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Abstract. In the paper we consider a finite-volume approximation for the Cahn-Hilliard equation with dynamic
boundary conditions. We prove an error estimate for the fully-discrete scheme. We also give numerical simulations
which validate the theoretical result.

Key words. Cahn-Hilliard equation, dynamic boundary condition, finite-volume method, error estimate.

AMS subject classifications. 35K55, 65M08, 65M15, 76M12

1. Introduction.

1.1. The Cahn-Hilliard model. We consider the following Cahn-Hilliard equation with
a dynamic boundary condition which describe the phase separation process of a binary mix-
ture. Find the concentration of one of the two components c : (0, T ) × Ω → R and the
chemical potential µ : (0, T )× Ω→ R such that

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)



∂tc = Γb∆µ; in (0, T )× Ω;

µ = −3

2
εσb∆c+

12

ε
σbf
′
b(c); in (0, T )× Ω;

ε3

64ΓbΓs
∂tcpΓ =

3

8
ε2σbσs∆ΓcpΓ − 6σbf

′
s(cpΓ)− 3

2
εσb∂nc; on (0, T )× Γ;

∂nµ = 0; on (0, T )× Γ;

c(0, .) = c0; in Ω;

where Ω is a connected and bounded domain of R2, ∂n is the normal derivative operator, cpΓ
is the trace of c on the boundary Γ = ∂Ω and ∆Γ is the Laplace-Beltrami operator.

The Cahn-Hilliard model is a diffuse interface model that means that the interfaces have
a small but non-zero thickness ε > 0 (see Fig. 1.1a). Several physical parameters which
describe the physical properties of the mixture components and the wall appear in the model:
a diffusion coefficient called the mobility (supposed to be constant here) Γb > 0, the binary
surface tension coefficient σb > 0 between the two components (which is the density interfa-
cial energy), a capillarity coefficient σs > 0 and a relaxation coefficient Γs > 0. The bulk and
surface potentials fb (typically fb(c) = c2(1 − c)2, see Fig. 1.1b) and fs respectively satisfy
the following dissipativity assumption (useful to prove the discrete dissipation of the energy
given in Proposition 4.3),

lim inf
|c|→∞

f ′′b (c) > 0 and lim inf
|c|→∞

f ′′s (c) > 0,

and the polynomial growth condition for fb,

(1.2) |f ′b(c)| ≤ C(1 + |c|p), ∀c ∈ R,

for some C > 0 and p ∈ [1,+∞[.
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Fig. 1.1: Definition of the interface thickness and double-well structure of fb

The total Cahn-Hilliard energy is written as follows:

(1.3) F(c) =

∫
Ω

Å
3

4
εσb |∇c|2 +

12

ε
σbfb(c)

ã
︸ ︷︷ ︸

:=Fb(c)

+

∫
Γ

Å
3

16
ε2σbσs |∇ΓcpΓ|2 + 6σbfs(cpΓ)

ã
︸ ︷︷ ︸

:=Fs(c)

,

and this energy is dissipated over time:

(1.4)
d

dt
F(c(t, .)) = −Γb

∫
Ω

|∇µ(t, .)|2 − ε3

64ΓbΓs

∫
Γ

|∂tcpΓ(t, .)|2 , t ∈ [0, T [.

We can remark that the bulk energy Fb is the energy associated with the Cahn-Hilliard equa-
tion with Neumann boundary conditions. Definition (1.3) of the total energy induces us to
introduce the function spaces H1

Γ(Ω) = {u ∈ H1(Ω) : upΓ ∈ H1(Γ)} and H2
Γ(Ω) = {u ∈

H2(Ω) : upΓ ∈ H2(Γ)} and the corresponding norms, for i ∈ {1, 2}:

‖u‖HiΓ(Ω) =
Ä
‖u‖2

Hi(Ω)
+ ‖upΓ‖2Hi(Γ)

ä 1
2
, ∀u ∈ Hi

Γ(Ω).

In the analysis to follow, for the sake of simplicity, all the coefficients in problem (1.1)
will be taken equal to one.

1.2. Former results and outline. In the past 30 years, the Cahn-Hilliard equation asso-
ciated with the homogeneous Neumann boundary condition on the order parameter c has been
extensively studied. Recently physicists [14, 15, 19] have introduced the dynamic boundary
condition which allows to take into account the interaction between the components and the
wall, especially the contact-line dynamics (see [17]). In the case of Neumann boundary
conditions the numerical analysis with finite-difference and finite-element methods is well-
understood (see [3, 4, 5, 6, 8, 7, 9, 11, 12, 13, 16, 21] and the references therein). However,
to our knowledge, as far as the problem we are focusing there is no error estimate for the
fully-discrete scheme on a curved domain. There exists finite-difference methods but without
proof of stability or convergence (see [14, 15, 19]). A numerical analysis for the semi-discrete
scheme using a spatial finite-element scheme is done in [2] in a slab with periodic boundary
conditions in the longitudinal direction. In [20] the author propose a finite-volume scheme
and prove the convergence of the numerical scheme towards a weak solution of problem (1.1)
for a smooth non-polygonal domain. In order to prove an error estimate for this problem, we
use the same finite-volume scheme that the one introduced in [20]. Therefore in Section 2 we
present the finite-volume framework namely the finite-volume notation on a curved domain,
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the associated discrete inner products and norms and the functional inequalities used in the
paper. Then Section 3 is devoted to the presentation of the scheme. In Section 4 (and in
the Appendix) we prove the main result of the paper: an error estimate for the fully-discrete
scheme (Theorem 4.2). Finally in Section 5 we present a numerical error estimate for this
model in accordance with the error estimate theorem proved in the previous section.

2. The finite-volume framework.

2.1. Mesh and notation. We recall here the main finite-volume notations used in the
paper (see Fig. 2.1). The usual notation for a polygonal domain can be found for example
in [10] and the notation associated to a curved domain in [20].

v = L|L′
xL

xK

yL

xLi

d
K,L

i

d
K
,L

dL,v

xL′
yL′

d
L ′,v

~nKLi

~nKL

~nσK(xL)

Interior vertex
Boundary vertex

Interior center
Boundary center

Interior mesh M

K
Boundary mesh ∂M

L ∈ ∂M eL chord associated with L

Fig. 2.1: Mesh T associated with Ω

An admissible mesh T of Ω is given by an interior mesh M and a boundary mesh ∂M.
The interior mesh M is a set of disjoint open subsets of Ω, denoted by K and called interior
control volumes, which satisfy:

• Ω = ∪K∈MK;
• if K, L ∈M,K 6= L, then K ∩ L = ∅;
• if K, L ∈M,K 6= L such that the dimension of K̄ ∩ L̄ is equal to 1, then K̄ ∩ L̄ is the

edge of the mesh separating the control volumes K and L;
• if K ∩ Γ contains a finite number of points, then K is polygonal;
• for any K ∈ M, we associate a point xK (referred to as the center of K) such that if
K, L are two neighboring interior control volumes, the edge which separates K and
L, which is denoted by σ = K|L, is orthogonal to the straight line going through xK
and xL.

Let E be the set of edges of the interior mesh M. We decompose E into two disjoints
subsets: the set of interior (flat) edges Eint = {σ ∈ E : σ 6⊂ Γ} and the set of exterior
(curved) edges Eext = {σ ∈ E : σ ⊂ Γ}. Similarly we use the notations E intK and EextK for
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the edges of a given control volume K ∈M. For any σ ∈ E , we note mσ its length. For each
edge σ ∈ E , we associate a diamond cell D defined as follows:

• D = Dσ the quadrangle whose diagonals are the edge σ and the line segment [xK, xL]
if σ ∈ Eint;

• D = Dσ = {tx+ (1− t)xK, t ∈ [0, 1], x ∈ σ} if σ ∈ Eext ∩ EK.
We note mD the Lebesgue measure of D and D is the set of all diamond cells.

Since the domain Ω is not polygonal, we have to introduce an approximate domain Ω =
∪K∈MK of Ω where

• K = K if EK ∩ Eext = ∅;
• K is the polygon obtained by joining all the vertex of K if EK ∩ Eext 6= ∅. We can

notice that in this case K may be not convex and that K may be not included in Ω.
We denote by mK (resp. mK) the Lebesgue measure of K (resp. K) and by mM ∈ RM (resp.
mM ∈ RM) the vector (mK)K∈M (resp. (mK)K∈M). The Lebesgue measures of K and K are
then related by the following relation.

PROPOSITION 2.1. For any interior control volume K ∈M, we have

mK −mK = O
(
diam(K)3

)
.

Therefore, there exists C1, C2 > 0 depending only on Γ such that

C1mK ≤ mK ≤ C2mK.

The boundary mesh ∂M is equal to the set of exterior edges Eext. Thus, the exterior
edges are also boundary control volumes. When we consider them as edges, we denote them
by σ ∈ Eext, and, when we consider them as control volumes of the boundary mesh, we
denote them by L ∈ ∂M (and its length by mL). The chord associated with L is then denoted
by eL (and its length by meL ), and, the quantities mL and meL are related by the following
relation.

PROPOSITION 2.2. For any boundary control volume L ∈ ∂M, we have

meL −mL = O
(
m3
L

)
.

In particular, there exists C3 > 0 independent of size(T ) such that

meL ≤ mL ≤ C3meL .

Letm∂M (resp. m∂M) be the vector (mL)L∈∂M (resp. (meL)L∈∂M). We setmT = (mM,m∂M) ∈
RT (resp. mT = (mM,m∂M) ∈ RT ).

For any control volume L ∈ ∂M, we associate a point xL ∈ L, called the center of the
control volume. For any boundary control volume L ∈ ∂M, let K ∈ M the interior control
volume such that L = σ is an edge of K. Then, we impose that the straight line going through
xK and xL is orthogonal to the chord eL associated with L. Moreover, we define yL as the
orthogonal projection of xL on the chord eL.

Let V be the set of vertices of the mesh M which belongs to Γ. We denote by v = L|L′
the vertex which separates the boundary control volumes L and L′. For any v = L|L′, let
dL,v = d(xL,v) be the approximation of the length mγLv of the arc γLv included in the
boundary control volume L whose ends are xL and v. The measure of the arc γLL′ (which is
the arc whose ends are xL and xL′ and passing through the vertex v) is then approximate by
the distance dL,L′ = dL,v + dL′,v.

If σ = K|L ∈ Eint is an interior edge, we note dK,L the distance between the centers xK
and xL; and ~nKL the normal vector to σ going from K to L. If σ = L ∈ Eext ∩ EK is an
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exterior edge, we note dK,L the distance between the center xK and the point yL; and ~nKL

the normal vector to the chord eL outward to K. In this case, the distance d(xK, xL) and its
approximation dK,L satisfy the following relation.

PROPOSITION 2.3. Let us consider a boundary control volume L ∈ ∂M such that
L = σ ∈ EK where K ∈M is an interior control volume, then we have:

d(xL, yL) = |d(xK, xL)− dK,L| = O(mLmγLv).

Let size(T ) be the maximum of the diameters of the interior control volumes K. We
introduce a positive number reg(T ) that measures the regularity of a given mesh and is useful
to perform the numerical analysis of finite-volume schemes:

(2.1) reg(T ) := max

(
max
K∈M

diam(K)
√
mK

, max
K∈M
σ∈EK

diam(K)

d(xK, σ)
, max
K∈M
σ∈EK

dK,L
d(xK, σ)

)
.

The number reg(T ) should be uniformly bounded when size(T )→ 0.
For the needs of the proof of error estimate theorem, we also define a family of quasi-

uniform meshes.
DEFINITION 2.4 (Quasi-uniform mesh family of Ω).
Let T be a family of meshes of Ω, we define the number regunif(T ) as follows,

regunif(T )
def
= sup

Å
reg(T ), sup

K∈M

size(T )2

mK

ã
.

We say that a mesh family
(
T (i)

)
i∈N is quasi-uniform if regunif(T (i)) is bounded.

2.2. Inner-products and norms. Since the domain Ω is not polygonal, we introduce a
L2-inner product on the domain Ω (and on its boundary Γ = ∂Ω) but also on the approximate
polygonal domain Ω (and on its boundary ∂Ω).

For the space discretization, the finite-volume method associates an unknown value uK ∈
R (resp. uL ∈ R) to each interior (resp. boundary) control volume K ∈ M (resp. L ∈ ∂M).
Thus we note

uT = (uM, u∂M) = ((uK)K∈M, (uL)L∈∂M) ∈ RT = RM × R∂M.

DEFINITION 2.5 (Discrete L2-inner products).
• We define the inner product (., .)

L2(Ω)
on L2(Ω) and the inner product (., .)

M
on

L2(Ω) as follows. For any uM, vM ∈ RM, we have

(uM, vM)
L2(Ω)

=
∑
K∈M

mKuKvK and (uM, vM)
M

=
∑
K∈M

mKuKvK.

We denote by ‖.‖
L2(Ω)

and ‖.‖0,M the associated norms.
• We define the inner product (., .)

