
HAL Id: hal-01273942
https://hal.science/hal-01273942v1

Submitted on 12 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerated solution of Helmholtz equation with
iterative Krylov methods on GPU

Abal-Kassim Cheik Ahamed, F. Magoules

To cite this version:
Abal-Kassim Cheik Ahamed, F. Magoules. Accelerated solution of Helmholtz equation with iterative
Krylov methods on GPU. 16th International Conference on High Performance and Communications
(HPCC 2014), Aug 2014, Paris, France. �10.1109/hpcc.2014.16�. �hal-01273942�

https://hal.science/hal-01273942v1
https://hal.archives-ouvertes.fr

Accelerated solution of Helmholtz equation with
Iterative Krylov Methods on GPU

Abal-Kassim Cheik Ahamed∗ Frédéric Magoulès†

Abstract

This paper gives an analysis and an evaluation of linear algebra operations on Graph-
ics Processing Unit (GPU) with complex number arithmetics with double precision.
Knowing the performance of these operations, iterative Krylov methods are consid-
ered to solve the acoustic problem efficiently. Numerical experiments carried out on a
set of acoustic matrices arising from the modelisation of acoustic phenomena within a
cylinder and a car compartment are exposed, exhibiting the performance, robustness
and efficiency of our algorithms, with a ratio up to 27x for dot product, 10x for sparse
matrix-vector product and solvers in complex double precision arithmetics.

Keywords: Krylov method; Linear algebra operation; Sparse matrix; Graphics Pro-
cessing Unit; CUDA; Parallel computing; Acoustic; Helmholtz equation

1 Introduction
Amongst other industries, acoustic performance is a major concern in automotive companies.
To tackle this, several models are used. In this study, we limit ourselves to acoustic models
applying to closed cavities where the acoustic problem is independent from the surrounding
structure. We are then able to assume that the pressure field does not have any interactions
with the enclosed structure.

Over the past decade, Graphics Processing Units (GPUs) have undergone the same
rapid evolution as Central Processing Units (CPUs) in the past. Its extent is such as
computers with high Floating point Operations Per Second (Flops) are now widely spread.
If when they appeared, the usage of GPUs were focused on computations associated with
graphic display, they encountered a considerable evolution ten years later when General
Purpose GPUs (GPGPUs) started to use graphic hardware for numerical computations.
With the computing power of GPUs drastically increasing, science and engineering started
to use GPUs massively. This was also due to NVIDIA releasing Compute Unified Device
Architecture (CUDA) [45], which offered a high level GPGPU-based programming language.

Before the migration of GPGPU in 2000, most numerical simulations were carried out on
CPU clusters. However, the release of CUDA enabled scientists to take advantage of the high
computational power of GPUs: the CPU freed itself from heavy calculations by distributing
them to the GPU. The workload became shared out as follows: the CPU managed the
sequential blocks of the code while the GPU dealt with the parallel ones. This can be
explained by their respective architecture. The simplified architecture of a CPU processor
is composed of several memories with multiple levels of cache memories associated, a basic
unit of computation and a more complex control unit.

In this paper, we use Alinea [10, 9], our own research group library, which implements
many algorithms in C++. Alinea is a scalable library used both for linear algebra operations
and more advanced operations, such as iterative Krylov on both CPU and GPU clusters for

∗CUDA Research Center, Applied Mathematics and Systems Laboratory, École Centrale Paris, France.
†CUDA Research Center, Applied Mathematics and Systems Laboratory, École Centrale Paris, France

(correspondence, frederic.magoules@hotmail.com).

Preprint May 13, 2014

ar
X

iv
:2

11
2.

06
46

5v
1

 [
m

at
h.

N
A

]
 1

3
D

ec
 2

02
1

real and complex number arithmetics in single and double precision. In this paper we are
concerned only with complex number arithmetics. We propose an evaluation of the solution
of sparse and large size linear systems with matrices, described by complex number arith-
metics, and arising from the finite [23] or infinite [3, 2, 1] element discretisation of acoustic
problems, modeled with Helmholtz equation. Iterative Krylov are well suited for this kind
of problems. Nevertheless, these methods require the computation of many linear algebra
operations, in particular sparse matrix-vector product (SpMV), which requieres high com-
putational time. To accelerate the solution of these sparse linear systems, a computationnal
effort is required to perform linear algebra operations efficiently.

The remainder of the paper is organised as follows. Section 2 briefly gives the background
and motivation of this work. Section 3 decribes the industrial test cases used to evaluate
and analyze our work. Section 5 presents how complex number arithmetics are designed.
In Section 6 we give the evaluation of basic (addition of vectors, scale of vectors, etc.) and
advanced (sparse matrix-vector multiplication, etc.) linear algebra operations required to
perform iterative Krylov methods. Section 7 presents numerical experiments on iterative
Krylov methods which clearly exhibit the robustness and effectiveness of our implementation
on GPU for solving acoustic problem. Concluding remarks are given in Section 8

2 Background and Motivation
If Graphics Processing Units (GPUs) were first used exclusively for graphics applications
like Graphical User Interface, this has evolved in the last few decades and due to their heavy
computational power, GPUs are now widely used to accelerate scientific computation by
graphics card hardware. GPUs have become a major tool in scientific computation, thanks
both to the rapid pace at which they have improved, and the flexibility offered by languages
to program on them such as CUDA, an extension from C/C++. This is especially true
when the time consumption of a numerical simulation is taken into account, and GPUs
have therefore provided a huge boost to a multitude of applications of science [50] and
engineering [15].

Unlike Central Processing Units (CPUs), GPUs have an architecture with multiple arith-
metic compute units, as well as several levels of memory. This enables them to compute
simultaneously the same operation over a million times. For example, the last graphics card
of the Kepler family, the K40, has a 4.29 teraflops single-precision and 1.43 teraflops double-
precision peak floating point performance. The K40 also has a 12 GB storage memory, and
more generally the storage memory of GPUs have also greatly increased with time. The
execution time of a GPU algorithm is strongly impacted by both the configuration of the
distribution of the threads on the grid [11] and the memory managment [18]. For the most
time consuming linear algebra operation, the sparse matrix vector product, the structure
of the matrix and the type of the matrix storage format are both of most importance, as
shown in [5, 9]. This, along with the importance of the distribution of threads, is also proved
in [10] on iterative Krylov methods on GPU used to solve linear systems with real number
arithmetics.

