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AN ERROR ESTIMATE FOR A FINITE-VOLUME SCHEME FOR THE
CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY
CONDITIONS

FLORE NABET*

Abstract. In this paper we consider a finite-volume approximation for the Cahn-Hilliard equation with
dynamic boundary conditions. We prove an error estimate for the fully-discrete scheme. We also give numerical
simulations which validate the theoretical result.
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1. Introduction.

1.1. The Cahn-Hilliard model. We consider the following Cahn-Hilliard equation with
a dynamic boundary condition which describes the phase separation process of a binary mix-
ture. Find the concentration of one of the two components ¢ : (0,7) x Q2 — R and the chemical
potential p: (0,T) x Q — R such that

1a e =T, Ap; in (0,7) x Q;
1.1 0 LAup in (0,7) x 0
12
(1.1b) = —%50,,Ac + ?U,)f;(c); in (0,7) x Q;

g3 3, , 3
(1.1c) GIT.T. Oer = gs 0,0, Arcr — 60, f! (cr) — isobanc; on (0,T) x T
(1.1d) Onpe = 0; on (0,T) x T
de c(0,.) =c"; 1 343
(1.1e) 0,)=c" in Q

where Q is a connected and bounded domain of R?, ,, is the normal derivative operator, ¢,
is the trace of ¢ on the boundary T' = 92 and Ay is the Laplace-Beltrami operator.

The Cahn-Hilliard model is a diffuse interface model that means that the interfaces have
a small but non-zero thickness € > 0 (see Fig. 1a). Several physical parameters which describe
the physical properties of the mixture components and the wall appear in the model: a diffusion
coefficient called the mobility (supposed to be constant here) ', > 0, the binary surface tension
coefficient o, > 0 between the two components (which is the density interfacial energy), a
capillarity coefficient o, > 0 and a relaxation coefficient I', > 0. The bulk and surface potentials
f» (typically f,(c) = c®(1—c)?, see Fig. 1b) and f, respectively satisfy the following dissipativity
assumption (useful to prove the bounds on the discrete solutions given in Proposition 4.4),

liminf f/'(¢c) >0 and liminf f(c) > 0,

le|—o0 le|—o0
and the polynomial growth condition for f,
(1.2) [f;(@)] < C(A+c]"), VeeR,
for some C' > 0 and p € [1, +o0].
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Interface thickness:

(a) Interface thickness (b) Bulk potential

Fig. 1: Definition of the interface thickness and double-well structure of f,

The total Cahn-Hilliard energy is written as follows

NNE 12 3,
(1.3) F(e) /§2<450ch| +Eo,,fh(c)> +/F <165 0,0,

=Fp(c) =Fs(c)

VFC\F‘Z + 60bfs (cl“)) 5

and this energy is dissipated over time
3

(4 GFC) =T [ )P - G

2
dt /Flé?tcm(t,.ﬂ ., telo,T].

We can remark that the bulk energy F, is the energy associated with the Cahn-Hilliard equation
with Neumann boundary conditions. Definition (1.3) of the total energy induces us to introduce
the function spaces H}(Q2) = {u € HY(Q) : ur € HY(I')} and H2(Q) = {u € H*(Q) : uy €
H?(T")} and the corresponding norms, for i € {1,2}

: ;
ol g = (e gy + ey )+ Y € H).

In the analysis to follow, for the sake of simplicity, all the coefficients in problem (1.1) will
be taken equal to one (expect for the numerical results given in Section 5).

1.2. Former results and outline. In the past 30 years, the Cahn-Hilliard equation
associated with the homogeneous Neumann boundary condition on the order parameter c
has been extensively studied. Recently physicists [14, 15, 19] have introduced the dynamic
boundary condition which allows to take into account the interaction between the components
and the wall, especially the contact-line dynamics (see [17]). In the case of Neumann boundary
conditions the numerical analysis with finite-difference and finite-element methods is well-
understood (see [3, 4, 5, 6, 8, 7, 9, 11, 12, 13, 16, 21] and the references therein). However,
to our knowledge, for the problem that we study here there is no error estimate for the fully-
discrete scheme on a curved domain. There exist finite-difference methods but without proof
of stability or convergence (see [14, 15, 19]). A numerical analysis for the semi-discrete scheme
using a spatial finite-element scheme is done in [2] in a slab with periodic boundary conditions
in the longitudinal direction. In [20] the author propose a finite-volume scheme and prove the
convergence of the numerical scheme towards a weak solution of problem (1.1) for a smooth
non-polygonal domain. Finite-volume methods have advantage to easily adapt to the non flat
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geometry of the boundary and to naturally couple the equation in the domain and the dynamic
boundary condition by the flux term 0,c. That is why, in order to prove an error estimate
on a smooth domain € for this problem, we use the same finite-volume scheme that the one
introduced in [20]. Therefore in Section 2 we present the finite-volume framework that is the
finite-volume notation on a curved domain, the associated discrete inner products and norms
and the functional inequalities used in the paper. Then Section 3 is devoted to the presentation
of the numerical scheme. In Section 4 (and in the Appendix) we prove the main result of the
paper: an error estimate for the fully-discrete scheme (Theorem 4.2). Finally in Section 5 we
present a numerical error estimate for this model in accordance with the error estimate theorem
proved in the previous section.

2. The finite-volume framework.

2.1. Mesh and notation. We recall here the main finite-volume notations used in the
paper (see Fig. 2). The usual notation for a polygonal domain can be found for example in [10]
and the notation associated to a curved domain in [20].

B Interior vertex ® Interior center =~ —— Interior mesh 9
®E Boundary vertex @ Boundary center sessss Boundary mesh 99t
A\ K Bl £ € OM B--@ e, chord associated with ¢

Fig. 2: Mesh T associated with

An admissible mesh T of Q is given by an interior mesh 9t and a boundary mesh 09t.
The interior mesh 91 is a set of disjoint open subsets of €2, denoted by x and called interior
control volumes, which satisfy:

e 0= Ukem K3

o if K, €M,k # £, then kN =0;

o if K, £ € M, Kk # £ such that the dimension of KN Z is equal to 1, then KN £ is the edge
of the mesh separating the control volumes x and £;

e if x N T contains a finite number of points, then x is polygonal;

e for any k € M, we associate a point x, (referred to as the center of £) such that if k, £
are two neighboring interior control volumes, the edge which separates x and £, which
is denoted by o = x|z, is orthogonal to the straight line going through z, and z..



4 F. NABET

Let £ be the set of edges of the interior mesh 9t. We decompose £ into two disjoint subsets:
the set of interior (flat) edges Eine = {0 € £ : 0 ¢ T'} and the set of exterior (curved) edges
Eext = {0 € £ : 0 C T'}. Similarly we use the notations £ and £ for the edges of a given
control volume £ € 9. For any o € &£, we note m,, its length. For each edge o € &, we
associate a diamond cell D defined as follows:
e D = p, the quadrangle whose diagonals are the edge o and the line segment [z, z,]
if o € &t
e p=p,={tx+ (1 —t)zc,t €[0,1],z €0} if 0 € Eepr NEk.
We note my the Lebesgue measure of » and ® is the set of all diamond cells.
Since the domain 2 is not polygonal, we have to introduce an approximate domain ) =
Ukemk of Q where
o K=k if Ec NEest = 0;
e K is the polygon obtained by joining all the vertex of K if £ NEeyt # 0. We can notice
that in this case k£ may be not convex and that £ may be not included in €.
We denote by m, (resp. my) the Lebesgue measure of k£ (resp. k) and by mg, € R™ (resp.
Mg € R™) the vector (My)icem (resp. (Mi)cem). The Lebesgue measures of k and k are then
related by the following relation.

ProprosITION 2.1. For any interior control volume K € M, we have

mx —mye = O (diam(k)?) .

Therefore, there exists C1,Cy > 0 depending only on I" such that

Cime <mye < Comye.

The boundary mesh 991 is equal to the set of exterior edges E.,;. Thus, the exterior edges
are also boundary control volumes. When we consider them as edges, we denote them by
0 € Eert, and, when we consider them as control volumes of the boundary mesh, we denote
them by £ € 99 (and its length by m,). The chord associated with £ is then denoted by e,
(and its length by me, ), and, the quantities m, and me, are related by the following relation.

PROPOSITION 2.2. For any boundary control volume £ € 09N, we have

—m,;z@(mg).

Me r

L

In particular, there exists Cs > 0 independent of size(T) such that

Me, <My < CyMe,.

Let maen (resp. meam) be the vector (m,).com (resp. (Me,)ccom), then we note my =
(Man, Moom) € RT (resp. my = (Mg, Mom) € R7).

For any control volume £ € 991, we associate a point z, € £, called the center of the
control volume. For any boundary control volume £ € 99, let £k € 9 the interior control
volume such that £ = o is an edge of £. Then, we impose that the straight line going through
zx and z, is orthogonal to the chord e, associated with £. Moreover, we define y, as the
orthogonal projection of z, on the chord e,.

Let V be the set of vertices of the mesh 9 which belongs to I'. We denote by v = £|z’
the vertex which separates the boundary control volumes £ and c/. For any v = |2/, let
dev = d(z.,v) be the approximation of the length M., of the arc 7., included in the
boundary control volume £ whose ends are x, and v. The measure of the arc .., (which is
the arc whose ends are z, and x. and passing through the vertex v) is then approximate by
the distance d. . = d.v + d. v.
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If 0 = K|z € Eint is an interior edge, we note dy . the distance between the centers x, and
x.; and 1, the normal vector to o going from x to £. If 0 = £ € E.,: NEx is an exterior edge,
we note dy . the distance between the center z, and the point y.; and fix,. the normal vector
to the chord e, outward to x. In this case, the distance d(z.,x.) and its approximation d .
satisfy the following relation.