L2(Γ)
on L2(Γ) and the inner product (., .)

∂M
on

L2(∂Ω) as follows. For any u∂M, v∂M ∈ R∂M, we have

(u∂M, v∂M)
L2(Γ)

=
∑
L∈∂M

mLuLvL and (u∂M, v∂M)
∂M

=
∑
L∈∂M

meLuLvL.

We denote by ‖.‖
L2(Γ)

and ‖.‖0,∂M the associated norms.
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Owing to Proposition 2.1 (resp. Proposition 2.2), the norms ‖.‖
L2(Ω)

and ‖.‖0,M (resp.
‖.‖

L2(Γ)
and ‖.‖0,∂M) are equivalent (with constants independent on the mesh size).

We also define semi-inner products in RT and R∂M.
DEFINITION 2.6 (DiscreteH1-semidefinite inner products). We define theH1-semidefinite

inner product in RT as follows. For any uT , vT ∈ RT ,

JuT , vT K1,T =
∑

σ=K|L∈Eint

mσ

dK,L
(uK − uL)(vK − vL) +

∑
σ=L∈Eext

meL

dK,L
(uK − uL)(vK − vL).

We also define the H1-semidefinite inner product in R∂M as follows.

Ju∂M, v∂MK1,∂M =
∑

v=L|L′∈V

1

dL,L′
(uL − uL′)(vL − vL′), ∀u∂M, v∂M ∈ R∂M.

We denote by |.|1,T and |.|1,∂M the associated seminorms. Moreover, we define the H1-norms
in RT and R∂M as follows:

‖uT ‖1,T =
Ä
‖uT ‖20,M + |uT |21,T

ä 1
2
, ∀uT ∈ RT ,

‖u∂M‖1,∂M =
Ä
‖u∂M‖20,∂M + |u∂M|21,∂M

ä 1
2
, ∀u∂M ∈ R∂M.

2.3. Functional inequalities. We give here some functional inequalities that we will
use all along the paper. The proof are available in the literature and so we do not give them
here. We consider an admissible mesh T of Ω.

LEMMA 2.7 (Discrete mean Poincaré inequality, [10, Lemma 3.7]). There exists C4 > 0
depending only on Ω such that for any uT ∈ RT ,

‖uM −mΩ (uM)‖
L2(Ω)

≤ C4 |uT |1,T with mΩ (uM) =
1

|Ω|
∑
K∈M

mKuK,∥∥uM −mΩ (uM)
∥∥

0,M
≤ C4 |uT |1,T with mΩ (uM) =

1

|Ω|
∑
K∈M

mKuK.

Thus, we also have:

(2.2)
‖uM‖L2(Ω)

≤ C4 |uT |1,T + |Ω| 12 |mΩ (uM)|,

‖uM‖0,M ≤ C4 |uT |1,T + |Ω| 12 |mΩ (uM)|.

LEMMA 2.8 (Poincaré-Sobolev inequality, [1, Theorem 3.2]). Let 1 ≤ q < +∞, there
exists C5 > 0 depending only on q, Ω and reg(T ) such that

(2.3) ‖uM‖Lq(Ω)
:=

Å ∑
K∈M

mK|uK|q
ã 1
q

≤ C5 ‖uT ‖1,T , ∀uT ∈ RT .

We can also easily prove the following Sobolev inequality on the one dimensional mani-
fold Γ.

LEMMA 2.9. There exists C6 > 0 depending only on Γ such that for any u∂M ∈ R∂M,

sup
L∈∂M

|uL| ≤ C6 ‖u∂M‖1,∂M .

The proof of the following lemma for a polygonal domain is done in [10, Lemma 3.10]
but it can be adapt in our case.
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LEMMA 2.10 (Trace inequality). There exists C7 > 0 depending only on Ω such that
for any uT ∈ RT we have,

‖u∂M‖L2(Γ)
≤ C7

Ä
|uT |1,T + ‖uM‖L2(Ω)

ä
.

We can also remark that for a quasi-uniform mesh family
(
T (i)

)
i∈N (see Definition 2.4)

and for any q ≥ 1, there exists a uniform constant C8 > 0 (depending on q and regunif(T ))
such that,

(2.4) sup
K∈M
|uK| ≤

C8

size(T (i))2/q
‖uM‖Lq(Ω)

, ∀uM ∈ RM.

3. The finite-volume scheme . The section is devoted to the presentation of the numer-
ical scheme. We refer the reader to [20] for the proofs of the energy stability, the existence of
a discrete solution and the convergence analysis.

For the time discretization, let N ∈ N and ∆t = T
N be the time step. For any n ∈

{0, · · · , N} we define tn = n∆t. Then, at time tn, the unknowns are denoted by:

cnT =

Å
(cnK)K∈M
(cnL)L∈∂M

ã
and µnT =

Å
(µnK)K∈M
(µnL)L∈∂M

ã
.

Since µ is associated with the homogeneous Neumann boundary condition, for any L ∈ ∂M
we have µnL = µnK where K ∈M is the interior control volume such that L ⊂ ∂K.

To obtain the finite-volume approximation of problem (1.1) we integrate the continuous
equations (1.1a) and (1.1b) on all interior control volumes K ∈ M and we use a consis-
tent two-point flux approximation for the Laplace operators (associated with the Neumann
boundary condition for µ). Then we integrate dynamic boundary condition (1.1c) on all
boundary control volumes L ∈ ∂M and we use a consistent two-point flux approximation for
the Laplace-Beltrami operator.

As regards the discretization of nonlinear terms f ′b and f ′s (denoted by dfb and dfs re-
spectively) we use two different discretizations (see Definition 3.1): the classical implicit
discretization and a semi-implicit discretization which enables us to obtain an energy esti-
mate unconditionally stable.

The problem is then written as follows.
PROBLEM 3.1. For a given cnT ∈ RT , find (cn+1

T , µn+1
T ) ∈ RT × RT such that for any

K ∈M, L ∈ ∂M,

(3.1a)

(3.1b)

(3.1c)



mK
cn+1
K − cnK

∆t
=−

∑
σ∈EintK

mσ

dK,L

(
µn+1
K − µn+1

L

)
;

mKµ
n+1
K =

∑
σ∈EintK

mσ

dK,L

(
cn+1
K − cn+1

L

)
+

∑
σ∈EextK

meL

dK,L

(
cn+1
K − cn+1

L

)
+mKd

fb(cnK, c
n+1
K );

meL

cn+1
L − cnL

∆t
=−

∑
v∈VL

(
cn+1
L − cn+1

L′

)
dL,L′

−meLd
fs(cnL, c

n+1
L )

− meL

dK,L

(
cn+1
L − cn+1

K

)
.

DEFINITION 3.1 (Discretization of nonlinear terms). The implicit discretization is define
as follows: for any K ∈M, L ∈ ∂M,

dfb(cnK, c
n+1
K ) = f ′b(c

n+1
K ) and dfs(cnL, c

n+1
L ) = f ′s(c

n+1
L ).
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As regards the semi-implicit discretization, for ∗ ∈ {b, s} we note

df∗(x, y) =
f∗(x)− f∗(y)

x− y
,∀x, y, x 6= y and df∗(x, x) = f ′∗(x),∀x.

We remark that in practice we use a polynomial function for the potential f∗ and that
df∗(x, y) is a polynomial function in the variables x, y. Thus, from a computational point of
view, we do not have numerical instability when x is too close to y.

PROPOSITION 3.2. For both discretizations the discrete energy is dissipated as follows:
if cnT is given and (cn+1

T , µn+1
T ) is solution to Problem 3.1, then there exists C9 > 0 indepen-

dent of ∆t and T such that,

FT (cn+1
T )−FT (cnT ) + C9

Å
∆t
∣∣µn+1
T

∣∣2
1,T

+
1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2

0,∂M

+
1

2

∣∣cn+1
T − cnT

∣∣2
1,T

+
1

2

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

ã
≤ 0,

with a condition ∆t ≤ ∆t0 (with ∆t0 depending on the parameters of the equation) for the
implicit discretization.

We note that summing equation (3.1a) for all K ∈ M we have the volume conservation
at the discrete level,

(3.2) |Ω|mΩ (cnM) :=
∑
K∈M

mKc
n
K =

∑
K∈M

mKc
0
K := |Ω|mΩ

(
c0M
)
, ∀n ∈ {1, . . . , N}.

4. Error estimate for the fully-discrete scheme. We can now enter in the heart of
the matter. The most delicate point in the proof of the error estimate (Theorem 4.2) comes
from the nonlinear term f ′b(c) at which we have to pay a special attention. For this, we
draw on methods described in [8, 18] for the Neumann boundary condition and a finite-
element approximation. However some supplementary difficulties are added in our case.
First, the finite-volume framework complicates the study of this term. Indeed, when we
use a conform finite-element method we work (for the space discretization at least) on H1-
conform spaces. That is not the case when we use a finite-volume method where we use
discrete spaces. Moreover, we use here two different discretizations for the nonlinear term f ′b
(see Definition 3.1). The second one, namely the semi-implicit discrization, is more difficult
to study that complicates again the proof of Theorem 4.2.

4.1. Main result. In the section we present the error estimate (Theorem 4.2) between
the center-value projection (see Definition 4.1) of the exact solution and the solution to Prob-
lem 3.1.

DEFINITION 4.1 (Center-value projection).
The center-value projection PcT : C0(Ω)→ RT is defined as follows. For any u ∈ C0(Ω),

we set PcT u = (PcMu,Pc∂Mu) with

PcMu = (PcKu)K∈M = (u(xK))K∈M and Pc∂Mu = (PcLu)L∈∂M = (upΓ(xL))L∈∂M .

THEOREM 4.2 (Error estimate). Let c0 ∈ C2(Ω) and (c, µ) ∈ C3([0, T ] × Ω) ×
C2([0, T ] × Ω) be a solution to the Cahn-Hilliard equation (1.1). Let M > 0 be such that
‖c‖L∞(0,T ;L∞(Ω)) ≤ M and M ′ > M . Then setting c0T = PcT c0, for any solution (cnT , µ

n
T )

to Problem 3.1 satisfying

(4.1) sup

Å
sup
K∈M
|cnK|, sup

L∈∂M
|cnL|
ã
≤M ′, ∀n ∈ J0, NK.
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There exists C10 > 0 (depending on M and M ′) such that the following estimate holds (with
∆t ≤ ∆te),

(4.2) sup
n∈J0,NK

‖PcT c(tn)− cnT ‖1,T + sup
n∈J0,NK

‖Pc∂Mc(tn)− cn∂M‖1,∂M ≤ C10(∆t+size(T )).

With a view to the proof we need some regularity on the potentials, indeed they have to
be Lipschitz continuous functions. With that in mind we will introduce truncated Lipschitz
continuous functions.

The exact solution c of continuous problem (1.1) is supposed to belong to C3([0, T ]×Ω).
Thus, there exists M > 0 such that ‖c‖L∞(0,T ;L∞(Ω)) ≤ M . Let M ′ > M , we choose

truncated potentials ‹fb and ‹fs of the initial potentials fb and fs which satisfy‹fb = fb and ‹fs = fs on [−M ′,M ′]

and which are constants at the infinity. These truncated functions, and all their derivatives, are
Lipschitz continuous. Moreover, the definition of the semi-implicit discretization of nonlinear
terms implies,

dfb(x, y) =

∫ 1

0

f ′b(x+ s(y − x))ds and dfs(x, y) =

∫ 1

0

f ′s(x+ s(y − x))ds.

Thus the semi-implicit discretization of ‹f ′b (resp. ‹f ′s) coincides with dfb (resp. dfs ) on
[−M ′,M ′]2 and is Lipschitz continuous.

Therefore, we can achieve the proof of Theorem 4.2 with the truncated potentials instead
of the initial potentials (and so with cnT a solution to discrete Problem 3.1 but with the trun-
cated potentials). We obtain estimate (4.2) for this problem with constant C10 depending on
M ′. Thus for a mesh belonging to a quasi-uniform mesh family, gathering estimate (2.4),
Lemma 2.8 and Theorem 4.2 we deduce,

sup
K∈M
|PcKc(tn)− cnK| ≤ C5C10C8

Å
∆t

size(T )2/q
+ size(T )1−2/q

ã
.

Moreover, thanks to Lemma 2.9 and Theorem 4.2 we also have:

sup
L∈∂M

|PcLc(tn)− cnL| ≤ C6C10(∆t+ size(T )).

Thus, if ∆t and size(T ) tend to 0 with ∆t ≤ Csize(T )α for a certain α > 0, these estimates
allow us to affirm that bound (4.1) is satisfied for any approximate solution. Moreover, since
the functions fb (resp. fs) and ‹fb (resp. ‹fs) coincide on [−M ′,M ′], if cnT is solution to
discrete Problem 3.1 with the truncated potentials, it is also with the initial potentials (and
reciprocally).

