At e”‘T”
L3(2)
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e Now we focus on the terms whose term ¢5" ™' — ¢ appears in the inner product on

L2(2). For the two first we perform a discrete time integration by parts.
Let us begin by the term where the function &k "1 intervenes.

& spu,n+1 -cn+1 -c,m _ Su,1 -c,0 ~p,no+1 sc,no+1

ngo (6m ) o — € )L2(Q) = (esm y Eon )L2(Q) + (e‘m y Eon )L2(9>

4 ~[,n spu,n+1 -c,n
+ n2=31 (et — ettt e )L2<n) .

Noting that by definition of the elliptic projection (see Definition 4.6) mg (€h;") = 0,
the Cauchy-Schwartz inequality, inequality (4.18) and the Young inequality give

no
z:: (€H7n+1 Cﬁn+1 eif’?ﬂ)L 2 | — 2 Heu71HL2(Q) 9 H HL 2(Q)
2 —m _ siyntl
(4.21) 04 % At o + 55 Atjesn|?
At L2(Q) n=1 ’

R

Considering now the inner product with the term g, (#"*!,-). Since the mean-value
of the function gy, (t,-) is not equal to 0, we cannot apply exactly the same reasoning.
Definition 4.7 of the elliptic projection and the discrete volume conservation (3.3) imply

that for any n € [0, N], mq (é5") = mg (egJI ) Then the Cauchy-Schwarz inequality,
Proposition 2.1, Poincaré inequality (2.3) and the Young inequality get

ng
nX::O (gon (8" F1,), €60 = €57 Ly | < ||9m ] 2t 5 || HL2(Q)
. QT +1
+ (QCZ + 1) ||g\m(t"°+1, ')||i2(9) 3 | ?nOJrlﬁ - | |(2012 )mﬂ (6;}0)

(4.22) ) 9

+ - Z At‘ecnllT (C +1) n; ‘ g‘m(t ;) —gm(t"+1,-)

At

L2 (sz))

Thanks to the bounds on the discrete solutions (Proposition 4.5) and Proposition 4.11,
for any n € [0, N], one has

L2()

Cg : c,np+1 A
+ 75126(7- | és HL2(Q) + Z t|es

(4.23) 1677 | 20y < M1+ (Crs + 1) llell o< (0,712 () -

As regards the last term where the inner product with é5" ™! — ¢5" appears we have to

use the scheme. Choosing vy = At (f{(P%(c(t"1))) — d/e(c, ¢n1)) in identity (4.14)
we obtain
(7 Baatem) = a (e, et = s
m
= —At[el™ T f(P5(e(t™H)) — dP (e )iy
AL (R fI(PG (™)) — dP (el eith)
(e LB () — d (e, )

L2 ()

L@ "
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Since mg, (RIT) = mq (éﬁ,’z”'H éﬁﬁ") = 0, the Cauchy-Schwarz inequality and in-

equality (4.18) imply

Mon

M . .
(m%www> %Mmy%ﬁm#)
L2(@)

—c,n+1 —c,n
Eom + — €on

<o fer, v R =

+Cy

L2(Q)

L2(Q)

x| fL (B (e ) = aP (e ],
Recalling that for any = € R, d/t(z,7) = f/(z) (see Definition 3.1) and applying the
Young inequality we deduce

(ﬂmmwww%ww% ym@ﬁtfy)
jle

—c,n+1 —c,n 2

€am — €

1
< Larer o R

L2(n>

(4.24)

L2 ()
C n n 2

+3A | f1 (B (c(t") = (e D],
n T TL 2

+3A[dl (e et =l (e ]

Crs Cr
e Finally we focus on the terms due to the dynamic boundary condition, that is the
terms where the inner product in L?(I") appears.
According to the Cauchy-Schwarz inequality, the Young inequality and the equivalence
of norms ||. ||, .., and [[.]| for any uyex € R?™ we have

L%(r)?
1 éc,n+1 ecn 2
sc,n+1 -c,n oM om
(4.25) (uam,eagﬂ — 63W)L2(F) < gAt — A + 2C3At ||u8m||Lz(F)
0,0mm
. n+1 om | —€5ay ntl s
Choosing usem = R{TY, then ugpy = 222" and finally tsm = gom(t"*',-) in

equation (4.25) we can control the first three terms.
For the last term, setting wgm = f/ (P5u (c(t"™1))) — d¥* (o, ciyt) in the same way
as for equation (4.25) one has

= (L (PEon (c(t™™1)) = d*(chons o), €5 = €5 oy

(426) c n+1 ec ,n N . .
7A At — +2At“f ( om( (t +1))) _dfs(cawzﬂca;l)HLz(p)'
0,60
Gathering inequalities (4.19)—(4.26), we obtain estimate (4.16). O

4.3.2. Estimate of the residual terms. In order to apply the discrete Gronwall lemma,
we have to estimate all the terms in the right-hand side of inequality (4.16) independently of n.
We begin by a bound on the initial data.