PROPOSITION 2.3. Let us consider a boundary control volume £ € 09 such that £ = o €
E where K € M is an interior control volume, then we have

d(we,yc) = |d(ze, ) — dic,c| = O(mcm'mv)-

Let size(7T) be the maximum of the diameters of the interior control volumes k. We
introduce a positive number reg(7) that measures the regularity of a given mesh and is useful
to perform the numerical analysis of finite-volume schemes

o diam(x) diam(x) dec
(2].) reg(T) = Imax <I;&a9§ TK’ i)%jﬂiz( m, g;ejmz W .

The number reg(7") should be uniformly bounded when size(7) — 0.
For the needs of the proof of error estimate theorem, we also define a family of quasi-
uniform meshes.

DEFINITION 2.4 (Quasi-uniform mesh family of 2).
For a given mesh T, we define the number regunit(T) as follows

: 2
regunit(7) = sup <reg(T), sup SlZG(T)) )

Kem Mg

We say that a mesh family (T(i))ieN is quasi-uniform if regunic(TW) is bounded.

2.2. Inner-products and norms. Since the domain 2 is not polygonal, we introduce a
L2-inner product on the domain  (and on its boundary I' = 9€) but also on the approximate
polygonal domain © (and on its boundary 9%2).

For the space discretization, the finite-volume method associates an unknown value ux € R
(resp. u, € R) to each interior (resp. boundary) control volume x € M (resp. £ € 9M). Thus
we note

Ur = (Uzmauaim) = ((uK)KEEDﬁ (UL)LEBWI) € R” =R™ x R™.

DEFINITION 2.5 (Discrete L2-inner products).

o We define the inner product (.,.) 2, on L*(Q) and the inner product (.,.),, on L*(Q)

as follows: for any ey, vy € R™, we have

(um,vm)Lg(m = > MmuxVc and  (Ugy,Vop)gy = D MyclcUk.
KeM KeM

We denote by ||.|| 2, and ||.[lq ., the associated norms.
o We define the inner product (.,.) 2., on L*(T') and the inner product (.,.),,, on L?(0%)

as follows: for any Uam, Vsm € R?™, one has

(Uom, Vom) 2y = D MeteVe and  (Upm, Voo )pyy = D, MepUrsVs-

LEOM LEOM

We denote by ||.|| and ||.||g o the associated norms.

L2(r)
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Owing to Proposition 2.1 (resp. Proposition 2.2), the norms ||| 2, and ||.[[g o (vesp. [|.l| 2,
and |||y ,o) are equivalent (with constants independent on the mesh size).
We also define semi-inner products in R” and R?™.

DEFINITION 2.6 (Discrete H!-semidefinite inner products). We define the H*-semidefinite
inner product in R” as follows: for any u,,vr € R7,

[[uTaUT]]l,T = > (e —ug)(ve —ve) + D0

o=K|LEEint d’C7£ o=LEEext d}C7£

m Me,

(ue — ug)(ve —vz).

We also define the H'-semidefinite inner product in R?™ as follows:

1
[[uamuvam]]l,afm = Z

om
7 (uy —up) (v — V), YUgon, Vaon € RO™.
v=c|c'ev Ur,c’

We denote by |.|, . and |.|, ,,, the associated seminorms. Moreover, we define the H'-norms
in RT and R?™ as follows: for any ur € R”, Uy € R?™,

1 1
2 2 2 2 2 2
lurllyy = (lurliy o+ lurll )" and Jttomlly oo = (lttom I oo + o} o)

2.3. Functional inequalities. We give here without proofs some functional inequalities
available in the literature and that we will use all along the paper. We consider an admissible
mesh 7 of €.

LEMMA 2.7 (Discrete mean Poincaré inequality, [10, Lemma 3.7]). There exists Cy > 0
depending only on Q such that for any ur € R7,

. 1
[[tan — ma (Umz)”L?(sz) < Cylurly , with ma (ue) = 157 D0 MU,
’ |Q| reM
. 1
[ton — Mg (Uim)”o om < C |ur|y - with mg (um) = 7 D MilUx.
’ ’ |Q| KeEM

Thus, we also have
1 1
(22) Nuall 26, < Calurly 7 +[9Q17 ma (um)], and o lly p < Calurly ; + 1202 [mg (ua)].

LEMMA 2.8 (Poincaré-Sobolev inequality, [1, Theorem 3.2]). Let 1 < q < 400, there
exists Cs > 0 depending only on q, Q and reg(T) such that

1

q

(2.3) . :=(zmn|un|q) < Csllurlly, » Vur €RT.
KEM

We can also easily prove the following Sobolev inequality on the one dimensional manifold T'.
LEMMA 2.9. There ezists Cg > 0 depending only on I' such that for any uye € R,
sup |u.| < Cs ||uafm||1,am .
Lecom

The proof of the following lemma for a polygonal domain is done in [10, Lemma 3.10] but it
can be adapted in our case.

LEMMA 2.10 (Trace inequality). There exists C7 > 0 depending only on Q such that for
any ur € R™ we have

ol 2oy < Cr (lurlyr + il 2oy ) -
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We can also remark that for a quasi-uniform mesh family (T(i))i cn (see Definition 2.4)
and for any ¢ > 1, there exists a uniform constant Cg > 0 (depending on ¢ and regunir(7))
such that

Cy

W ||u9”||L<I(Q) ,  Vugy € R™.

(2.4) sup |ue| <
Kem
3. The finite-volume scheme . This section is devoted to the presentation of the nu-
merical scheme. We refer the reader to [20] for the proofs of the energy stability, the existence
of a discrete solution and the convergence analysis.
For the time discretization, let N € N and At = % be the time step. For any n €
{0,--- , N} we define t" = nAt. Then, at time t", the unknowns are denoted by

n o __ (Cz))cem n o __ (:U'Z)Keim

cr = <(CZ)L€69J1> and Hr = <(N2)Leam> '
Since p is associated with the homogeneous Neumann boundary condition, for any £ € 99 we
have p7 = u where x € 9 is the interior control volume such that £ C dk.

To obtain the finite-volume approximation of problem (1.1) we integrate the continuous
equations (1.1a) and (1.1b) on all interior control volumes k € 9t and we use a consistent two-
point flux approximation for the Laplace operators (associated with the Neumann boundary
condition for ). Then we integrate dynamic boundary condition (1.1¢) on all boundary control
volumes £ € 99 and we use a consistent two-point flux approximation for the Laplace-Beltrami
operator.

As regards the discretization of nonlinear terms f/ and f’ (denoted by dfe and dfs re-
spectively) we use two different discretizations (see Definition 3.1): the classical implicit dis-
cretization and a semi-implicit discretization which enables us to obtain an energy estimate
unconditionally stable.

The problem is then written as follows. For a given ¢ € R, find (¢!, u2t!) € R7 x R”
such that for any x € M, £ € M,

n+1l _ Cn

c m,
(3.1a) m&KTtK =— X ' (uZH — 2t
segirt Ox,c
3.1b n+1l __ s n+l _ n+l Me, n+l _ n+l
( . ) My - Z d (C)C C. ) + Z d (C)C Ce )
ceEint UKL ceggrt U,
+med” (e, et
n+l _ .n cn+1 _ cn/+1
310 me % w BT ZT) e ety - T (v ).
At vevy de, e di, .

DEFINITION 3.1 (Discretization of nonlinear terms). The implicit discretization is defined
as follows: for any x € M, £ € OM,

P (e, i) = £i(cpth) and s (cf, et = fl(erth).

As regards the semi-implicit discretization, for x € {b, s} we note

«\T) — Jx

d’ (z,y) = M,Vu’c,yw #y and d'(z,z) = fl(z), V.
r—y

We remark that in practice we use a polynomial function for the potential f, and that d’-(x,y)

is a polynomial function in the variables x,y. Thus, from a computational point of view, we

do not have numerical instability when x is too close to y.
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PROPOSITION 3.2. For both discretizations the discrete energy is dissipated as follows: if
c is given and (™1, u™*1) is solution to problem (3.1), then there exists Cy > 0 independent

of At and T such that

1
fT(C?j—l) - }-7'(0?') + Co (At ’M?'-Flﬁﬂ— + E HCEIL;J_Zl - cZW‘Hi,amz

1 1 2 1 1 2

+ 3 |CrTL+ - 62’1,7 + 5 Com' — cgm’l,a:m) <0,

with a condition At < Aty (with Aty depending on the parameters of the equation) for the
implicit discretization.

We note that summing equation (3.1a) for all x € 9t we have the volume conservation at
the discrete level

(3.2) 1Qmg (<) = 32 mecl = 3 myec = |Qmg, (cgn), Vn e {l,...,N}.
KeM KeM

4. Error estimate for the fully-discrete scheme. We can now enter in the heart of
the matter. The most delicate point in the proof of the error estimate (Theorem 4.2) comes
from the nonlinear term f;(c) for which we have to pay special attention. For this, we are
inspired by methods described in [8, 18] for the Neumann boundary condition and a finite-
element approximation. However some supplementary difficulties arise in our case. First, the
finite-volume framework complicates the study of this term. Indeed, when we use a conform
finite-element method, we work (for the space discretization at least) on H!-conformal spaces.
That is not the case in the framework of finite-volume method where we resort to discrete
spaces. Moreover, we use here two different discretizations for the nonlinear term f; (see
Definition 3.1). The second one, that is the semi-implicit discretization, is more difficult to
study, which complicates again the proof of Theorem 4.2.

4.1. Main result. In this section we present the error estimate (Theorem 4.2) between
the center-value projection (see Definition 4.1) of the exact solution and the discrete solution
obtained by solving problem (3.1).