In conclusion, for a quasi-uniform mesh family, if ∆t and size(T ) are related by the
relation ∆t ≤ size(T )α (for an arbitrary value α > 0), then assumption (4.1) is still satisfied
for ∆t and size(T ) small enough and so there exists a solution cnT to discrete Problem 3.1
which satisfies it (even if it can be exist a solution to Problem 3.1 which does not satisfy
bound (4.1)). Thus we can carry out the proof of Theorem 4.2 with the truncated functions
which satisfy all the necessary regularity assumptions. For the sake of simplicity we will omit
the tilde sign in the sequel.

REMARK 4.1. From a computational point of view, we can check that assumption (4.1)
holds when we use the potentials fb and fs.
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In order to prove the error estimate theorem we have to use a priori bounds on the discrete
solution (obtained thanks to the discrete energy estimate given in Proposition 3.2).

PROPOSITION 4.3 (Bounds of the discrete solutions, [20, Proposition 4.4]). For any
c0 ∈ C2(Ω), let c0T = PcT c0 and (cnT , µ

n
T ) ∈ RT × RT be a solution to Problem 3.1. Then,

there exist positive constants M1, M2, M3, M4 and M5 independent of ∆t and size(T ) such
that,

(4.3)

sup
n≤N
‖cnT ‖1,T ≤M1, sup

n≤N
‖cn∂M‖1,∂M ≤M2,

N−1∑
n=0

∆t
∥∥µn+1
T

∥∥2

1,T
≤M3,

N−1∑
n=0

∆t

∥∥∥∥cn+1
T − cnT

∆t

∥∥∥∥2

1,T

≤ M4

∆t

and
N−1∑
n=0

∆t

∥∥∥∥cn+1
∂M − cn∂M

∆t

∥∥∥∥2

0,∂M

+ ∆t2
N−1∑
n=0

∣∣∣∣cn+1
∂M − cn∂M

∆t

∣∣∣∣2
1,∂M

≤M5.

We can remark that in [20] the proposition is proved by choosing the mean-value pro-
jection on all control volumes as initial discrete data for the initial concentration c0. Indeed,
when the initial data is not enough regular, we have to choose this projection to obtain the a
priori bounds. However, when the initial data belongs to C2(Ω) the center-value projection is
sufficient. Indeed, thanks to the mean-value theorem, we obtain a bound on theH1-seminorm
of c0T which allows us to prove the proposition as in [20].

4.2. Discrete projections. With a view to prove Theorem 4.2 we have to define another
projection: the elliptic projection. These projection is in fact the solution of a suitable Laplace
problem and thus depends on the boundary condition that we want to impose. Therefore, the
definition of the elliptic projection for the chemical potential (see Definition 4.4) and for the
order parameter (see Definition 4.5) are different.

DEFINITION 4.4 (Elliptic projection with Neumann boundary conditions).
We define the space H2

N (Ω) = {u ∈ H2(Ω) : ∇u · ~n = 0 on Γ}, then the elliptic
projection Pell,NT : H2

N (Ω) → RT is defined as follows. For any u ∈ H2
N (Ω), Pell,NT u is the

solution to the following discrete Laplace problem.

Find vT ∈ RT such that
∑
K∈M

mKvK =

∫
Ω

u and

(4.4)
∑

σ∈EintK

mσ

vK − vL
dK,L

= −
∫
K

∆u(x)dx, ∀K ∈M.

DEFINITION 4.5 (Elliptic projection with Ventcell boundary conditions).
The elliptic projection Pell,DT : H2

Γ(Ω)→ RT is defined as follows. For any u ∈ H2
Γ(Ω),

Pell,DT u is the solution to the following discrete Laplace problem.

Find vT ∈ RT such that
∑
K∈M

mKvK =

∫
Ω

u and for any K ∈M, L ∈ ∂M,

(4.5)

∑
σ∈EintK

mσ

vK − vL
dK,L

+
∑

σ∈EextK
meL

vK − vL
dK,L

= −
∫
K

∆u(x)dx;

∑
v∈VL

vL − vL′
dL,L′

+meL

vL − vK
dK,L

= −
∫
L

∆ΓupΓ(x)dσ(x) +

∫
L
∇u(x) · ~n(x)dσ(x).
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REMARK 4.2. The elliptic projection is the solution to the finite-volume two-point flux
approximation of the continuous problem

(4.6)

®
−∆v = f in Ω,

−α∆Γv + ∂nv = g on Γ,

with f = −∆u and
• α = 0, g = 0 for the elliptic projection Pell,NT ;
• α = 1, g = −∆Γu+ ∂nu for the elliptic projection Pell,DT .

When u is a time-dependent function, for a fixed time t ∈ R, we will denote Pell,NT (u(t))

and Pell,DT (u(t)) the elliptic projections of the function v = u(t, .).
In order to prove Theorem 4.2 we have to related the different discrete projections to the

solution of the continuous problem (1.1). With this in mind we give below several properties
which will be used all along the proof in Section 4.3.

Thanks to the Taylor’s formulas and the Jensen inequality we can easily prove the fol-
lowing estimate.

LEMMA 4.6. Let u ∈ H2(Ω), there exists C11 > 0 independent of size(T ) such that

‖u− PcMu‖L2(Ω)
≤ C11size(T ) ‖∇u‖

H1(Ω)
.

LEMMA 4.7. Let upΓ ∈ H1(Γ), then there exists C12 > 0 independent of size(T ) such
that,

‖u− Pc∂Mu‖L2(Γ)
≤ C12size(T ) ‖∇ΓupΓ‖L2(Γ)

.

PROPOSITION 4.8. Let u ∈ H2
N (Ω), there exists C13 > 0 depending only on Ω such

that ∥∥∥Pell,NM u− u
∥∥∥
L2(Ω)

≤ C13size(T ) ‖u‖H2(Ω)

and. ∣∣∣Pell,NT u− PcT u
∣∣∣
1,T
≤ C13size(T ) ‖u‖H2(Ω) .

Proof . Thanks to Definition 4.4 of the elliptic projection, Pell,NT u is solution to discrete
problem (4.4). Thus the difference Pell,NT u − PcT u is the error associated to problem (4.6)
with α = g = 0. Thanks to the error estimate for the Laplace problem (4.6) for the two-point
flux approximation scheme (see for example [10, Section 3.2.3]) we obtain the expected
estimates. �

As regards the analogous proposition in the case of Ventcell boundary condition, the
proof does not seem available in the literature and so we detail it in the Appendix.

PROPOSITION 4.9. Let u ∈ H2
Γ(Ω), there exists C14 > 0 depending only on Ω and

reg(T ) such that∥∥∥Pell,DT u− u
∥∥∥
L2(Ω)

+
∥∥∥Pell,D∂M u− u

∥∥∥
L2(Γ)

≤ C14size(T ) ‖u‖H2
Γ(Ω) .

and ∣∣∣Pell,DT u− PcT u
∣∣∣
1,T

+
∣∣∣Pell,D∂M u− Pc∂Mu

∣∣∣
1,∂M

≤ C14size(T ) ‖u‖H2
Γ(Ω) .
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4.3. Proof of Theorem 4.2. This section is devoted to the proof of Theorem 4.2. We
decompose the proof in three steps. First, we use the scheme to decompose the different
components of the error. Then, we control all the terms and prove that they tend to 0 when
the mesh size and the time step tend to 0. Finally we use the discrete Gronwall lemma to
conclude the proof.

In the proof different components of the total error will appear. Thus we decompose the
error as follows.

DEFINITION 4.10 (Error). Let u : (0, T ) × Ω → R and unT be a finite-volume approxi-
mation of u at time tn. We denote by eu,nT ∈ RT the error associated with u at time t = tn

defined as follows,

eu,nT = ëu,nT + ėu,nT with ëu,nT = PcT u(tn)− Pell,∗T u(tn) and ėu,nT = Pell,∗T u(tn)− unT ,

with ∗ = {N,D} depending on the boundary condition associated with u.
We also define ēu,nT = u(tn, ·)− mT

mT
Pell,∗T u(tn).

4.3.1. Different contributions of the error. First, subtracting the scheme and the con-
tinuous problem we identify the different components of the error (Proposition 4.11). Then,
we separate the error into two parts: the error ėT between the elliptic projection of the exact
solution and the discrete solution in the left hand side, and all the other contributions in the
right hand side (Proposition 4.12).

PROPOSITION 4.11. Let us consider a couple (c, µ) solution to the continuous Cahn-
Hilliard equation (1.1) and a couple (cn+1

T , µn+1
T ) solution to the finite-volume scheme (3.1).

Then, the following equality holds

(4.7)

∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
1

∆t

∥∥ėc,n+1
∂M − ėc,n∂M

∥∥2

0,∂M

+
1

2

Ä∣∣ėc,n+1
T

∣∣2
1,T
− |ėc,nT |

2
1,T +

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

ä
+

1

2

Ä∣∣ėc,n+1
∂M

∣∣2
1,∂M

− |ėc,n∂M|
2
1,∂M +

∣∣ėc,n+1
∂M − ėc,n∂M

∣∣2
1,∂M

ä
=∆t

(
Rn+1
c , ėµ,n+1

M

)
L2(Ω)

−
(
ēc,n+1
M − ēc,nM , ėµ,n+1

M

)
L2(Ω)

+
(
ēµ,n+1
M , ėc,n+1

M − ėc,nM

)
L2(Ω)

+
Ä
Rn+1
cpΓ , ėc,n+1

∂M − ėc,n∂M
ä
L2(Γ)

−
Ç
ēc,n+1
∂M − ēc,n∂M

∆t
, ėc,n+1
∂M − ėc,n∂M

å
L2(Γ)

−
Å
f ′b(c(t

n+1, ·))−
mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

ã
L2(Ω)

−
Å
f ′s(cpΓ(tn+1, ·))−

m∂M

m∂M

dfs(cn∂M, c
n+1
∂M ), ėc,n+1

∂M − ėc,n∂M
ã
L2(Γ)

;

where the terms Rn+1
c and Rn+1

cpΓ are defined as follows:

(4.8) Rn+1
c(pΓ)

=
c(pΓ)(t

n+1, x)− c(pΓ)(t
n, x)

∆t
− ∂tc(pΓ)(t

n+1, x).

Proof . Let (c, µ) be a solution to the Cahn-Hilliard equation (1.1). Applying Definition 4.4
of the elliptic projection with Neumann boundary condition to µ, for any K ∈M we have

(4.9)
∫
K
∂tc(t

n+1, x)dx+
∑

σ∈EintK

mσ

Pell,NK µ(tn+1)− Pell,NL µ(tn+1)

dK,L
= 0.
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In the same way, applying Definition 4.5 of the elliptic projection with Ventcell boundary
condition to c, for any K ∈M we have

(4.10)

∑
σ∈EintK

mσ

Pell,DK c(tn+1)− Pell,DL c(tn+1)

dK,L

+
∑

σ∈EextK
meL

Pell,DK c(tn+1)− Pell,DL c(tn+1)

dK,L

+

∫
K
f ′b(c(t

n+1, x))dx−
∫
K
µ(tn+1, x)dx = 0,

and for any L ∈ ∂M,

(4.11)

∑
v∈VL

Pell,DL c(tn+1)− Pell,DL′ c(tn+1)

dL,L′
+meL

Pell,DL c(tn+1)− Pell,DK c(tn+1)

dK,L

+

∫
L
f ′s(cpΓ(tn+1, x))dσ(x) +

∫
L
∂tcpΓ(tn+1, x)dσ(x) = 0,

where K ∈M is the interior control volume such that L ∈ ∂K. Subtracting equation (3.1a) of
discrete problem and equation (4.9) and using definition (4.8) of Rn+1

c imply,

(4.12)

∑
σ∈EintK

mσ

ėµ,n+1
K − ėµ,n+1

L

dK,L
+mK

ėc,n+1
K − ėc,nK

∆t
=

∫
K
Rn+1
c (x)dx

−
∫
K

ēc,n+1
K (x)− ēc,nK (x)

∆t
dx.

Now, we subtract equation (3.1b) of the discrete problem and equation (4.10), then we obtain

(4.13)

∑
σ∈EintK

mσ

ėc,n+1
K − ėc,n+1

L

dK,L
+

∑
σ∈EextK

meL

ėc,n+1
K − ėc,n+1

L

dK,L
−mKėµ,n+1

K

=

∫
K
ēµ,n+1
M dx−

∫
K

Å
f ′b(c(t

n+1, x))−
mK

mK
dfb(cnK, c

n+1
K )

ã
dx.

Subtracting equation (3.1c) of the discrete problem and equation (4.11) we have,

(4.14)

∑
v∈VL

ėc,n+1
L − ėc,n+1

L′

dL,L′
+meL

ėc,n+1
L − ėc,n+1

K

dK,L
+meL

ėc,n+1
L − ėc,nL

∆t

=

∫
L
Rn+1
cpΓ (x)dσ(x)−

∫
L

ēc,n+1
L (x)− ēc,nL (x)

∆t
dσ(x)

−
∫
L

Å
f ′s(cpΓ(tn+1, x))− meL

mL
dfs(cnL, c

n+1
L )

ã
dσ(x).