PROPOSITION 4.15. Let ¢® € C%(Q) and & =Pec®. Then for some Ci6 > 0 we have

Mg (égﬁo) +mg (égﬁo) + Hé;’zOHLz(m + |660|1 T + |e<‘99ﬂ 1,00m < ClﬁSize(T) HCOHH%(Q) '
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Proof. Estimates of the (semi)norms are only a direct consequence of the definition of %
and Proposition 4.11 (associated with Lemma 4.9 for the L?-norm).
Then owing to Proposition 2.1 and the Cauchy-Schwarz inequality we deduce

1

: Co \? . .
ma (65) < (g ) 1850, and i (650) < o

HLQ(Q)’

and the L2-estimate gives the claim. 0
Applying the Taylor’s theorem to the term R?*! defined by (4.7) we can easily obtain the
following estimates on the term T'hn+1 about the error of the time discretization.

PROPOSITION 4.16. For any ng € [0,N], the remainder terms R} and R}t defined
by (4.7) satisfy

Z AR gy < 10uclizo ez AP,
(4.27) i
PO L

2
‘ o < ||8ttc\1‘||L2(O,T;L2(F)) A2,

Now we are interested in the term 7% . concerning the error between the exact solution and its
elliptic projection.

PROPOSITION 4.17. There exists C17 > 0 such that for any ng € [0,N] the following
estimates hold

2
—c,n+1 —c,n
Y [3 Eon .
(4.28a) > At % < Ctysize(T)? ||atCHi2(O,T;H§(Q))’
n= L2(9)
2
ng Eom ' — Eom 2 2 a2
(4.28Db) >AL A < Cigsize(T)" 0l 120,10 m2(0) -
- L2(r)
2
o e et e CPosine(TY (9,2
(4.28¢) S At —x < Ctzsize(T)* 0uall 12 0. 7.11% () -
= £2(9)

Moreover, for any n € [0, N] we have
(4.29) 186" 1| 2y < Crzsize(T) [l ll oo 0,72 () -
Proof. We begin by proving estimates (4.28). Thanks to Definition 4.12 we have

e+t 5y < 26 ) — (e, )) = (BP1, ) — B, )

2
+2 Z / (w) (P%l,Dc(tﬂ-Fl’ ) _ P?CH’DC(tn, ))2
K M

KeEM

L) —

Owing to the linearity of the elliptic projection (see Definition 4.7) and Proposition 4.11, the
first term in the right-hand side satisfies

2
L2(2)
tn+1
< Chisine(TY? [ 0relt, ) dt.

tn

(4.30) [ (@™, ) = e(t",)) = (PoPe™™, ) = Py Pe(t”, ) |
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Moreover, thanks to Proposition 2.1 and the mesh regularity (2.1) for any £ € 9t we have
mye —my < Creg(T)?*mdiam(x). Thus Proposition 4.11 yields

2
)3 / (mm) (BPe(tm !, ) — PIPe(em, )
(4.31) kemJK My

¢t
< 20(oeg(T))(C + DAtsize(T)* [ 100e(t) .
n

Summing inequalities (4.30) and (4.31) for n going from 0 to ngy provides estimate (4.28a).

Estimate (4.28c) is obtained with exactly the same reasoning using Definition 4.6 of the
elliptic projection (instead of Definition 4.7) and Proposition 4.10 (instead of Proposition 4.11).

In the same way we deduce estimate (4.28b) with a similar reasoning on I' and Proposi-
tion 2.2 instead of Proposition 2.1.

It remains to prove estimate (4.29). For any n € [0, N,

2
_ 2 2 My — My 2
||eg§;"||L2(m <2 H“(tn7 )= Pg}rLN“(tn7 ')HL2<Q> + 2&%;))?/); ( Km,c K) (P?CILNM(tn’ )> .

Then, applying Proposition 4.10 to the function p(t™,-) the first term in the right-hand side is
written as follows

(|t -) = Pgil’Nu(t%HLz(m < Cugsize(T) |ull Lo 0.7, 12 () -

The second term is treated as estimate (4.31) that concludes the proof. |

We can now we concentrate on the error due to the discretization of nonlinear terms. In this
way we begin with the term T, related to the terms g, and gyo.

PROPOSITION 4.18. For any t € [0,T], the functions gm and goon defined by (4.17) satisfy

the following estimates with C1s (respectively C19) depending on f, (repectively f,) but not on
At and size(T),

2 . 2 2
(4'323) Hgm (ta ')HL2(sz) < ClBSIZe(T)z (ch(tv ')”Hl(m + ”C(tv ‘)HLZ;C(Q) + 1) ’

2
(432b) ||g<’39n(t7 ')”iQ(r) S Ou)SiZG(T)Q Hvl"cll"(tv ')”iz(r) + <7 max f: ) .
B(0lle(t, )| oo ry)

Moreover, there exists Coo > 0 depending only on f, (and on its derivatives) such that for
any ng € [0, N,

2

< Coo M, ||0vell2 (0 1112y Si7e(T)?,

L2()

ng n+l |\ _ n .,
n=0 At

where

MS, = max (17 ch”i""(O,T;L“(Q)) ; HDQCHZLm(O,T;Lw(Q))) :

Proof. Thanks to definition (4.17) of go and gsen and since f, and f’ are Lipschitz con-
tinuous functions, Propositions 2.1 and 2.2, the mesh regularity (2.1), the polynomial growth
assumption (1.2) for f,, the bounds on the discrete solutions in Proposition 4.5 and Lemma 4.9
yield estimates (4.32).
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We concentrate now on estimate (4.33). For any n € [0, N — 1] we define the function h™
such that for any z € ,

K™ (x) = f(e(t™ 1 2)) = fi(c(t", x)).