The acoustic problem, in its simplest linear form, is governed in the frequency domain by
the Helmholtz equation with suitable boundary conditions. When high frequency regime is
considered, the matrix of the linear system becomes very large. The problem we are aimed to
solve arises from the discretization of the Helmholtz equation in a bounded domain Ω, with
a boundary condition considered on the ouside boundary Γ = ∂Ω. The Helmholtz equation
is expressed as follows −∇2u − k2u = g, where k = 2πF

c is the wavenumber associated
with the frequency F ∈ R and c ∈ R denotes the velocity of the medium that is different
in space. In this paper, Dirichlet boundary conditions are considered along a part of Γ.
The frequency domain in which the solution is sought is usually limited, so as to analyze
the acoustic response at specific places of the cavity (for instance around the driver’s ears).
To carry this out, a suitable numerical model has to be used. For complex geometries two

2

models can be chosen, depending on the boundary conditions. If there are conditions on
all boundaries of the domain, then boundary element (BE) methods can be used. Else,
finite element (FE) methods, which are methods based on the domain, are used to solve a
weak formulation of the problem. When using FE methods, mesh requirements (around 10
nodes per wavelength are necessary) make the mesh sizes gigantic when dealing with high
frequencies. This paper focuses on effectively handling large size acoustic problems using
FE method.

3 Case Study: automotive and cylinder acoustic
In this part, we present the finite element meshes used for solving the acoustic problems
arising from the automotive industry [35].

We now focus on two numerical examples that enable us to evaluate the performances
of our procedures. We consider the study in a car compartment with Audi (Audi3D) and
Twingo (Twingo3D), and in a cylinder (3D cylinder). Let’s look at the example of a car
compartment. The goal is to construct the frequency response function at driver’s ear from
the velocity boundary conditions along the firewall. Understanding this problem can help
solve similar problems where the evaluation of the acoustic response to vibrating panels inside
a cavity is at stake. Several sources can explain such mechanical vibrations. The vibrations
can indeed be air-borne or structural-borne. And the prediction of these vibrations can be
a difficult task. In the case of automotive applications, the higher the frequency is, the
worst the quality of numerical predictions for mechanical vibrations is. Acoustic predictions
depending on the treatment of these mechanical vibrations, precise acoustic predictions
are possible only if correct vibration profiles along the car body are provided. According to
advanced FE methodologies used on car bodies, computing accurate results becomes difficult
when the frequencies are higher than 2500 Hz. Such difficulty to produce correct results at
high frequencies can be explained by the complex mechanical structure of a car body. Usual
models do not consider parameters which are essential to understand the behavior of a
car body at high frequencies, such as the characteristics of the connections, the damping
properties, etc. We can note that modifying the models to make them take such parameters
into account is not easy. At these high frequencies, some variability effects become important
and complicate the predictions. For instance two car bodies produced in the same way, and
that could be considered identical, may present drastically different vibro-acoustic behaviors
at such frequencies. The meshes of Audi 3D with different refinements (size h) are presented
in Figure 1. Figure 2 describes the meshes of Twingo 3D with different refinements (size h)
. In Figure 3 are illustrated the Cylinder 3D meshes for three refinements (size h).

Figure 1: Audi 3D, h = (0.133425, 0.066604, 0.033289, 0.016643)

Figure 2: Twingo 3D, h = (0.077866, 0.038791, 0.019379)

3

Figure 3: Cylinder 3D, h = (0.033973, 0.016949, 0.008342)

3.1 Matrices tested
For the analysis proposed in this paper, we use matrices coming from the FE discretization
of the Helmholtz equation for the study of car compartment and cylinder acoustic problems.
These matrices are in stored Compressed Sparse Row (CSR). Table 1 collect a set of ma-
trices respectively arising from Audi3D, Twingo3D and Cylinder3D. These tables give the
properties of each considered matrix where h is the size of the square matrix, nz the number
of nonzero elements, density the density, i.e., the number of nonzero elements divided by the
total number of matrix elements, bandwidth the upper bandwidth which is equal to lower
bandwidth for symmetric matrix, maxrow the maximum row density, nz/h the mean row
density and nz/hstddev the standard deviation of nz/h. The sparse matrix pattern and the
coefficients distribution are respectively reported in the first column and second column.

3.2 Sparse matrix formats
The matrices of the acoustic problem are of large size and are sparse. Most of the elements
are zero. The distribution of non-zero values depends on the properties of the initial problem.
To take the best advantage of the memory storage, sparse matrices are stored in compressed
formats, i.e., only non-zero elements are allocated. It exists divers storage formats [49]
such as Compressed-Sparse Row (CSR) [5], Coordinate (COO), ELLPACK (ELL), Hybrid
(HYB), etc. In this paper, we have chosen CSR format to store matrices. The matrix is
stored in three one-dimensional arrays, as drawn in Figure 4 and corresponds o the matrix
shown Table 2. The first two arrays of size nz, AA and JA contain respectively the non-
zero coefficients of the matrix in row major order and the column indices, hence JA(j)
corresponds to the column index in dense matrix A of the coefficient AA(j). The last array,
IA, of size n+ 1, contains pointers to the start of each row. IA(i) and IA(i− 1)− 1 match
to the start and the end of the i− th row in arrays AA and JA, i.e., IA(n+ 1) = nz + 1.

Figure 4: Compressed sparse row storage format (CSR) of matrix, TABLE 2

3.3 Hardware configuration
The experiments have been performed on workstation based on an Intel Core i7 920 2.67Ghz,
which has 4 physical cores and 4 logical cores, 12GB RAM, and two nVidia graphics card: a
Tesla K20c (device #0) with 4799GB memory and GeForce GTX 570 with 1279MB memory
(device #1). The cards are double precision compatible. In this paper the devices Tesla
K20c and GTX570 are respectively denoted gpu#0 and gpu#1.