We multiply equation (4.12) by vK and we sum up over all interior control volumes K ∈M,
we obtain

(4.15)

Jėµ,n+1
T , vT K1,T +

Ç
ėc,n+1
M − ėc,nM

∆t
, vM

å
M

=
(
Rn+1
c , vM

)
L2(Ω)

−
Ç
ēc,n+1
M − ēc,nM

∆t
, vM

å
L2(Ω)

.
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Now, we first multiply equation (4.13) by uK and we sum up over all interior control volumes
K ∈ M. Then, we multiply equation (4.14) by uL and we sum up over all boundary control
volumes L ∈ ∂M. Summing the resulting equalities, we have

(4.16)

Jėc,n+1
T , uT K1,T −

(
ėµ,n+1
M , uM

)
M

+ Jėc,n+1
∂M , u∂MK1,∂M +

Ç
ėc,n+1
∂M − ėc,n∂M

∆t
, u∂M

å
∂M

=
(
ēµ,n+1
M , uM

)
L2(Ω)

+
Ä
Rn+1
cpΓ , u∂M

ä
L2(Γ)

−
Ç
ēc,n+1
∂M − ēc,n∂M

∆t
, u∂M

å
L2(Ω)

−
Å
f ′b(c(t

n+1, ·))−
mM

mM

dfb(cnM, c
n+1
M ), uM

ã
L2(Ω)

−
Å
f ′s(cpΓ(tn+1, ·)−

m∂M

m∂M

dfs(cn∂M, c
n+1
∂M ), u∂M

ã
L2(Γ)

.

Choosing vT = ∆tėµ,n+1
T in equation (4.15) and uT = ėc,n+1

T − ėc,nT in equation (4.16) and
adding the two resulting equalities the claim is proved. �

PROPOSITION 4.12. Let (c, µ) be solution to the Cahn-Hilliard equation (1.1) and
(cn+1
T , µn+1

T ) be solution to the discrete scheme (3.1). Then, for any n0 ∈ J0, NK we have:

(4.17)

1

2

n0∑
n=0

∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
1

2

n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+
1

2

Å
1

2

∣∣ėc,n0+1
T

∣∣2
1,T
−
∣∣ėc,0T ∣∣21,T +

n0∑
n=0

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

ã
+

1

2

Å∣∣ėc,n0+1
∂M

∣∣2
1,∂M

−
∣∣ėc,0∂M∣∣21,∂M +

n0∑
n=0

∣∣ėc,n+1
∂M − ėc,n∂M

∣∣2
1,∂M

ã
≤Tc0 +

n0∑
n=1

∆t |ėc,nT |
2
1,T + TRn+1

c
+ TēT + TgT + Tfb + Tfs + TT ,

where the different error terms are defined as follows:

Tc0 =
∥∥ėc,0M

∥∥2

L2(Ω)
+

5|Ω|
8C1C2

4

mΩ

(
ėc,0M

)2
TRn+1

c
=

7

2
C2

4

n0∑
n=0

∆t
∥∥Rn+1

c

∥∥2

L2(Ω)
+ 2C3

n0∑
n=0

∆t
∥∥∥Rn+1

cpΓ

∥∥∥2

L2(Γ)

TēT =
7

2
C2

4

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)

+ 2C3

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
∂M − ēc,n∂M

∆t

∥∥∥∥∥
2

L2(Γ)

+
1

2

∥∥ēµ,1M

∥∥2

L2(Ω)
+ 2C2

4

∥∥ēµ,n0+1
M

∥∥2

L2(Ω)
+
C2

4

2

n0∑
n=1

∆t

∥∥∥∥∥ ēµ,nM − ēµ,n+1
M

∆t

∥∥∥∥∥
2

L2(Ω)

TgT =
1

2

∥∥gM(t1, ·)
∥∥2

L2(Ω)
+ 4C2

2C
2
4

∥∥gM(tn0+1, ·)
∥∥2

L2(Ω)

+ C2
2C

2
4

n0∑
n=1

∆t

∥∥∥∥gM(tn, ·)− gM(tn+1, ·)
∆t

∥∥∥∥2

L2(Ω)

+ 2C3

n0∑
n=0

∆t
∥∥g∂M(tn+1, ·)

∥∥2

L2(Γ)

Tfb =4
n0∑
n=0

∆t

Å∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1
T )

∣∣2
1,T

+
∣∣∣dfb(cn+1

T , cn+1
T )− dfb(cnT , cn+1

T )
∣∣∣2
1,T

ã
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Tfs =4C3

n0∑
n=0

∆t
∥∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥∥2

L2(Γ)

TT =4
n0∑
n=0

∆t

∣∣∣∣mT −mTmT
f ′b(PcT (c(tn+1)))

∣∣∣∣2
1,T

+ 4C3

n0∑
n=0

∆t

∥∥∥∥m∂M −m∂M

m∂M

dfs(cn∂M, c
n+1
∂M )

∥∥∥∥2

L2(Γ)

The term gM (resp. g∂M) is such that for any K ∈M (resp. L ∈ ∂M),

(4.18)
gM(t, x) = f ′b (c(t, x))− f ′b (c(t, xK)) , ∀x ∈ K, t ∈ R;

g∂M(t, x) = f ′s (c(t, x))− f ′s (c(t, xL)) , ∀x ∈ L, t ∈ R.

Proof . To begin we sum identity (4.7) for n going from 0 to n0, then thanks to defini-
tion (4.18) of the functions gM and g∂M we obtain,

(4.19)

n0∑
n=0

∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+
1

2

Å∣∣ėc,n0+1
T

∣∣2
1,T
−
∣∣ėc,0T ∣∣21,T +

n0∑
n=0

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

ã
+

1

2

Å∣∣ėc,n0+1
∂M

∣∣2
1,∂M

−
∣∣ėc,0∂M∣∣21,∂M +

n0∑
n=0

∣∣ėc,n+1
∂M − ėc,n∂M

∣∣2
1,∂M

ã
=

n0∑
n=0

∆t
(
Rn+1
c , ėµ,n+1

M

)
L2(Ω)

−
n0∑
n=0

(
ēc,n+1
M − ēc,nM , ėµ,n+1

M

)
L2(Ω)

+

n0∑
n=0

(
ēµ,n+1
M , ėc,n+1

M − ėc,nM

)
L2(Ω)

+

n0∑
n=0

Ä
Rn+1
cpΓ , ėc,n+1

∂M − ėc,n∂M
ä
L2(Γ)

−
n0∑
n=0

Ç
ēc,n+1
∂M − ēc,n∂M

∆t
, ėc,n+1
∂M − ėc,n∂M

å
L2(Γ)

−
n0∑
n=0

(
gM(tn+1, ·), ėc,n+1

M − ėc,nM

)
L2(Ω)

−
n0∑
n=0

(
g∂M(tn+1, ·), ėc,n+1

∂M − ėc,n∂M
)
L2(Γ)

−
n0∑
n=0

Å
f ′b
(
PcM(c(tn+1))

)
−
mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

ã
L2(Ω)

−
n0∑
n=0

Å
f ′s
(
Pc∂M(c(tn+1))

)
−
m∂M

m∂M

dfs(cn∂M, c
n+1
∂M ), ėc,n+1

∂M − ėc,n∂M
ã
L2(Γ)

.

To obtain estimate (4.17), we have to apply the Young inequality to all the terms in the right
hand side of (4.19).

• Let us begin by the two first terms in the right hand side of (4.19), namely the terms
where the L2-inner product with ėµ,n+1

M appears. Noting that if vM ∈ RM is a null
average function, for any uM ∈ RM, we have

(uM, vM)
L2(Ω)

= (uM −mΩ (uM), vM)
L2(Ω)

≤ ‖uM −mΩ (uM)‖
L2(Ω)

‖vM‖L2(Ω)
,
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then thanks to the discrete mean Poincaré inequality given in Lemma 2.7, we obtain

(4.20) (uM, vM)
L2(Ω)

≤ C4 |uT |1,T ‖vM‖L2(Ω)
.

The couple (c, µ) is solution to the Cahn-Hilliard equation (1.1) and µ satisfies the
homogeneous Neumann boundary condition which implies for any n ∈ J0, n0K,

(4.21)
∫

Ω

∂tc(t
n+1, x)dx =

∫
∂Ω

∇µ(tn+1, x) · ~n = 0,

and

(4.22)
∫

Ω

(c(tn+1, x)− c(tn, x))dx =

∫
Ω

∫ tn+1

tn
∂tc(s, x)ds = 0.

Then we deduce that for any n ∈ J0, n0K,

(4.23) mΩ

(
Rn+1
c

)
=

∫
Ω

Å
c(tn+1, x)− c(tn, x)

∆t
− ∂tc(tn+1, x)

ã
dx = 0,

and estimate (4.20) allows us to obtain,(
Rn+1
c , ėµ,n+1

M

)
L2(Ω)

≤ C4

∣∣ėµ,n+1
T

∣∣
1,T

∥∥Rn+1
c

∥∥
L2(Ω)

.

Applying the Young inequality we finally get for any n ∈ J0, n0K,

(4.24) ∆t
(
Rn+1
c , ėµ,n+1

M

)
L2(Ω)

≤1

8
∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+ 2C2
4∆t

∥∥Rn+1
c

∥∥2

L2(Ω)
.

Thanks to Definition 4.5 of the elliptic projection, for any n ∈ J0, n0K we also have

mΩ (ēc,nM ) =

∫
Ω

c(tn, ·)−
∑
K∈M

mKPell,DK c(tn) = 0.

Since mΩ

Ä
ēc,n+1
M − ēc,nM

ä
= 0 estimate (4.20) gives,(

ēc,n+1
M − ēc,nM , ėµ,n+1

T

)
L2(Ω)

≤ C4

∣∣ėµ,n+1
T

∣∣
1,T

∥∥ēc,n+1
M − ēc,nM

∥∥
L2(Ω)

and the Young inequality implies for any n ∈ J0, n0K,

(4.25)

(
ēc,n+1
M − ēc,nM , ėµ,n+1

M

)
L2(Ω)

≤1

8
∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+ 2C2
4∆t

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)

.

• Now we focus on the terms whose term ėc,n+1
M − ėc,nM appears in the inner product

on L2(Ω). For the two first we perform a discrete time integration by parts.
Let us begin by the term where the function ēµ,n+1

M intervenes.

n0∑
n=0

(
ēµ,n+1
M , ėc,n+1

M − ėc,nM

)
L2(Ω)

=−
(
ēµ,1M , ėc,0M

)
L2(Ω)

+
(
ēµ,n0+1
M , ėc,n0+1

M

)
L2(Ω)

+
n0∑
n=1

(
ēµ,nM − ēµ,n+1

M , ėc,nM

)
L2(Ω)

.
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Noting that by definition of the elliptic projection (see Definition 4.4) mΩ (ēµ,nM ) =
0, the Cauchy-Schwartz inequality, inequality (4.20) and the Young inequality give,

(4.26)

∣∣∣∣ n0∑
n=0

(
ēµ,n+1
M , ėc,n+1

M − ėc,nM

)
L2(Ω)

∣∣∣∣ ≤ 1

2

∥∥ēµ,1M

∥∥2

L2(Ω)
+

1

2

∥∥ėc,0M

∥∥2

L2(Ω)

+
C2

4

2

n0∑
n=1

∆t

∥∥∥∥∥ ēµ,nM − ēµ,n+1
M

∆t

∥∥∥∥∥
2

L2(Ω)

+
1

2

n0∑
n=1

∆t |ėc,nT |
2
1,T

+
1

8

∣∣ėc,n0+1
T

∣∣2
1,T

+ 2C2
4

∥∥ēµ,n0+1
M

∥∥2

L2(Ω)
.

Considering now the inner product with the term gM(tn+1, ·). Noting that the mean-
value of the function gM(t, ·) is not equal to 0, thanks to the Cauchy-Schwarz in-
equality we have,

∣∣∣∣ n0∑
n=0

(
gM(tn+1, ·), ėc,n+1

M − ėc,nM

)
L2(Ω)

∣∣∣∣ ≤ ∥∥gM(t1, ·)
∥∥
L2(Ω)

∥∥ėc,0M

∥∥
L2(Ω)

+
n0∑
n=1

∥∥gM(tn, ·)− gM(tn+1, ·)
∥∥
L2(Ω)

‖ėc,nM ‖L2(Ω)

+
∥∥gM(tn0+1, ·)

∥∥
L2(Ω)

∥∥ėc,n0+1
M

∥∥
L2(Ω)

.