Therefore, for any k£ € 9 and for any n € [0, N — 1],

gnﬂ(tn+17x) - gfm(tnvm) = h’n(x) - %hn(xﬁ)’ Va € K.
K

Thus, thanks to Lemma 4.9, Proposition 2.1 and the mesh regularity (2.1), there exists C' > 0
depending only on T', reg(7) and the Lipschitz constant of f; such that

tn+1

< 2C2,size(T)? VA" |1, + Csize(T)2At / 10se| 2y -

2
| Hl(2)
tn

L2(2)

Hgm(thrlv ) = gm (1", )|

Moreover, there exists My, depending only on the Lipschitz constants of the derivatives of f,
(up to 3) such that

tn+1

n|2 4 2 2
VR ||H1(SZ) < beAt< (||VC||L°°(0,T;L°°(Q)) + ||D20HL°°(O,T;L°°(Q))> / ||atc||L2(Q)

tn

tn+1 tn+1
2 2 2
+ HVC”L"O(O,T;L"O(Q))/ ||6tvc||L2(Q) +/ ||atCHH2(Q) )
tn

tn

Summing these inequalities for n going from 0 to ng gives estimate (4.33). d

Now we have to deal with the main difficulty of the discretization of nonlinear terms. In
each case the reasoning is similar. Thus we begin by proving the following general result.

LEMMA 4.19. Let us consider a function ¢ € CQ(Rz,R) such that all the derivatives up to
the second order are bounded. Then, there exists Co1 > 0 depending only on ¢ and on the mesh
regularity reg(T ), such that for any ar,br € R” the following estimates hold

(434) 9arbr)lyr < Car (larly , + lbrly,, ) -
Moreover for any ET € R7, one has

(4.35) [o(ar,br) — ¢(br, bT)ﬁ,T

~ 12 ~ 2
< o (|aT S ]bT - bT(l -+ Lip, (bT) o — bm|§2(m> ,

)

be—br
di.c
Furthermore for any agom, boon € R?™ we have

(4.36) lé(aom, boom) — P(boo, bam)||L2(r) < Co |lagm — bamz||L2<p> .

Proof. We first give the proof of estimate (4.35). Thanks to the definition of the discrete
H'-seminorm we have

‘qb(aTa bT) - ¢(bT7 bT)‘iT = Z (¢o(a77 bT))Q + Z

U=)C|L€£7',nt dK,L o=LEEezt d)C$£'

where Lip. (ET) = SUPgce

m, Me,

(¢0’(a‘7'a bT))2 I
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where for any o = k|c € Ejpp or 0 = £ € Eepr N Ex (With k£ € M) we note

¢a(aTa bT) = [(b(am bIC) - (b(au bc)] - [¢(bK7 bIC) - (b(bm bL)] .
One has

(437) ¢(a)<7 b)c) - ¢(az7 bL) = /0 ((a)c - a5)61¢(ac + S(G)c - aL)7 b, + S(b}c - bﬁ))
(b = be)0ao(a + s(ax — ac)be + b — b)) )
and
1
Qb(b/c: bIC) - ¢(bubc) = / ((bic - b£)81¢(bﬁ + S(b)c - bll)a b, + S(b/c - bL))
0

T (be — be)0a(be + s(be — be),be + s(be — m)))ds.

Then for any o € £ the term ¢,(ar,br) can be written as follows

(4.38) ¢U(G’T7 bT) = ¢¢1r(a7'7 br) + ¢¢27(a7'a br),
with

1
¢¢1y(aTabT) = / (b)c - bL)
0
X <82¢(a5 +s(ax —az),be + s(be — b)) — O2¢p(b, + s(bx — bz),bs + s(be — b2))
+01p(a, + s(ax —ag),be 4+ s(be — b)) — 019(b, + s(be — b.),be + s(be — bﬁ))>ds
and
1
¢(2,(a7—, br) = / ((a,C —a;) — (be — b£)>81¢(aL + s(ax —az), b, + s(be — b.))ds.
0
For the term ¢2(ar,b;), since the function d;¢ is bounded we obtain

’¢i(a77b7)|1’T < H81¢||Lac lar — b7'|177—'

As regards the term ¢l (a,,b;), we write

¢i’(a75 bT) = ¢11;’1(a7'a bT) + ¢(1772(a7'a bT)a
with

(b(lf’l(aTvbT) = /0 ((bzc _EK) — (b _gc))
X (62¢(a£ + S(Cl)c - az)7 b, + S(b)c - bﬁ)) - 82¢(b5 + S(b/c - bz:)7 b, + S(b)c - bﬂ))

+01p(a, + s(ax —ag),be 4+ s(be — b)) — 019(b, + s(be — b.),bs + s(be — ba))>ds7
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and
1
12 7 br) = g}c _gc
o arbo) = [ Ge=E)
X (82(]5(% + s(ax —az),be + s(be — b)) — O20p(b, + s(bx —b.), b + s(be —b2))
+o1¢(a, + s(ax —ag), b + s(be — b)) — 010(be + s(be — b)), b, + s(be — bﬁ))>ds.