4

Audi3D-1
h = size = 1727 density = 0.550
bandwidth = 1436 nonzero = 16393
nonzero/h = 9.492 max row = 27

nonzero/h stddev = 10.205

3D acoustic FE matrix. Audi car (mesh size = 0.133425, length wave = 3.5).

Audi3D-2
h = size = 11637 density = 0.139
bandwidth = 11237 nonzero = 188455
nonzero/h = 16.194 max row = 27

nonzero/h stddev = 11.223

3D acoustic FE matrix. Audi car (mesh size = 0.066604, length wave = 3.5).

Audi3D-3
h = size = 85001 density = 0.025
bandwidth = 84474 nonzero = 1781707
nonzero/h = 20.961 max row = 27

nonzero/h stddev = 9.832

3D acoustic FE matrix. Audi car (mesh size = 0.033289, length wave = 3.5).

Audi3D-4
h = size = 648849 density = 0.004
bandwidth = 520461 nonzero = 15444211
nonzero/h = 23.802 max row = 27

nonzero/h stddev = 7.720

3D acoustic FE matrix. Audi car (mesh size = 0.016643, length wave = 3.5).

Twingo3D-0
h = size = 8439 density = 0.202
bandwidth = 6268 nonzero = 143889
nonzero/h = 17.050 max row = 27

nonzero/h stddev = 11.047

3D acoustic FE matrix. Twingo car (mesh size = 0.077866, length wave = 9.5).

Twingo3D-1
h = size = 62357 density = 0.035
bandwidth = 53935 nonzero = 1351521
nonzero/h = 21.674 max row = 33

nonzero/h stddev = 9.364

3D acoustic FE matrix. Twingo car (mesh size = 0.038791, length wave = 9.5).

Twingo3D-2
h = size = 479169 density = 0.005
bandwidth = 470625 nonzero = 11616477
nonzero/h = 24.243 max row = 39

nonzero/h stddev = 7.233

3D acoustic FE matrix. Twingo car (mesh size = 0.019379, length wave = 9.5).

Cylinder3D-0
h = size = 2717 density = 0.420
bandwidth = 2361 nonzero = 30969
nonzero/h = 11.398 max row = 75

nonzero/h stddev = 11.453

3D acoustic FE matrix. Cylinder (mesh size = 0.033973, length wave = 9.5).

Cylinder3D-1
h = size = 19041 density = 0.095
bandwidth = 18629 nonzero = 343677
nonzero/h = 18.049 max row = 75

nonzero/h stddev = 11.051

3D acoustic FE matrix. Cylinder (mesh size = 0.016949, length wave = 9.5).

Cylinder3D-2
h = size = 142049 density = 0.016
bandwidth = 141289 nonzero = 3151773
nonzero/h = 22.188 max row = 75

nonzero/h stddev = 9.125

3D acoustic FE matrix. Cylinder (mesh size = 0.008342, length wave = 9.5).

Table 1: Sketches of Audi, Twingo, Cylinder FE matrices

5

A =

3 14 0 0 0

0 8 1 0 0

2 0 6 0 0

0 4 0 2 -1
0 0 9 0 7

5

4

3

2

1

1 2 3 4 5

F F

F F

F F

F F F

F F

Table 2: Left (matrix), Right (matrix pattern)

The fact that the accuracy of the native clocks of the GPU and the host are respectively a
few nanoseconds and a few milliseconds can generate parasites on the measuring of execution
time of our programs. To overcome it, we execute the same operations of our benchmark at
least 10 times and at least enough times for the total measured time to exceed by at least
100 times the clock accuracy. For the sake of accuracy, we in fact run every operation 100
times, and the reported times correspond to the average time.

4 Handling Complex Numbers on CUDA
The finite element discretization of the Helmholtz equations for acoustic problems leads to
complex number arithmetics matrices. GPU have originally been proposed for integer arith-
metics. Most numerical simulations need floating point number artihmetics, which decrease
the performance of computations. It is even worse in terms of floating point operations
when we use numbers with double precision. Since acoustic problems involve complex num-
ber arithmetics with double precision floating point operations, the awaited efficiencies are
exceedingly low. In order to get the best advantage of GPU architecture, we aim to best
optimize the usage of complex number on CUDA. From the viewpoint of numerical calcula-
tion, a complex number is defined as a set of two real numbers, which corresponding to real
and imaginary part. A natural way to represent a complex number in memory through the
following structure

struct complex {
double x ; // r e a l par t
double y ; // imaginary par t

} ;

Listing 1: Complex number in memory

Considering that the previous structure has not padding, both real numbers x and y are
contiguous on memory, i.e., the offset of both is null. In our CUDA implementation, we
keep the same design as previously. The native library of CUDA, libcudart .so, offers
cuDoubleComplex a double2 structure (typedef double2 cuDoubleComplex), which consists
of the same procedure given in Listing 1. For performance outcomes, we prefer to de-
sign a complex template class complex<T>, which redefines all the operations available
in standard std :: complex. The functions of the standard complex are called host, i.e.,
only executable by the CPU. To be executable on GPU, the functions are redefined with
__host__ __device__, which consists of both CPU and GPU code. We place our com-
plex class template structure into a namespace stdmrg in order to avoid confusing it with
the standard. This class can be used in both host and device platform. As in all CUDA
code, in our library, there exists a copy function that allows to transfer data from host to
device, and from device to host. This function offers the possibilities to copy from CPU
with complex<T> or stdmrg::complex<T> to GPU with stdmrg::complex<T>. Similarly,
from GPU stdmrg::complex<T> to complex<T> or stdmrg::complex<T>.

6

Distribution of threads is not an automated process. References [16] [9] proved that
the threading organization strongly impacts the performance of the numerical algorithm.
GPU implementations using advanced gridification auto-tuning techniques, as developped
in [10, 9] are thus used in the following.