DEFINITION 4.1 (Center-value projection). The center-value projection P5 : CO(Q) — R
is defined as follows. For any u € C°(Q), we set Péu = (PS,u, PS, u) with

aMm

Pgnu = (Piu))cesm = (u(xiC)))cem and Pngu = (Piu)ggam = (u\l‘(wli))cgagn .

THEOREM 4.2 (Error estimate). Let (c, ) € C3([0,7] x Q) x C2([0,T] x Q) be a solution
to the Cahn-Hilliard equation (1.1) associated with the initial data c® € C*(Q2). Let M > 0
be such that |[c|| oo 1.1y < M and M' > M. Then setting & =P, for any solution
(7, ul) to problem (3.1) satisfying

(4.1) sup <sup |c2], sup |02|> <M', Vne][o,N],
Kem LecoMm

there exists Chp > 0 (depending on M and M') such that the following estimate holds (with At
small enough),

(4.2) sup |[PTe(t") —c2lly 7+ sup [[PFuc(t") = Gully oo < Cro(At + size(T)).
nel0,N] n€ef[0,N]

In order to prove Theorem 4.2 we need some Lipschitz type regularity properties on the poten-
tials. So we introduce truncated Lipschitz continuous functions in the following way. The exact
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solution ¢ of continuous problem (1.1) is supposed to belong to C3([0,T] x Q). Thus, there
exists M > 0 such that ||c[| ;=g 7)) < M. Let M’ > M, we choose truncated potentials

f, and f. of the initial potentials f, and f. satisfying f, = f, and f. = f. on [-M', M'], and
which are constant at the infinity. These truncated functions, and all their derivatives, are
Lipschitz continuous. Moreover, the definition of the semi-implicit discretization of nonlinear
terms implies

1 1
dfb(z,y):/o fi(z +s(y —x))ds and de(I,y):/O fi(@ + s(y — x))ds.

Thus the semi-implicit discretization of f/ (resp. f!) coincides with d/» (resp. d/+) on [-M’, M1}
and is Lipschitz continuous.

Therefore, we can derive the proof of Theorem 4.2 with the truncated potentials instead
of the initial potentials (and so with ¢ a solution to discrete problem (3.1) but with the
truncated potentials). We obtain estimate (4.2) for this problem with constant C}¢ depending
on M’. Thus for a mesh belonging to a quasi-uniform mesh family, gathering estimate (2.4),
Lemma 2.8 and Theorem 4.2 we deduce

C n n At 1 —2 q
sup IPec(t”) — il < C5C10Cs (s:lze(T)% + size(T)' = ) .

Moreover, thanks to Lemma 2.9 and Theorem 4.2 we also have

sup [PLe(t") — ci| < CsCro(At + size(T)).

LeoMm
Thus, if At and size(T) tend to 0 with At < Csize(T)* for some o > 0, we have that
bound (4.1) is satisfied for any approximate solution. Moreover, since the functions f, (resp.
£.) and f, (resp. f.) coincide on [—M’, M'], if ¢” is solution to discrete problem (3.1) with the
truncated potentials, it also holds with the initial potentials (and reciprocally).

In conclusion, for a quasi-uniform mesh family, if At and size(7") are so that At < size(7)*
(for an arbitrary value oo > 0), then assumption (4.1) is still satisfied for At and size(7)
small enough. Therefore there exists at least one solution ¢} to discrete problem (3.1) which
satisfies (4.1) (although there may exist solutions of problem (3.1) for which (4.1) does not
hold). Thus we can carry out the proof of Theorem 4.2 with the truncated functions which
satisfy all the necessary regularity assumptions. For the sake of simplicity we omit the tilde
sign in the sequel.

Remark 4.3. From a computational point of view, we can check that assumption (4.1)
holds when we use the potentials f, and f,.

In order to prove the error estimate theorem we have to use a priori bounds on the discrete
solution (obtained thanks to the discrete energy estimate given in Proposition 3.2).

_PROPOSITION 4.4 (Bounds of the discrete solutions, [20, Proposition 4.4]). For any A e
C%(Q), let % =P and (¢, u) € R” x R” be a solution to problem (3.1). Then, there exist
positive constants My, Ma, M3, My and My independent of At and size(T) such that

sup ||C:H1’T < M, sup Hcgfmlll,asm < M,
n<N n<N
N—1 N-1 n+1 n |2
5 it —¢ M,
DRV Il ST PN L] L
n=0 n=0 LT
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n+1 2 N-1 cn+1 —c" 2
and Z At asm asm + AtQ Z oM N o < M5.
0,60 n=0 1,00m

We can remark that in [20] the proposition is proved by choosing the mean-value projec-
tion on all control volumes as discrete initial data for the initial concentration ¢®. In fact,
when the initial data is not enough regular, we have to choose this projection to obtain the a
priori bounds. However, when the initial data belongs to C?(Q) the center-value projection is
sufficient. Indeed, thanks to the mean-value theorem, we obtain a bound on the H'-seminorm
of ¢ which allows us to prove the proposition as in [20].

4.2. Discrete projections. To prove Theorem 4.2 we have to define another projection:
the elliptic projection. These projection is in fact the solution of a suitable Laplace problem and
thus depends on the boundary condition that we want to impose. Therefore, the definition of
the elliptic projection for the chemical potential (see Definition 4.5) and for the order parameter
(see Definition 4.6) are different.

DEFINITION 4.5 (Elliptic projection with Neumann boundary conditions).

We define the space H%(Q) = {u € H*(Q) : Vu- =0 on '}, then the elliptic projection
peibN HZ%(Q) — R7 is defined as follows. For any u € H% (), PNy s the solution to the
following discrete Laplace problem.

Find vy € R7 such that Y, myve = / u and
reM

(4.3) > om, /Au dz, VkeM.

065”’7

DEFINITION 4.6 (Elliptic projection with Ventcell boundary conditions).
The elliptic projection PSP H2(Q) — R7 is defined as follows. For any u € H2(S),

]P’?rn’Du is the solution to the following discrete Laplace problem.

Find vy € R such that Y myve = / u and for any K € M, £ € O,
reM Q

> m, S e, _UL:—/Au(m)dm
d/Cll d’CE

Gengt Uegemt

> u—i—mec /A up(z)do(x /Vu do(z).

veV, dL,L’

(4.4)

Remark 4.7. The elliptic projection is the solution to the finite-volume two-point flux
approximation of the continuous problem

{ ~Av=Ff inQ,

4.5
(45) —aAw+0,v=g onl,

with f = —Awu and
e a =0, g =0 for the elliptic projection
e =1, 9= —Aru+ Jyu for the elliptic projection ]P’eTH’D.

pelLN.

When u is a time-dependent function, for a fixed time t € R, we denote PS"N(u(t)) and
PP (u(t)) the elliptic projections of the function v = u(t, ).

In order to prove Theorem 4.2 we have to relate the different discrete projections to the
solution of the continuous problem (1.1). With this in mind we give below several properties
which will be used all along the proof in Section 4.3.
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Thanks to the Taylor’s formulas and the Jensen inequality we can easily prove the following
estimates between an arbitrary function and its center-value projection.

LEMMA 4.8. Let u € H%(Q), there exists C11 > 0 independent of size(T) such that

[u = Poull 2, < Crisize(T) [[Vaull 41 g, -

Moreover, there exists Cio > 0 independent of size(T) such that for any u,. € H*(T'),

||ulF - ]P)gnnu\FHLQ(r) < ClQSize(T) ||VFU’IF||L2(F) .
Since the introduction of the elliptic projection is essential to prove the error estimate theorem,
we also need to control this projection.

PROPOSITION 4.9. Let u € H%(Q), there exists C13 > 0 depending only on 0 such that

[P Nw — | + PNy — ]P’CTU}LT < Cugsize(T) ||ull g2 () -

L2 ()

Proof. Thanks to Definition 4.5 of the elliptic projection, IP’eTH’Nu is solution to discrete
problem (4.3). Thus the difference P$Nu — P w is the error associated to problem (4.5) with
a = g = 0. Thanks to the error estimate for the Laplace problem (4.5) for the two-point flux
approximation scheme (see for example [10, Section 3.2.3]) we obtain the expected estimates.O

As regards the analogous proposition in the case of Ventcell boundary condition, the proof
does not seem available in the literature and so we propose a complete proof in the Appendix.

PROPOSITION 4.10. Let u € H2(RQ), there exists Cr4 > 0 depending only on Q and reg(T)
such that
PSP — ] o, + [PE2" —

am

L2 2y < Cuasize(T) [lull g2 (q)

and
|PettDy — P?u‘lj + |PehPu — Pgmull’am < Cugsize(T) ||ull g2 g -

4.3. Proof of Theorem 4.2. This section is devoted to the proof of Theorem 4.2. We
decompose the proof in three steps. First, we use the scheme to decompose the different
components of the error. Then, we control all the terms and prove that they tend to 0 when
the mesh size and the time step tend to 0. Finally we use the discrete Gronwall lemma to
conclude the proof.

In the proof different components of the total error appear. Thus we decompose the error
as follows.

DEFINITION 4.11 (Error). Letw: (0,T)xQ — R and v} be a finite-volume approzimation
of u at time t*. We denote by e € R” the error associated with u at time t = t" defined as
follows

eLT = EUN 4 B with £ = PLu(t™) — P u(t") and v = P (t") — ol

with + = {N,D} depending on the boundary condition associated with w.
We also define ex™ = u(t",-) — %P?l’*u(t”).
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4.3.1. Different contributions of the error. First, subtracting the scheme and the
continuous problem we identify the different components of the error (Proposition 4.12). Then,
we separate the error into two parts: the error ¢, between the elliptic projection of the exact
solution and the approximate solution in the left-hand side, and all the other contributions in
the right-hand side (Proposition 4.13).

