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AN ERROR ESTIMATE FOR A FINITE-VOLUME SCHEME FOR THE
CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY CONDITIONS

F. NABET *

Abstract. In the paper we consider a finite-volume approximation for the Cahn-Hilliard equation with dynamic
boundary conditions. We prove an error estimate for the fully-discrete scheme. We also give numerical simulations
which validate the theoretical result.
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1. Introduction.

1.1. The Cahn-Hilliard model. We consider the following Cahn-Hilliard equation with
a dynamic boundary condition which describe the phase separation process of a binary mix-
ture. Find the concentration of one of the two components ¢ : (0,7) x £ — R and the
chemical potential i : (0,7) x €2 — R such that

(1.1a) Orc =T, Ap; in (0,7) x £;
3 12
(1.1b) "= —§eabAc + ?abflf(c); in (0,7) x Q;
(1.1c) i@ = §€2 Arcyr — 60, f (cr) — §e Opc;  on (0,T) x T
. 6AT,T. tCr = 3 0,0;QrCr Oy J A\Crr 2 0, 0nC; s )
(1.1d) Onp = 0; on (0,7) x I';
(1.1e) c(0,.) = % in Q;

where © is a connected and bounded domain of R?, O, s the normal derivative operator, ¢ ¢
is the trace of ¢ on the boundary I' = 92 and A is the Laplace-Beltrami operator.

The Cahn-Hilliard model is a diffuse interface model that means that the interfaces have
a small but non-zero thickness ¢ > 0 (see Fig. [I.Ta). Several physical parameters which
describe the physical properties of the mixture components and the wall appear in the model:
a diffusion coefficient called the mobility (supposed to be constant here) I', > 0, the binary
surface tension coefficient o, > 0 between the two components (which is the density interfa-
cial energy), a capillarity coefficient o, > 0 and a relaxation coefficient I', > 0. The bulk and
surface potentials f, (typically f,(c) = ¢2(1 — ¢)?, see Fig. and f, respectively satisfy
the following dissipativity assumption (useful to prove the discrete dissipation of the energy
given in Proposition d.3)),

liminf f/(¢c) >0 and liminf f”(c) > 0,

le|—o0 le|—o0
and the polynomial growth condition for f,,
(1.2) f,(©)] < C(1+ "), VceR,
for some C' > 0 and p € [1, +o0].
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Interface thickness:

(a) Interface thickness (b) Bulk potential

Fig. 1.1: Definition of the interface thickness and double-well structure of f,

The total Cahn-Hilliard energy is written as follows:

[ (3 2, 12 3 2
(1.3) F(c) —/9(450b|Vc + 5 Ubfb(C))+/1“ (168 0,0,

=Fp(c) =Fs(c)

VFC\F‘Q + 60’be (C\F))7

and this energy is dissipated over time:

&3

64T,

(1.4) %J—'(c(t, ))=-T, / |V u(t, )|2 / |0seirn(t, )\2 , te[0,T[

Q r
We can remark that the bulk energy F, is the energy associated with the Cahn-Hilliard equa-
tion with Neumann boundary conditions. Definition (T.3) of the total energy induces us to
introduce the function spaces H} () = {u € H'(Q) : ur € H'(I')} and H(Q) = {u €
H?(Q) : uy € H*(T')} and the corresponding norms, for i € {1,2}:

etz oy = (el gy + Nt e ) ¥+ Vou € HE(S).

In the analysis to follow, for the sake of simplicity, all the coefficients in problem (I.1))
will be taken equal to one.

1.2. Former results and outline. In the past 30 years, the Cahn-Hilliard equation asso-
ciated with the homogeneous Neumann boundary condition on the order parameter ¢ has been
extensively studied. Recently physicists [14, [15,119] have introduced the dynamic boundary
condition which allows to take into account the interaction between the components and the
wall, especially the contact-line dynamics (see [17]). In the case of Neumann boundary
conditions the numerical analysis with finite-difference and finite-element methods is well-
understood (see [3) 14} 15 16 18, [7, 19, 111}, 112} [13 |16, 21]] and the references therein). However,
to our knowledge, as far as the problem we are focusing there is no error estimate for the
fully-discrete scheme on a curved domain. There exists finite-difference methods but without
proof of stability or convergence (see [[14}[15,[19]). A numerical analysis for the semi-discrete
scheme using a spatial finite-element scheme is done in [2] in a slab with periodic boundary
conditions in the longitudinal direction. In [20] the author propose a finite-volume scheme
and prove the convergence of the numerical scheme towards a weak solution of problem
for a smooth non-polygonal domain. In order to prove an error estimate for this problem, we
use the same finite-volume scheme that the one introduced in [20]. Therefore in Section[2] we
present the finite-volume framework namely the finite-volume notation on a curved domain,



the associated discrete inner products and norms and the functional inequalities used in the
paper. Then Section [3]is devoted to the presentation of the scheme. In Section [ (and in
the Appendix) we prove the main result of the paper: an error estimate for the fully-discrete
scheme (Theorem [4.2)). Finally in Section [5| we present a numerical error estimate for this
model in accordance with the error estimate theorem proved in the previous section.

2. The finite-volume framework.

2.1. Mesh and notation. We recall here the main finite-volume notations used in the
paper (see Fig.[2.1). The usual notation for a polygonal domain can be found for example
in [[10] and the notation associated to a curved domain in [20].

de /\ . A

o
e -
iy o
L AN
B Interior vertex ®  Interior center —— Interior mesh 901
m  Boundary vertex @ Boundary center = sessssea Boundary mesh 90901
A K Bl £ € OON B -- 1 e, chord associated with £

Fig. 2.1: Mesh T associated with

An admissible mesh 7 of € is given by an interior mesh 91 and a boundary mesh 991.
The interior mesh 90 is a set of disjoint open subsets of {2, denoted by « and called interior
control volumes, which satisfy:

e 0= UkemK;

o ific,c €M Kk # £, thenkc Nz =0

o if ic, £ € M, K # £ such that the dimension of K N Z is equal to 1, then £ N Z is the
edge of the mesh separating the control volumes x and z;
if £ NI contains a finite number of points, then x is polygonal;
for any k£ € 9, we associate a point x, (referred to as the center of k) such that if
K, £ are two neighboring interior control volumes, the edge which separates x and
£, which is denoted by o = K|z, is orthogonal to the straight line going through
and x ..

Let £ be the set of edges of the interior mesh 91. We decompose £ into two disjoints
subsets: the set of interior (flat) edges &,y = {0 € £ : 0 ¢ T'} and the set of exterior
(curved) edges .,y = {0 € £ : ¢ C T'}. Similarly we use the notations £t and £¢%¢ for
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the edges of a given control volume x € 9. For any o € £, we note m,, its length. For each
edge o € £, we associate a diamond cell D defined as follows:
e D = p, the quadrangle whose diagonals are the edge o and the line segment [z, x|
ifo e gznt»
e p=p,={te+ (1 —t)zc,t €[0,1],z € o} ifo € Ecpr N Ex.
We note m,, the Lebesgue measure of D and ® is the set of all diamond cells.
Since the domain 2 is not polygonal, we have to introduce an approximate domain {2 =
Uxeamk of € where
L E:Klfglc ﬁ(c/‘e:J(:t = w;
e K is the polygon obtained by joining all the vertex of K if Ec N Eepe # 0. We can
notice that in this case K may be not convex and that k£ may be not included in €2.
We denote by mc (resp. my) the Lebesgue measure of « (resp. £) and by m,, € R™ (resp.
M € R™) the vector (my)ccan (TesSp. (M )xcem). The Lebesgue measures of x and k are
then related by the following relation.
PROPOSITION 2.1. For any interior control volume K € N, we have

me —mye = O (diam(x)?) .
Therefore, there exists C1,Cy > 0 depending only on T" such that

Cime <mye < Comye.

The boundary mesh 990 is equal to the set of exterior edges &..¢. Thus, the exterior
edges are also boundary control volumes. When we consider them as edges, we denote them
by 0 € &..t, and, when we consider them as control volumes of the boundary mesh, we
denote them by £ € 991 (and its length by m ). The chord associated with £ is then denoted
by e, (and its length by me, ), and, the quantities m, and me, are related by the following
relation.

PROPOSITION 2.2. For any boundary control volume c € OO, we have

Me, — M, =0 (mi) .
In particular, there exists C's > 0 independent of size(T) such that
Me, <My < C3Me,.

Let m oy (Tesp. Mygm) be the vector (M, ) com (1€8P. (Mo, ) ccom). Weset my = (Mo, Mom) €
R7 (resp. my = (Mo, Mo ) € RT).

For any control volume £ € 09)1, we associate a point x, € £, called the center of the
control volume. For any boundary control volume £ € 990, let K € 90t the interior control
volume such that £ = o is an edge of k. Then, we impose that the straight line going through
T, and x, is orthogonal to the chord e, associated with £. Moreover, we define ¥y, as the
orthogonal projection of x, on the chord e.

Let V be the set of vertices of the mesh 9t which belongs to I". We denote by v = 2|2’
the vertex which separates the boundary control volumes £ and 2’. For any v = 2|2/, let
d.~ = d(x.,v) be the approximation of the length m,,  of the arc 7., included in the
boundary control volume £ whose ends are x, and v. The measure of the arc v, (which is
the arc whose ends are x, and x .- and passing through the vertex v) is then approximate by
the distance d, o/ = d. v + d.r v

If 0 = k|c € &y 1s an interior edge, we note d . the distance between the centers
and z.; and M., the normal vector to o going from x to 2. If 0 = £ € Eepp N E is an




exterior edge, we note d, . the distance between the center x, and the point y.; and i,
the normal vector to the chord e, outward to k. In this case, the distance d(x,z.) and its
approximation dy . satisfy the following relation.