5 Basic Linear Algebra Operations
This section presents basic linear algebra algorithms, including assign of a vector, scale of
vectors, element wise product, addition of vectors and dot product. We also collect the
numerical experiments results we have performed to analyze the speed-up of the GPU code
compared to the CPU code for complex number arithmetics with double precision.

Table 3 and Figure 5 give the complex double precision execution time in milliseconds
(ms) of the assign operation, where h represents the size of the vector.

h cpu cpu gpu#0 gpu#0 gpu#1 gpu#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

100,000 0.10 0.96 0.07 1.47 0.07 1.41 1.53 1.47
500,000 0.75 0.67 0.13 3.75 0.14 3.60 5.59 5.37
1,000,000 2.04 0.49 0.22 4.65 0.26 3.91 9.49 7.98
8,000,000 15.71 0.51 1.61 4.96 1.56 5.12 9.74 10.06
10,000,000 20.00 0.50 1.75 5.70 1.92 5.20 11.40 10.40
15,000,000 27.50 0.55 2.56 5.85 3.03 4.95 10.73 9.08

Table 3: Complex double precision Assign of vector (ZASSIGN)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

5

10

15

20

25

30

size

cpu time (ms)
gpu#0 time (ms)
gpu#1 time (ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

1

2

3

4

5

6

size

cpu GFlop/s
gpu#0 GFlop/s
gpu#1 GFlop/s

Figure 5: ZASSIGN [left: time in ms, right: GFlops]

The scale scale operation kernel is described as follows
__global__ void Scal(

stdmrg::complex<double> alpha,
const stdmrg::complex<double>∗ d_x, int size) {

unsigned int x = blockIdx.x ∗ blockDim.x + threadIdx.x;
unsigned int y = threadIdx.y + blockIdx.y ∗ blockDim.y;
int pitch = blockDim.x ∗ gridDim.x;
int idx = x + y ∗ pitch;
if (idx < size) {

d_x[idx] = alpha ∗ d_x[idx];
}

}

7

The running times of the scale scale operation for different size of vectors are given in Table 4
and drawn in Figure 6, where h represents the size of the vectors.

h cpu cpu gpu#0 gpu#0 gpu#1 gpu#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

100,000 0.81 0.74 0.07 8.60 0.07 8.26 11.56 11.10
500,000 4.17 0.72 0.15 19.50 0.17 17.16 27.08 23.83
1,000,000 8.33 0.72 0.29 20.70 0.30 20.04 28.75 27.83
8,000,000 65.00 0.74 1.75 27.36 2.22 21.60 37.05 29.25
10,000,000 85.00 0.71 2.38 25.20 2.56 23.40 35.70 33.15
15,000,000 120.00 0.75 3.13 28.80 3.70 24.30 38.40 32.40

Table 4: Complex double precision Scale of vectors (ZSCAL)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

20

40

60

80

100

120

size

cpu time (ms)
gpu#0 time (ms)
gpu#1 time (ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

5

10

15

20

25

30

size

cpu GFlop/s
gpu#0 GFlop/s
gpu#1 GFlop/s

Figure 6: ZSCAL [left: time in ms, right: GFlops]

Double-precision complex Alpha X Plus Y (Zaxpy), i.e., y[i] = α × x[i] + y[i], is a level
one (vector) operation between two complex number arithmetics vectors in the Basic Linear
Algebra Subprograms (BLAS) package. The addition of vectors is performed by a simple
GPU kernel of the form:
__global__ void Daxpy(stdmrg::complex<double> alpha,

const stdmrg::complex<double>∗ d_x,
stdmrg::complex<double>∗ d_y, int size) {

unsigned int x = blockIdx.x ∗ blockDim.x + threadIdx.x;
unsigned int y = threadIdx.y + blockIdx.y ∗ blockDim.y;
int pitch = blockDim.x ∗ gridDim.x;
int idx = x + y ∗ pitch;
if (idx < size) {

d_y[idx] = alpha ∗ d_x[idx] + d_y[idx];
}

}

The vector containing the final result of the addition overwrites the contents of the second
vector operand dy.

Table 5 and Figure 7 report the complex number arithmetics with double precision
execution time of our implementation for the Zaxpy operation.

The element wise product or element by element product, i.e., y[i] = x[i] × y[i], is intu-
itively parallel placing it as an excellent candidate for application on GPU. The product
result of the elements of both vectors overwrites the corresponding elements of the second
vector by a simple GPU kernel, presented in the following:

8

h cpu cpu gpu#0 gpu#0 gpu#1 gpu#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

100,000 0.83 0.97 0.08 9.46 0.09 9.18 9.77 9.49
500,000 4.17 0.96 0.23 17.48 0.23 17.16 18.21 17.88
1,000,000 8.33 0.96 0.42 19.12 0.38 20.88 19.92 21.75
8,000,000 65.00 0.98 2.70 23.68 2.86 22.40 24.05 22.75
10,000,000 85.00 0.94 3.23 24.80 3.70 21.60 26.35 22.95
15,000,000 130.00 0.92 5.00 24.00 5.56 21.60 26.00 23.40

Table 5: Complex double precision Addition of vectors (ZAXPY)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

20

40

60

80

100

120

140

size

cpu time (ms)
gpu#0 time (ms)
gpu#1 time (ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

5

10

15

20

25

size

cpu GFlop/s
gpu#0 GFlop/s
gpu#1 GFlop/s

Figure 7: ZAXPY [left: time in ms, right: GFlops]

__global__ void ElementWiseProduct(
stdmrg::complex<double> alpha,
const stdmrg::complex<double>∗ d_x,
stdmrg::complex<double>∗ d_y, int size) {

unsigned int x = blockIdx.x ∗ blockDim.x + threadIdx.x;
unsigned int y = threadIdx.y + blockIdx.y ∗ blockDim.y;
int pitch = blockDim.x ∗ gridDim.x;
int idx = x + y ∗ pitch;
if (idx < size) {

d_y[idx] = d_x[idx] ∗ d_y[idx];
}

}

Table 6 and Figure 8 shows the double precision execution time of our implementation for
the element wise product operation.