PROPOSITION 4.12. Let us consider a couple (¢, ) solution to the continuous Cahn-Hilliard
equation (1.1) and a couple ("1, u*1) solution to the finite-volume scheme (3.1). Then, the
following equality holds

T ) (s

2 .c,n+1 'c,n|2
rt |€7- 6y

1 2
-c,n+1
+ 5 (|€89ﬁ

89n”0 oM 2 |1,69n

1
+ e Hec mtl - a<m|1 ,0M + |ec . 639ﬂ 1 asm)

. n+1 sp,n+1 _ (zcn+1 _ zen opn+l spun+1 sen+l  -.cn
=At (Rc ) Eon )L2(Q) (6931 €on » € )L2(Q) + (6 ) € €on )Lz(m
—c,n+1 —c,n
(4.6) R gentl _ gem _ [ Com T Com e+t
er o Com — Coum L2(r) At ) Com ea*m
L2(1)
. f/( (tn+1 )) . Mon df"( n+1) sc,n+1
»\C ’ Con ) o eJJI
MMeam L?(2)
m
! n+1 oM 4 f. n n+1y\ sc,n+1 .
- (f& (CIF(t ) )) - d’s (Cawz’ Com )7 €om ea&m) ’
masm L2(1)

where the terms R} and RITY are defined as follows

o (T ) — ey (t7,
(47) R?(_It,;l) _ C( F)( CU)At C( F)( ) _ Btc(,r)(t"“,sc).

Proof. Let (¢, ) be a solution to the Cahn-Hilliard equation (1.1). Applying Definition 4.5
of the elliptic projection with Neumann boundary condition to u, for any £ € 9t we have

Pell,N n+1 _Pell,N n+1
(4.8) /6ct"+l Yz 4+ S m, = G plt ):0,

aegw't d’C-,L

In the same way, applying Definition 4.6 of the elliptic projection with Ventcell boundary
condition to ¢, for any £ € 9t we have

P(,ill’Dc(t”H) — JP’(ZH’Dc(t”H)
4.
( 9) E m, 7

cegmt

Pell’Dc tn+1 _ ]P,ell,Dc t"+1
4 Z Mo, K ( )d L ( )
KK,L

K,c sEEL ;

and for any £ € 09,

Pill,DC(thrl) _ ]P)ill D (tn+1) N Pill,D (tn+1) _ ]P)ell,D (tn+1)
Me,

(410) 3

vEV, d£7£/

/f cr(t" 2))do(x /@c. (" x)do(x) =
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where «© € 9 is the interior control volume such that £ € dx. Subtracting equation (3.1a) of
discrete problem and equation (4.8) and using definition (4.7) of R?*! imply

éu,n—i-l _ éu,n-‘rl éc,n-i-l _ éc,n
@iy Y m, e L, S —o / RO (2)da
d’C C - At K

cegjnt )
/ e @) — (@)
- x.
. At

Now, we subtract equation (3.1b) of the discrete problem and equation (4.9), then we obtain

(412) ¥ m — mycetentl
K,L

cegjnt ) ceEgrt )

= [ermtan— [ (fetet ) - PEar ) ) an
K K My

Subtracting equation (3.1c) of the discrete problem and equation (4.10) we have

ec ,n+1 ec,/n+1 ec n+1 ec ,n+1 ec n+l 6
. —— M, ——————— + Me
(4.13) Y = c L K R 2" / R (2)do(z)
VeV, dL,L/ d/c,L
éi)n+1(‘r) — é%n(x) / n+1 mec f n . n+1
- At dU(ZE) - fs(c\l“(t 7.%')) ——d S(CL,CL ) da(x).
L L me

We multiply equation (4.11) by v, and we sum up over all interior control volumes k € 90, we
obtain

sc,n+1 sc,n+1 e
(4.14) [erm L v,] +<e'c‘*"n+ —ow = (R', vy G
. T sy U1, T At s Uom - c y Uom L2(sz)_ At s Uom .
m L2(@)

Now, we first multiply equation (4.12) by u, and we sum up over all interior control volumes
Kk € M. Then, we multiply equation (4.13) by u, and we sum up over all boundary control
volumes £ € 909, Summing the resulting equalities, we have

c,n+1 .c,m

(& — €
-c,n+1 . 7nJrl c,n+1 oM oM
[[er auTﬂl,T - (el;yz *m) + H:eagn 7Uamﬂ1,azm + (At7uafm>
om

éc n+1 éc ,n
_ (zp,n+1 n—+ _ am - Com
= (esm auzm)LQ(m (R er 7U'89J2) 20 Ait ;, Upom
L2(Q)

- (et s1.) = e )
L2(2)

(4.15)

o

- <f5/(cr(tn+1v ) - @

s(.m n+1
d’ (Casm’ Com )7 uamz) .
Moon £2(r)

wom+1 .c,n+1 -

By choosing v, = Atél in equation (4.14) and u; = 2" — €2" in equation (4.15) and
adding the two resulting equalities the claim follows. 0
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PROPOSITION 4.13. Let (c, i) be solution to the Cahn-Hilliard equation (1.1) and (¢21, un 1)
be solution to the discrete scheme (3.1). Then, for any ng € [0, N]| we have

1 no . 1/1,. . & . .
410 3 32 acler )+ 3 (el — el + 3 fen e )
n=0 n=0

1 no ec ,n+1 ec n 1 9 9
om om - -c,no+1 . c,n+1
+ 2 ZO At At + 2 <|€89ﬁ |1,asm | 891I|]_ am + Z |689JI 689ﬁ 1 89]1)
n
0,00

+TRZ+1 +Ter +Tyr + Ty, + Ty, + 17,

ng
<Two+ Y, At|és
n=1

where the different error terms are defined as follows

5|Q| .c,0\2
L2(Q) 8C, 02 Mg (69;? ) ’

Too =[5

Toers =303 5% || R2 4

L%(@)

20, z AtHR"“

)
L3(1)

éanrliécn no éCnJ’»lfécn
C4ZAtu 1205 3 Ap||=m o
— At =0 At
L2(Q) £2(r)
Ly a2 +1 C3 o gham _ ghantl
g et i, + 208 e gy + 5 0 A | =i — ]
L2 ()
1 L 5
Tor 2 Hgm(t ’ )HL2<Q) +4CyCF ”gi’ﬂ (G ')HL2(Q>
no tn D tn+l,‘ 2 no )
+C2CF Y At‘ gn(t", ) Ai‘m( ) +2C3 3 At][gom (" )| oy »
n=1 L2(Q) n=0

& C n n 2 n n n 2
Ty, =4 32 At (|5 et) = L+ | (@) = db e e ).

1 (B (e(t1))) = P, it

Coms Coom )||L2(1") )

no
Ty, =4C3
n=0

2 2

M7 L e (e(tnH1))| 4 4Cs 30 At

177’ n=0

TT:4iAt‘
n=0

de ( 6‘7)17 ngj_ll)
-

Moom — Moo
Maom

L2(1)

The term gon (T€SP. Gom) s such that for any k € M (resp. £ € OM),

(4.17) gm(t, ) = fl(c(t,x)) — fl(c(t,xc)), VzekteR;
Jom(t, ) = [/ (cr(t, ) — fl(en(t,z:)), Vxecr,teR.

Proof. To begin we sum identity (4.6) for n going from 0 to ng and we use definition (4.17)
of the functions g,, and gy, for the terms where the nonlinear potentials appear. To obtain
estimate (4.16), we have to apply the Young inequality to all the terms in the right-hand side
of the resulting equality.

e Let us begin by the terms where the L%-inner product with %"
that if vy, € R™ has a zero mean-value, for any u,, € R™, we have

appears. Noting

(uSﬂ)USﬂ)L 2(q) ('Ufgn mgq (usm)yvim)ﬂ(m < Hufm — Mg (Uon)HLQ(Q) HUWHL2(Q) ,
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then thanks to the discrete mean Poincaré inequality given in Lemma 2.7, we obtain

(418) (UWUUW)L?(Q) < C4 |u7'|1,T H’UWIHLZ(Q) :

The couple (¢, u) is solution to the Cahn-Hilliard equation (1.1) with the homogeneous
Neumann boundary condition for p so for any n € [0,n¢], mq (R?“) = 0. In the

same way, thanks to Definition 4.6 of the elliptic projection, for any n € [0,n0] we
have mg, (€5;") = 0 and so mq (ec mtl _ é‘;n") = 0. Thus, owing to estimate (4.18) and

the Young inequality, for any n € [0,7n¢] one has

(4.19) At (REF et L) < LAt 1, +20iat | R
and
éanrl_écn
(4.20) (egr ! — eﬁﬂn,e”’"Jrl)L%Q)_fAt|e“’”+1‘1 + 203 At || =
L2(2)

1 . . .
e Now we focus on the terms whose term €5 — ¢5™" appears in the inner product on

L?(Q). For the two first we perform a discrete time integration by parts.
Let us begin by the term where the function e%" " intervenes.

no
1, n+1 &5 n+1 -c,m _ _ (zm1 2c,0 Su,no+1 sc,mo+1
2 (efm — €m )Lz(m - (e\m ) o )LZ(Q) + (emt ) Eom )Lz(m
no +1
ST ST $C,TL
+ 3 (" — e eq) g, -
n=1

Noting that by definition of the elliptic projection (see Definition 4.5) mq (eb;"") = 0,
the Cauchy-Schwartz inequality, inequality (4.18) and the Young inequality give

<7 /l,l

no
O (et e H [+ 5 s
& € ) Con —€ = €on L2(2) €on L2(0)

m )Lz(m

— [l —p,n+1

[ o

At

C2 no

(4.21) Z At nz At e

L2(Q)

{ec n0+1|1 T + 204 ||€H n0+1HL2(Q) :