Since the functions d1¢ and 02¢, are bounded we get

|6 (ar,b7)], < max (016l 926l ) [br —br |

)

Finally we have to deal with the term ¢1?(a,,b;). For any i = 1,2, since 01,;¢ is bounded we
have

|0ip(a; + s(ax —az), by + 8(be — b)) — 0;p(be + s(be — b)), b + s(be — b.))]
<0119 oo [(1 = 8)(az — be) + s(ax — b,

and so for any o € £, we obtain

2

be —b
£ = (|a,C — b,<|2 +|a, — b£|2) .

d?CC

)

(qb},’?(am br)
iy

)

2
) < 2 (max (|0119], - 01 20],~))°

Since d . < reg(T)d(zx,0) for any k € M, for any o € Ec (see definition (2.1)), there exists
C(reg(T)) such that

|¢<17’2(a’77 bT)’l,T < C’(reg(T)) max (”8171¢||Lw ; ||6172¢HL°C) LlpT (BT) ||a9ﬁ - bWiHLQ(Q) )

and estimate (4.35) yields.
Owing to (4.37) we also obtain estimate (4.34) and a similar reasoning gives estimate (4.36).0

With this result at hand we can now bounded the terms T, (Proposition 4.20) and T, (Propo-
sition 4.21).

PROPOSITION 4.20. For any ng € [0, N], there exists Cay > 0 (depending on f, but not on
At and size(T)) such that

& C n n 2 n n n n 2
2 At (|£IB5e ) £+ ah e et -t e )

2 ot 2 i e on|2
<Cs (1 + ||VCHL°°(0,T;L°°(Q))) (;_31 Ate2™) , + ngo At fegm ™t — e?nh,r)
+ Cagsize(T)? [lell7 (o m2 (0
+ Cao HVCHQLOO(O,T;LOO(Q)) (1 + HCOHZg(Q) + ||C||2L°°(0,T;H1%(Q))> size(T)?
+ Cx (1 + ||VC||2L°°(0,T;L°°(Q))) 106V el 72 0 1 (c2y) A

2 2 .
+ Ca2 (1 + ||VC||L°°(O,T;L°°(Q))) 0eell 20,712 (0)) At?size(T)?.
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Proof. We will apply Lemma 4.19 twice with a good choice of the functions which intervene.
First, we apply the lemma to the function ¢ defined by ¢(z,y) = f,(z) for any z,y € R. Then
we choose ar = ¢! and by = by = P%(c(t" 1)), and so thanks to (4.35) we obtain

2
(4.39)  [fi(®S (et ) = filer ™1,
c,n 2 : C n c,n
< O (Jegm™ 3 |+ Liny (P et ) e[ ) -
Now we apply Lemma 4.19 to the function ¢ = df* with a, = A, by = ™! and 5T =
P (c(t™1)). Inequality (4.35) implies
(440)  [dh (e ) — (e )

T n c,n 2 3 C n 2 n n 2
<O (|t = en? 4 e+ Lipy (P )° e = i)
Thanks to the mean-value theorem, we have
(4.41) Lip, (P5(c(t"))) < IVell oo o1 (q) -

The definition of the elliptic projection and the volume conservation at the discrete level (3.3)
imply mg (€5") = mgq ( Eon ) thus thanks to the Poincaré inequality (2.3), the bound on the
initial data (Proposition 4.15), and equation (4.23) we deduce

3C%

Ct
2.

+3CE (M + (C15 + 1) llell Lo 0,712 (0 ) “size(T)?.

les

. 2 . 2
||L 2(Q) <3C£ e?nll,T + |Q|Slze(T>2 HCOHHIE(Q)

(4.42)

Moreover Lemma 4.9 and Proposition 4.11 give

€5 1 20, < (C12 + Cis)size(T) [le(t”, )l g2(q) »

(4.43) en n
€5 117 < Cussize(T) [le(t™, )| 2o -

Thus, gathering estimates (4.42) and (4.43) there exists Ca3 > 0 such that for any n € [0, NJ,
2 2
(4'44) ”eC n||L2(Q) < Cas |ec n|1 T + CQ3SIZ€(T)2 (1 + HCOHle(Q) + ”CHLOC(O,T;HI%(Q))) :

Now, we have to deal with the terms on the right-hand side of (4.40). First, we write

|CTTL+1 o CT|1,T < |ec - c,n|1,7— + |éff’n+1 o é(;jn|1,7_ + ’P?C(thrl) o P?C(t )‘1,7"

Since the projections IP)QTH’D and IP$ are linear we can apply Proposition 4.11 that implies
R

gom+l _ é;”ﬁ)T < OfsAtsize(T)z/ [[Orc(t, ')HiI?(Q) dt.