Table 6: Complex double precision Element wise product (ZAXMY)

h cpu cpu gpu#0 gpu#0 gpu#1 gpu#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

100,000 1.37 0.44 0.09 6.53 0.09 6.66 14.92 15.21
500,000 6.25 0.48 0.21 14.04 0.22 13.38 29.25 27.88
1,000,000 13.75 0.44 0.37 16.02 0.42 14.34 36.71 32.86
8,000,000 100.00 0.48 3.13 15.36 3.13 15.36 32.00 32.00
10,000,000 130.00 0.46 3.45 17.40 3.70 16.20 37.70 35.10
15,000,000 190.00 0.47 5.00 18.00 5.26 17.10 38.00 36.10

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

50

100

150

200

size

cpu time (ms)
gpu#0 time (ms)
gpu#1 time (ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

5

10

15

size

cpu GFlop/s
gpu#0 GFlop/s
gpu#1 GFlop/s

Figure 8: ZAXMY [left: time in ms, right: GFlops]

One very expensive operation to do on CPUs for large vectors is the dot product. How-
ever, the most basic implementation of this operation, which uses a simple loop with simul-
taneous sums, is not very efficient on GPUs. This is why we split the dot product algorithm
into two separate parts. The first one consists of the element by element parallel multiplica-
tion of the vectors, while the second one consists of the summation of all the results given by
the first part. On a sequential processor, to implement the second part, a simple loop where
a single variable is incremented is enough. Each element of the input data is handled by a
thread, and the current sum (the partial result which is the sum of the nth first elements)
is stored in the first thread of this block at the end of the reduction. To obtain the result of
the dot product, the algorithm then returns the sum of all the partial sums of the different
blocks. In Table 7 and Figure 9, we compare the double precision execution time of our
implementation for the dot product on both CPU and GPU.

h cpu cpu gpu#0 gpu#0 gpu#1 gpu#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

100,000 0.88 0.91 0.12 6.63 0.12 6.43 7.27 7.05
500,000 4.55 0.88 0.27 14.68 0.29 13.92 16.68 15.82
1,000,000 9.09 0.88 0.42 19.04 0.43 18.40 21.64 20.91
8,000,000 70.00 0.91 2.70 23.68 2.86 22.40 25.90 24.50
10,000,000 90.00 0.89 3.45 23.20 3.57 22.40 26.10 25.20
15,000,000 130.00 0.92 5.26 22.80 5.56 21.60 24.70 23.40

Table 7: Complex double precision Dot product (ZDOT)

The results of the norm operation are given in Table 8 and Figure 10.
As we can see in the presented results, GPU is clearly more effective than CPU with

complex number arithmetics in double precision. In addition, for the operations considered
on two different GPUs, the results are slightly similar, even if the first GPU is a little bit
more efficient than the second. In the following, all experiments are performed on the second
device, i.e., gpu#0.

6 Advanced Linear Algebra Operations
Many methods, such as finite element analysis, require handling widly large size sparse ma-
trices, i.e., only few elements are non-zero values. To store efficiently these matrices on GPU
memory, different structures exist, e.g., Compressed-sparse Row format. These structures

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

20

40

60

80

100

120

140

size

cpu time (ms)
gpu#0 time (ms)
gpu#1 time (ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

5

10

15

20

25

size

cpu GFlop/s
gpu#0 GFlop/s
gpu#1 GFlop/s

Figure 9: ZDOT [left: time in ms, right: GFlops]

h cpu cpu gpu#0 gpu#0 gpu#1 gpu#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

100,000 1.72 0.29 0.13 3.85 0.13 3.97 13.28 13.69
500,000 7.69 0.33 0.25 9.98 0.23 10.95 30.69 33.69
1,000,000 16.67 0.30 0.43 11.65 0.36 14.05 38.83 46.83
8,000,000 140.00 0.29 2.78 14.40 2.13 18.80 50.40 65.80
10,000,000 170.00 0.29 3.45 14.50 2.78 18.00 49.30 61.20
15,000,000 260.00 0.29 5.00 15.00 4.00 18.75 52.00 65.00

Table 8: Complex double precision NormL2 (ZNORM)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

50

100

150

200

250

size

cpu time (ms)
gpu#0 time (ms)
gpu#1 time (ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

5

10

15

20

size

cpu GFlop/s
gpu#0 GFlop/s
gpu#1 GFlop/s

Figure 10: ZNORM [left: time in ms, right: GFlops]

are very important for Sparse matrix-vector product (SpMV) operation for instance, which
is one of the most time consuming operation in sparse matrix computation. As explained be-
fore, the matrix-vector product proposed in this paper uses advanced auto-tuned techniques
to organize threads on the CUDA grid. References [42, 54, 53, 24, 46, 17] clearly demon-
strated the efficiency of SpMV on GPU compared to CPU for real number arithmetics.
Complex number arithmetics with double precision still remains a challenge.

We now reports in Table 9 the SpMV execution time and the number of floating opera-
tions per second when using the CSR format within Alinea for complex number arithmetics

11

with double precision. Numerical experiments clearly show that GPU operations are efficient

problem cpu cpu gpu#0 gpu#0 gpu#1 gpu#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

Audi3D-0 0.01 0.61 0.07 0.12 0.06 0.13 0.19 0.21
Audi3D-1 0.20 0.67 0.11 1.23 0.12 1.07 1.84 1.60
Audi3D-2 2.22 0.68 0.37 4.03 0.42 3.56 5.93 5.24
Audi3D-3 20.00 0.71 2.22 6.41 3.03 4.70 9.00 6.60
Audi3D-4 180.00 0.69 18.33 6.74 24.00 5.15 9.82 7.50
Twingo3D-0 1.67 0.69 0.28 4.06 0.33 3.45 5.88 5.00
Twingo3D-1 15.71 0.69 1.79 6.05 2.44 4.43 8.80 6.44
Twingo3D-2 140.00 0.66 14.29 6.51 16.67 5.58 9.80 8.40
Cylinder3D-0 0.37 0.67 0.13 1.90 0.15 1.67 2.84 2.51
Cylinder3D-1 3.70 0.74 0.53 5.20 0.69 3.96 7.00 5.33
Cylinder3D-2 36.67 0.69 4.00 6.30 5.26 4.79 9.17 6.97

Table 9: Double precision CSR matrix-vector multiplication

than CPU operations.