Definition 4.5 of the elliptic projection and the discrete volume conservation (3.2)
imply that for any n ∈ J0, NK, mΩ (ėc,nM ) = mΩ

Ä
ėc,0M

ä
. Then Proposition 2.1,

Poincaré inequality (2.2) and the Young inequality get,

(4.27)

∣∣∣∣ n0∑
n=0

(
gM(tn+1, ·), ėc,n+1

M − ėc,nM

)
L2(Ω)

∣∣∣∣ ≤ 1

2

∥∥gM(t1, ·)
∥∥2

L2(Ω)

+
1

2

∥∥ėc,0M

∥∥2

L2(Ω)
+ 4C2

2C
2
4

∥∥gM(tn0+1, ·)
∥∥2

L2(Ω)
+

1

8

∣∣ėc,n0+1
T

∣∣2
1,T

+
5|Ω|

8C1C2
4

mΩ

(
ėc,0M

)2
+

1

2

n0∑
n=1

∆t |ėc,nT |
2
1,T

+ C2
2C

2
4

n0∑
n=1

∆t

∥∥∥∥gM(tn, ·)− gM(tn+1, ·)
∆t

∥∥∥∥2

L2(Ω)

.

As regards the last term where the inner product with ėc,n+1
M − ėc,nM appears we have

to use the scheme. Noting thatÅ
f ′b
(
PcM(c(tn+1))

)
−
mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

ã
L2(Ω)

=

Ç
mM

mM

f ′b
(
PcM(c(tn+1))

)
− dfb(cnM, cn+1

M ), ėc,n+1
M − ėc,nM

å
M

,

and choosing vT = ∆t
(
mM

mM
f ′b(PcT (c(tn+1)))− dfb(cnT , cn+1

T )
)

in identity (4.15)
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we obtain,Å
f ′b
(
PcM(c(tn+1))

)
−
mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

ã
L2(Ω)

= −∆tJėµ,n+1
T ,

mT
mT

f ′b(PcT (c(tn+1)))− dfb(cnT , cn+1
T )K1,T

+∆t

Ç
Rn+1
c ,

mM

mM

f ′b(PcM(c(tn+1)))− dfb(cnM, cn+1
M )

å
L2(Ω)

−
Ç
ēc,n+1
M − ēc,nM ,

mM

mM

f ′b(PcM(c(tn+1)))− dfb(cnM, cn+1
M )

å
L2(Ω)

.

Since mΩ

(
Rn+1
c

)
= mΩ

Ä
ēc,n+1
M − ēc,nM

ä
= 0, the Cauchy-Schwarz inequality and

inequality (4.20) imply,Å
f ′b
(
PcM(c(tn+1))

)
−
mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

ã
L2(Ω)

≤ ∆t

(∣∣ėµ,n+1
T

∣∣
1,T

+ C4

∥∥Rn+1
c

∥∥
L2(Ω)

+ C4

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
L2(Ω)

)
∣∣∣∣mTmT f ′b(PcT (c(tn+1)))− dfb(cnT , cn+1

T )

∣∣∣∣
1,T

.

Recalling that for any x ∈ R, dfb(x, x) = f ′b(x) (see Definition 3.1) and applying
the Young inequality we deduce,

(4.28)

Å
f ′b
(
PcM(c(tn+1))

)
−
mM

mM

dfb(cnM, c
n+1
M ), ėc,n+1

M − ėc,nM

ã
L2(Ω)

≤1

4
∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
3

2
C2

4∆t

(∥∥Rn+1
c

∥∥2

L2(Ω)
+

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)

)

+ 4∆t

∣∣∣∣mT −mTmT
f ′b(PcT (c(tn+1)))

∣∣∣∣2
1,T

+ 4∆t
∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1

T )
∣∣2
1,T

+ 4∆t
∣∣∣dfb(cn+1

T , cn+1
T )− dfb(cnT , cn+1

T )
∣∣∣2
1,T

.

• Finally we focus on the terms due to the dynamic boundary condition, namely the
terms where the inner product in L2(Γ) appears.
According to the Cauchy-Scwarz inegality, the Young inequality and the equivalence
of norms ‖.‖0,∂M and ‖.‖

L2(Γ)
, for any u∂M ∈ R∂M we have

(4.29)

(
u∂M, ė

c,n+1
∂M − ėc,n∂M

)
L2(Γ)

≤1

8
∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+ 2C3∆t ‖u∂M‖2L2(Γ)
.

Choosing u∂M = Rn+1
cpΓ , then u∂M =

ēc,n+1
∂M

−ēc,n
∂M

∆t and finally u∂M = g∂M(tn+1, ·)
in equation (4.29) we can control the first three terms.
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For the last term we set u∂M = f ′s
(
Pc∂M(c(tn+1))

)
− m∂M

m∂M
dfs(cn∂M, c

n+1
∂M ) in equa-

tion (4.29) and noting that∥∥∥∥f ′s (Pc∂M(c(tn+1))
)
−
m∂M

m∂M

dfs(cn∂M, c
n+1
∂M )

∥∥∥∥
L2(Γ)

≤
∥∥∥∥m∂M −m∂M

m∂M

dfs(cn∂M, c
n+1
∂M )

∥∥∥∥
L2(Γ)

+
∥∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥∥
L2(Γ)

,

we obtain

(4.30)

−
Å
f ′s
(
Pc∂M(c(tn+1))

)
−
m∂M

m∂M

dfs(cn∂M, c
n+1
∂M ), ėc,n+1

∂M − ėc,n∂M
ã
L2(Γ)

≤1

8
∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+ 4C3∆t

∥∥∥∥m∂M −m∂M

m∂M

dfs(cn∂M, c
n+1
∂M )

∥∥∥∥2

L2(Γ)

+ 4C3∆t
∥∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥∥2

L2(Γ)

.

Gathering inequalities (4.24)–(4.30) in equation (4.19), we obtain estimate (4.17).
�

4.3.2. Estimate of the residual terms. In order to apply the discrete Gronwall lemma,
we have to estimate all the terms in the right hand side of inequality (4.17) independently of
n.

We begin by a bound on the initial data.
PROPOSITION 4.13. Let c0 ∈ C2(Ω) and c0T = PcT c0. Then for some C15 > 0 we have

mΩ

(
ėc,0M

)
+mΩ

(
ėc,0M

)
+
∥∥ėc,0M

∥∥
L2(Ω)

+
∣∣ėc,0T ∣∣1,T +

∣∣ėc,0∂M∣∣1,∂M ≤ C15size(T )
∥∥c0∥∥

H2
Γ(Ω)

.

Proof . Estimates of the (semi)norms are only a direct consequence of the definition of c0T
and Proposition 4.9 (associated with Lemma 4.6 for the L2-norm).

Then owing to Proposition 2.1 and the Cauchy-Schwarz inequality we deduce

mΩ

(
ėc,0M

)
≤
Å

C2

C1|Ω|

ã 1
2 ∥∥ėc,0M

∥∥
L2(Ω)

and mΩ

(
ėc,0M

)
≤ 1

|Ω| 12
∥∥ėc,0M

∥∥
L2(Ω)

and the L2-estimate gives the claim. �
Then we study the term TRn+1

c
about the error of the time discretization.

PROPOSITION 4.14. For any n0 ∈ J0, NK, the remainder termsRn+1
c andRn+1

cpΓ defined
by (4.8) satisfy

(4.31)

n0∑
n=0

∆t
∥∥Rn+1

c

∥∥2

L2(Ω)
≤ ‖∂ttc‖2L2(0,T ;L2(Ω)) ∆t2,

n0∑
n=0

∆t
∥∥∥Rn+1

cpΓ

∥∥∥2

L2(Γ)

≤ ‖∂ttcpΓ‖2L2(0,T ;L2(Γ)) ∆t2.
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Proof . The reasoning is the same for the two estimates. Thus, we only give here the proof for
the first term. Applying the Taylor’s theorem to the term Rn+1

c defined by (4.8), we deduce

Rn+1
c (x) =

1

∆t

∫ tn+1

tn
(tn − s)∂ttc(s, x)ds.

Then we have

∥∥Rn+1
c

∥∥2

L2(Ω)
≤ 1

∆t2

(∫ tn+1

tn
(tn − s)2ds

)(∫ tn+1

tn
‖∂ttc(s, ·)‖2L2(Ω)

ds

)

≤∆t

(∫ tn+1

tn
‖∂ttc(s, ·)‖2L2(Ω)

ds

)
,

and summing these inequalities for n going from 0 to n0 we conclude the proof. �
Now we are interested in the term TēT concerning the error between the exact solution

and its elliptic projection.
PROPOSITION 4.15. There exists C16 > 0 such that for any n0 ∈ J0, NK the following

estimates hold

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
M − ēc,nM

∆t

∥∥∥∥∥
2

L2(Ω)

≤ C2
16size(T )2 ‖∂tc‖2L2(0,T ;H2

Γ(Ω)) ,(4.32a)

n0∑
n=0

∆t

∥∥∥∥∥ ēc,n+1
∂M − ēc,n∂M

∆t

∥∥∥∥∥
2

L2(Γ)

≤ C2
16size(T )2 ‖∂tc‖2L2(0,T ;H2

Γ(Ω)) ,(4.32b)

n0∑
n=0

∆t

∥∥∥∥∥ ēµ,n+1
M − ēµ,nM

∆t

∥∥∥∥∥
2

L2(Ω)

≤ C2
16size(T )2 ‖∂tµ‖2L2(0,T ;H2(Ω)) .(4.32c)

Moreover, for any n ∈ J0, NK we have

(4.33) ‖ēµ,nM ‖L2(Ω)
≤ C16size(T ) ‖µ‖L∞(0,T ;H2(Ω)) .

Proof .
We begin by proving estimates (4.32). Thanks to Definition 4.10 we have∥∥ēc,n+1
M − ēc,nM

∥∥2

L2(Ω)

≤ 2
∥∥∥(c(tn+1, ·)− c(tn, ·)

)
−
(
Pell,DM c(tn+1, ·)− Pell,DM c(tn, ·)

)∥∥∥2

L2(Ω)

+2
∑
K∈M

∫
K

Å
mK −mK

mK

ã2 (
Pell,DK c(tn+1, ·)− Pell,DK c(tn, ·)

)2
.

Owing to the linearity of the elliptic projection (see Definition 4.5) and Proposition 4.9, the
first term in the right-hand side satisfies

(4.34)

∥∥∥(c(tn+1, ·)− c(tn, ·)
)
−
(
Pell,DM c(tn+1, ·)− Pell,DM c(tn, ·)

)∥∥∥2

L2(Ω)

≤ C2
14∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω)dt.
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Moreover, thanks to Proposition 2.1 and the mesh regularity (2.1) for any K ∈ M we
have mK −mK ≤ Creg(T )2mKdiam(K) thus,

∑
K∈M

∫
K

Å
mK −mK

mK

ã2 (
Pell,DK c(tn+1, ·)− Pell,DK c(tn, ·)

)2
≤ C(reg(T ))size(T )2

∥∥∥Pell,DM c(tn+1, ·)− Pell,DM c(tn, ·)
∥∥∥2

L2(Ω)

and so Proposition 4.9 yields,

(4.35)

∑
K∈M

∫
K

Å
mK −mK

mK

ã2 (
Pell,DK c(tn+1, ·)− Pell,DK c(tn, ·)

)2
≤ 2C(reg(T ))(C2

14 + 1)∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω) dt.

Summing inequalities (4.34) and (4.35) for n going from 0 to n0 provides estimate (4.32a).
Estimate (4.32c) is obtained with exactly the same reasoning using Definition 4.4 of the

elliptic projection (instead of Definition 4.5) and Proposition 4.8 instead of Proposition 4.9.
In the same way we deduce estimate (4.32b) with a similar reasoning on Γ and Proposi-

tion 2.2 instead of Proposition 2.1.
It remains to prove estimate (4.33). For any n ∈ J0, NK,

‖ēµ,nM ‖
2
L2(Ω)

≤2
∥∥∥µ(tn, ·)− Pell,NM µ(tn, ·)

∥∥∥2

L2(Ω)

+ 2
∑
K∈M

∫
K

Å
mK −mK

mK

ã2 (
Pell,NK µ(tn, ·)

)2
.

Then, applying Proposition 4.8 to the function µ(tn, ·) the first term in the right hand side is
written as follows∥∥∥µ(tn, ·)− Pell,NM µ(tn)

∥∥∥
L2(Ω)

≤ C13size(T ) ‖µ‖L∞(0,T ;H2(Ω)) .

The second term is treated as estimate (4.35) that concludes the proof.
�

We can now we concentrate on the error due to the discretization of nonlinear terms. In
this way we begin with the term TgT related to the terms gM and g∂M.

PROPOSITION 4.16. For any t ∈ [0, T ], the functions gM and g∂M defined by (4.18)
satisfy the following estimates

‖gM(t, ·)‖2
L2(Ω)

≤ 2L2
f ′
b
C2

11size(T )2 ‖∇c(t, ·)‖2
H1(Ω)

,(4.36a)

‖g∂M(t, ·)‖2
L2(Γ)

≤ L2
f ′s
C2

12size(T )2 ‖∇ΓcpΓ(t, ·)‖2
L2(Γ)

,(4.36b)

where Lf ′
b
> 0 (respectively Lf ′s ) is the Lipschitz constant of the function f ′b (respectively f ′s).