PROPOSITION 2.3. Let us consider a boundary control volume £ € O such that
£ = o € Ec where Kk € M is an interior control volume, then we have:

d(@e,ye) = d(ze, x2) — dec| = O(memy,, ).
Let size(7) be the maximum of the diameters of the interior control volumes k. We

introduce a positive number reg(7) that measures the regularity of a given mesh and is useful
to perform the numerical analysis of finite-volume schemes:

._ diam (k) diam(x) dy,c
@) reg(7T) = max (m Vi BB (g, 0) ¥ d(ur,0) )

The number reg(7") should be uniformly bounded when size(7) — 0.

For the needs of the proof of error estimate theorem, we also define a family of quasi-
uniform meshes.

DEFINITION 2.4 (Quasi-uniform mesh family of Q).

Let T be a family of meshes of (), we define the number reg, it (T) as follows,

: 2
regunit(T) < sup (reg(T), sup M) )

Kem Mg

We say that a mesh family (T(i))ieN is quasi-uniform ifregunif(T(i)) is bounded.

2.2. Inner-products and norms. Since the domain €2 is not polygonal, we introduce a
L2-inner product on the domain €2 (and on its boundary I' = 9€) but also on the approximate
polygonal domain §2 (and on its boundary 0f2).

For the space discretization, the finite-volume method associates an unknown value u,. €
R (resp. u, € R) to each interior (resp. boundary) control volume x € 9t (resp. £ € O9M).
Thus we note

Ur = (uvﬁvuatm) = ((UIC)?CEEUI; (Uﬁ)aeam) € R” =R™ x R°™.

DEFINITION 2.5 (Discrete L2-inner products).
o We define the inner product (.,.) 2, on L*(Q) and the inner product (.,.),, on
L?() as follows. For any sy, vy € R™, we have

(Umz;vm)Lz(m = Z MUV and (UDﬂvvm)m = Z MUV
reM reM

We denote by ||.|| 2 o,
e We define the inner product (.,.)

and ||.||o ., the associated norms.
:

on L*(T') and the inner product (.,.),  on

L2(1) om

L2(09) as follows. For any tyom, Vo € R?™, we have

(uam»vaon)L2(F) = Z MmeU v, and (uasm»vasm)am = Z Me,UsVp.-
LEOM LEOM
We denote by ||.|| 2, and ||.|lq yon the associated norms.



Owing to Proposition 2.1| (resp. Proposition 2.2), the norms |[.[[ 2 ,,, and |.[[5 ,, (resp.
(1] 12y and [|-]lg o) are equivalent (with constants independent on the mesh size).

We also define semi-inner products in R” and R?™".

DEFINITION 2.6 (Discrete H!-semidefinite inner products). We define the H' -semidefinite

inner product in R” as follows. For any u,r,vy € R7,

[[uT7UT]]1,7’ = Z

o=K|LEEint dfcyﬁ

m

- Me,

(ue — ue)(ve —ve) + (ue —ug)(ve —v,).

o=LEEcqt d’Cvﬁ

We also define the H'-semidefinite inner product in R?™ as follows.

1

[[uasmavasm]]l,asm = (UL - uc’)(UL - UL’)) VUoon, Voo € R,

v=L|L eV dc,c/

We denote by |.|, _and |.|, . the associated seminorms. Moreover, we define the H"-norms
in R and R®™ as follows:

ol y = (i + hurl? ) Vi € BT,
2 2 3
tomlly gon = (It 15 oo + [0 5 oon ) * + Fitom € R?™.

2.3. Functional inequalities. We give here some functional inequalities that we will
use all along the paper. The proof are available in the literature and so we do not give them
here. We consider an admissible mesh 7 of 2.

LEMMA 2.7 (Discrete mean Poincaré inequality, [[10, Lemma 3.7]). There exists Cy > 0
depending only on ) such that for any u; € R7,

||toy — mq (um)HLz(Q) < Oy |u7|17T with mq (Ugy ) = @ Z&m MU,
. 1
[t =g (uﬂﬁ)Ho,m < Calurly - withmg (usm) = 12| Esm Kl

Thus, we also have:

1
22) ||u5mHL2(ﬂ) <Gy |u7|1,T+|Q|2‘mQ ()],

: 1
[t llo o < Calurly  + 122 Mg (um)|.

LEMMA 2.8 (Poincaré-Sobolev inequality, [1, Theorem 3.2]). Let 1 < q < 400, there
exists Cs > 0 depending only on g, 2 and reg(T) such that

(2'3) Hufm”L‘I(Q) = ( Z mKluK|q) < 05 HUTHLT ’ V’U,T €R”.
KeM

We can also easily prove the following Sobolev inequality on the one dimensional mani-
fold I'.
LEMMA 2.9. There exists Cs > 0 depending only on I such that for any uye, € R?™,

sup |ug| < Cs Hua‘mnmm .
LeoMm

The proof of the following lemma for a polygonal domain is done in [10, Lemma 3.10]
but it can be adapt in our case.



LEMMA 2.10 (Trace inequality). There exists C7 > 0 depending only on () such that
Sfor any ur € R we have,

tomll 2 < C7 (Iurly 7 + It 2 ) -

We can also remark that for a quasi-uniform mesh family (T(i) ) ;en (see Definition )
and for any ¢ > 1, there exists a uniform constant C's > 0 (depending on ¢ and regyy;¢
such that,

Cg o
(2.4) 216191?; |u)c| < W HUOJ'Z||L11(Q)7 Vg, € R™.

3. The finite-volume scheme . The section is devoted to the presentation of the numer-
ical scheme. We refer the reader to [20]] for the proofs of the energy stability, the existence of
a discrete solution and the convergence analysis.

For the time discretization, let N € N and At = % be the time step. For any n €

{0,---, N} we define t" = nAt. Then, at time ¢", the unknowns are denoted by:
(C;é)ICefm) ((:un)icewz)
= and u* = K .
7 ((CZ)LEBDJI Hr (HZL)Leam

Since p is associated with the homogeneous Neumann boundary condition, for any £ € 99
we have 7 = pt where x € 91 is the interior control volume such that £ C Jxk.

To obtain the finite-volume approximation of problem we integrate the continuous
equations and on all interior control volumes x € 9 and we use a consis-
tent two-point flux approximation for the Laplace operators (associated with the Neumann
boundary condition for u). Then we integrate dynamic boundary condition on all
boundary control volumes £ € 990t and we use a consistent two-point flux approximation for
the Laplace-Beltrami operator.

As regards the discretization of nonlinear terms f/ and f’ (denoted by d/* and d’s re-
spectively) we use two different discretizations (see Definition [3.1): the classical implicit
discretization and a semi-implicit discretization which enables us to obtain an energy esti-
mate unconditionally stable.

The problem is then written as follows.

PROBLEM 3.1. For a given ¢ € R7, find (", ") € R™ x R” such that for any
KeM, cecom,

cn—i—l —cn m, 1 1
(3.1a) mﬁ%:_ T(M2+ _M7Lz+ );
cegt UKL
+1 _ ms +1 +1 Me, +1 +1
(3.1b) D M CaRET A EID M AR
cegimt UK, ce€grt UK,
1y.
+ m&dfb (szchr )’
+1
cn+1 —cn (C’;:L+1 o Cn/—&- ) . .
(310) m%% = - Z diﬁ - meﬁdfs(cZachr )
t VEV, c,c’
meﬁ n+1 n+1
- r,c . (CL — C ) .

DEFINITION 3.1 (Discretization of nonlinear terms). The implicit discretization is define
as follows: for any x € M, £ € OM,

A (e, ) = fl(e) and aP (e, et = fi(ert).

LYEL L



As regards the semi-implicit discretization, for x € {b, s} we note

r—y

&’ (x,y) N,y £y and d(z,2) = fl(), V.

X
We remark that in practice we use a polynomial function for the potential f, and that
d*+(x,y) is a polynomial function in the variables z,y. Thus, from a computational point of
view, we do not have numerical instability when z is too close to y.
PROPOSITION 3.2. For both discretizations the discrete energy is dissipated as follows:
if ¢ is given and (<Y, un Y is solution to Prablem then there exists Cy > 0 indepen-
dent of At and T such that,

2 1 2
Frlett) = Folen) + Co el ]+ 2 [ = el o
1 2 1 2

with a condition At < Aty (with Aty depending on the parameters of the equation) for the
implicit discretization.

We note that summing equation (3.Ta) for all £ € 9t we have the volume conservation
at the discrete level,

(B2 QMg (<) = 3 mect = 3 mecl = |Qmg (c),), Yne{l,...,N}.
KeM KeM

4. Error estimate for the fully-discrete scheme. We can now enter in the heart of
the matter. The most delicate point in the proof of the error estimate (Theorem comes
from the nonlinear term f;(c) at which we have to pay a special attention. For this, we
draw on methods described in [8}, [18]] for the Neumann boundary condition and a finite-
element approximation. However some supplementary difficulties are added in our case.
First, the finite-volume framework complicates the study of this term. Indeed, when we
use a conform finite-element method we work (for the space discretization at least) on H'-
conform spaces. That is not the case when we use a finite-volume method where we use
discrete spaces. Moreover, we use here two different discretizations for the nonlinear term f;
(see Definition @ The second one, namely the semi-implicit discrization, is more difficult
to study that complicates again the proof of Theorem[4.2]

4.1. Main result. In the section we present the error estimate (Theorem [4.2)) between
the center-value projection (see Definition . T) of the exact solution and the solution to Prob-
lem[311

DEFINITION 4.1 (Center-value projection).

The center-value projection PS. : CY(Q) — R7 is defined as follows. For any u € C°(2),

we set PSu = (P§,u, PS,, u) with

Pgﬁu = (Piu))cesm = (u(x’C))lcem and Pgmu = (qu)ﬁeaml = (ulr(xﬂ))ﬁeas’n .