tn

Moreover, thanks to Proposition 2.3 there exists C' > 0 depending only on 2 and reg(7) such
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that
2
P (™) — Pc(t™)
1,7
tn+1 2
<At > mad,c,ﬁ/ / WVe(t,x, + s(xx —x,)) - D pds| dt
o=K|LEEint
e d(zw, x ?
+AL > mecd,c,ﬁ/ #/ W Ve(t,x, + s(xe — ) - O pds| dt
o=LEEcxt tm
tn+1
<CAt / 10,9c(t, )2 o .
tTL
Therefore we have
g+l
n n ~C,n <C,M 2 . 2
et enfy, <slesntt - ey aChAwine(TY [ el )
(4.45) ¢

tn+1

L 30A / 10:Ve(t, )| e o .

tn

Finally, the discrete conservation of the volume (3.3) implies mg, (cgﬁl - cgz) = 0 and so the
Poincaré inequality (2.3) and the bound on the discrete solutions in Proposition 4.5 give

(4.46) ||t — < Cy |t — cT|1 + 2C5 Mysize(T).

fm||L 2Q) —
Summing (4.39) and (4.40), gathering estimates (4.41), (4.43), (4.44), (4.45) and (4.46) and
summing the resulting inequality for n going from 0 to ny conclude the proof. ]

PROPOSITION 4.21. For any ng € [0,N], there exists Coq > 0 independent of At and
size(T) (but depending on f.) such that

no . 2
Z At ||f ( am thrl))) dfs( OJJI’CZS;F?I)HL%I‘) < Co ZOAt |e(7:”n+1|1,”r
n=
6c n+1 o 6 ) 9
om asm .
+CQ4At2 ZO At —Ar + SIZG(T)2 HatC”Lz(O,T;H%(Q)) + ||8tC‘F||L2(O,T;H1(F))
n=
0,00m

+Cassize(T)? (HCOHZI%(Q) + ||C||i°°(O,T;H13(Q))) -

Proof. Applying inequality (4.36) to the function ¢ = f’ at first, and then, to ¢ = d’s give

(ngm( (tn+1))) dfa( Com> cg;?l)HLz(F) 021 (Hec N HL2(F) + ch+1 asm ||L2(F>) '
Owing to Lemma 2.10 and estimate (4.42) we have

202 016

HngJzHHmm <202 ((1 +20,C%) ]é?”*lﬁT |Qsize(T)? HCOHZg(Q)) :

Moreover, thanks to Lemma 4.9 and Proposition 4.11 we obtain

| Esmt| < (Crs + Crs)size(T) ||e(t™ 1)

L2y — HH%(Q) :
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Finally we write

||CZ9JJF!1 - CGWHL2(F) — ||e<c99?l+1 - GB‘WHL (1“)+Heg‘7?1+1 B 689ﬁ”L2(r)+||]P) thrl) o Pgmc(tn)HL2(r)'

Then, the linearity of the projection [PZIQI;ID and P¢_., Lemma 4.9 and Proposition 4.11 give

om?

tn+1

2
[ER mHLzm (Cy3 + C15) Slze(T)QAt/t 19ec(t, )32 0 it

and
tn+1

onelt") = Pt <20+ DA [ (orett

tn

(|5, dt.

Mot ey
Thus gathering these estimates and summing the resulting inequality between 0 and ng conclude
the proof. O

4.3.3. End of the proof of Theorem 4.2. We are now able to apply the discrete
Gronwall lemma and to conclude the proof. Gathering Propositions 4.15, 4.16, 4.17, 4.18,
4.20 and 4.21, we can estimate term (4.16) (see Proposition 4.14). Thus, there exists Cos > 0
(depending on ¢ and ) independent of size(7) and At such that for any ng € [0, N — 1],

]. Y . 1 2 ]. . 1 2 1 ]. Y . 1 . 2
5 2 At |e¢n+ |1,7' +7 ‘e?mﬂr |1,T |ec ol |1,3am 50 }€?n+ B 6$”|1,T
2 n=0 4 2 n=0
1 no ec n+1 _ ecn 9
vy ST g Bl el
- 0,6m

ng
<Cys (size(T)? + At®) + Cos At |50t |f (14 Cos) 3 Atles™ ] |
’ n=0 ’

.c,n+1 2

é —éf
Cos At? At 7‘”” oo
+ Cas Z AL

cn’
T 1,7

no
+ Cos At Z ‘ég‘in+1 —e
n=0

0,00m

Thus by choosing At < min ( ) we deduce

1 1
8C25 7 24/Cas

1 5C, T 2 & 5C, T 3
A = O"’1|1 S (L4 Co5) 30 Atles |fT + Cas (size(T)? + At?).
’ n=0

Thanks to the discrete Gronwall lemma associated with estimates (4.42) and (4.43), Proposi-
tion 4.15 on the initial data and Proposition 4.11 we conclude the proof of Theorem 4.2.

5. Numerical error estimate. In the section we present numerical error estimate which
illustrate the previous result. Several qualitative numerical results which show the different
behaviours of the scheme in function of the properties of the components and the wall are
performed in [22].