Moreover, there exists C17 > 0 depending only on fb (and on its derivatives) such that
for any n0 ∈ J0, NK,

(4.37)
n0∑
n=0

∆t

∥∥∥∥gM(tn+1, ·)− gM(tn, ·)
∆t

∥∥∥∥2

L2(Ω)

≤ C17M
c
∞ ‖∂tc‖

2
L2(0,T ;H2(Ω)) size(T )2

where,

M c
∞ = max

Ä
1, ‖∇c‖4L∞(0,T ;L∞(Ω)) ,

∥∥D2c
∥∥2

L∞(0,T ;L∞(Ω))

ä
.
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Proof . Thanks to definition (4.18) of gM and g∂M and since f ′b and f ′s are Lipschitz contin-
uous functions, Lemmas 4.6 and 4.7 yield estimates (4.36).

We concentrate now on estimate (4.37). For any n ∈ J0, N − 1K we define the function
hn such that for any x ∈ Ω,

hn(x) = f ′b(c(t
n+1, x))− f ′b(c(tn, x)),

Therefore, for any K ∈M and for any n ∈ J0, N − 1K,

gM(tn+1, x)− gM(tn, x) = hn(x)− hn(xK), ∀x ∈ K.

Thus, thanks to Lemma 4.6 we have∥∥gM(tn+1, ·)− gM(tn, ·)
∥∥2

L2(Ω)
≤ C2

11size(T )2 ‖∇hn‖2
H1(Ω)

.

Moreover, there exists Mfb depending only on the Lipschitz constants of the derivatives of fb
(up to 3) such that

‖∇hn‖2
H1(Ω)

≤Mfb∆t

( Ä
‖∇c‖4L∞(0,T ;L∞(Ω)) +

∥∥D2c
∥∥2

L∞(0,T ;L∞(Ω))

ä∫ tn+1

tn
‖∂tc‖2L2(Ω)

+ ‖∇c‖2L∞(0,T ;L∞(Ω))

∫ tn+1

tn
‖∂t∇c‖2L2(Ω)

+

∫ tn+1

tn
‖∂tc‖2H2(Ω)

)
.

Summing these inequalities for n going from 0 to n0 gives estimate (4.37). �
Now we have to deal with the main difficulty of the discretization of nonlinear terms. In

each case the reasoning is similar. Thus we begin by proving the following general result.
LEMMA 4.17. Let us consider a function φ ∈ C2(R2,R) such that all the derivatives up

to the second order are bounded. Then, there exists C18 > 0 depending only on φ and on the
mesh regularity reg(T ), such that for any aT , bT ∈ RT the following estimates hold

(4.38) |φ(aT , bT )|1,T ≤ C18

Ä
|aT |1,T + |bT |1,T

ä
and for any b̃T ∈ RT ,

(4.39)
|φ(aT , bT )− φ(bT , bT )|21,T ≤ C18

Å
|aT − bT |21,T +

∣∣∣bT − b̃T ∣∣∣2
1,T

+ LipT
Ä
b̃T
ä2
‖aM − bM‖2L2(Ω)

ã
,

where

LipT
Ä
b̃T
ä

= sup
σ∈E

∣∣∣∣∣ b̃K − b̃LdK,L

∣∣∣∣∣ .
Moreover for any a∂M, b∂M ∈ R∂M we have

(4.40) ‖φ(a∂M, b∂M)− φ(b∂M, b∂M)‖
L2(Γ)

≤ C18 ‖a∂M − b∂M‖L2(Γ)
.
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Proof . We first give the proof of estimate (4.39). Thanks to the definition of the discrete
H1-seminorm we have

|φ(aT , bT )− φ(bT , bT )|21,T =
∑

σ=K|L∈Eint
mσdK,L

Å
φσ(aT , bT )

dK,L

ã2

+
∑

σ=L∈Eext
meLdK,L

Å
φσ(aT , bT )

dK,L

ã2

.

where for any σ = K|L ∈ Eint or σ = L ∈ Eext ∩ EK (with K ∈M) we note:

φσ(aT , bT ) = [φ(aK, bK)− φ(aL, bL)]− [φ(bK, bK)− φ(bL, bL)] .

Noting that

(4.41)
φ(aK, bK)− φ(aL, bL) =

∫ 1

0

Å
(aK − aL)∂1φ(aL + s(aK − aL), bL + s(bK − bL))

+(bK − bL)∂2φ(aL + s(aK − aL), bL + s(bK − bL))

ã
ds

and

φ(bK, bK)− φ(bL, bL) =

∫ 1

0

Å
(bK − bL)∂1φ(bL + s(bK − bL), bL + s(bK − bL))

+ (bK − bL)∂2φ(bL + s(bK − bL), bL + s(bK − bL))

ã
ds.

Then for any σ ∈ E the term φσ(aT , bT ) can be written as follows

(4.42) φσ(aT , bT ) = φ1
σ(aT , bT ) + φ2

σ(aT , bT )

with

φ1
σ(aT , bT ) =

∫ 1

0

(bK − bL)

Å
∂2φ(aL + s(aK − aL), bL + s(bK − bL))

− ∂2φ(bL + s(bK − bL), bL + s(bK − bL))

+ ∂1φ(aL + s(aK − aL), bL + s(bK − bL))

− ∂1φ(bL + s(bK − bL), bL + s(bK − bL))

ã
ds

and

φ2
σ(aT , bT ) =

∫ 1

0

Å
(aK − aL)− (bK − bL)

ã
∂1φ(aL + s(aK − aL), bL + s(bK − bL))ds.

First, we study the term φ2
σ(aT , bT ). Since the function ∂1φ is bounded we obtain,∣∣φ2

σ(aT , bT )
∣∣
1,T
≤ ‖∂1φ‖L∞ |aT − bT |1,T .

As regards the term φ1
σ(aT , bT ), we write:

φ1
σ(aT , bT ) = φ1,1

σ (aT , bT ) + φ1,2
σ (aT , bT )
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with

φ1,1
σ (aT , bT ) =

∫ 1

0

(
(bK − b̃K)− (bL − b̃L)

)Å
∂2φ(aL + s(aK − aL), bL + s(bK − bL))

− ∂2φ(bL + s(bK − bL), bL + s(bK − bL))

+ ∂1φ(aL + s(aK − aL), bL + s(bK − bL))

− ∂1φ(bL + s(bK − bL), bL + s(bK − bL))

ã
ds

and

φ1,2
σ (aT , bT ) =

∫ 1

0

(̃bK − b̃L)

Å
∂2φ(aL + s(aK − aL), bL + s(bK − bL))

−∂2φ(bL + s(bK − bL), bL + s(bK − bL))

+∂1φ(aL + s(aK − aL), bL + s(bK − bL))

−∂1φ(bL + s(bK − bL), bL + s(bK − bL))

ã
ds.

Since the functions ∂1φ and ∂2φ, are bounded we get∣∣φ1,1
σ (aT , bT )

∣∣
1,T
≤ max (‖∂1φ‖L∞ , ‖∂2φ‖L∞)

∣∣∣bT − b̃T ∣∣∣
1,T

.

Finally we have to deal with the term φ1,2
σ (aT , bT ). For any i = 1, 2, since ∂1,iφ is

bounded we have∣∣∣∣∂iφ(aL + s(aK − aL), bL + s(bK − bL))−∂iφ(bL + s(bK − bL), bL + s(bK − bL))

∣∣∣∣
≤‖∂1,iφ‖L∞

∣∣∣∣(1− s)(aL − bL) + s(aK − bK)

∣∣∣∣.
and so for any σ ∈ E , we obtainÅ

φ1,2
σ (aT , bT )

dK,L

ã2

≤ 2
(
max

(
‖∂1,1φ‖L∞ , ‖∂1,2φ‖L∞

))2 ∣∣∣∣∣ b̃K − b̃LdK,L

∣∣∣∣∣
2

(
|aK − bK|2 + |aL − bL|2

)
.

Since dK,L ≤ reg(T )d(xK, σ) for any K ∈ M, for any σ ∈ EK (see definition (2.1)), there
exists C(reg(T )) such that∣∣φ1,2
σ (aT , bT )

∣∣
1,T
≤ C(reg(T )) max

(
‖∂1,1φ‖L∞ , ‖∂1,2φ‖L∞

)
LipT

Ä
b̃T
ä
‖aM − bM‖L2(Ω)

,

and estimate (4.39) yields.
Owing to (4.41) we also obtain estimate (4.38) and a similar reasoning gives estimate (4.40).

�
With this result at hand we can now bounded the terms Tfb (Proposition 4.18) and Tfs

(Proposition 4.19).
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PROPOSITION 4.18. For any n0 ∈ J0, NK, there exists C19 > 0 (depending on fb but
not on ∆t and size(T )) such that,

n0∑
n=0

∆t

Å∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1
T )

∣∣2
1,T

+
∣∣∣dfb(cn+1

T , cn+1
T )− dfb(cnT , cn+1

T )
∣∣∣2
1,T

ã
≤C19

Ä
1 + ‖∇c‖2L∞(0,T ;L∞(Ω))

äÅn0+1∑
n=1

∆t |ėc,nT |
2
1,T +

n0∑
n=0

∆t
∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

ã
+ C19size(T )2 ‖c‖2L∞(0,T ;H2

Γ(Ω))

+ C19 ‖∇c‖2L∞(0,T ;L∞(Ω))

Ä∥∥c0∥∥2

H2
Γ(Ω)

+ ‖c‖2L∞(0,T ;H2
Γ(Ω))

ä
size(T )2

+ C19

Ä
1 + ‖∇c‖2L∞(0,T ;L∞(Ω))

ä
‖∂t∇c‖2L2(0,T ;L∞(Ω)) ∆t2

+ C19

Ä
1 + ‖∇c‖2L∞(0,T ;L∞(Ω))

ä
‖∂tc‖2L2(0,T ;H2

Γ(Ω)) ∆t2size(T )2.

Proof . We will apply Lemma 4.17 twice with a good choice of the functions which intervene.
First, we apply the lemma to the function φ defined by φ(x, y) = f ′b(x) for any x, y ∈ R.
Then we choose aT = cn+1

T and bT = b̃T = PcT (c(tn+1)), and so thanks to (4.39) we obtain

(4.43)

∣∣f ′b(PcT (c(tn+1)))− f ′b(cn+1
T )

∣∣2
1,T

≤ C18

Å ∣∣ec,n+1
T

∣∣2
1,T

+ LipT
(
PcT (c(tn+1))

)2 ∥∥ec,n+1
M

∥∥2

L2(Ω)

ã
.

Now we apply Lemma 4.17 to the function φ = dfb with aT = cnT , bT = cn+1
T and b̃T =

PcT (c(tn+1)). Inequality (4.39) implies,

(4.44)

∣∣∣dfb(cn+1
T , cn+1

T )− dfb(cnT , cn+1
T )

∣∣∣2
1,T
≤ C18

Å ∣∣cn+1
T − cnT

∣∣2
1,T

+
∣∣ec,n+1
T

∣∣2
1,T

+LipT
(
PcT (c(tn+1))

)2 ∥∥cn+1
M − cnM

∥∥2

L2(Ω)

ã
.

Thanks to the mean-value theorem, we have

(4.45) LipT
(
PcT (c(tn+1))

)
≤ ‖∇c‖L∞(0,T ;L∞(Ω)) .

Moreover for any n ∈ J0, NK, we have

(4.46) ‖ec,nM ‖
2
L2(Ω)

≤ 2 ‖ėc,nM ‖
2
L2(Ω)

+ 2 ‖ëc,nM ‖
2
L2(Ω)

.

The definition of the elliptic projection and the volume conservation at the discrete level (3.2)
imply mΩ (ėc,nM ) = mΩ

Ä
ėc,0M

ä
, thus thanks to the bound on the initial data (Proposition 4.13),

Lemma 2.7 and Proposition 2.1 we deduce,

(4.47) ‖ėc,nM ‖
2
L2(Ω)

≤ 2C2C
2
4 |ėc,nT |

2
1,T +

2C2C
2
15

C1
|Ω|size(T )2

∥∥c0∥∥2

H2
Γ(Ω)

.

Moreover Lemma 4.6 and Proposition 4.9 give,

(4.48)
‖ëc,nM ‖L2(Ω)

≤ (C11 + C14)size(T ) ‖c(tn, ·)‖H2
Γ(Ω)

|ëc,nM |1,T ≤ C14size(T ) ‖c(tn, ·)‖H2
Γ(Ω) .
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Thus, gathering estimates (4.46), (4.47) and (4.48) there exists C20 > 0 such that for any
n ∈ J0, NK,

(4.49) ‖ec,nM ‖
2
L2(Ω)

≤ C20 |ėc,nT |
2
1,T + C20size(T )2

Ä∥∥c0∥∥2

H2
Γ(Ω)

+ ‖c‖2L∞(0,T ;H2
Γ(Ω))

ä
.