THEOREM 4.2 (Error estimate). Let * € C?(Q) and (c,p) € C3([0,T] x Q) x
C%([0,T] x ) be a solution to the Cahn-Hilliard equation (L1). Let M > 0 be such that
lell 0.7,y < M and M'" > M. Then setting % = P, for any solution (c, u™)
to Problem 5. 1|satisfying

4.1 sup (sup 2|, sup |cZ|> <M', Vne][0,N].
Kem LedoMm
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There exists C1o > 0 (depending on M and M) such that the following estimate holds (with
At < Ate),

42) sup [[PLe(t") —crlly o+ sup [[PFoc(t™) — chnlly oo < Cro(At+size(T)).
ne0,N] nefl0,N] ’

With a view to the proof we need some regularity on the potentials, indeed they have to
be Lipschitz continuous functions. With that in mind we will introduce truncated Lipschitz
continuous functions.

The exact solution ¢ of continuous problem (T:1)) is supposed to belong to C3([0, T] x Q).
Thus, there exists M > 0 such that [[c|| (g 7.1y < M. Let M" > M, we choose

truncated potentials :f: and ? of the initial potentials f, and f, which satisfy
f,=f,and f. = f. on [—M', M

and which are constants at the infinity. These truncated functions, and all their derivatives, are
Lipschitz continuous. Moreover, the definition of the semi-implicit discretization of nonlinear
terms implies,

& (z,y) = / £ + s(y — 2))ds and % (z,y) = / f(e + s(y — 2))ds.

Thus the semi-implicit discretization of ]Tb’ (resp. }‘2) coincides with d/® (resp. df+) on
[—M', M']? and is Lipschitz continuous.

Therefore, we can achieve the proof of Theorem[4.2] with the truncated potentials instead
of the initial potentials (and so with ¢ a solution to discrete Problem [3.1] but with the trun-
cated potentials). We obtain estimate (4.2)) for this problem with constant Co depending on
M’. Thus for a mesh belonging to a quasi-uniform mesh family, gathering estimate (2.4),
Lemma [2.8]and Theorem [4.2] we deduce,

c n n At : 1*2/q)
sup [Pc(t”) — ¢ < C5C10Cs (slze(’f)% + size(T) :

Moreover, thanks to Lemma[2.9]and Theorem [4.2] we also have:

sup |[PSc(t™) — | < CgCho( At + size(T)).

LeoM
Thus, if At and size(7") tend to 0 with At < C'size(7 ) for a certain o > 0, these estimates
allow us to affirm that bound @])~ is satisﬁeg for any approximate solution. Moreover, since
the functions f, (resp. f.) and f, (resp. f.) coincide on [—M’, M'], if ¢ is solution to
discrete Problem [3.1] with the truncated potentials, it is also with the initial potentials (and
reciprocally).

In conclusion, for a quasi-uniform mesh family, if At and size(7T) are related by the
relation At < size(7)* (for an arbitrary value o > 0), then assumption (. is still satisfied
for At and size(7) small enough and so there exists a solution ¢} to discrete Problem
which satisfies it (even if it can be exist a solution to Problem [3.1] which does not satisfy
bound (4.1))). Thus we can carry out the proof of Theorem {.2] with the truncated functions
which satisfy all the necessary regularity assumptions. For the sake of simplicity we will omit
the tilde sign in the sequel.

REMARK 4.1. From a computational point of view, we can check that assumption [@.1))
holds when we use the potentials f, and f..
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In order to prove the error estimate theorem we have to use a priori bounds on the discrete
solution (obtained thanks to the discrete energy estimate given in Proposition [3.2).

PROPOSITION 4.3 (Bounds of the discrete solutions, [20, Proposition 4.4]). For any
@ € C2(Q), let % =P and (¢, u) € R™ x R” be a solution to Problem Then,
there exist positive constants My, My, M3, My and My independent of At and size(T ) such
that,

sup HCT”l T S Ml’ sup Hcam”l am S M27
T)
n+1 n 2 M
n+1 4
4.3) Z At[|us [, < Ma, Z At <&
n+1 2 ) N-1| nt1 _ o 2

d At am amz At oM oM < )
an Z . + Z A7 s Ms;

’ n=0 ,OM

We can remark that in [20] the proposition is proved by choosing the mean-value pro-
jection on all control volumes as initial discrete data for the initial concentration . Indeed,
when the initial data is not enough regular, we have to choose this projection to obtain the a
priori bounds. However, when the initial data belongs to C2(£2) the center-value projection is
sufficient. Indeed, thanks to the mean-value theorem, we obtain a bound on the H!-seminorm
of ¢ which allows us to prove the proposition as in [20].

4.2. Discrete projections. With a view to prove Theorem[4.2] we have to define another
projection: the elliptic projection. These projection is in fact the solution of a suitable Laplace
problem and thus depends on the boundary condition that we want to impose. Therefore, the
definition of the elliptic projection for the chemical potential (see Definition 4.4) and for the
order parameter (see Definition [.5) are different.

DEFINITION 4.4 (Elliptic projection with Neumann boundary conditions).

We define the space H%,(2) = {u € H*(Q) : Vu-@ = 0 onT}, then the elliptic
projection PN HZ%(Q) — R is defined as follows. For any u € H%(Q), PNy s the
solution to the following discrete Laplace problem.

Find vy € R7 suchthat > mgve = / u and
KEM Q

U — Vg

“4.4) > om,

—/ Au(z)dz, Ve e M.
cegnt dlC,L K

DEFINITION 4.5 (Elliptic projection with Ventcell boundary conditions).
The elliptic projection P$“P : H2(Q) — R is defined as follows. For any u € H2(S),

]Pf—” Do is the solution to the following discrete Laplace problem.
Find vy € R7 such that Y myxve = / w and for any Kk € M, £ € 0N,
KEM Q
E m. U}cd— Ve + E meLU’Cd;UC — Au(x)dx,
4.5) seEM! K,L cEELT K,L K
S T e, 2 [ A (2)do(a) + | Vu(a) - fi(z)do(z)

vEV, da,c' diqz: L L
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REMARK 4.2. The elliptic projection is the solution to the finite-volume two-point flux
approximation of the continuous problem

{ —Av=f inQ,

4.6
(4.6) —aArv+0,v=g onl,

with f = —Au and
o o =0, g = 0 for the elliptic projection IP’eTll’N,'
e a =1, g =—Aru+ dyu for the elliptic projection IP’?”’D.

When w is a time-dependent function, for a fixed time ¢ € R, we will denote P2 (u(t))
and PP (u(t)) the elliptic projections of the function v = u(t, .).

In order to prove Theorem .2 we have to related the different discrete projections to the
solution of the continuous problem (I.T)). With this in mind we give below several properties
which will be used all along the proof in Section 3]

Thanks to the Taylor’s formulas and the Jensen inequality we can easily prove the fol-
lowing estimate.

LEMMA 4.6. Let u € H?(Q), there exists C11 > 0 independent of size(T ) such that

[ =Pl 2 ) < Crasize(T) [[Vu

2) — HY(Q) *

LEMMA 4.7. Let u. € H(T'), then there exists C12 > 0 independent of size(T) such

that,
||u - PgwﬁuHLQ(r) < Cl?Size(T) HVFU\FHIP(F) :
PROPOSITION 4.8. Let u € HZ (), there exists C13 > 0 depending only on Q such
that
‘ PeLN gy — g < Chgsize(T) ||ull g2 (o
L2(Q)
and.

peIlNy _ Pgu‘l < Cugsize(T) llull g2y -

)

Proof . Thanks to Definition of the elliptic projection, ]P’eT”’Nu is solution to discrete
problem @Z). Thus the difference Py — PSu is the error associated to problem (#.6)
with & = g = 0. Thanks to the error estimate for the Laplace problem (@.6)) for the two-point
flux approximation scheme (see for example [10, Section 3.2.3]) we obtain the expected
estimates. U

As regards the analogous proposition in the case of Ventcell boundary condition, the
proof does not seem available in the literature and so we detail it in the Appendix.

PROPOSITION 4.9. Let u € HZ2(Q), there exists C14 > 0 depending only on ) and
reg(T) such that

ell,D, ell,D, o
‘ PPy —u . + ‘ PS"u—u o < Cysize(T) ||u||H§(Q) .
and
i,D 1,D "
PPy — ]P’CTU‘LT + |Po u— ]P’gmu‘l,am < Cugsize(T) ||ull 2 (g -
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4.3. Proof of Theorem 4.2} This section is devoted to the proof of Theorem [4.2] We
decompose the proof in three steps. First, we use the scheme to decompose the different
components of the error. Then, we control all the terms and prove that they tend to O when
the mesh size and the time step tend to 0. Finally we use the discrete Gronwall lemma to
conclude the proof.

In the proof different components of the total error will appear. Thus we decompose the
error as follows.

DEFINITION 4.10 (Error). Let u : (0,T) x @ — R and u? be a finite-volume approxi-
mation of u at time t". We denote by e’ € R7 the error associated with u at time t = t"
defined as follows,

un __ sun SULMN D SUN _ TDC n ell,* n su,n __ ell,* n n
e = gLt 4 &N with é9" = Pou(t™) — PV u(t”) and €™ =PE u(t™) — ul,

with x = {N, D} depending on the boundary condition associated with w.
We also define ev" = u(t",-) — %Pgl’*u(t").
T

4.3.1. Different contributions of the error. First, subtracting the scheme and the con-
tinuous problem we identify the different components of the error (Proposition @.1T). Then,
we separate the error into two parts: the error é- between the elliptic projection of the exact
solution and the discrete solution in the left hand side, and all the other contributions in the
right hand side (Proposition 4.12).