Considering now the inner product with the term gy, (#**1,-). Since the mean-value
of the function g,y (t,-) is not equal to 0, we cannot apply exactly the same reasoning.
Definition 4.6 of the elliptic projection and the discrete volume conservation (3.2) imply

that for any n € [0, N], mq (é5") = mq (em ) Then the Cauchy-Schwarz inequality,
Proposition 2.1, Poincaré inequality (2.2) and the Young inequality get

no ) B 1 ,
nz::O (gan (717, ), €577 e;‘n)L?(m < 5 [lgm(t!, ')HL2(m ) He HLzm)
2 L. 2 5/Q] 2
(4.22) + 40202 “gmz(t7L0+17 ')HLQ(Q) 3 ‘621"0+1 |1 . 80102 Mg (eg’g,zO)
1 no no ") — g. tn+1 . 2
+5 2 Atles 27+CQC’ZZAtHgm( v)Agm( )
2 n=1 n=1 t LQ(Q)
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.c,n+1

As regards the last term where the inner product with é5"" — é5;" appears we have

to use the scheme. Noting that

(7 et o) — 22t e e, 50 — e
L%(@)

Moy

m . .
= (2 (el ) — P et 50 )
pUS m

and choosing v, = At ( 2 f (P (c(t™ ) — de(ch, c?*l)) in identity (4.14) we ob-
tain

£ (Bla(e(t™1))) = T22ah (e, ) et — e
Mo ) L2(Q)
b n m C n ’I‘L
= AR T L) = d R e

Mon

A (R?“ F1BS (™)) — o (el ;rl))

Man

sc,n+1 —(' n
- (em’z

—C,

Since mq, (RZTY) = mq (éfmn+1 — Con ) = 0, the Cauchy-Schwarz inequality and in-

L2()

® <c<t"+1>>>—dfb<c;,c;“>) |
L2(Q)

equality (4.18) imply

<f; (B, (c(t+1))) — ™2 gh (g, ety e+t es;f)
L2(Q)

Mon

—c,n+1 —c,m
€on + — €Eon

<ot ferm 1], o+ 0BV =

+Ca

L2(Q)

L2(Q)

(B (1)) — df (e, )

1,7

Recalling that for any = € R, d/*(z,2) = f/(z) (see Definition 3.1) and applying the
Young inequality we deduce

<fb( 972( (tn+1))) dfb( Cons 7();—&-1)’6;%714-1 - e%}n)
L2 ()

Moy
2
1 EC n+1 . éc n
n+1 n+1 e m
1At| ét |1 o+ C4At | R Hmm —
(4.23) £2()
m+—m 2 2
+ 4At ‘TmTfZ(P?(C(t"“))) +AAL|fi (P (c(t™) = (e D],
T 1,7

+4At|dfb(cﬁ+1,ci+1)—dfb(c At ’1T

e Finally we focus on the terms due to the dynamic boundary condition, that is the
terms where the inner product in L?(I") appears.
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According to the Cauchy-Schwarz inequality, the Young inequality and the equivalence

of norms [[.[[g 4o, and [|.[[ 2, for any usm € R™ we have
09

.c,n+1 .c,m

1 e —e
.C 1 ¥e oM am
(4.24) (um,egﬁ — egg)L2<F) < gAt — Ar +2C3At ||Uarm||L 2(ry -
0,00m
: n+1 é?)’;ﬁl —Eaom n+1 3
Choosing usem = R, then ugy = 222" and finally usm = gom(t"*',-) in

equation (4.24) we can control the first three terms.
For the last term, setting wupm = [/ (PSy,(c(t™t1))) — %dﬁ (e, c2EL) in equa-
tion (4.24) one has

m .

(7 et ) = T ) 50 - 5
Moo L2(r)

(4.25) 1 ega?tJrl — €am Maom — Maom 1 ?
) <At || ———— +4C3 AL || 2222 gl (cr e
8 At 0,0mm MMom 2@
c n s n 2
ACAL|| ] (Bhay (e(t™+1))) = & (s ), -
Gathering inequalities (4.19)—(4.25), we obtain estimate (4.16). |

4.3.2. Estimate of the residual terms. In order to apply the discrete Gronwall lemma,
we have to estimate all the terms in the right-hand side of inequality (4.16) independently of n.
We begin by a bound on the initial data.

PROPOSITION 4.14. Let ® € C%(Q) and ¢ =PS.°. Then for some C15 > 0 we have

Mq (égto) +mg ( CO + He HL 2@ + ‘660’1 T + |639ﬂ|1 am — Cl5blze ) HCOHng(Q) :
Proof. Estimates of the (semi)norms are only a direct consequence of the definition of ¢%
and Proposition 4.10 (associated with Lemma 4.8 for the L?-norm).

Then owing to Proposition 2.1 and the Cauchy-Schwarz inequality we deduce

1
: Co \? .
ma (59) < (g ) 16600 amd s (650) < a1
and the L2-estimate gives the claim. 0

Applying the Taylor’s theorem to the term R?*! defined by (4.7) we can easily obtain the
following estimates on the term T}, nt1 about the error of the time discretization.

PROPOSITION 4.15. For any ng € [0,N], the remainder terms R and RET! defined
by (4.7) satisfy

Z At HRHHHLz(Q> < HattCHL2(0TL2(Q))A
(4.26)
Z At HRn+1

) 2
‘ ey < I0ucelliao i) A

Now we are interested in the term 7T, concerning the error between the exact solution and its
elliptic projection.
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PROPOSITION 4.16. There exists Cig > 0 such that for any ng € [0,N] the following
estimates hold

no éc,n-‘rl _ éc,n 2 )
m m .
(4.27a) Z_:O | ve— < Cfesize(T)? 0eell 12 0 1,12 (02
= £2(9)
no éc,n-i-l _ éc,n 2 )
oM oM 2 . 2
(4.27Db) nz—:O At —xr < Cesize(T)” 10l 20,112 () -
- L2(r)
T 2 o a2
(4.27¢) nz—:O At A7 < Cigsize(T) 0wl 22 0,1 12 (02)) -
- L2(Q)
Moreover, for any n € [0, N] we have
(4.28) 1272y < Crosize(T) il = o.omr ) -
Proof. We begin by proving estimates (4.27). Thanks to Definition 4.11 we have
_ e |2 2
o5t = e ey < 20 (e ) = et ) = (P Pe(t™ ) = PoiPe(”, ) |2
2
t2 % / (m—m»c) (BEP (e, ) — PDe(em, )2
KEMJK M

Owing to the linearity of the elliptic projection (see Definition 4.6) and Proposition 4.10, the
first term in the right-hand side satisfies

2
L2()
tn+1
< 0124Atsize(T)2/ | Ore(t, -)||§{§(Q) dt.

tn

(4.29) H (c(t"“, ) = c(t", )) — (IP;]TI’DC(t"H, )= Pg}}’Dc(t", )) H

Moreover, thanks to Proposition 2.1 and the mesh regularity (2.1) for any k£ € 9t we have
mye —my < Creg(T)*mdiam(x). Thus Proposition 4.10 yields

2
M —m e n ell, n 2
ol e e G R R )
keMJK Mg

(4.30)

tn+l
< 2C(reg(T)(CFy + Dtsize(T)* [ [0net )z .
in

Summing inequalities (4.29) and (4.30) for n going from 0 to ny provides estimate (4.27a).

Estimate (4.27¢) is obtained with exactly the same reasoning using Definition 4.5 of the
elliptic projection (instead of Definition 4.6) and Proposition 4.9 (instead of Proposition 4.10).

In the same way we deduce estimate (4.27b) with a similar reasoning on I' and Proposi-
tion 2.2 instead of Proposition 2.1.

It remains to prove estimate (4.28). For any n € [0, N],

2
_ 2 2 M — MM 2
e 2y < 2 0t ) = BRNu(E™, )2 g, +2 %/(m ) (B, )
K

Then, applying Proposition 4.9 to the function u(t", ) the first term in the right-hand side is
written as follows

(™, ) — ]P’gjlll,Nu(tn)HLQ(Q) < Cugsize(T) | 1ll = (0.10.17 ) -



ERROR ESTIMATE FOR CAHN-HILLIARD EQ. WITH DYNAMIC BOUNDARY CONDITIONS 19

The second term is treated as estimate (4.30) that concludes the proof. |

We can now we concentrate on the error due to the discretization of nonlinear terms. In this
way we begin with the term T} related to the terms g, and goo-

PROPOSITION 4.17. For any t € [0,T], the functions gs and goem defined by (4.17) satisfy
the following estimates

(4.31a) g (8, oy < 203 Cysize(T)? Vet )21 -
(4.31b) I Goon ()22 ) < L2 Chasize(T)? [ Vrcin (2, )

2

HLQ(F) ’

where L > 0 (respectively Ly, ) is the Lipschitz constant of the function f, (respectively f).
Moreover, there exists C17 > 0 depending only on f, (and on its derivatives) such that for

any no € [0, N],

ng ) — g (87, ) |
s B | P 2O et el g ST
n=0 L2(9)

where

Mg, = max (17 HVC||4L°°(0,T;L°°(Q)) ) HDQCH2L°°(0,T;L°°(Q))) :

Proof. Thanks to definition (4.17) of gy and g,on and since f, and f/ are Lipschitz contin-
uous functions and Lemma 4.8 yield estimates (4.31).