The domain €2 is the unit circle and we consider a Delaunay triangular mesh for which
for any £ € 9 the center z, is the circumcenter of the triangle k£ (or K if 9k N Eepy # 0) and
for any £ € 9M, y. is the middle of the chord e.. Since we do not know non-trivial solution
of problem (1.1), we compute a reference solution on a very fine mesh 7;of whose mesh size is
size(Tret) ~ 0.01 and a very small time step At = 107°. The initial concentration is given
by

co(z,y) = = (1 +0.01 (sin(47x) + sin(47y))) ,

N | =
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Fig. 3: Reference solution at time 7" = 0.5

and the reference solution at final time 7" = 0.5 is plotted in Fig. 3.

In equation (1.1) we choose the following parameters: the interface thickness e = 0.5, the
mobility and the surface tension I'y, = o, = 0.1, the capillarity coefficient o, = 5 and the
relaxation coefficient I', = 10. As regards the non-linear potentials we set f,(c) = f.(¢) =
c?(1 — ¢)? (see Fig. 1b) and we use the semi-implicit discretization.

To compare the approximate solution (computed on a coarse mesh) with the reference
solution (computed on a fine mesh), we have to interpolate the reference solution on the coarse
mesh. Then, at final time T' = 0.5, we plot the relative error between the }Vnterpolate of the
IZ7 (e el )=l

ref N

. N, . .
reference solution Z,(c7 ;") and the approximate solution ¢}’ , namely et

IZr(eq D)l

, for the

L2-norm and the H!-seminorm in © and on 9% in two cases:
e when the time step tends to 0 and a fixed mesh size (see Fig. 4 and 5);
e when the mesh size tends to 0 and a fixed time step (see Fig. 6 and 7).

L
f—o—size(T) ~ 0.26
| —8—size(T) ~ 0.13
| —o—size(T) ~ 0.08

1005 T
b —e—size(T) ~ 0.26
| —@—size(T) ~0.13

[EENEENE: |

F —a—size(T) ~ 0.03

!

g

\‘
Lol

Lol Lol Lol Lol Lol Lol Ll Lol Lol Lol
107° 1074 1073 1072 107t 10° 107 10~ 1073 1072 107! 100

1074

1074

At At

(a) L2-error in (b) L?-error on T

Fig. 4: First-order convergence in time for the L?-norms

First we observe that, as expected, we obtain a first-order convergence in time in each case
(see Fig. 4 and 5).

For the space convergence we have several behaviours. Noting that when we study the
Laplace problem with a finite-volume two-point flux approximation, from a computational
point of view we observe a second-order convergence for the L?-norm while at the theoretical
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~
c
7‘1,7

)

[rters
[Ty

1,7

10t = —e—size(T) ~ 0.26 E 10' | —e—size(T) ~ 0.26 E
; —8—size(T) ~ 0.13 ; ; —8—size(T) ~ 0.13 ;
I —0—size(T) ~ 0.08 , I —o—size(T) ~ 0.08 1
100 | —A—size(T) ~ 0.03 E . —A—size(T) ~ 0.03 g
1071 E E E
1072 ¢ E E E
1073 Lol Lol Lol Lol Lol 10—3 Lol Lol Lol Lol Lo
10-° 104 1073 102 101 10° 10-° 10-4 1073 1072 10—t 10°
At At
(a) H'-error in Q (b) H'-error on T’
Fig. 5: First-order convergence in time for the H!-seminorms
1005 . —— — g 1005 . ——7 — g
F——At=10"2 k| F——At=10"2 ]
| == At=10"3 i | == At=10"3 i
L ——At=10"" 4 L ——At=10"" 4
1074 ! ! ! | ! ! Lol 10—4 L Lol L ! T
1072 107! 10° 1072 107! 10°
size(T) size(T)

(a) L2-error in Q

(b) L2-error on T’

Fig. 6: Second-order convergence in space for the L?-norms

level, we are only able to prove the first-order convergence. A proof of this super-convergence
phenomena is given in a recent work [4] for particular triangular meshes used in benchmarking.
To our knowledge, the case of a general 2D triangular mesh, is still an open problem. We
observe here the same super-convergence phenomena for the L2-norms (see Fig. 6). As regards
the H'()-seminorm (see Fig. 7a), although we observe a second-order convergence when the
mesh size is coarse, we recover asymptotically the expected first-order convergence. However
for the H'(T')-seminorm (see Fig. 7b) we observe a second-order convergence instead of the
first-order.
geometry of the boundary mesh.

We can assume that this super-convergence phenomena is due to the uniform

Appendix A. Proof of Proposition 4.11. For f € L?(Q2) and g € L?(T"), we consider
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| ——At=10"2

| ——At=10"2 ]
100 1 —a— At =10"3 | | B At =103 |
F——At=10"* El F——At=10"*

10—3 - L Ll L 10—3 - L T SR | L L L
102 101 100 102 101 100
size(T) size(T)
(a) H'-error in Q (b) H'-error on T

Fig. 7: Convergence in space for the H'-seminorms

the following problem: find u : 2 — R such that fQ u = « and

(A.1la) —Au=f in €
(A.1b) —Artuyr +9u=g onl.