PROPOSITION 4.11. Let us consider a couple (c, p) solution to the continuous Cahn-
Hilliard equation (I.1)) and a couple (¢, 1) solution to the finite-volume scheme (3.1).
Then, the following equality holds

I Y s
+§(k“”w“«|aﬁﬁT+w$”*—@ﬂiJ
T (O U e
=A (R ) oy — (BT = ) oy,
@.7) (e =) g, + (RET T e L

\
TN W

—c,n+1 —c,n
Com  — €amt .cptl _ .em
At » Com Coom

L2(r)

Mon

File(t™, ) -

9}? m m

Yoy

dfb( cn, n+1)7éc,n+1 _ éc,n)
Moy

~ (Ftanterr, ) -
where the terms R and R?il are defined as follows:

n+1 n
n+1 _ C(r) (t "T) — C(ir) (t 7'I)
4.8) RpFl = v

L%(@)
Mam fs(m n+1y scn+1
d’s (casm’ Com )7 €om easm ;

Maon L2(T)

- atC(‘F) (tn+1, :C)

Proof . Let (¢, ) be a solution to the Cahn-Hilliard equation (I:1). Applying Deﬁnition
of the elliptic projection with Neumann boundary condition to p, for any © € 9t we have

P (e — Pt

(4.9) /atc(t"H,x)dx—F Som,
K

ceEM! d)c,L
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In the same way, applying Definition [£.3] of the elliptic projection with Ventcell boundary
condition to ¢, for any £ € 9T we have

Z Pill,DC(ter) _ Pi”,DC(tn+1)
m,
d}C,L

int
o€

ell,D n+1\ _ pell,D n+1
(4.10) S meﬁﬂ”m c(t" ) =P et
ceErt dfc,ﬁ

+/ file(t™*, 2))dz — / (" z)de = 0,
K K
and for any £ € 090,

PP (et 1y — PebP (gt . PP (gt — Pi”’Dc(t”“)
m,
de o ec dy.

/f (ar( t"+1 ))do(x /&c, g )do(z) =0,

where x € 9 is the interior control volume such that £ € dx. Subtracting equation (3.Ta) of
discrete problem and equation (#.9) and using definition (-8 of R7*! imply,

2

4.11) veve

—€ é — €ex
m,~———— £ +m)<¥ :/ R?H(x)dx
K

GE%U dic,r = At
B / e (@) — et (@) o
K At '

Now, we subtract equation (3.1Db)) of the discrete problem and equation (.10}, then we obtain

4.12)

.c,n+1 .c,n+1 .c,n+1 ec,n-{-l

éx c ex c -1
S ma—d D Mo — Ml
ceEnt K, ceELTt KoL

m
= [emrtian— [ (et - BEafer ) da.
K K My
Subtracting equation of the discrete problem and equation (@.11)) we have,

(4.13)

.c,n+1 .c,n+1 .c,n+1 .c,n+1 éc,nJrl e

es ey €c — €k c €c
vez\;c dLAL’ - d)c’c £ At
—c,n+1 —c,m
@i R - [ S o)
; At
. (f:<cm<t"+%x>>— e (et ) dolo),
C m,

We multiply equation #.12) by v, and we sum up over all interior control volumes x € 9,
we obtain

-c,n+1 .c,n

€ — €
- p,n+1 e e _ n+1
[[el; 7'UTH1,T + ( Al aUzm> = (Rc 7U9ﬂ)L2(Q)
Rile

4.15) _en+l —en
_ € —Em v
< At , sm) . .
L2(Q)
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Now, we first multiply equation #.13) by u, and we sum up over all interior control volumes
K € M. Then, we multiply equation (#.14) by u, and we sum up over all boundary control
volumes £ € 091. Summing the resulting equalities, we have

[é?nHaUT]]l,T - (égﬂn+1 um)

eC n+1 éc,n
am — Com
+ [[eom uasm]]l,a:m + | ———— U
om

At
_entl
:(éu,n+1 " ) (Rn+1 ) N egﬂ?t _639?2 u
(4.16) om ; Uon LZ(Q) e o Uom L2 7At om
L2(2)
B (f;(c(t”“,-)) —=d/ (chy, &H)’“E’”)
Moy L2(2)

Maom

o GG B =D Ry

Maon L2(r)

Choosing v, = Até’™ ! in equation @13) and u, = 5™ — ¢5™ in equation @#.16) and

adding the two resulting equalities the claim is proved. (]
PROPOSITION 4.12. Let (¢, ) be solution to the Cahn-Hilliard equation (I.1) and

(en Lyt L) be solution to the discrete scheme (B.1). Then, for any no € [0, N| we have:

.c,n+1
€om = — eafm

LS8 Apjennti? 4 Z At
2= 7 ™t At

0,0

1 . LU .
+3 (gl - |€?O\i,7+Z\e?"“—e?"ﬁj)

1
+5 <} d‘mo+1|1 om | 893? 1,00 + Z |6c = C‘VTYLI i,agm)

<Too + Z[i At |€T’
n=1

“4.17)

+TR,’}+1 +Ter + Ty, + Ty, + Ty, + 17,

where the different error terms are defined as follows:

51¢

2
TO = He HL 2(Q) 8C C2 (ec,O)

+1 +1
Tpnts = 04 z AR, +2Cs z At HR” »
2 2
7 no éc n+1 _épn éc ,n+1 _ é('n
7. —'o2 At || &2 o 20 At || So= om
r =yt At R nEO At
L?(Q) L2(r)
1 +1 e;;ﬂn - égnnJrl
k] sT
Heﬂ HL2(Q) + 204 ||6'u ’ ||L2(Q) Z At At
L2(2)
1 2
T,, =5 G )ng) +4C3CF || gon tn”l,')me
70 tn .) — thrl . 2 no 2
rcge 38 ae| AT a0 32 At gm0
n=1 L2(Q) n=0

no 2 , 2
o= 58 A (AP ) = I, + @) - a e )
n= )
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no 2
Tfs :403 ZO At f:( awt( (tn—H))) df\( anmcg;r—zl)

L2(r)
2
no mr-—m
7, =4 3% | M e o)
n=0 mzr 1,7
2
no m —m
+4C3 S At‘ Ay
n=0 Maom L2(1)

The term gy (resp. goo) is such that for any © € 9 (resp. £ € OM),

g (t,z) = fl (c(t,x)) — fl (c(t,zc)), Vrxerk,teR;

(4.18) Gom (t, ) = fs, (c(t, ) — 1! (c(t,zz)), Vrer,teR.

3

Proof . To begin we sum identity (@.7) for n going from 0 to ng, then thanks to defini-
tion (#18) of the functions g., and g,», We obtain,

c n+1 .c,n
B eafm

ZAﬂe“”“}l + Z At A7

0,00

w3 (il et 8 e o2 )

1
+5 2 (| <C9n0+1|1 am _| awz lam+ Z |6cn+1 _68‘m|1 awz)

no no

o n+1 sp,n+1 _ sc,n+1 _ zen pu,n+l

— Z At (Rc ,eh )LQ(Q) Z (em ey el )LQ(m
n=0 n=0

no

§ : si,n+1 sen+1 cn § : n+1 cn+1 c,n
+ (esm ) Eon Con L (Q) + (R cr ) € eafm)Lz(F)
(419) 7c n+1 é('7
— Lom .cn+1 sC,n
- E T A; O Com — €0
L2(r)
n+1 sc,n+1 -c,n
- E t : esm — €m )LQ(Q)
n+1 c n+1 c,n
- § ga‘m ("), ¢ eagm)L2<F>

Mop . .
—Z(fb (1) — g e, ), e - o)

Mo L2(@)
_ (c(t™1))) — Mam o1, () gentl _ gen
3971’ Cagﬂ ea‘n1 689)(
Moon L2(1)

To obtain estimate (m, we have to apply the Young inequality to all the terms in the right

hand side of @.19).

e Let us begin by the two first terms in the right hand side of @.19), namely the terms
where the L2-inner product with é%; ot appears. Noting that if vy, € R™ is a null
average function, for any u., € R™, we have

(um?a Uﬂﬁ)ﬁ(sz) (uim — Mg (uml)7 vfm)L 2(Q) = ”uJﬁ Me (uml)”L?(Q) ||UmHL2(SZ) ’
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then thanks to the discrete mean Poincaré inequality given in Lemma 2.7} we obtain

(4.20) (u9ﬁ7vm)L2(Q) <Oy |uT|1,7~ ”'UWI”LZ(Q) .

The couple (¢, i) is solution to the Cahn-Hilliard equation (T:1)) and p satisfies the
homogeneous Neumann boundary condition which implies for any n € [0, no],

4.21) /atc(t”“,x)da; :/ Vu(t"tz) |1 =0,
Q oN

and

tn+1

(4.22) /(c(t"“, x) —c(t", x))dx = / / Ope(s, x)ds = 0.
Q QJn
Then we deduce that for any n € [0, ng],

(c(t”‘H7 x) — c(t", )
At

(4.23) Mg (RZH) = / — Ope(t™ x)) dx =0,

Q

and estimate (4.20) allows us to obtain,

(sz'i‘l’éé;n—"_l)LQ(Q) < 04 |éé€,n+1’177 HRZH—lH

L2(Q) "’

Applying the Young inequality we finally get for any n € [0, no],

2
L2’

4.24) At (RpT ettt <éAt|é‘j:”“|iT+2C’ZAt||RZ“||

L2(0) =

Thanks to Deﬁnition of the elliptic projection, for any n € [0, ng] we also have

ma (85) = / e(t", ) = 3 mePIPe(th) = 0.
Q reM

. _ 1 . .
Since mq, (ef,,}"Jr - e%}n) = 0 estimate (.20) gives,

sc,n+1 _ sen pun+l sp,n—+1 sc,n+1l _ sen
(e eq e ) < Cy léh |1,T 5 |

m L2Q) — L2(Q)

and the Young inequality implies for any n € [0, no],

1 2
gontl _ gen gumntl spntl
(egﬁn — Gy e )L2(Q) SgAt |e¢n |1,7’
(425) éc,n+1 . éc,n 2
L 202 AL || T
4 At f
L?(@)

. 1 . . .
Now we focus on the terms whose term é5' "' — €5 appears in the inner product

on L?(£2). For the two first we perform a discrete time integration by parts.
Let us begin by the term where the function %" intervenes.

no
si,n+1 scen+l _ -cn _ _ (zm,1 5c,0 ~pu,no+1 -c,no+1
E (esu; ) €on Con )LZ(Q) - (ezm ) o )L2(Q> + (ean » Eon )LZ(Q)

n=0

n
=+ & (*M,n _ spun+1l emn
Z Con €on ) Eon

n=1 ) L2’
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Noting that by definition of the elliptic projection (see Definition mg (eh") =
0, the Cauchy-Schwartz inequality, inequality (:20) and the Young inequality give,

,

07,1.,1 .c, 17712 1.4702
nzz:o (egﬁn+ ,egnn"‘ B e;"n)L?(Q) =35 ”e‘;)} HLz(sz) + 92 ”efm HL2(Q)
2 n spn  pntl 2 1 n
@GR
2 n=1 At . 2 = \T

1
U A e = Sl

Considering now the inner product with the term g,, (", -). Noting that the mean-
value of the function g, (¢, -) is not equal to 0, thanks to the Cauchy-Schwarz in-
equality we have,

no

Z (gim(tn+1a ')aégj’zn+l - égﬁn)ﬁ(g) < ||gm(t1’ ')HL?(Q) Hégf’IOHL?(Q)

n=0

no
+ Zl Hgsm (tna ) — Gom (tn—O—l’ ')HLZ(Q) Hezcv}n”L?(Q)
n=

+1 scno+1
+ ||g97’(tn0 ")HL?(Q) Hegﬁno HL2(Q) .