7 Iterative Krylov methods
Knowing the efficiency of GPU architecture to perform linear algebra operations for complex
number arithmetics with double precision, we now extend our analysis to Krylov iterative
methods [25, 42, 4, 54]. We have thus aimed to develop a preconditionned bi-conjugate
gradient stabilized method (P-Bi-CGSTAB), a preconditionned P-BiCGSTAB parametered
(l) and a preconditionned transpose-free quasi-minimal residual method (P-tfQMR) [49],
with optimized CUDA and dynamic auto-tuning on GPU. Reference [9] exhibits the effec-
tiveness of our template implementation for real number arithmetics compared to Cusp [6],
CUBLAS [43], CUSPARSE [44].

In general, the transfer of data between the host (CPU) and the device (GPU), is one
of the most time consuming aspects of the algorithm [8]. In our Krylov algorithms imple-
mentation, all inputs are sent once from the CPU to the GPU before the iterative part
starts. However, at each iteration, there has to be more than one dot product (or norm),
which means that data must be copied from GPU to CPU. The Krylov algorithm we have
developed is launched on the host (CPU) but all the computing steps such as Zdot, Znorm,
Zaxpy, or SpMV take place on the device (GPU). The implementations both on CPU and
GPU are rigorously the same. All the results of the iterative Krylov methods presented in
this paper are achieved with a residual tolerance threshold of 1 × 10−9, an initial guess of
zero and a maximum number of iterations equals to 1000 for all of the presented methods.
The aim of this experiments consists in comparing tha analysis both on CPU and GPU,
with the same code, for complex number arithmetics with double precision. Table 10 shows
the speed-up obtained for Audi3D. In Table 11 the speed-up for Twingo3D are collected.
The CPU and GPU times in second, and the corresponding ratio are reported in Table 12
The numerical results of the considered iterative Krylov methods confirm the efficiency of
GPU computations compared to CPU for solving sparse linear systems. In addition, the
ratio increases when the size of the problem increases for all cases, i.e., when the mesh size
is more fine, GPU is more efficient compared to CPU. Unfortunaltely, when the mesh is too
fine, the corresponding assembled matrix becomes too large for GPU memory. . . In this case,
domain decomposition method [51], [47], [52], [19], [37], [30] based on iterative methods is an

12

problem #iter CPU time (s) GPU time (s) speed-up
P-BiCGSTAB
Audi3D-1 21 0.01 0.030 0.33
Audi3D-2 53 0.24 0.106 2.26
Audi3D-3 94 4.01 0.703 5.71
Audi3D-4 183 85.70 9.209 9.31
P-BiCGSTAB(8)
Audi3D-1 6 0.03 0.110 0.27
Audi3D-2 12 0.52 0.286 1.82
Audi3D-3 31 12.47 2.162 5.77
Audi3D-4 70 266.26 30.100 8.85
P-TFQMR
Audi3D-1 24 0.02 0.040 0.50
Audi3D-2 52 0.27 0.113 2.40
Audi3D-3 99 4.71 0.755 6.24
Audi3D-4 214 102.17 10.786 9.47

Table 10: Speed-up of Audi3D

problem #iter CPU time (s) GPU time (s) speed-up
P-BiCGSTAB
Twingo3D-0 563 1.85 1.008 1.84
Twingo3D-1 1000 29.45 5.730 5.14
Twingo3D-2 1000 295.66 37.670 7.85
P-BiCGSTAB(8)
Twingo3D-0 1000 31.2 20.970 1.49
Twingo3D-1 1000 273.81 54.630 5.01
Twingo3D-2 1000 2559.67 324.500 7.89
P-TFQMR
Twingo3D-0 366 1.34 0.626 2.14
Twingo3D-1 954 30.4 5.438 5.59
Twingo3D-2 1000 318.93 38.090 8.37

Table 11: Speed-up of Twingo3D

problem #iter CPU time (s) GPU time (s) speed-up
P-BiCGSTAB
Cylinder3D-0 49 0.040 0.060 0.67
Cylinder3D-1 86 0.680 0.216 3.15
Cylinder3D-2 162 12.290 1.886 6.52
P-BiCGSTAB(8)
Cylinder3D-0 10 0.090 0.182 0.50
Cylinder3D-1 19 1.450 0.521 2.79
Cylinder3D-2 71 47.670 7.460 6.39
P-QMR
Cylinder3D-0 85 0.090 0.106 0.85
Cylinder3D-1 196 2.050 0.482 4.25
Cylinder3D-2 282 23.870 3.302 7.23

Table 12: Speed-up of Cylinder3D

13

issue. The Schwarz method [26], [27], [28], [7] have encountered a success for solving large
size problem. To faster the convergence, many references [14, 22, 32, 31, 29] exhibit the
interest of optimizing the interface conditions between the subdomains. In order to use this
approach for acoustic problems modeled by the Helmholtz equation, continuous optimized
interface conditions between the subdomains must be developped as in [33], [34], [36], [20].
Alternative discrete optimization techniques as introduced in [48], [41], [38], [21], [40], [39].

Authors present how domain decomposition method is designed efficiently on GPU in [12,
13] and proved in [13] the interest of Schwarz methods on a cluster of GPUs.

8 Concluding remarks
This paper presented the performance evaluation and analysis of linear algebra operations
together with their uses within Krylov methods for solving acoustic problem on Graphics
Processing Unit (GPU) for complex number arithmetics with double precision. The nu-
merical experiments have been performed in two different system accelerated generations
of nVidia graphics card: GTX570 and Tesla K20c. We have used matrices arising from
the finite element modeling of the acoustic within a cylinder and a car compartment. The
presented results clearly demonstrate the interest of the use of GPU device to compute lin-
ear algebra operations, and outline the robustness, performance and efficiency of solve the
Helmholtz equations for acoustic problems.