By integrating equation (A.la) on all interior control volumes x € 9t and the boundary con-
dition (A.1b) on all boundary control volumes £ € 99, the two-point flux approximation of
problem (A.1) writes as follows. Find u, € R” such that ) __,» mgux = o and

U — U U — U
(A.2a) > ma% + meﬂ% =mPTf, VkeMm;
cEEL KL ceggrt ;L
Up — Upr Uy, — U
(A.2b) S e, ——5 =m Py, Ve oM.
VeV, da,z:/ d}c,g

We can prove that this problem admits a unique solution.

Because of the complex geometry of €2, it is possible to take into account some points
x € Q° in the proof of the error estimate. To ensure that all the quantities used in the proof
of Theorem A.3 are well defined, we will use an extension in R? of the function w. Since
u € H?(Q), there exists an extension 7 € H?(R?) (that we fix in the sequel) such that

(A.3) (e) = u(2), VYo e Qand [l < Cosllullzz -

with Cy6 > 0 depending only on 2.
PROPOSITION A.1. The tangential gradient of u : T' — R to the vertex v = c|c’ satisfies

u(ry) —u(z,)

Vo) o)) < [ o) (e @) doo)

cc’

Moy

where @ is an arc-length parametrization of the curve I' and T, (V) is the unit tangent vector
to T at point v = |z’ going from c to .
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Proof. Let us consider the points t.,t.,t, € R such that x, = o(t;), . = p(t,/) and
v = ¢(t,), then the Taylor’s formulas give

u(e) —u(re) =(ter — t.)(uo @) (L) + /t " (te = 5)(uo ) (s)ds

tr

(e — ) (wo @) (t) — / (te — )(u o p)"(s)ds.

tv

Noting that [t,s —t.| = m, ., we conclude the proof. 0
Thanks to the Taylor’s formulas we can prove the following proposition.

PROPOSITION A.2. Let £ € 99 be a boundary control volume and v be a vertex of c, then
the following equality holds

Meyp, —dey = o (mCmWLV) :
Moreover for any point x € 0 = £ € Eeyt, one has
ﬁcr;c(l') - ﬁ;cc = O(mﬂ)7

where g (x) is the unit normal vector to o outward to K at point x.
We are now in position to prove the main result of the appendix.

THEOREM A.3. Let us assume that the solution u of the continuous problem (A.1) belongs
to H2(2). Let us consider the solution u, to discrete problem (A.2). Then, there exists Coy > 0
independent of size(T) such that

2 2 . 2
(A.4) lerl? 1+ leaml? poy < Carsize(T)? [[ull 22 g -

> — C
with e = PSu — ur.

We decompose the proof of Theorem A.3 into two steps. As a first step, we prove (see
Proposition A.4) that the left-hand side of inequality (A.4) is bounded from above by the
different consistency errors which intervene in the problem. In a second phase, we have to
estimate these different consistency errors.

PROPOSITION A.4. Let us consider the solution u to problem (A.1) and the solution ur to
discrete problem (A.2). Then the following estimate holds

|e7'|§,‘7' + ‘eﬁ‘mliam < > m(,d,cyﬁ(Ri’?,i)Q + > mecdn,t(Rifé)Q

a=)€‘£6£int o=LEEcxt
A5
(A.5) - ];mz;
v=c|c'ev e, c’
where,
, 1 -
RM = —/Vu(z) Ty dr — w, Vo = K|z € Ec N Eini;
’ My Jgy di.c
1 _
RE"L = / Vu(x) - Ggr(z)de — —u(:zzc) u(x,c)’ Vo =1 € EcNEeyt;
’ Me, Jo& d}c,c

Ry, =d; o Vour(V)T o — ur(ze) — ur(ze), Vv =zl e V.
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Proof. Let k € M, we integrate equation (A.la) on k£ and we subtract the resulting equality
with equation (A.2a). Thanks to definitions of Rt and Riﬁ given in Proposition A.4 imply

o, K
m, m
(ex —ec)+ 2 £ (ex —er)
(A 6) o=K|LEE;nt d)c,g o=LEEcqt d}c,g
' = > mR"™+ Y me R, VkeM
seEint sEELT

In the same way let £ € 99, we integrate equation (A.1b) on £ and we subtract the resulting
equality with equation (A.2b). Then we obtain

€ — €/ € — €k Ry .
G | g e = 5 e
KL

vEV, dL,L’

(A.7) >

¥ — Me, Rjré, Ve e 0.
vEV, c,c’
Now we multiply equation (A.6) by e, and summing up over £ € M and we multiply equa-
tion (A.7) by e, and summing up over £ € 99. Then, summing the resulting equalities we
have

2 2 ;
|e7-|1,’7“ + |eafm|1,asm = > mo(ex — e,:)Rff},i + 2 me.(ex — ec)Riﬁ
O‘:K‘Eegint o=LEEeqt
€ — €/
+ Z RV’L%.
v=C|L'ev c,c’
Owing to the Cauchy-Schwarz and the Young inequalities, we obtain estimate (A.5). 0

With this proposition at hand we are now able to prove Theorem A.3 by estimating all the
terms of the right-hand side of (A.5).