Definition [£.3] of the elliptic projection and the discrete volume conservation (3.2)
imply that for any n € [0, N], mg (é5") = mq (égc,’zo). Then Proposition ,
Poincaré inequality (22 and the Young inequality get,

n ) . 1
S () 65 650y | < g llom () e
1,. 1,
+ 92 Heg?ouiz(n) + 402202 Hgm(tnO—H’ ')Hiz(n) + g ’eg_,no+1ﬁj

.¢,0 2 .c, 2
80102 Mo (egﬁ ) + 5 nzz:l At |efrn|1.,7‘
2
& gim(tnv') 7g=m(tn+1")
+C3CE Y At ‘
274 nzz:l At LQ(Q)
As regards the last term where the inner product with ¢5 T — ¢5™ appears we have
to use the scheme. Noting that
m
(47 BCetem1))) — T2t (e, ) e — ey
Mo L2(@)

- <:ZVR fz: (P;z(c(tn+1))) - dfb (Cy;na 01;1+1)7 égﬁn+1 - eg:;zn) )
o
- om

and choosing v, = At (%fﬁ(ﬂ”i(c(t”“))) —dh(cn, c’T‘H)) in identity (4.13))



18

we obtain,

(52 Btetem ) -

= —Atfer ST P (")) — d (e ]

Mon

fv n+l -c,n+1 -c,n
m —d ( Cons Con )’ Con — €
om L2(0)

m > n n
+At (R?“, T g (B (™)) — AP (e, ;1))
m L2()
- <e;,?n+1 70” 7fb( nn( (tn—H))) dfb( Cons g;&-l)) .
L2(Q)

Since mg, (RIT!) = mq <e§ﬂ”+1 égﬁ") = 0, the Cauchy-Schwarz inequality and
inequality (@.20) imply,

(42 (Poutetenty) = T2 e e, et et )
m L2()
éc ,n—+1 éc ,n
- 1,n+1 +1 om om
< At (\e/;_” ‘1,T+C4HRZ ||L2(Q) + Cy AL )
L2(Q)
MT o1 (pe (o1 dfo (e ntl
mifb( T(C(t ))) ( CryCr )
T 1,7

Recalling that for any = € R, df*(z,z) = f/(z) (see Definition and applying
the Young inequality we deduce,

(72 (Bou(etm))) = T2 a8 (e, ), e — ey

Moy £2()

2
Lajerip 3o (R, + | B
—4 T LT ' 94 L? (n) At v
L4(Q
(4.28) e 2
e | p e (o))
T 1,7

+AAE[F(PS (")) — f(e)]]

2
+AAE[dl (et ) — dP (e
,T
Finally we focus on the terms due to the dynamic boundary condition, namely the
terms where the inner product in L?(I") appears.
According to the Cauchy-Scwarz inegality, the Young inequality and the equivalence
of norms ||. |, ., and [|.|| for any uygx € R?™ we have

L2(1")’
1 .c,n+1 ec n 2
sc,n+1 -c,n om am
(Uamh 687‘7)1 - 667‘77{)112 _7At Az
: : )
(4.29) 8 At 0.0
+2C3At ”ua?ﬁ ||L 2 -
gontl_gen
Choosing uyoy = Rg;rl, then uyoy = W and finally wpom = goox (t"11,)

in equation (4.29) we can control the first three terms.
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For the last term we set uyoy = f7 (IPS,, (c(t" 1)) — %df (¢, €21 in equa-
tion (4:29) and noting that
My Moon — M.
5/ (Pgm(c(tn+1))) - ﬂdfs (cgm’ CZ:;;I) S ‘ udfs (Cgmncgo—;l)
Mayon L2(1) Maom L2(T)
(Bhon (c(t™41))) = d* (s i) ,
L2(T)
we obtain
Myon . .
(f (]ngm( (tn+1))) - m;dfs(cgwucg;tl)v eg£+1 - eg’z;)
om L3(n)
c n+1 ec n
< At 09]1 oM

8 At

(4.30) 0,0m
m 2
TACAL H = a’s (cgmw ng_;l)
Mom L2(r)
2
+4Cs (BSon (c(t"F1))) = dP* (hons i) :
L2(r)

Gathering inequalities (4.24)-(#.30) in equation {.19), we obtain estimate [@.17).
O

4.3.2. Estimate of the residual terms. In order to apply the discrete Gronwall lemma,
we have to estimate all the terms in the right hand side of inequality (#.17) independently of
n.

We begin by a bound on the initial data.

PROPOSITION 4.13. Let ° € C3(Q) and ¢ = P5.c°. Then for some Cy5 > 0 we have

ma (657) +ma (657) + (|65,

+ |0, St €5 < Oy5size(T

L2(2) ’1 oM )HCOHHE(Q)'

Proof . Estimates of the (semi)norms are only a direct consequence of the definition of 2
and Proposition (associated with Lemma for the L%-norm).
Then owing to Proposition[2.T]and the Cauchy-Schwarz inequality we deduce

el

i 65) = (2 ) 1650 amdm 650) <

- \m
and the L?-estimate gives the claim. O
Then we study the term T +1 about the error of the time discretization.
PROPOSITION 4.14. For any ng € [0, N], the remainder terms R}t and R} defined
by @) satisfy
n 2
Z ARy < 100l Z20,7:22(0) A,
(4.31)
52 AL (s
n=0

2
’ 2(r) < ||attC'FHL2(0’T?L2(F)) AL,
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Proof. The reasoning is the same for the two estimates. Thus, we only give here the proof for
the first term. Applying the Taylor’s theorem to the term R *! defined by (@.8), we deduce

tn+1
1

R (x :—/ t" — 5)0uc(s, z)ds.
@ =7 [, ("= ucls.a)

Then we have

tn+1

" 2 1 e n
HRC+1||L2(Q) SAitQ </t" (" — 5)2d8> (/tn

gt
<At (/ ||attc(37 ')HiZ(n) dS) )
t'n.

and summing these inequalities for n going from 0 to ng we conclude the proof. U
Now we are interested in the term T concerning the error between the exact solution
and its elliptic projection.
PROPOSITION 4.15. There exists C1g > 0 such that for any ng € [0, N| the following
estimates hold

||8ttc(57 ) ”i?(n) d5>

no sc,n+l éc,n 2 )
(4.32a) nzo At % < Cfgsize(T)? 10ecl 2 0.0, m2 ()
- L2(Q)
no éc,n+1 . éc,n 2 )
om oM .
(4.32b) ngo At || == < Ofesize(T) 10ecll 12 0. 1,m2 (02
L(r)
o+l pn ||
L] Eom — € 2 . 2 2
(4.32¢) nz—:O At Al < Cgsize(T)” 0uull 720,712 (02)) -
- L2 (@)
Moreover, for any n € [0, N| we have
(4.33) €571 1200y < Cresize(T) ||l = 0.7, 12(0)) -
Proof .
We begin by proving estimates (#.32). Thanks to Definition [#.10] we have
—c,n+1 —c,n 2
HeDﬂ ~ €m HL2(Q)
2
< 2| (et ) = el ) = (B Peltn )~ B Peln )|,

2
M — M
o ) B GAROEE L o)
KeEMJKC

M

Owing to the linearity of the elliptic projection (see Definition 4.3)) and Proposition [£.9] the
first term in the right-hand side satisfies

2
|(e(t™,) = et ) = (PPe(t™,) Pl Pe(r, )

4.34) g1
< Chisize(T)? [ el )z oy

tn

L2(2)
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Moreover, thanks to Proposition [2.1] and the mesh regularity .1 for any x € 9t we
have m,c — my. < Creg(T)?m diam(x) thus,

2
M —Mm
5 L () et - )
K

M

2
PoiPe(t™h, ) = PgtPe(t™, )| |
L2(Q)

< C(reg(T))size(T)? ‘

and so Proposition [4.9]yields,

2
M —m
ng/}C ( ;cm &) (]P);ll,Dc(thrl? ) - ]P’i”’Dc(t"7 ))2
Ke K
(4.35) s
< 20 (reg(T))(Chy + 1)AtSiZG(T)2/ 19re(t, 1772 (0 .
t”L

Summing inequalities (.34) and ([@33)) for n going from 0 to n( provides estimate [@.32a).