We concentrate now on estimate (4.32). For any n € [0, N — 1] we define the function h™
such that for any z € Q,

' (@) = fi(e(" ) = file(t",2)).
Therefore, for any k£ € M and for any n € [0, N — 1],
Gon(t"TH ) — g (", ) = W™ (z) — h"(2x), Vr € K.
Thus, thanks to Lemma 4.8 we have

n n 2 s n
ngt(t +17 ) - gfm(t a')HLQ(Q) = ClQlSlze(T)2 HVh H2

Hi(Q)

Moreover, there exists My, depending only on the Lipschitz constants of the derivatives of f,
(up to 3) such that

tn+1

n||2 4 2 112 2
VR 21 <beAt<(||Vc||Lm<o,T;Lm<m>+||D [ FR— / [CX.

tn

tn+1 tn+1
2 2 2
Vel oot~ ) / 10Vl + / 10rel e )
tn

tn

Summing these inequalities for n going from 0 to ng gives estimate (4.32). O

Now we have to deal with the main difficulty of the discretization of nonlinear terms. In
each case the reasoning is similar. Thus we begin by proving the following general result.
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LEMMA 4.18. Let us consider a function ¢ € C2(R2,R) such that all the derivatives up to
the second order are bounded. Then, there exists Ci1g > 0 depending only on ¢ and on the mesh
regularity reg(T), such that for any ar,br € RT the following estimates hold

(4.33) 6(ar,br)ls,r < Cus (larly , + 1brly ) -
Moreover for any ZT € R7, one has
(434)  [d(ar,br) = $(br. b))

-2 N2
<Cig (|a7' - bTﬁ,T + ’bT - bT‘l - + LipT (bT) ”agm - bfmli%n)) s
b—be
di.c
Furthermore for any ayem, by € R?™ we have

(4.35) ||¢(aam7 boom) — ¢(boom, bam)”Lz(r) < Cig Haagn — baDﬂHLz(F) .

Proof. We first give the proof of estimate (4.34). Thanks to the definition of the discrete
H'-seminorm we have

[¢(ar,br) — ¢(br, bT)‘iT = > (9o (ar, bT))Q + X

U=)C|L€£7',nt dK,L o=LEEezt d)C$£'

where Lip. (57) = SUP, ¢

mo meg

(¢0’(a‘7'a bT))2 ’

where for any o = k|2 € i or 0 = £ € Eepr N Ex (With k € M) we note

¢G’(a'T7 bT) = [(b(am bIC) - (b(au bc)] - [¢(bK7 bIC) - (b(bm bL)] .
One has

(4~36) ¢(a1<7 b)c) - ¢(a£7 bz:) = /O ((a)c - az:)81¢(a£ + S(G)c - aﬁ)a b, + S(b/c - bzs))
+ (b)c —b.)0ap(a, + s(ax — aﬁ), b + S(b)c - ba))>d5
and
B(be,bi) — p(be, b)) = / ((b,c —b:)016(bs + (b —bz), by + s(be — b))
0
(e = 0)0a0 (0 + 5(bc — be),be -+ (b — ) ).

Then for any o € £ the term ¢, (ar,br) can be written as follows

(4.37) ¢o(ar,br) = ¢g(ar,br) + @5 (ar, br),
with

1
: b)) = be — b,
obtarbr) = [ (be=be)
X <82¢(a£ + s(ax —az),be + s(be — b)) — O20(b, + s(bx — bz),bs + s(be — b2))

+01p(a, + s(ax —ag),be 4+ s(be — b)) — 019(b, + s(be — br),bs + s(be — bL))>ds
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and

1
¢3(a7—, br) = / ((aic —ag) — (be — bL)>al¢(a£ +s(ax —az), by + s(be —b.))ds.
0
For the term ¢2(a,,b;), since the function d;¢ is bounded we obtain

’Qﬁ'(aT?bT)hﬂ— < H81¢||L°° |aT - bT|1,T .

As regards the term ¢l (a,,b;), we write

¢(17'<a’7'7 bT) = (bi"l(aTa b’T) + ¢¢1772(a‘7'7 bT)a
with

O (ar by) = / ((be —Be) — (b — b))

0

X ((%gb(@c + s(ax —az), b+ s(be —bz)) — O2d(bs + s(be —b.), b, + s(be — b.))
+o1d(as + s(ax —az), b+ s(be — b)) — 019(bs + s(be — b)), b, + s(be — bﬂ))>ds,
and
1
12 7 br) = g}c *fl;c
o arbo) = [ Ge=F)
X (82¢(a£ + s(ax —az),be + s(be — b)) — O20p(b, + s(be —bz), b + s(be —b2))

+o1¢(a, + s(ax —ag), b + s(be — b)) — 010(bs + s(be — b)), b, + s(be — bﬁ))>ds.

Since the functions 01¢ and 02¢, are bounded we get

|63 (ar,b)], - < max (1019, 9261 ,) [br = br |,

)

Finally we have to deal with the term ¢.?(a,,bs). For any i = 1,2, since 9; ;¢ is bounded we
have

|0ip(as + s(ax —a),be + s(be — b)) — 0ip(be + s(bx —b.),be + s(be —b,))]
<019l e [(1 = 8)(ar —be) + s(ax — bi)l,

and so for any o € £, we obtain

1,2 b 2
(W) < 2 (max (01,16, , 101 29]1,~.))?

~ 2
be — by
d)CL

3

(|a,C —bel® + |a, — b£|2) .

Since dy . < reg(T)d(zx,0) for any x € M, for any o € Ec (see definition (2.1)), there exists
C(reg(T)) such that

[0 (ar br), - < Clreg(T)) max (10116, , 91,261, ) Liby (b7 ) llaon = banll 2

and estimate (4.34) yields.
Owing to (4.36) we also obtain estimate (4.33) and a similar reasoning gives estimate (4.35).0
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With this result at hand we can now bounded the terms T, (Proposition 4.19) and T, (Propo-
sition 4.20).

PROPOSITION 4.19. For any ng € [0, N, there exists Chg > 0 (depending on f, but not on
At and size(T)) such that

& C n 1/ .n 2 b (M n b, M 2
zoAt (}fb/(]P)T(C(t +1))) - fb(cTJrl)‘LT + |df (CT+1’CT+1) - df (CT3CT+1)|LT>

2 mofl 2 B i e |2
<Cuo (14 19l e (5 tlelE,+ 35 avlertt — o))
+ Chgsize(T)* HC||2L°°(0,T;H12-(Q))
+ Cig ||VC||2L°°(0,T;L°°(Q)) (HCOH?E{%(Q) + ”CH%‘”(O,T;H?(Q))> size(T)?
+ Cig (1 + ||VC||2L°°(0,T;L°°(Q))) 106V €172 0 1 (c2y) A
+ Cig (1 + ||VC||2L°°(O,T;L°°(Q))) Hatc||i“'(o,T;H§(Q)) At?size(T)?.

Proof. We will apply Lemma 4.18 twice with a good choice of the functions which intervene.
First, we apply the lemma to the function ¢ defined by ¢(z,y) = f,(z) for any x,y € R. Then
we choose a; = ¢! and b,y = b, = P<(c(t"*1)), and so thanks to (4.34) we obtain

(4.38) | £ (PS(c(t™ 1)) — £l )]}

< Ous (e 2+ by (B (et )? 5 2, ) -
Now we apply Lemma 4.18 to the function ¢ = df* with a, = A, by = ™! and 5T =
P (c(t™1)). Inequality (4.34) implies
(4.39)  |afo(ett, enth) — dfo (e, et}
< O (yc’;“ — 2 e+ Lip, (P (et ) et c&Hiz(m) .
Thanks to the mean-value theorem, we have
(4.40) Lip, (P5(c(t"))) < Vel p= 0.0 @) -

The definition of the elliptic projection and the volume conservation at the discrete level (3.2)
imply mg, (¢5;") = mg (é_ﬁ;?), thus thanks to the bound on the initial data (Proposition 4.14),
Lemma 2.7 and Proposition 2.1 we deduce

2020125
Ch

emn|2 .en2
(4.41) s 2 o) < 2C2CF €57, +

L2(Q)

1Q|size(T)? HCOHiﬁ(Q) .

Moreover Lemma 4.8 and Proposition 4.10 give
15 2y < (Cr1 + Cra)size(T) et Ml gzcen

(4.42) o | )
€57, < Cuasize(T) le(t”, )| 2 -

Thus, gathering estimates (4.41) and (4.42) there exists Cag > 0 such that for any n € [0, NJ,

c,n||2 .em2 . 2 2
(4.43) e 12 @ < Cao lés™ 3 - + Caosize(T)? (||l 3y + el o.rimzian)
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Now, we have to deal with the terms on the right-hand side of (4.39). First, we write

Cn—i—l

_ cn+1
T T|1,T = ‘e

+leentt —een| 4 [Pee(t" ) — Poe(t”

cn| ‘
1,7 1,7°

Since the projections IP’GTH’D and P$ are linear we can apply Proposition 4.10 that implies

tn+1

L < 0124Atsize(7')2/ |0¢e(t, )Hilf‘:(ﬂ) dt.

tn

sentl
eg_n c n | )
Moreover, thanks to Proposition 2.3 there exists C' > 0 depending only on €2 and reg(7) such

that

2
P c(t™ ) — Pc(t™)
1,7
gt 2
<At > m(,d,gc/ / WVe(t,x, + s(xe —x,)) - Heeds| dt
o=K|LEEint
i d(xx,x ?
+ At > meﬁd,c’ﬁ/ %/ W Ve(t,x, + s(xe —x)) - Oicpds| dt
o=LEEcqt tn K,L
tn+1
2
<At [ 0Vt e
Therefore we have
tn+1
n -c,n c,n : 2
-l <slent o el v achatim(T? [ o)
t'n,
(4.44)
2
+ 3CAt /t” 10:Ve(t, )| o o dt-

Finally, the discrete conservation of the volume (3.2) implies my, (¢! — c) = 0 and so
Proposition 2.1 and Lemma 2.7 give
(1.45) e = e, < VERCa |t — ],
Summing (4.38) and (4.39), gathering estimates (4.40), (4.42), (4.43), (4.44) and (4.45) and
summing the resulting inequality for n going from 0 to ny conclude the proof. 0