Proof. First, let o = |z € E;py thanks to the Taylor’s formulas we have

Rint _ 1 / /O (1—t)(D*u((1 — t)z + tay) (2 — 2), (26 — 2))

oK mod)c,z:

1

mo-dlC,C

/ /0 (1—t)(D*u((1 —t)z +ta.) (z, — 2), (0 —2)).

Owing to the Jensen inequality and the change of variables (t,z) € [0,1]x 0 — y = z+t(x,c—x)
(or (t,z) € [0,1] x 0 — y = x + t(xr, — x) for the second term) and since for any £ € 9N,
diam(k) < reg(7T)d(xx,0), for any o € Ec (see Definition 2.1) one has

(i < o)™ [ Dy Pay,

m

medi,c
2

Noting that mp, = we obtain

2
L@’

(A.8) S mude (RME)? < Clreg(T))size(T)? || Dul|

o=K|LEEint

Secondly let o = £ € 99, thanks to definition (A.3) of u we have u(z,) = u(x.) and

u(xx) = u(x), thus since z, —x = d(x, 2, )., the definition of Rif’“’é, the Jensen inequality
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and the Taylor’s formulas imply

(mL — mea)z

M, die o (RE5E)? <Bdy / \Vii(z)[* do(z)
esMe L

de o —d 2 me i
R
d,QL me Jr

m ~ — —
+ 5d)c,Li/ |V’LL(.’L')|2 |nlCL - ncrrc(l')|2d0'($)

5meL / / ) |D*u((1—t)z + t:l?,c)|2 2 — z|*dtdo(x)
d,C M,

5me£ / / ) |D*u((1—t)z + t:cc)|2 |z, — x*dtdo(z).

dyc,cm,

Thanks to Propositions 2.2, 2.3 and A.2, there exists Cr > 0 independent of size(7T) such that
|d(zx,2.) —de,c| < Crmemy,,, |Mme, —m,| < Crm? and |fic, — g ()] < Crmy.

Thus, thanks to a change of variables in the last two integrals we have
meﬂd,gﬁ(Rif”,é)Q <Cr(reg(T))size(T / |Va(z)|? do(z)
+ C(reg(T))size(T)? (/ |D217(y)| dy +/ |D25(y)|2 dy> ,
Dr D

where D, = {(1 —t)z +tx, : t € [0,1],x € 0 = £}. Then, owing to (A.3) we obtain

(A.9) > mopde (R < O (reg(T) Cagsize(T)” [[ull s

Hi(Q) "
o=LEEcqt

Finally, using definition of Ry , for any v = |2’ € V we have

2
Ry .

c,c’

2 2 ,—m 2
_ u(a) — u(x£)> + 2(“(5%’) —u(zc))? (de,e veer) )

m’ycc/ dﬁ,c’m'yﬁa/

< 2dc,c’ (VFU(V)?V,L

Moy
Thanks to Proposition A.1 and A.2, we obtain

R 2

(A.10) > 5 < 2Chsize( T)? e | 32y -
v=ciclev Ge,e
Gathering estimates (A.8), (A.9) and (A.10) the claim follows. O

We have obtained an error estimate between the center-value projection of the exact solu-
tion PSu and the approximate solution u, for the Laplace problem with Ventcell boundary
conditions for the H'-seminorms. However in order to prove Proposition 4.11 we also need
to prove an estimate between the exact solution u and the approximate solution u, for the
L2-norms. To conclude we adopt here the same reasoning as that given in [11, Theorem 10.1]
for the Laplace problem with Neumann boundary conditions, apart from the fact that here the
domain is not polygonal.

Let 87 € R such that ) .op meti(zc) = a with @ = u + 7. Setting ex = u(wc) — uxc
for any £ € M and e, = a(z,) — u, for any £ € 9M, estimate (A.4) is also satisfied for
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er. However, thanks to its definition the error e,, has now zero mean-value on . Thus if

size(T) < ﬁ, the discrete Poincaré inequality (2.3) gives

2 . 2
HesmHLz(n) < 40} Corsize(T)* ||U||H§(Q) )
and thanks to the trace inequality (Lemma 2.10) we have

Eom 22, < (14 2C4)*C3 Corsize(T)” |[ull 2 g -

Thanks to the regularity of the function u, denoting by L, the Lipschitz constant of u, one has
2 . _ 2
lu—wrlle i, < 3QILEsize(T)? + 3|QU57 + 3 |em ;2 -

We recall that [, u = con mxti(zc) = @ and B, = @ — u, thus one has

1Q|8r = a— > meu(zk)
reM

and

> meu(ze) = 3 (me —me)ulze) + 3 (u(z) —u(z)) + a.

reM reM reMJK

Thus thanks to the regularity of u, Proposition 2.1 and the mesh regularity (2.1) we can claim
that |55| < Csize(T) that concludes the proof.
The reasoning is exactly the same for the L?(I')-norm that concludes the claim.
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