Estimate is obtained with exactly the same reasoning using Definition [.4] of the
elliptic projection (instead of Definition[#.5)) and Proposition #.8]instead of Proposition &9}

In the same way we deduce estimate (4.32b)) with a similar reasoning on I" and Proposi-
tion[2.2)instead of Proposition[2.1]

It remains to prove estimate @.33). For any n € [0, N,

2
—.Mn 2 n €. n
et 13 oy <2 (e, ) = PN (e, )

2 =
L“(2) L2 ©@)

+2 % A(W)Q(Pi”’]v“(tn")f-

reM

Then, applying Proposition t0 the function u(t", -) the first term in the right hand side is
written as follows

e, ) = BN ey

) < Cussize(T) [|lull o< 0,7y 12 () -

L2(Q

The second term is treated as estimate (4.33) that concludes the proof.
O
We can now we concentrate on the error due to the discretization of nonlinear terms. In
this way we begin with the term T - related to the terms g,; and gyoy.
PROPOSITION 4.16. For any t € [0,T), the functions gs and gye defined by (@18)
satisfy the following estimates

(4.362) gon (£, 72 0y < 2% Cisize(T)? |Velt, )i oy
(4.36b) goon (t, 720y < L Clsize(T)? | Vecw(t, )72, »

where L 5 >0( respectively Ly ) is the Lipschitz constant of the function f] (respectively f!).
Moreover, there exists C17 > 0 depending only on f, (and on its derivatives) such that
forany ng € [0, NJ,

Yo (tn+1’ ) — gim(tn7 )
At

2

< CrrME, |10sell 72 (0 2 () Size(T)?

L2(Q)

@37 S° At ‘
n=0

where,

MS, = max (1’ HVCHiM(o,T;LM(Q)) ) HDzCHiw(O,T;L‘”(Q))> :
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Proof . Thanks to definition (#.18) of s, and g, and since f; and f/ are Lipschitz contin-
uous functions, Lemmas [.6|and [.7] yield estimates (#.36).

We concentrate now on estimate (@.37). For any n € [0, N — 1] we define the function
h™ such that for any x € €Q,

h'(x) = f(e(t"™, 2)) = fi(c(t", 2)),
Therefore, for any kx € 9t and for any n € [0, N — 1],
Gon (1" 2) — gon (1", ) = K" () — K™ (x), Vz € K.
Thus, thanks to Lemma 4.6 we have

INIE: . 2
Hgsm (tn—Ha ) — 9m (tnv ')HLz(Q) S 01215126(7—)2 HthHHl(Q) :
Moreover, there exists M, depending only on the Lipschitz constants of the derivatives of f,
(up to 3) such that

t'n.+1
2 4 2 2
||th||H1(Q) < beAt< (HVCHLC’O(O,T;L‘X’(Q)) + HDQCHLOO(QT;LOO(Q))) ~/t" ||atcHL2(Q)
gntl ¢+l

Vel ramay [, 10:7elia + [ |atc||i,z<m>-

Summing these inequalities for n going from 0 to ng gives estimate (#.37). (]
Now we have to deal with the main difficulty of the discretization of nonlinear terms. In
each case the reasoning is similar. Thus we begin by proving the following general result.
LEMMA 4.17. Let us consider a function ¢ € C? (Rz, R) such that all the derivatives up
to the second order are bounded. Then, there exists C1g > 0 depending only on ¢ and on the
mesh regularity veg(T), such that for any ar,br € R” the following estimates hold

(4.38) |é(ar, by, < Cas (Jarl, , + [brl, )

and for any ET € R7,

~ |2
(6lar.br) — 67 b2, < Cus( lar —br 2+ [br — |

1,7
(4.39)
) ~ \2 2
+ Lip,, (bT> llam = b2 0, )’

where

. o~ ,E)C _gﬁ

Li br) =su :
pr (br) ee | des

Moreover for any o, boor € R?™ we have

(4.40) H(b(aaym ba&m) - d)(bamh basm)HLz(F) < C(Cis ||a6£m - bamzHLz(F) .
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Proof . We first give the proof of estimate (4.39). Thanks to the definition of the discrete
H'-seminorm we have

TabT 2
607 br) — 6(br b, = 5 e (220

o=K|LEEint dIC,L
2
ar,b
+ ¥ mecd,c’ﬁ(m>,
o=LEEcqrt dK7£

where for any 0 = k|2 € Eint or 0 = £ € Eczr N E (With £ € IN) we note:

bo(ar,br) = [p(ax,be) — dlac,be)] — [d(be, b)) — d(be, be)] -

Noting that

1
6(ae,be) — d(ae,be) = / (e — a2)0h6(ae + st —ac),be + s(be — be))
(4.41) 0

b — be)a(ac + s(ax — ac),be + (b — be)) Jds
and
olt:) = 60000) = [ (100 = 0101000 + 500 0210+ (0 0.)
(b~ be)b(be + (b — be),be + slbe — b)) )ds.

Then for any o € € the term ¢, (a+, by ) can be written as follows
(4.42) bo(ar,br) = ¢y (ar,br) + 67 (ar, br)
with
1
(b(lj'(a/T7 br) = / (bx — bﬁ)<82¢(az +s(ax —az),be + s(be —b.))

0
— Dop(be + s(be — b.),be + s(be — b))
+ 0o(a, + s(ax —az), b, + s(be —b2))

—019(b, + s(bx —b.),be + s(be — bg)))ds
and
¢a(a7'7b7') = /0 ((a,c —ag) — (be — bﬁ))al(b(aa + s(ax —az), by 4 5(be —b.))ds.

First, we study the term ¢2 (a, by ). Since the function 9; ¢ is bounded we obtain,
‘¢Z’(a7'7 bT)\l,T < |‘61¢HL°° lar — bT‘l,T'
As regards the term ¢. (a, by), we write:

oL(ar,br) = ¢rt(ar,by) + ¢L%(ar,br)
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with

b)c) - (bﬁ _EL)) (82¢(a£ + S(CLK - al:)a b, + S(b;c - ba))

- a%b(bc + S(bIC - bL)y b, + S(b)c - bﬁ))
+ 81¢(a5 + S(CL,C - aﬁ)a b, + S(blc - bﬁ))

O (arby) = /0 (b -

—010(b, + s(be —bz), b, + s(be — bﬁ))>ds
and

1
¢clr’2(aﬁ bT) = / (gfc *Fgc)<82¢(ac + S(QK - a£)7 b, + S(bfc - ba))
0

_a2¢(bc + s(b;c - bL)v b, + S(blc - bc))
+31¢(ac + S(Q)c - az:)a b, + S(b/c - bﬁ))

—019(b, + s(be —b.), b, + s(be — bc)))ds.
Since the functions 9; ¢ and 02¢, are bounded we get

|65 (@r,br)], , < max (016l [926],) [br =br|

)

Finally we have to deal with the term ¢1?(a,,b;). For any i = 1,2, since 01 ;¢ is
bounded we have

8i¢(a£ + S(GIC - a£)7 b, + S(b)c - bﬁ))_ai¢(bﬂ + S(b)c - bﬁ)a b, + S(blc - bﬁ))‘

<|01,i9ll oo |(1 = 8)(az —b.) + s(ax — bi)

and so for any o € £, we obtain

~ ~ 12
be — b,
d;c,z:

(|a,C — b,c|2 +|a, — b£|2) .

((bé’Q(aT, br)

2
rbr) ) < o (max (Jon10l,  101.261),))
K\ L

Since d , < reg(T)d(xy, o) for any £k € 9, for any o € Ec (see definition (2:1)), there
exists C'(reg(7)) such that

|¢<17’2(a7'7 bT)|1’T < C’(reg(T)) max (||81,1¢||L<>o ) ||81,2¢HL00) LlpT (ET) ||afm - bUﬁHLQ(Q) )

and estimate (#.39) yields.

Owing to (@.4T)) we also obtain estimate (4.38) and a similar reasoning gives estimate (@.40).
t

With this result at hand we can now bounded the terms T, (Proposition .18 and 7T,
(Proposition F.19).
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PROPOSITION 4.18. For any ng € [0, NJ, there exists C19 > 0 (depending on f, but
not on At and size(T)) such that,

no 2
3% e (1Bt ) - e+ o e ) - e 7))

<O (1 19~ o) (55 DI+ 32 arfegrt — s )
+ Chosize(T)? ”C”i“(O,T;HI%(Q))
+ Cio ”vCH%‘”(O,T;L“(Q)) (HCOHZg(Q) + H0||2L°°(0,T;H§(Q))) Size(T)2
+ C1g (1 + HVCHiOO(o,T;LOO(Q))) 10:V el 72 0 s c2y) A
+ Co (1 + ch”iw(O,T;L”(Q))) 100l 72 (0 7,112 2y Atsize(T)?.

Proof. We will apply Lemma.T7|twice with a good choice of the functions which intervene.
First, we apply the lemma to the function ¢ defined by ¢(x,y) = f,(z) for any =,y € R.
Then we choose a; = ¢t and b, = b, = PS(c(t" 1)), and so thanks to (#39) we obtain

£ (™) = ST

(4.43) ent12 : C n+1\\\2 || en+1]|2
SCH% ’67—’ |1,T+Llp7’ (PT(C(t ))) ||65T;1 ||L2(Q) :

Now we apply Lemma E.l7 to the function ¢ = d/* with a, = ¢?, b, = ! and ET =
P< (c(t"*1)). Inequality (#.39) implies,

et — (e, )|

e R

(4.44) , )
+Lip, (P5(c(t")” [Jen™ ~ c?nlhm)

Thanks to the mean-value theorem, we have
(4.45) Lip, (PH(c(t"™))) < IVellpo 0.0 @) -

Moreover for any n € [0, N, we have

2
L2(Q)

2
L2(Q) °

(4.46) IS 120, < 211€57

L2(Q) —

+2lEs" |

The definition of the elliptic projection and the volume conservation at the discrete level (3.2))
imply mg, (éx") = Mg (éf;;O , thus thanks to the bound on the initial data (Proposition | s
Lemma[2.7]and Proposition 2.1 we deduce,

2020125
Cq

(4.47) €512 2 < 2C2C3 €577 +

L2(@)

. 2
|Q|size(T)? ||COHH%(Q) .
Moreover Lemma 4.6 and Proposition [4.9] give,

€57 11120y < (Cra + Cra)size(T) (™ ) 2 (o)