PROPOSITION 4.20. For any ng € [0, N], there exists Co1 > 0 independent of At and
size(T) (but depending on f.) such that

FL (B (e(t™))) = &7 (s o ] 20y < O Z At e

c n+l .c,n
— €aom

At? A
+Co1 At Z t ~

. 2 2
+ size(T)* 10wl 20,2 0)) + 19w L2 0,mm ()
0,0mm

) 2 2
+Csize( T (|62 0 + el o ey ) -

Proof. Applying inequality (4.35) to the function ¢ = f’ at first, and then, to ¢ = dfs give

! (B (0™ 10)) = 7 (s €5 ey < s (6™ ey + b = o)
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Owing to Lemma 2.10 and estimate (4.41) we have

|12 <20$<(1+2CQOZ)|é?”“|iT 202015|Q|sze )2||COH2;(Q>)'

[ p

Moreover, thanks to Lemma 4.8 and Proposition 4.10 we obtain

c,n+1

Heam HLz(r) (Clg +Cl4)51ze ) Hc<tn+17')HH§(Q) .
Finally we write
||CZ9JJF11 - CBWTHLQ(I‘) — ||6<C9971Li+1 W||L2(F)+Hec e 89ﬁ|}L2(r)+||]P thrl) Pgmc(tn)HL2(r)'

Then, the linearity of the projection ]P’f,l%tD and P§, ., Lemma 4.8 and Proposition 4.10 give

tn+1

s+t — WHL2<F) (Cha 4+ C1g) slze(T)QAt/ ||8tc(t,-)||§{g(m dt,

tn

and
tn+1

A1) = Bty < 2Ch + DA [ 01t ) .

tn

Hpasm

Thus gathering these estimates and summing the resulting inequality between 0 and ny conclude
the proof. ]

It remains to bound the error 7' due to the fact that the domain 2 is not polygonal.

PROPOSITION 4.21. There exists Coa > 0 depending only on reg(T), f, and f. such that

2
+§: At ma‘m_mamdfh(

1,7 n=0

b )

< Cogsize(T)%.

L(1)

Cc

2 0
a‘m’

zm\ Mo M (e (g4

my

Moo

Proof. Using the mesh regularity (2.1), Propositions 2.1 and 2.2, the definition of the
H'-seminorm on € and Lemma 4.18 give

2

my—m . 2

‘ TmT Ll (Pc(t™)) 1 < C15C (reg(T))?size(T)? IVellzoe 0,71 @) »

s T
and
m m 2
om a .
| = gt g i) < i) e
Moom L2(1)

Thanks to the bounds on the discrete solutions (see Proposition 4.4) for any £ € 99t we have

|d’e (e, eit)| < _max |f],
B(0,M2)

that concludes the proof. 0
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4.3.3. End of the proof of Theorem 4.2. We are now able to apply the discrete
Gronwall lemma and to conclude the proof. Gathering Propositions 4.14, 4.15, 4.16, 4.17, 4.19,
4.20 and 4.21, we can estimate term (4.16) (see Proposition 4.13). Thus, there exists Ca3 > 0
(depending on ¢ and ) independent of size(7T) and At such that for any ng € [0, N — 1],

1 20 . 2 1,. 2 1,. 2 1 no . ) 9
ingoAt |e¢n+1|1j +7 |e<;no+1|1j +5 ’eg£o+1|1’6im i 57;0 |ecm 1 — 6?n|177

.c,n+1 .c,n
€om  — €am

2
AL + Z |egg7jlz+1 eon

€oom 1,00

1 2o
+o S At
2n:0

0,00m
ng
<Cos (size(T)? + At?) + CogAt e5™F [} 4 (14 Ca) z Atlesm?

.c,n+1
€om 6asm

2
+ Cos At Z At AL

cn|
T 1,7

no
+ Co3 At Z |é§ln+1 —e
n=0

0,60m

Thus by choosing At < min ( ) we deduce

8C23” 2\/

1 sc,m 2 & -con :

3 |ec: 0+1|1 L < (1+C2) 30 Atles ﬁr + Cas (size(T)? + At?).
’ n=0

Thanks to the discrete Gronwall lemma associated with estimates (4.41) and (4.42), Proposi-
tion 4.14 on the initial data and Proposition 4.10 we conclude the proof of Theorem 4.2.

5. Numerical error estimate. In the section we present numerical error estimate which
illustrate the previous result. Several qualitative numerical results which show the different
behaviours of the scheme in function of the properties of the components and the wall are
performed in [20].

The domain €2 is the unit circle and we consider a Delaunay triangular mesh for which for
any K € 9 the center x, is the circumcenter of the triangle x (or k if Ok N Eepr # 0) and for
any £ € OO, y. is the middle of the chord e,. Since we do not know non-trivial solution of
problem (1.1) we choose an analytical solution (see Fig. 3)

1 1
C(t’ (x,y)) = 5 COS(Q”T:E + 4t) Sin(27ry) + 57 Vi e (O,T),V(ac,y), € Qa

and we modify equation (1.1) by adding non-zero source terms in equations (1.1a) and (1.1c)
and by considering non-homogeneous Neumann boundary condition for u.

s8N
I..'t
Tteewy

e«

Fig. 3: Analytic solution at time T'= 0.5

In equation (1.1) we choose the following parameters: the interface thickness e = 0.5, the
mobility and the surface tension I'y = o, = 0.1, the capillarity coefficient o, = 5 and the
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relaxation coefficient I, = 10. As regards the non-linear potentials we set f,(c) = f.(c) =
c?(1 — ¢)? (see Fig. 1b) and we use the semi-implicit discretization.
At final time 7' = 0.5 we plot the relative error between the center-value projection of the
exact solution ¢(T,-) and the approximate solution ¢Z, namely HPH‘];C(Z();)CH H, for the L?-norm
T
and the H'-seminorm in  and on I in two cases:

e when the time step tends to 0 and a fixed mesh size (see Fig. 4 and 5);
e when the mesh size tends to 0 and a fixed time step (see Fig. 6 and 7).

10! 10!
F—o— size(7T) =0.3 1 f—o— size(7) =0.3 1
[ —m—size(T) =0.15 ] [ —m—size(T) =0.15 i
1001 —0—size(T) = 0.08 | 100 - —0—size(7T) = 0.08 |
5 b ——size(T) = 0.04 ] £ b —a—size(T) = 0.04 E
ol g [ ] A E [ ]
TlE 107t E E TIE 107t g E
815 F 1 &% F 1
=] = B W@ [— . B
i &
1072 E I (el 5 ]
10—3 T Y B Y S V1 R AN W N V1 S MR W W1 10—3 T Y S Y S V1 R A AN W N V1 S RN W W AT
10" 107t 107% 107 107! 10° 10" 107t 107% 107 107! 10°
At At
(a) L2-error in Q (b) L2-error on T
Fig. 4: First-order convergence in time for the L?-norms
101 £ —o— size(7) =0.3 E 10 £ —e— size(7) =0.3 E
| —8—size(T) =0.15 ] | —8—size(T) = 0.15 1
| —o—size(T) = 0.08 | | —o—size(T) = 0.08 ]
100 | —A—size(T) = 0.04 E 5 100 | —A—size(T) = 0.04 E
e g 1 = g ]
= [ 1 5= L ]
g B
gl 10t 1 g3 i ]
RN = E T |oa = E
B F ] F L F 1
- L 1 Y L ]
1072 ¢ E 1072 ¢ E
10—3 Lol Lol - Lol - Lol Lol 10—3 r\ Ll Lol - Lol - Lol Lol
1075 1074 1073 1072 107t 10° 107 10~* 1073 1072 107! 100
At At
(a) H'-error in Q (b) H'-error on I'

Fig. 5: First-order convergence in time for the H'-seminorms

First we observe that, as expected, we obtain a first-order convergence in time in each case
(see Fig. 4 and 5).

For the space convergence we have several behaviours. Noting that when we study the
Laplace problem with a finite-volume two-point flux approximation, from a computational
point of view we observe a second-order convergence for the L?-norm while at the theoretical
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| —o—At=510"2 | —o—At=510"2
T M At =102 i 0L T At =102 i
| ——At=5.10"% 1 | ——At=5.10"% 1
B | 2= At=10"° g | 4= At=10"°
RS = 5
E:Nq -1 B :§£ -11 B
F= 107t 1 ASIRL
AE
- - = 10—2 - g
1073 Lo Lo 10—3 Lo L1
1072 1071 10° 1072 1071 10°
size(T) size(T)
(a) L2-error in Q (b) L2-error on T
Fig. 6: Second-order convergence in space for the L?-norms
[ ——At=510"2 ] [ ——At=510"2
100 b - At=10"2 i 100 B At=10"2 |
P ——At=510"3 P ——At=510"3 1
N P At=10"° g P At=10"
=k r = & t
B -1 L 4 S |
T 1w | Sg 10 &
gT F 3 %
|k r ] Sls F
P I | B I
- 9D
1072 ‘g ] IR Ui ]
10—3 L Ll L L 10—3 L Ll L L
1072 10-! 10° 1072 10-! 10°
size(T)

size(T)
a) Hl-error in Q b) H'-error on T’
(a)

Fig. 7: Convergence in space for the H'-seminorms

level, we are only able to prove the first-order convergence. We observe here the same super-
convergence phenomena for the L2-norms (see Fig. 6). As regards the H'({)-seminorm (see
Fig. 7a), although we observe a second-order convergence when the mesh size is coarse, we
recover asymptotically the expected first-order convergence. However for the H!(I")-seminorm
(see Fig. Tb) we observe a second-order convergence instead of the first-order. This super-
convergence phenomena is due to the symmetric meshing of the boundary T

Appendix A. Proof of Proposition 4.10. For f € L?(Q) and g € L?(T"), we consider
the following problem: find u : © — R such that [, u = o and
—Au=f in Q;

(A.1la)
—Artuyr +0u=g onl.