Now, we have to deal with the terms on the right hand side of (4.44). First, we write∣∣cn+1
T − cnT

∣∣
1,T
≤
∣∣ėc,n+1
T − ėc,nT

∣∣
1,T

+
∣∣ëc,n+1
T − ëc,nT

∣∣
1,T

+
∣∣PcT c(tn+1)− PcT c(tn)

∣∣
1,T

.

Since the projections Pell,DT and PcT are linear we can apply Proposition 4.9 that implies∣∣ëc,n+1
T − ëc,nT

∣∣2
1,T
≤ C2

14∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω) dt.

Moreover, thanks to Proposition 2.3 there exists C > 0 depending only on Ω and reg(T )
such that,∣∣∣∣PcT c(tn+1)− PcT c(tn)

∣∣∣∣2
1,T

≤∆t
∑

σ=K|L∈Eint
mσdK,L

∫ tn+1

tn

∣∣∣∣∣
∫ 1

0

∂t∇c(t, xL + s(xK − xL)) · ~nKLds

∣∣∣∣∣
2

dt

+∆t
∑

σ=L∈Eext
meLdK,L

∫ tn+1

tn

∣∣∣∣∣d(xK, xL)

dK,L

∫ 1

0

∂t∇c(t, xL + s(xK − xL)) · ~nKLds

∣∣∣∣∣
2

dt

≤C∆t

∫ tn+1

tn
‖∂t∇c(t, ·)‖2L∞(Ω)

dt.

Therefore we have,

(4.50)

∣∣cn+1
T − cnT

∣∣2
1,T
≤3
∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

+ 3C2
14∆tsize(T )2

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω)

+ 3C∆t

∫ tn+1

tn
‖∂t∇c(t, ·)‖2L∞(Ω)

dt.

Finally, the discrete conservation of the volume (3.2) implies mΩ

(
cn+1
M − cnM

)
= 0 and so

Proposition 2.1 and Lemma 2.7 give,

(4.51)
∥∥cn+1

M − cnM
∥∥
L2(Ω)

≤
√
C2C4

∣∣cn+1
T − cnT

∣∣
1,T

.

Summing (4.43) and (4.44), gathering estimates (4.45), (4.48), (4.49), (4.50) and (4.51) and
summing the resulting inequality for n going from 0 to n0 conclude the proof.

�
PROPOSITION 4.19. For any n0 ∈ J0, NK, there exists C21 > 0 independent of ∆t and

size(T ) (but depending on fs) such that,
n0∑
n=0

∆t
∥∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥∥
L2(Γ)

≤ C21

n0∑
n=0

∆t
∣∣ėc,n+1
T

∣∣2
1,T

+ C21∆t2
n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+ C21size(T )2
∥∥c0∥∥2

H2
Γ(Ω)

+ C21size(T )2 ‖c‖2L∞(0,T ;H2
Γ(Ω))

+ C21size(T )2∆t2 ‖∂tc‖2L2(0,T ;H2
Γ(Ω)) + C21∆t2 ‖∂tcpΓ‖2L2(0,T ;H1(Γ)) .
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Proof .
Applying inequality (4.40) to the function φ = f ′s at first, and then, to φ = dfs give∥∥∥f ′s (Pc∂M(c(tn+1))

)
− dfs(cn∂M, cn+1

∂M )
∥∥∥
L2(Γ)

≤ C18

Ä∥∥ec,n+1
∂M

∥∥
L2(Γ)

+
∥∥cn+1

∂M − cn∂M
∥∥
L2(Γ)

ä
.

Owing to Lemma 2.10 and estimate (4.47) we have

∥∥ėc,n+1
∂M

∥∥2

L2(Γ)
≤ 2C2

7

Å
(1 + 2C2C

2
4 )
∣∣ėc,n+1
T

∣∣2
1,T

+
2C2C

2
15

C1
|Ω|size(T )2

∥∥c0∥∥2

H2
Γ(Ω)

ã
.

Moreover, Lemma 4.7 and Proposition 4.9 we obtain∥∥ëc,n+1
∂M

∥∥
L2(Γ)

≤ (C12 + C14)size(T )
∥∥c(tn+1, ·)

∥∥
H2

Γ(Ω)
.

Finally we write∥∥cn+1
∂M − cn∂M

∥∥
L2(Γ)

≤
∥∥ėc,n+1

∂M − ėc,n∂M
∥∥
L2(Γ)

+
∥∥ëc,n+1

∂M − ëc,n∂M
∥∥
L2(Γ)

+
∥∥Pc∂Mc(tn+1)− Pc∂Mc(tn)

∥∥
L2(Γ)

.

Then, the linearity of the projection Pell,D∂M and Pc∂M, Lemma 4.7 and Proposition 4.9 give

∥∥ëc,n+1
∂M − ëc,n∂M

∥∥2

L2(Γ)
≤ (C12 + C14)2size(T )2∆t

∫ tn+1

tn
‖∂tc(t, ·)‖2H2

Γ(Ω) dt,

and

∥∥Pc∂Mc(tn+1)− Pc∂Mc(tn)
∥∥2

L2(Γ)
≤ ∆t

∫ tn+1

tn
‖Pc∂M∂tc(t, ·)‖

2
L2(Γ)

dt

≤ 2(C2
12 + 1)∆t

∫ tn+1

tn
‖∂tcpΓ(t, ·)‖2

H1(Γ)
dt.

Thus gathering these estimates and summing the resulting inequality between 0 and n0 con-
clude the proof.

�
It remains to be bounded the error TT due to the fact that the domain Ω is not polygonal.
PROPOSITION 4.20. There exists C22 > 0 depending only on reg(T ), fb and fs such

that

n0∑
n=0

∆t

∣∣∣∣mT −mTmT
f ′b
(
PcT c(tn+1)

)∣∣∣∣2
1,T

+
n0∑
n=0

∆t

∥∥∥∥m∂M −m∂M

m∂M

dfs(cn∂M, c
n+1
∂M )

∥∥∥∥2

L2(Γ)

≤ C22size(T )2.

Proof . Thanks to the mesh regularity (2.1), for any K ∈M we have diam(K) ≤ reg(T )2mK
thus owing to Proposition 2.1 we obtain,

mK −mK
mK

≤ C(reg(T ))size(T ).

Similarly, thanks to Proposition 2.2 for any L ∈ ∂M,

mL −meL

mL
≤ Csize(T )2.
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Thus the definition of the H1-seminorm on Ω and Lemma 4.17 give,∣∣∣∣mT −mTmT
f ′b
(
PcT c(tn+1)

)∣∣∣∣2
1,T

≤C18C(reg(T ))2size(T )2
∣∣PcT c(tn+1)

∣∣2
1,T

≤C18C
′(reg(T ))2size(T )2 ‖∇c‖2L∞(0,T ;L∞(Ω)) ,

and ∥∥∥∥m∂M −m∂M

m∂M

dfs(cn∂M, c
n+1
∂M )

∥∥∥∥2

L2(Γ)

≤ C2size(T )4
∥∥∥dfs(cn∂M, cn+1

∂M )
∥∥∥2

L2(Γ)

.

Thanks to the bounds on the discrete solutions (see Proposition 4.3) for any L ∈ ∂M we
have ∣∣∣dfs(cnL, cn+1

L )
∣∣∣ ≤ max

B(0,M2)
|f ′s|,

that concludes the proof.
�

4.3.3. End of the proof of Theorem 4.2:. We are now able to apply the discrete Gron-
wall lemma and to conclude the proof.

Gathering Propositions 4.13, 4.14, 4.15, 4.16, 4.18, 4.19 and 4.20, we can estimate
term (4.17) (cf Proposition 4.12). Thus, there exists C23 > 0 (depending on c and µ) in-
dependent of size(T ) and ∆t such that for any n0 ∈ J0, N − 1K,

1

2

n0∑
n=0

∆t
∣∣ėµ,n+1
T

∣∣2
1,T

+
1

4

∣∣ėc,n0+1
T

∣∣2
1,T

+
1

2

∣∣ėc,n0+1
∂M

∣∣2
1,∂M

+
1

2

n0∑
n=0

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

+
1

2

n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

+
1

2

n0∑
n=0

∣∣ėc,n+1
∂M − ėc,n∂M

∣∣2
1,∂M

≤C23

(
size(T )2 + ∆t2

)
+ C23∆t

∣∣ėc,n0+1
T

∣∣2
1,T

+ (1 + C23)
n0∑
n=0

∆t |ėc,nT |
2
1,T

+ C23∆t
n0∑
n=0

∣∣ėc,n+1
T − ėc,nT

∣∣2
1,T

+ C23∆t2
n0∑
n=0

∆t

∥∥∥∥∥ ėc,n+1
∂M − ėc,n∂M

∆t

∥∥∥∥∥
2

0,∂M

.

Thus by choosing ∆t ≤ min
Ä

1
8C23

, 1
2
√
C23

ä
we deduce

1

8

∣∣ėc,n0+1
T

∣∣2
1,T
≤ (1 + C23)

n0∑
n=0

∆t |ėc,nT |
2
1,T + C23

(
size(T )2 + ∆t2

)
.

Thanks to the discrete Gronwall lemma, we have:∣∣ėc,n0+1
T

∣∣2
1,T
≤ 8(1 + C23)

Ä
size(T )2 + ∆t2 + ∆t

∣∣ėc,0T ∣∣21,T ä e8T (1+C23).

Estimates (4.47) and (4.48), Proposition 4.13 on the initial data and Proposition 4.9 conclude
the proof of Theorem 4.2.
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5. Numerical error estimate. In the section we present numerical error estimate which
illustrate the previous result. Several qualitative numerical results which show the different
behaviours of the scheme in function of the properties of the components and the wall are
performed in [20].

The domain Ω is the unit circle and we consider a Delaunay triangular mesh for which
for any K ∈M the center xK is the circumcenter of the triangle K (or K is ∂K∩Eext 6= ∅) and
for any L ∈ ∂M, yL is the middle of the chord eL. Since we do not know non-trivial solution
of problem (1.1) we choose an analytical solution (see Fig. 5.1)

c(t, (x, y)) =
1

2
cos(2πx+ 4t) sin(2πy) +

1

2
, ∀t ∈ (0, T ),∀(x, y),∈ Ω

and we modify equation (1.1) by adding non-zero source terms in equations (1.1a) and (1.1c)
and by considering non-homogeneous Neumann boundary condition for µ.

Fig. 5.1: Analytic solution at time T = 0.5

In equation (1.1) we choose the following parameters: the interface thickness ε = 0.5,
the mobility and the surface tension Γb = σb = 0.1, the capillarity coefficient σs = 5 and the
relaxation coefficient Γs = 10. As regards the non-linear potentials we set fb(c) = fs(c) =
c2(1− c)2 (see Fig. 1.1b) and we use the semi-implicit discretization.

At final time T = 0.5 we plot the relative error between the center-value projection of the
exact solution c(T, ·) and the approximate solution cnT , namely ‖P

c
T c(T )−cnT ‖
‖PcT c(T )‖ , for the L2-norm

and the H1-seminorm in Ω and on Γ in two cases:
• when the time step tends to 0 and a fixed mesh size (see Fig. 5.2 and 5.3);
• when the mesh size tends to 0 and a fixed time step (see Fig. 5.4 and 5.5).

First we observe that, as expected, we obtain a first-order convergence in time in each
case (see Fig. 5.2 and 5.3).

For the space convergence we have several behaviours. Noting that when we study the
Laplace problem with a finite-volume two-point flux approximation, from a computational
point of view we observe a second-order convergence for the L2-norm while at the theo-
retical level, we are only able to prove the first-order convergence. We observe here the
same super-convergence phenomena for the L2-norms (see Fig. 5.4). As regards the H1(Ω)-
seminorm (see Fig. 5.5a), although we observe a second-order convergence when the mesh
size is coarse, we recover asymptotically the expected first-order convergence. However for
the H1(Γ)-seminorm (see Fig. 5.5b) we observe a second-order convergence instead of the
first-order. This super-convergence phenomena is owed to the symmetric meshing of the
boundary Γ.
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Fig. 5.2: First-order convergence in time for the L2-norms
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Fig. 5.3: First-order convergence in time for the H1-seminorms

Appendix. Proof of Proposition 4.9.

We consider the following problem: find u : Ω→ R such that
∫

Ω
u = α and

(A.1a)
(A.1b)

®
−∆u = f in Ω;

−∆ΓupΓ + ∂nu = g on Γ;

with f ∈ L2(Ω) and g ∈ L2(Γ).