References
[1] J.-C. Autrique and F. Magoulès. Numerical analysis of a coupled finite-infinite element

method for exterior Helmholtz problems. Journal of Computational Acoustics, 14(1):21–
43, 2006.

[2] J.-C. Autrique and F. Magoulès. Studies of an infinite element method for acoustical
radiation. Applied Mathematical Modelling, 30(7):641–655, 2006.

[3] J.-C. Autrique and F. Magoulès. Analysis of a conjugated infinite element method for
acoustic scattering. Computers and Structures, 85(9):518–525, 2007.

[4] J. M. Bahi, R. Couturier, and L. Z. Khodja. Parallel gmres implementation for solving
sparse linear systems on gpu clusters. In Proceedings of the 19th High Performance
Computing Symposia, pages 12–19, San Diego, CA, USA, 2011. Society for Computer
Simulation International.

[5] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC’09), pages 1–11, New York, NY,
USA, 2009. ACM.

[6] N. Bell and M. Garland. Library cusp website, 2010. Available on line at: http:
//cusplibrary.github.io/ (accessed on December 14, 2021).

[7] X.-C. Cai, M. A. Casarin, F. W. E. Jr, and O. B. Widlund. Overlapping schwarz
algorithms for solving helmholtz’s equation. In Domain decomposition methods, 10
(Boulder, CO, 1997), page 391–399. Amer. Math. Soc., Providence, RI, 1998.

[8] A. F. Camargos, V. C. Silva, J.-M. Guichon, and G. Meunier. Iterative solution on
gpu of linear systems arising from the a-v edge-fea of time-harmonic electromagnetic
phenomena. In Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd
Euromicro International Conference on, pages 365–371, Feb 2014.

14

http://cusplibrary.github.io/
http://cusplibrary.github.io/

[9] A.-K. Cheik Ahamed and F. Magoulès. Fast sparse matrix-vector multiplication on
graphics processing unit for finite element analysis. In High Performance Comput-
ing and Communication 2012 IEEE 9th International Conference on Embedded Soft-
ware and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, pages
1307–1314. IEEE Computer Society, 2012.

[10] A.-K. Cheik Ahamed and F. Magoulès. Iterative methods for sparse linear systems
on graphics processing unit. In High Performance Computing and Communication
2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on, pages 836–842. IEEE Computer
Society, june 2012.

[11] A.-K. Cheik Ahamed and F. Magoulès. Iterative Krylov methods for gravity problems
on graphics processing unit. In Distributed Computing and Applications to Business,
Engineering Science (DCABES), 2013 12th International Symposium on, pages 16–20.
IEEE Computer Society, 2013.

[12] A.-K. Cheik Ahamed and F. Magoulès. Schwarz method with two-sided transmis-
sion conditions for the gravity equations on graphics processing unit. In Distributed
Computing and Applications to Business, Engineering Science (DCABES), 2013 12th
International Symposium on, pages 105–109. IEEE Computer Society, 2013.

[13] A.-K. Cheik Ahamed and F. Magoulès. A stochastic-based optimized Schwarz method
for the gravimetry equations on gpu clusters. In Domain Decomposition Methods in
Science and Engineering XXI. Springer, 2014.

[14] P. Chevalier and F. Nataf. Symmetrized method with optimized second-order conditions
for the Helmholtz equation. In Domain decomposition methods, 10 (Boulder, CO, 1997),
pages 400–407. Amer. Math. Soc., Providence, RI, 1998.

[15] M. Creel and M. Zubair. High performance implementation of an econometrics and
financial application on GPUs. In High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion:, pages 1147–1153, Nov. 2012.

[16] A. Davidson, Y. Zhang, and J. D. Owens. An auto-tuned method for solving large
tridiagonal systems on the gpu. In Proceedings of the 25th IEEE International Parallel
and Distributed Processing Symposium, pages 956–965. IEEE, IEEE, May 2011.

[17] M. M. Dehnavi, D. M. Fernandez, and D. Giannacopoulos. Finite-element sparse matrix
vector multiplication on graphic processing units. IEEE, 2010.

[18] L. Djinevski, S. Arsenovski, S. Ristov, and M. Gusev. Performance drawbacks for matrix
multiplication using set associative cache in gpu devices. In Information & Commu-
nication Technology Electronics & Microelectronics (MIPRO), 2013 36th International
Convention on, pages 193–198. IEEE, 2013.

[19] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting
and its parallel solution algorithm. International Journal for Numerical Methods in
Engineering, 32(6):1205–1227, 1991.

[20] M. Gander, L. Halpern, and F. Magoulès. An optimized Schwarz method with two-
sided Robin transmission conditions for the Helmholtz equation. International Journal
for Numerical Methods in Fluids, 55(2):163–175, 2007.

[21] M. Gander, L. Halpern, F. Magoulès, and F.-X. Roux. Analysis of patch substruc-
turing methods. International Journal of Applied Mathematics and Computer Science,
17(3):395–402, 2007.

15

[22] M. J. Gander, L. Halpern, and F. Nataf. Optimized Schwarz methods. In T. Chan,
T. Kako, H. Kawarada, and O. Pironneau, editors, Twelfth International Conference
on Domain Decomposition Methods, Chiba, Japan, pages 15–28, Bergen, 2001. Domain
Decomposition Press.

[23] I. Harari and F. Magoulès. Numerical investigations of stabilized finite element com-
putations for acoustics. Wave Motion, 39(4):339–349, 2004.

[24] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A. R. Bishop. Sparse
matrix-vector multiplication on gpgpu clusters: A new storage format and a scalable
implementation. CoRR, abs/1112.5588, 2011.

[25] R. Li and Y. Saad. GPU-accelerated preconditioned iterative linear solvers, 2010.

[26] P.-L. Lions. On the Schwarz alternating method. I. In R. Glowinski, G. H. Golub,
G. A. Meurant, and J. Périaux, editors, First International Symposium on Domain
Decomposition Methods for Partial Differential Equations, pages 1–42, Philadelphia,
PA, 1988. SIAM.