(A.1b)

By integrating equation (A.la) on all interior control volumes x € 9 and the boundary con-
dition (A.1b) on all boundary control volumes £ € 99, the two-point flux approximation of
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problem (A.1) writes as follows. Find u, € R” such that ), __o» meux = o and

(A.2a) ) m(,““d;“’i + meﬂu‘d;“ﬁ = mPMf, Vi e Mm;
sEEint KL seELet KL
(A.2D) > % + e, “ﬂd’ UC — m P, Ve e M.
vEV, c,c’ K,L

We can prove that this problem admits a unique solution.

Because of the complex geometry of €, it is possible to take into account some points
x € Q° in the proof of the error estimate. To ensure that all the quantities used in the proof
of Theorem A.3 are well defined, we will use an extension in R? of the function w. Since
u € H?(Q), there exists an extension 7 € H?(R?) (that we fix in the sequel) such that

(A.3) () = u(w), Vo € Qand [ill s ge) < Con llull g2y
with Cy4 > 0 depending only on 2.

PROPOSITION A.1. The tangential gradient of u : T' — R to the vertex v = c|c’ satisfies

u(ze) —u(z,)

Moy

= Viu(v) -7, .(v)

< / (o @) (¢ ()] dor(a),

cc’

where @ is an arc-length parametrization of the curve I' and T, .(v) is the unit tangent vector
to T at point v = c|c’ going from c to c'.

Proof. Let us consider the points t.,t.,t, € R such that x, = o(t;), ., = p(t,/) and
v = ¢(t,), then the Taylor’s formulas give

w(er) — u(e) =(ter — t.)(wo ) (1) + / % (ter — $)(uo @) (s)ds

v

(e — ) (wo @) (t) — / “(te — 8)(uwo 9)"(s)ds.

Noting that [t,» —t.| =m, ., we conclude the proof. d
Thanks to the Taylor’s formulas we can prove the following proposition.

PROPOSITION A.2. Let £ € 09 be a boundary control volume and v be a vertex of c, then
the following equality holds

Moy —dey = O (mema,, ).

Moreover for any point x € 0 = £ € Eeyy, one has

ﬁcr;c(l') - ﬁ;cc = O(mﬁ)a
where Ry (x) is the unit normal vector to o outward to K at point x.

We are now in position to prove the main result of the appendix.

THEOREM A.3. Let us assume that the solution u of the continuous problem (A.1) belongs
to H2(Q). Let us consider the solution u, to discrete problem (A.2). Then, there exists Cas > 0
independent of size(T) such that

2 2 . 2
(A.4) |€T|1,T + |66W?|1,89n < Cyssize(T)? ||uHH12(Q) )

> — C
with e; = PSu — ur.
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We decompose the proof of Theorem A.3 into two steps. As a first step, we prove (see
Proposition A.4) that the left-hand side of inequality (A.4) is bounded from above by the
different consistency errors which intervene in the problem. In a second phase, we have to
estimate these different consistency errors.

PROPOSITION A.4. Let us consider the solution u to problem (A.1) and the solution ur to
discrete problem (A.2). Then the following estimate holds

lerl? + leomltom < 5 Modie (R 4+ X mepdie, (R
o=K[LEE;int o=rEEeat

(A.5) B2 .
v,L
+ Z + HRgm||L2(r);

v=c|c'ev dC,C’

where,
) 1 -
Rinli _ —/V’U,({E)ﬁmgd-r_wv V0:K|£€€}cm€int;
) My Jo dﬁc,c
1 _
’ Me, Jo d)C,C
Ry .= dC,L'VFuIF(V)?\nL - uIF(xE’) - u‘l“(xﬂ)’ Vv = L|£l eV

Proof. Let k € M, we integrate equation (A.la) on k£ and we subtract the resulting equality

with equation (A.2a). Thanks to definitions of Rfj”,i and Rim,f; given in Proposition A.4 imply

m, m
(ex —ec)+ D2 oL (ex —ec)
(A 6) u:}Clﬁegint d)C,L o=LEEext d’c7£
' = 3 m,R"™ + ¥ me,REL, Vi eM.
et ceELTE

In the same way let £ € 99, we integrate equation (A.1b) on £ and we subtract the resulting
equality with equation (A.2b). Then we obtain

(A.7) >

veEV, dﬁyﬁl

€ — €/ € — €k Ry .
G g Sy M
K, L

VeV, dc,z:/

— me, RE°L, Ve € 9.

Now we multiply equation (A.6) by e, and summing up over £ € M and we multiply equa-
tion (A.7) by e, and summing up over £ € 99. Then, summing the resulting equalities we
have

2 2
|6T|1,T + |€89ﬁ|1,aam -

> m,(ex — EC)R?};E + X meﬁ(e,c - ec)Riﬁé

o=K|LEEint o=LEEext
€, —ep
+ Z RV’C%
v=L|L'ev c,c’
Owing to the Cauchy-Schwarz and the Young inequalities, we obtain estimate (A.5). ]

With this proposition at hand we are now able to prove Theorem A.3 by estimating all the
terms of the right-hand side of (A.5).

Proof. First, let 0 = x|z € &;ns thanks to the Taylor’s formulas we have

w0 (DR - D ) (), (o - )
_ mﬁ(li,c . / /0 (1—t)(D*u((1 — )z +ta.) (z, — 2), (0 —2)).
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Owing to the Jensen inequality and the change of variables (¢, z) € [0,1] X0 — y = z+t(Tc—x)
(or (t,x) € [0,1] x 0 — y = x + t(xr, — x) for the second term) and since for any £ € 9N,
diam(k) < reg(7T)d(x,0), for any o € Ec (see Definition 2.1) one has

(R™)? < C(reg(T)) 22 / IDu(y)|2dy.

Noting that mp, = % we obtain

(A.8) S mde (R < Clreg(T))size(T ||D2u||

L2 °
o=K|LEEint

Secondly let o = £ € 99, thanks to definition (A.3) of u we have u(z,) = u(x.) and

u(zx) = u(xc), thus since x, —x)c = d(2x, x,)fx,, the definition of RS, the Jensen inequality
and the Taylor’s formulas imply

Mo de,c(R)? §5dm me’: / |Va(z)|* do(x)

+5(d’<£_d(x“’“ meﬁ/wu )2 do(z)

+ 5dg. . o)) s — B (z)[?do(z)
) ~
Mec / / t)? |D*u((1—t)x + tm,c)‘z |z — z|*dtdo(x)
)c Mo
) ~
Me // 2| D2 (1~ t)a + targ)|? e — of*dtdo ().
al,C My,

Thanks to Propositions 2.2, 2.3 and A.2, there exists Cr. > 0 independent of size(7") such that
|d(z/c; 'TL) - d)c,z:| < Ormamfyl;w |me1; - m£| < Crmi and |ﬁ;cc - ﬁcnc(x” < Crmg.

Thus, thanks to a change of variables in the last two integrals we have

17”Le£d,c’L(Ri"’”,ﬁ)2 <Cr(reg(T))size(T /|Vu )% do(x)

+ C(reg(T))size(T)? (/ ‘Dzﬂ(y)‘ dy +/ ’D2ﬁ(y)’2 dy) ,
D D
where D, = {(1 —t)z +tz, : t € [0,1],2 € 0 = £}. Then, owing to (A.3) we obtain
(A.9) > Mgy, (RS5E)? < Or(reg(T)) Caasize(T)? [[ull 7

Hl(Q) "
o=LEEcqt

Finally, using definition of Ry . for any v = 2| € V we have

2 2
Boe® oy, <vru<v>7-v,,; _ulee) - um)) L luwe) — o)) (e —may, )
da c’ Moy, Moy, o dL,L'm"/LL/

Thanks to Proposition A.1 and A.2, we obtain

RV,LQ . 2 2

(A.10) > < 2Csize(T)” w2 (r -

v=cic'ev Y,

Gathering estimates (A.8), (A.9) and (A.10) the claim follows. d
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We have obtained an error estimate between the center-value projection of the exact solu-
tion PSu and the approximate solution w, for the Laplace problem with Ventcell boundary
conditions for the H'-seminorms. However in order to prove Proposition 4.10 we also need
to prove an estimate between the exact solution u and the approximate solution u, for the
L2-norms. To conclude we adopt here the same reasoning as that given in [10, Theorem 3.5
for the Laplace problem with Neumann boundary conditions, apart from the fact that here the
domain is not polygonal.

Let Br € R such that ) _on meti(zc) = a with 4 = u + 5. Setting éx = u(xx) — ux
for any x € MM and e, = u(z.) — u, for any £ € IM, estimate (A.4) is also satisfied for é;.
However, thanks to its definition the error €,, has now zero mean-value. Thus we can apply
the discrete Poincaré inequality (Lemma 2.7) to obtain

_ 2 . 2
€72 o) < C3Cassize(T)? [lullfrz g -
and thanks to the trace inequality (Lemma 2.10) we have
_ 2 . 2
Eom 2y < 4CFCF Cassize(T)? ullzzz (o) -

Thanks to the regularity of the function u one has

2 2 . 2
”u - uT||L2(Q) < 3|Q| ||vu||L°°(§Z) SIZQ(T)Q + 3|Q|ﬁi +3 ||e9ﬁ”L2<Q) .

We recall that [, u = > con Mxti(zx) = o, then by integration
Q|87 = / w(z)dr — o
Q
and

[ ata)ae = [ (o) ~ ot + 5 rn = meutee) + o

reM

Thus thanks to the regularity of u, Proposition 2.1 and the mesh regularity (2.1) we can claim
that |Q|5, < Csize(T) that concludes the proof.

The reasoning is exactly the same for the L?(T')-norm that concludes the claim.
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