(4.48) cem . n
(e |1,T < Cl4SIZ6(T) ||C(t ﬂ')HH{‘i(Q) :
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Thus, gathering estimates (#@.46), (@.47) and {.4])) there exists Cyy > 0 such that for any
n € [0, N],

c,n |2 -c,n |2 : 2 012 2
@49) €52y < Cao 7L + Consize(T)? (|16 By + Neloe sz oy ) -
Now, we have to deal with the terms on the right hand side of (@.44). First, we write

el < (65— e, fe e, Bt — B,

T = |er

Since the projections IFJET”’D and P¢ are linear we can apply Proposition that implies
tn+l
wem o2 .
et e fh < Chamsize(T) [ ouelt, ) e
t’!L
Moreover, thanks to Proposition there exists C' > 0 depending only on € and reg(7)
such that,

2
P (™) — Ple(t™)
1,7
g+l 1 2
<At > mﬁd,c,c/ / WVe(t,x, + s(xe —x,)) - Tieds| dt
o=K|LEEint tm 0
¢ntl 1 2
d
+At > meﬁd,c,ﬁ/ M/ 0Ve(t,x, + s(xe —x,)) - Drepds| dt
o=LEEext tn d)c,z: 0
tn+1
2
<CAt /t [0:Ve(t, ) oo o) dt-
Therefore we have,
t71.+1
7 n |2 2C,M sen |2 : 2
et =y, <alesmtt - ey - 3ChAwsine(TY [ ot i
(4.50) - t
2
+ 3CA¢t /tn [10:Ve(t, ) o g, dt-
Finally, the discrete conservation of the volume (3.2) implies mg, (ci™ — ci) = 0 and so
Proposition[2.T]and Lemma[2.7] give,
@30 et = el < VR [ e,

Summing (#43) and @.44), gathering estimates @.43), @-43), @.49), (@#30) and @.31) and

summing the resulting inequality for n going from O to ny conclude the proof.

O
PROPOSITION 4.19. For any ng € [0, NJ, there exists Co1 > 0 independent of At and
size(T) (but depending on f,) such that,

no
> A1 (B (elt™+) = & (e i)
n=
no 9 no éc,n+1 - éc,n 2
<Oy Y At|es™ |+ CaAt? Y At || 22—
n=0 ’ n=0 At 0,60

. 2 . 2
+ Consize(T)? ||| 2 ) + Carsize(T)* el (o 7,2 ()
+ Cousize(T)* A8 ||0vel| 720, 1.2 (2)) + Cor A 10ecic |22 (0 1t 1y -
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Proof .
Applying inequality (#40) to the function ¢ = f at first, and then, to ¢ = d/* give

87717 am

L (Poonet™1)) = df (e, i)

e < s (et gy + 158~ el )

Owing to Lemma[2.10|and estimate {@#.47) we have

om 20,C%
||eg;;+1HL2m <203 <(1 +2C,C3) e +1|3)T (2)1 |Q|size(T)? HCOHZ;‘:(Q)) :

Moreover, Lemma[4.7)and Proposition f.9) we obtain
658+ sy < (Cra+ Cralsize(T ™) -

Finally we write

||Cg;l - CB‘JﬁHLZ(F) — ||€ggt+1 - easmHL 2(m) + Hec = eam“ﬁ(r)

- {[PEonc(t™ ) = Poe(t)]

L3(r)

ell,D

Then, the linearity of the projection P,,;~ and P, ,,

Lemma 4.7|and Proposition E give

tn+1

e = 582, < (Cra o+ CuaPsize(TYAe [ oue(t i .
and
gt
[Pclt™) = Boet™) [ < A [ it
;

tn+1

2(C3, + I)At/ 0sern(t,

tn

Wi e, .

Thus gathering these estimates and summing the resulting inequality between 0 and n( con-
clude the proof.
t
It remains to be bounded the error 7' due to the fact that the domain {2 is not polygonal.
PROPOSITION 4.20. There exists Coo > 0 depending only on reg(T), f, and f, such
that

2 2
— My ) Moo — Mg
PO U [N Af\ R (s i)
mr 1,7 n=0 Maom L2(r)

S CQQSiZG(T)2 .

Proof . Thanks to the mesh regularity (21), for any x© € 9t we have diam (k) < reg(7T)?m,c
thus owing to Proposition 2.T] we obtain,
M — Mk

= < C(reg(T))size(T).

Mk
Similarly, thanks to Proposition[2.2]for any £ € 990,

Me = Mee < Csige(T)2.
me
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Thus the definition of the H'-seminorm on ) and Lemma give,

2
<0180 (reg(T))?size(T)? ‘P?c(t"“)ﬁj

1,7

Sclsc/(reg(T))QSiZe(T)Q HVC”?LOC(&T;L”(Q)) )

P (Pre(t )

m
my

and

2

Maom — Moom . 2

| e g )| < el T e )
Moo

Comr Com 5 "
LA(T)

L2(1)

Thanks to the bounds on the discrete solutions (see Proposition[4.3)) for any £ € 99 we
have

@7 (cz, et < _max 7]
B(0,M>)

that concludes the proof.
]

4.3.3. End of the proof of Theorem[d.2;. We are now able to apply the discrete Gron-
wall lemma and to conclude the proof.

Gathering Propositions {.13] {.14] [.15] [4.16] [.18] [4.19) and .20} we can estimate
term @17) (cf Proposition F12). Thus, there exists Co3 > 0 (depending on ¢ and p) in-
dependent of size(7") and At such that for any ng € [0, N — 1],

1 no 2 1 2 1 2 1 no 2
1 c,no+1 c,no+1 sentl _ e,
D) n;OAt ’e/%t_n ’1,7’ + 4 ‘egﬁo ’1,7’ + 92 ‘eg;;fo |1,8DJI + 2 n;O ‘eg_n - eg'n|1,7'
Eom | — Eom

At

2
+ Z |ec - dim 1,0

0,0

1
+2 3 At
2n:0

§C23 (SiZG(T) + At2) + CQgAt |ec notl |1 T ]. —+ C23) Z At |€c n|1 T

.c,n+1 .c,n
Com  — Com

0 sc,n+1 n
+ Ot 57 el — een |} 4 Cos AL z At A

0,6om

Thus by choosing At < min ( ) we deduce

et em
‘ep o) o<1+ Cs) nij,o At (eS|} + Cos (size(T)? + At?) .

Thanks to the discrete Gronwall lemma, we have:
}é?”‘]"’l |f¢ < 8(1+4 Cas) (Size(T)2 + At? + At |é$0|iT> 8T (1+Cas)

Estimates [@.47) and @#48), Proposition[.13]on the initial data and Proposition[4.9| conclude
the proof of Theorem [4.2]
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5. Numerical error estimate. In the section we present numerical error estimate which
illustrate the previous result. Several qualitative numerical results which show the different
behaviours of the scheme in function of the properties of the components and the wall are
performed in [20].

The domain 2 is the unit circle and we consider a Delaunay triangular mesh for which
for any K € 9 the center x is the circumcenter of the triangle k (or K is Ok N Eeye # B) and
for any £ € 99M, vy, is the middle of the chord e.. Since we do not know non-trivial solution
of problem (I-I)) we choose an analytical solution (see Fig.[5.1))

1 1
et (x,y)) = 3 cos(2mx + 4t) sin(27y) + 3 vt e (0,7),Y(z,y), € Q

and we modify equation (T-I)) by adding non-zero source terms in equations (T:1a) and
and by considering non-homogeneous Neumann boundary condition for .

L A
e
T

«a»

Fig. 5.1: Analytic solution at time 7" = 0.5

In equation (T.T)) we choose the following parameters: the interface thickness ¢ = 0.5,
the mobility and the surface tension I', = o, = 0.1, the capillarity coefficient o, = 5 and the
relaxation coefficient I", = 10. As regards the non-linear potentials we set f,(c) = f.(¢) =
(1 — ¢)? (see Fig. and we use the semi-implicit discretization.

At final time 7" = 0.5 we plot the relative error between the center-value projection of the

[PF-c(T)—c7 ||

exact solution ¢(7', -) and the approximate solution ¢, namely JIWL’ for the L?-norm

and the H'-seminorm in 2 and on I' in two cases:
e when the time step tends to 0 and a fixed mesh size (see Fig.[5.2]and [5.3);
e when the mesh size tends to 0 and a fixed time step (see Fig.[5.4and [5.3).

First we observe that, as expected, we obtain a first-order convergence in time in each
case (see Fig.[5.2]and[5.3).

For the space convergence we have several behaviours. Noting that when we study the
Laplace problem with a finite-volume two-point flux approximation, from a computational
point of view we observe a second-order convergence for the L?-norm while at the theo-
retical level, we are only able to prove the first-order convergence. We observe here the
same super-convergence phenomena for the L?-norms (see Fig. . As regards the H'(9)-
seminorm (see Fig. [5.54), although we observe a second-order convergence when the mesh
size is coarse, we recover asymptotically the expected first-order convergence. However for
the H'(T")-seminorm (see Fig. we observe a second-order convergence instead of the
first-order. This super-convergence phenomena is owed to the symmetric meshing of the
boundary I'.
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(a) L2-error in Q (b) L?-error on T"
Fig. 5.2: First-order convergence in time for the L?-norms

10! F—o— size(T) =03 E 10 F —o— size(7T) =103 E
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(a) H!-error in

(b) H'-error on T'

Fig. 5.3: First-order convergence in time for the H'-seminorms

Appendix. Proof of Proposition [4.9]

We consider the following problem: find u : {2 — R such that fQ u = o and

(A.1a) —Au=f

(A.1b)

{

with f € L?*(Q) and g € L*(T).

—Arur + Opu = g

in ;

on [

By integrating equation (A:Ta) on all interior control volumes k € 9t and the boundary
condition (A-Tb) on all boundary control volumes £ € 991, the two-point flux approximation

of problem (A-T)) writes as follows.
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Fig. 5.4: Second-order convergence in space for the L2-norms
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Fig. 5.5: Convergence in space for the H'-seminorms

PROBLEM A.l. Find u; € R” such thaty ", con Mxlx = « and,

U — U U — U
(A.2a) > mo% + > meﬁ% =m,Plf, VkeM;
ce&nt K,L cEELTt KoL
(A.2b) Ye ZWer 4 g LT U8 oy Py, e € 99
VEV, dL,z:’ dnyﬁ

We can prove that this problem admits a unique solution.