By integrating equation (A.1a) on all interior control volumes K ∈M and the boundary
condition (A.1b) on all boundary control volumes L ∈ ∂M, the two-point flux approximation
of problem (A.1) writes as follows.
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Fig. 5.4: Second-order convergence in space for the L2-norms
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Fig. 5.5: Convergence in space for the H1-seminorms

PROBLEM A.1. Find uT ∈ RT such that
∑
K∈MmKuK = α and,

(A.2a)

(A.2b)


∑

σ∈EintK

mσ

uK − uL
dK,L

+
∑

σ∈EextK
meL

uK − uL
dK,L

= mKPmK f, ∀K ∈M;

∑
v∈VL

uL − uL′
dL,L′

+meL

uL − uK
dK,L

= mLPmL g, ∀L ∈ ∂M.

We can prove that this problem admits a unique solution.
Because of the complex geometry of Ω, it is possible to take into account some points

x ∈ Ωc in the proof of the error estimate. To ensure that all the quantities used in the proof
of Theorem A.4 are well defined, we will use an extension in R2 of the function u. Since
u ∈ H2(Ω), there exists an extension ũ ∈ H2(R2) (that we fix in the sequel) such that:

(A.3) ũ(x) = u(x), ∀x ∈ Ω and ‖ũ‖H2(R2) ≤ C24 ‖u‖H2(Ω)
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with C24 > 0 depending only on Ω.
PROPOSITION A.1. The tangential gradient of u : Γ → R to the vertex v = L|L′

satisfies:∣∣∣∣∣u(xL′)− u(xL)

mγLL′
−∇Γu(v) · ~τ v,L(v)

∣∣∣∣∣ ≤
∫
γLL′

∣∣(u ◦ ϕ)′′(ϕ−1(x))
∣∣dσ(x),

where ϕ is an arc-length parametrization of the curve Γ and ~τ v,L(v) is the unit tangent
vector to Γ at point v = L|L′ going from L to L′.
Proof . Let us consider the points tL, tL′ , tv ∈ R such that xL = ϕ(tL), xL′ = ϕ(tL′) and
v = ϕ(tv), then the Taylor’s formulas give

u(xL′)− u(xL) =(tL′ − tv)(u ◦ ϕ)′(tv) +

∫ tL′

tv

(tL′ − s)(u ◦ ϕ)′′(s)ds

− (tL − tv)(u ◦ ϕ)′(tv)−
∫ tL

tv

(tL − s)(u ◦ ϕ)′′(s)ds.

Noting that |tL′ − tL| = mγLL′
we obtain,

u(xL′)− u(xL)

mγLL′
−∇Γu(v) · ~τ v,L(v) =

1

mγLL′

∫ tL′

tv

(tL′ − s)(u ◦ ϕ)′′(s)ds

+
1

mγLL′

∫ tv

tL

(tL − s)(u ◦ ϕ)′′(s)ds,

that concludes the proof. �
Thanks to the Taylor’s formulas we can prove the two following propositions.
PROPOSITION A.2. Let L ∈ ∂M be a boundary control volume and v be a vertex of L,

then the following equality holds,

mγLv − dL,v = O (mLmγLv) .

PROPOSITION A.3. For any point x ∈ σ = L ∈ Eext, the following equality holds

~nσK(x)− ~nKL = O(mL),

where ~nσK(x) is the unit normal vector to σ outward to K at point x.
THEOREM A.4. Let us assume that the solution u of the continuous problem (A.1)

belongs toH2
Γ(Ω). Let us consider the solution uT to discrete problem A.1. Then, there exists

C25 > 0 independent of size(T ) such that,

(A.4) |eT |21,T + |e∂M|21,∂M ≤ C25size(T )2 ‖u‖2H2
Γ(Ω) ,

with eT = PcT u− uT .
We decompose the proof of Theorem A.4 into two steps. As a first step, we prove (cf

Proposition A.5) that the left hand side of inequality (A.4) is bounded from above by the
different consistency errors which intervene in the problem. In a second phase, we have to
estimate these different consistency errors.

PROPOSITION A.5. Let us consider the solution u to problem (A.1) and the solution uT
to discrete Problem A.1. The the following estimate holds,

(A.5)

|eT |21,T + |e∂M|21,∂M ≤
∑

σ=K|L∈Eint
mσdK,L(Rintσ,K)2 +

∑
σ=L∈Eext

meLdK,L(Rextσ,K)2

+
∑

v=L|L′∈V

Rv,L
2

dL,L′
+ ‖Ru∂M‖

2
L2(Γ)

;
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where,

Rintσ,K =
1

mσ

∫
σ

∇u(x) · ~nKLdx− u(xL)− u(xK)

dK,L
, ∀σ = K|L ∈ EK ∩ Eint;

Rextσ,K =
1

meL

∫
σ

∇u(x) · ~nσK(x)dx− u(xL)− u(xK)

dK,L
, ∀σ = L ∈ EK ∩ Eext;

Rv,L = dL,L′∇ΓupΓ(v)~τ v,L − upΓ(xL′)− upΓ(xL), ∀v = L|L′ ∈ V.

Proof . Let K ∈M, we integrate equation (A.1a) on K and we subtract the resulting equality
with equation (A.2a). Thanks to definitions ofRintσ,K andRextσ,K given in Proposition A.5 imply:

(A.6)

∑
σ=K|L∈Eint

mσ

dK,L
(eK − eL) +

∑
σ=L∈Eext

meL

dK,L
(eK − eL)

=
∑

σ∈EintK

mσR
int
σ,K +

∑
σ∈EextK

meLR
ext
σ,K, ∀K ∈M.

In the same way let L ∈ ∂M, we integrate equation (A.1b) on L and we subtract the resulting
equality with equation (A.2b). Then we obtain,

(A.7)
∑

v∈VL

eL − eL′
dL,L′

+meL

eL − eK
dK,L

=
∑

v∈VL

Rv,L

dL,L′
−meLR

ext
σ,K, ∀L ∈ ∂M.

Now we multiply equation (A.6) by eK and summing up over K ∈ M and we multiply
equation (A.7) by eL and summing up over L ∈ ∂M. Then, summing the resulting equalities
we have,

|eT |21,T + |e∂M|21,∂M =
∑

σ=K|L∈Eint
mσ(eK − eL)Rintσ,K +

∑
σ=L∈Eext

meL(eK − eL)Rextσ,K

+
∑

v=L|L′∈V
Rv,L

eL − eL′
dL,L′

.

Owing to the Cauchy-Schwarz and the Young inequalities, we obtain estimate (A.5).
�

With this proposition at hand we are now able to prove Theorem A.4 by estimating all
the terms of the right hand side of (A.5).
Proof of Theorem A.4.

First, let σ = K|L ∈ Eint thanks to the Taylor’s formulas we have:

Rintσ,K =
1

mσdK,L

∫
σ

∫ 1

0

(1− t)
〈
D2u ((1− t)x+ txK) (xK − x), (xK − x)

〉
− 1

mσdK,L

∫
σ

∫ 1

0

(1− t)
〈
D2u ((1− t)x+ txL) (xL − x), (xL − x)

〉
.

Owing to the Jensen inequality and the change of variables (t, x) ∈ [0, 1] × σ 7→ y =
x + t(xK − x) (or (t, x) ∈ [0, 1] × σ 7→ y = x + t(xL − x) for the second term) and since
diam(K) ≤ reg(T )d(xK, σ) for any K ∈M, for any σ ∈ EK (see definition 2.1) we deduce

(Rintσ,K)2 ≤ C(reg(T ))
size(T )2

mD

∫
D
|D2u(y)|2dy.
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Noting that mD =
mσdK,L

2 we obtain,

(A.8)
∑

σ=K|L∈Eint
mσdK,L(Rintσ,K)2 ≤ C(reg(T ))size(T )2

∥∥D2u
∥∥2

L2(Ω)
.

Secondly let σ = L ∈ ∂M, thanks to definition (A.3) of ũ we have u(xL) = ũ(xL) and
u(xK) = ũ(xK), thus since xL − xK = d(xK, xL)~nKL, the definition of Rextσ,K, the jensen
inequality and the Taylor’s formulas imply,

meLdK,L(Rextσ,K)2 ≤5dK,L
(mL −meL)2

meLmL

∫
L
|∇ũ(x)|2 dσ(x)

+ 5
(dK,L − d(xK, xL))2

dK,L

meL

mL

∫
L
|∇ũ(x)|2 dσ(x)

+ 5dK,L
meL

mL

∫
L
|∇ũ(x)|2 |~nKL − ~nσK(x)|2dσ(x)

+
5meL

dK,Lmσ

∫
σ

∫ 1

0

(1− t)2
∣∣D2ũ ((1− t)x+ txK)

∣∣2 |xK − x|4dtdσ(x)

+
5meL

dK,Lmσ

∫
σ

∫ 1

0

(1− t)2
∣∣D2ũ ((1− t)x+ txL)

∣∣2 |xL − x|4dtdσ(x).

Thanks to Propositions 2.2, 2.3 and A.3, there exists CΓ > 0 independent of size(T ) such
that

|d(xK, xL)− dK,L| ≤ CΓmLmγLv , |meL −mL| ≤ CΓm
3
L and |~nKL − ~nσK(x)| ≤ CΓmL.

Thus, thanks to a change of variables in the last two integrals we have:

meLdK,L(Rextσ,K)2 ≤CΓ(reg(T ))size(T )3

∫
L
|∇ũ(x)|2 dσ(x)

+ C(reg(T ))size(T )2

Ç∫
DL

∣∣D2ũ(y)
∣∣2 dy +

∫
D

∣∣D2ũ(y)
∣∣2 dy

å
where DL = {(1− t)x+ txL : t ∈ [0, 1], x ∈ σ = L}. Then, owing to (A.3) we obtain:

(A.9)
∑

σ=L∈Eext
meLdK,L(Rextσ,K)2 ≤ CΓ(reg(T ))C24size(T )2 ‖u‖2

H1(Ω)
.

Finally, using definition of Rv,L for any v = L|L′ ∈ V we have,

Rv,L

dL,L′
=

Ç
∇Γu(v)~τ v,L −

u(xL′)− u(xL)

mγLL′

å
+ (u(xL′)− u(xL))

Ç
1

mγLL′
− 1

dL,L′

å
,

that gives,

Rv,L
2

dL,L′
≤2dL,L′

Ç
∇Γu(v)~τ v,L −

u(xL′)− u(xL)

mγLL′

å2

+ 2
(u(xL′)− u(xL))2

mγLL′

(dL,L′ −mγLL′
)2

dL,L′mγLL′
.
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Thanks to Proposition A.2, there exists CΓ > 0 independent of size(T ) such that,

(mγLL′
− dL,L′)2

dL,L′mγLL′
≤ CΓsize(T )2.

Moreover,

(u(xL′)− u(xL))2 ≤ mγLL′

∫
γLL′

|∇Γu(x)|2 dσ(x),

thus owing to Proposition A.1, we can write

(A.10)
∑

v=L|L′∈V

Rv,L
2

dL,L′
≤ 2CΓsize(T )2 ‖upΓ‖2H2(Γ) .

Gathering estimates (A.8), (A.9) and (A.10) the claim follows. �
We have obtained an error estimate between the center-value projection of the exact so-

lution PcT u and the approximate solution uT for the Laplace problem with Ventcell boundary
conditions for the H1-seminorms. However in order to prove Proposition 4.9 we also need
to prove an estimate between the exact solution u and the approximate uT for the L2-norms.
We adopt here the same reasoning as that given in [10, Theorem 3.5] for the Laplace problem
with Neumann boundary conditions.

Let βT ∈ R such that
∑
K∈MmKū(xK) = α with ū = u+βT . Setting ēK = ū(xK)−uK

for any K ∈M and ēL = ū(xL)− uL for any L ∈ ∂M, estimate (A.4) is also satisfied for ēT .
However, thanks to its definition the error ēM has now a zero average. Thus we can apply the
discrete Poincaré inequality (Lemma 2.7) to obtain,

‖ēM‖2L2(Ω)
≤ C2

4C25size(T )2 ‖u‖2H2
Γ(Ω) ,

and thanks to the trace inequality (Lemma 2.10) we have

‖ē∂M‖2L2(Γ)
≤ 4C2

4C
2
7C25size(T )2 ‖u‖2H2

Γ(Ω) .

To conclude the proof the reasoning is exactly the same than in [10, Theorem 3.5] aside
from the fact that the domain is not polygonal. Thus we only detail here the difference.
Thanks to the regularity of the function u there exists C > 0 such that,

‖u− uT ‖2L2(Ω)
≤ 3|Ω|Csize(T )2 + 3|Ω|β2

T + 3 ‖ēM‖2L2(Ω)
.

We recall that
∫

Ω
u =

∑
K∈MmKū(xK) = α, then by integration

|Ω|βT =

∫
Ω

ū(x)dx− α

and ∫
Ω

ū(x)dx =

∫
Ω

(ū(x)− ū(xK))dx+
∑
K∈M

(mK −mK)ū(xK) + α.

Thus thanks to the regularity of u, Proposition 2.1 and the mesh regularity (2.1) we can claim
that |Ω|βT ≤ Csize(T ) that concludes the proof.

The reasoning is exactly the same for the L2(Γ)-norm that concludes the claim.
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