Because of the complex geometry of 2, it is possible to take into account some points
x € € in the proof of the error estimate. To ensure that all the quantities used in the proof
of Theorem are well defined, we will use an extension in R? of the function u. Since
u € H?(Q), there exists an extension 7 € H?(R?) (that we fix in the sequel) such that:

(A3) u(z) = u(z), Vo€ Qand [|u] g2 g2y < Coa l|ull g2 (o)
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with Ca4 > 0 depending only on (2.
PROPOSITION A.l. The tangential gradient of u : ' — R to the vertex v = |’
satisfies:

u(zer) —ulz,)

Moy,

= Veu(v) -7y . (v)| < / ‘(u o <p)”(<p_1(ac))’ do(z),

Tee!

where @ is an arc-length parametrization of the curve I and T, (V) is the unit tangent
vector to T at point v = |’ going from c to r'.

Proof . Let us consider the points t,,t./,t, € Rsuch that z, = p(t.), ., = p(t.) and
v = (t,), then the Taylor’s formulas give

) utre) (o — t)wo o) () + [ = s)(wo )" (5)ds

v

(b — t)(wo ) (1) - / "t — 5)(uo )" (s)ds.

v

Noting that [t/ —t.| = m,__, we obtain,

) — 1 tpr
M) M) 9 a(v) Fe) = [ (=)o @) ()
Meyppr Moy, o Jty
1 b
b [t =)o 9 (o),
chc’ te
that concludes the proof. O

Thanks to the Taylor’s formulas we can prove the two following propositions.
PROPOSITION A.2. Let £ € O be a boundary control volume and v be a vertex of c,
then the following equality holds,

My, — d£7V =0 (mﬁm’mv) :

PROPOSITION A.3. For any point x € 0 = L € Eyy, the following equality holds
ﬁa';c(x) — M, = O(mﬂ)a

where Dig () is the unit normal vector to o outward to K at point .

THEOREM A.4. Let us assume that the solution u of the continuous problem (A1)
belongs to H2(Q). Let us consider the solution u. to discrete problem Then, there exists
Cas > 0 independent of size(T) such that,

(A.4) ler T, + leomlt oo < Cossize(T)? ||U||i1§(9) )

with er = PSu — ur.

We decompose the proof of Theorem [A.4]into two steps. As a first step, we prove (cf
Proposition [A.3) that the left hand side of inequality (A-) is bounded from above by the
different consistency errors which intervene in the problem. In a second phase, we have to
estimate these different consistency errors.

PROPOSITION A.5. Let us consider the solution u to problem (A1) and the solution ur
to discrete Problem[A1| The the following estimate holds,

|67|i7 + |€awt|iam <Y mede (RIS mecdlc,a(Rifé)z

o=K|LEEint o=LEEcxt

Ry /2
+ £

v=L|c'ev dL7L’

(A.5)

2
+ ||Rgim ||L2(F) )
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where,
. 1 -

i — L / V) - fipdz — M Vo = K| € Ex N Esm

m, K,
1 _

Rt = = [ V(o) Ae(ayde - LTI o pegongn
Me, Jo K,L

Ry .= dr_,c'vr’um(")"?v,z - U\F<xc’) - u\r(xﬁ)a Vv = L|L/ V.

Proof. Let k € 9, we integrate equation on k and we subtract the resulting equality
with equation (A:2a). Thanks to definitions of Rfj},’é and REYE given in Proposmonlmply.

e d (e,c - ez:) +
o= int K,L
(A.6) e - )

_ m R Y me RO, ik € 9.

Ueg)'icnt O_eg’eémt

In the same way let £ € 9901, we integrate equation (A.Tb) on £ and we subtract the resulting
equality with equation (A:2b). Then we obtain,

€, — €pr e, —e R
M, ——— = Y =5 —me, R, Vo€ OM.

d}C,L vEV, dﬁ,c’

(A7) >

vEV, dc,c’

Now we multiply equation (A.6) by e, and summing up over £k € 9 and we multiply
equation (A7) by e, and summing up over £ € 991. Then, summing the resulting equalities
we have,

|67—‘?7T+ |609ﬁ|i89ﬁ = Z ma( 76£)R2nt Z meﬁ( 76£)Rext
o=K|LEEint o=LEEcrt
+ Z Rv L;eﬁ/
v=C|L'ev da !

Owing to the Cauchy-Schwarz and the Young inequalities, we obtain estimate (A.3).
O
With this proposition at hand we are now able to prove Theorem [A-4] by estimating all
the terms of the right hand side of (A-3).
Proof of Theorem

First, let 0 = k| € &;,,; thanks to the Taylor’s formulas we have:

znt _

1—t (D*u((1—t)z +tzg) (e — ), (ze — x))

(1 —t)(D*u((1 =ty +ta.) (x, — ), (. —2)).

Owing to the Jensen inequality and the change of variables (t,x) € [0,1] x ¢ — y =
x4+ t(ze — ) (or (t,z) € [0,1] X 0 — y = x + t(x, — x) for the second term) and since
diam(x) < reg(7)d(zx, o) for any k € M, for any o € E (see definition2.1) we deduce

(Ri",tc)2 < C(reg(T 51ze / \D2 2dy
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modic,
2

Noting that mp = we obtain,

(A.8) Y mode o(RTE)? < Clreg(T))size(T)? || D?ul)?

L2’
o=K|LEEint

Secondly let ¢ = £ € 9, thanks to definition (A3)) of u we have u(z.) = u(z.) and
u(ze) = U(zk), thus since x, — xx = d(zx, . )lix,, the definition of REY!, the jensen
inequality and the Taylor’s formulas imply,

—m
Me .o (RE)? <5d,,. meﬂ / Vii(z)|? do(x)
eL L

(dlc L~ d(x)C7xL Me, / ~ 2
+ 55— Vu(z)|” do(x
otk e [ |9 doto)

Me,

+5d,€L

/|VU( )‘ |n1cc_ﬁan(x)‘2do(x)
5mec // )2 | D% (1 — t)x + tae) | |2 — 2| *dido(x)

d,C LM,

DM,

// 1-1) |D2~ 1—t)x—|—txﬁ| |z, — z|*dtdo(x).

)CLm

Thanks to Propositions and there exists C. > 0 independent of size(7") such
that

ld(zc,2.) —de,c] < Comemy,,, |Me, —m,| < Crmi’ and |fix, — g (2)| < Crmy.

Thus, thanks to a change of variables in the last two integrals we have:
mecd,C,L(Ri’fé)Q SCF(reg(T))size(T)g/ |Vﬂ(m)|2da(x)
L
. 2 2~ 2 o~ 2
+ C(reg(T))size(T) (/ |D u(y)| dy + / |D u(y)| dy)
De D

where D, = {(1 — t)x + tz, : t € [0,1],2 € o = c}. Then, owing to (A3) we obtain:

(A.9) > mepdec(RE)? < Cr(reg(T))Caasize(T)” [lull s

Hl(Q) "
c=LEEeqt

Finally, using definition of Ry . for any v = 2|2’ € V we have,

Zj(mmwnclm”““v+wwwm%»(l - 1>,

My g Mey . de, et

)

that gives,

2 _ 2
Bve <2d; . (Vpu(v)?v,g _ ulze) — ul@e) u(mﬁ)>

c,c’ My,

(u(zer) —u(a,))? (deer — mny)é

m’yLL/ dL,L/m’YCE/

+ 2
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Thanks to Proposition there exists Cr. > 0 independent of size(7) such that,

(mvu/ - dﬁ,z’)Q

dc,a/m'y“;/

< Crsize(T)2.
Moreover,

(wae) =~ ule)? <o, [ Vealo) doo),

Tee!

thus owing to Proposition [A-T] we can write

Ry .’ :
(A.10) > = < 2Cksize(T) w32 ) -

v=C|L'ev dL,L/

Gathering estimates (A8), (A.9) and (A:10) the claim follows. O

We have obtained an error estimate between the center-value projection of the exact so-
lution PS-u and the approximate solution .- for the Laplace problem with Ventcell boundary
conditions for the H'-seminorms. However in order to prove Proposition we also need
to prove an estimate between the exact solution v and the approximate u, for the L?-norms.
We adopt here the same reasoning as that given in [10, Theorem 3.5] for the Laplace problem
with Neumann boundary conditions.

Let 3 € Rsuchthat >~ cop meti(zc) = a witha = u+ ;. Setting €, = w(xx) —ux
forany kx € Mand e, = u(x,) — u, forany £ € I9M, estimate (A4 is also satisfied for &,.
However, thanks to its definition the error €,, has now a zero average. Thus we can apply the
discrete Poincaré inequality (Lemma[2.7) to obtain,

2 . 2
a0y < C2Cassize(T)? ullpe e -
and thanks to the trace inequality (Lemma [2.10) we have
|Eom 22, < 4CFC2Cossize(T)? ul3zz (o) -

To conclude the proof the reasoning is exactly the same than in [10, Theorem 3.5] aside
from the fact that the domain is not polygonal. Thus we only detail here the difference.
Thanks to the regularity of the function u there exists C' > 0 such that,

= url|72 g, < 3I9ACsize(T)? + 3|67 + 3 [[€m 72 g, -

L2(2)

We recall that [, u = 3", cop meti(x) = a, then by integration

Q8, = [ alx)dz —
|28 /Qu(x)x o
and

/ a(z)dx = /(ﬂ(:c) —a(zk))dz+ > (me —my)u(ze) + o
Q Q

KeEM

Thus thanks to the regularity of u, Proposition [2.T]and the mesh regularity (2.1) we can claim
that |Q| 3, < Csize(T) that concludes the proof.

The reasoning is exactly the same for the L?(T")-norm that concludes the claim.
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