[27] P.-L. Lions. On the Schwarz alternating method. II. In T. Chan, R. Glowinski, J. Péri-
aux, and O. Widlund, editors, Domain Decomposition Methods, pages 47–70, Philadel-
phia, PA, 1989. SIAM.

[28] P.-L. Lions. On the Schwarz alternating method. III: a variant for nonoverlapping
subdomains. In T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Third
International Symposium on Domain Decomposition Methods for Partial Differential
Equations , held in Houston, Texas, March 20-22, 1989, Philadelphia, PA, 1990. SIAM.

[29] Y. Maday and F. Magoulès. Non-overlapping additive Schwarz methods tuned to highly
heterogeneous media. Comptes Rendus à l’Académie des Sciences, 341(11):701–705,
2005.

[30] Y. Maday and F. Magoulès. Absorbing interface conditions for domain decomposi-
tion methods: a general presentation. Computer Methods in Applied Mechanics and
Engineering, 195(29–32):3880–3900, 2006.

[31] Y. Maday and F. Magoulès. Improved ad hoc interface conditions for Schwarz solu-
tion procedure tuned to highly heterogeneous media. Applied Mathematical Modelling,
30(8):731–743, 2006.

[32] Y. Maday and F. Magoulès. Optimized Schwarz methods without overlap for highly
heterogeneous media. Computer Methods in Applied Mechanics and Engineering,
196(8):1541–1553, 2007.

[33] F. Magoulès, P. Iványi, and B. Topping. Convergence analysis of Schwarz methods
without overlap for the Helmholtz equation. Computers and Structures, 82(22):1835–
1847, 2004.

[34] F. Magoulès, P. Iványi, and B. Topping. Non-overlapping Schwarz methods with op-
timized transmission conditions for the Helmholtz equation. Computer Methods in
Applied Mechanics and Engineering, 193(45–47):4797–4818, 2004.

[35] F. Magoulès, K. Meerbergen, and J.-P. Coyette. Application of a domain decomposition
method with Lagrange multipliers to acoustic problems arising from the automotive
industry. Journal of Computational Acoustics, 8(3):503–521, 2000.

[36] F. Magoulès and R. Putanowicz. Optimal convergence of non-overlapping Schwarz
methods for the Helmholtz equation. Journal of Computational Acoustics, 13(3):525–
545, 2005.

16

[37] F. Magoulès and F.-X. Roux. Lagrangian formulation of domain decomposition meth-
ods: a unified theory. Applied Mathematical Modelling, 30(7):593–615, 2006.

[38] F. Magoulès, F.-X. Roux, and L. Series. Algebraic way to derive absorbing boundary
conditions for the Helmholtz equation. Journal of Computational Acoustics, 13(3):433–
454, 2005.

[39] F. Magoulès, F.-X. Roux, and L. Series. Algebraic approximation of Dirichlet-to-
Neumann maps for the equations of linear elasticity. Computer Methods in Applied
Mechanics and Engineering, 195(29–32):3742–3759, 2006.

[40] F. Magoulès, F.-X. Roux, and L. Series. Algebraic Dirichlet-to-Neumann mapping for
linear elasticity problems with extreme contrasts in the coefficients. Applied Mathemat-
ical Modelling, 30(8):702–713, 2006.

[41] F. Magoulès, F.-X. Roux, and L. Series. Algebraic approach to absorbing boundary
conditions for the Helmholtz equation. International Journal of Computer Mathematics,
84(2):231–240, 2007.

[42] K. K. Matam and K. Kothapalli. Accelerating sparse matrix vector multiplication in
iterative methods using GPU. In G. R. Gao and Y.-C. Tseng, editors, ICPP, pages
612–621. IEEE, 2011.

[43] Nvidia Corporation. Nvidia - library cublas. Available on line at: http://www.nvidia.
com/object/cuda_home_new.html (accessed on December 14, 2021).

[44] Nvidia Corporation. CUDA Toolkit 4.0, CUSPARSE Library, 2011. Available on line at:
http://developer.nvidia.com/cuda-toolkit-40 (accessed on December 14, 2021).

[45] Nvidia Corporation. CUDA Toolkit Reference MANUAL, 4.0 edition, 2011. Available
on line at: http://developer.nvidia.com/cuda-toolkit-40 (accessed on December
14, 2021).

[46] T. Oberhuber, A. Suzuki, and J. Vacata. New row-grouped csr format for storing the
sparse matrices on gpu with implementation in cuda. CoRR, abs/1012.2270, 2010.

[47] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential
Equations. Oxford University Press, Oxford, UK, 1999.

[48] F.-X. Roux, F. Magoulès, L. Series, and Y. Boubendir. Approximation of optimal
interface boundary conditions for two-Lagrange multiplier FETI method. In R. K. et al,
editor, Proceedings of the 15th Int. Conf. on Domain Decomposition Methods, Berlin,
Germany, Jul.21-15, 2003, Lecture Notes in Computational Science and Engineering
(LNCSE). Springer-Verlag, Haidelberg, 2005.

[49] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[50] H. Schive, Y. Tsai, and T. Chiueh. Gamer: A graphic processing unit accelerated
adaptive-mesh-refinement code for astrophysics. The Astrophysical Journal Supplement
Series, 186:457, 2010.

[51] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Press, UK,
1996.

[52] A. Toselli and O. Widlund. Domain decomposition methods. Computational Mathe-
matics, 34, 2004.

17

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://developer.nvidia.com/cuda-toolkit-40
http://developer.nvidia.com/cuda-toolkit-40

[53] A. H. E. Zein and A. P. Rendell. From sparse matrix to optimal gpu cuda sparse matrix
vector product implementation. In CCGRID, pages 808–813. IEEE, 2010.

[54] A. H. E. Zein and A. P. Rendell. Generating optimal CUDA sparse matrix-vector
product implementations for evolving GPU hardware. Concurrency and Computation:
Practice and Experience, 24(1):3–13, 2012.

18

	1 Introduction
	2 Background and Motivation
	3 Case Study: automotive and cylinder acoustic
	3.1 Matrices tested
	3.2 Sparse matrix formats
	3.3 Hardware configuration

	4 Handling Complex Numbers on CUDA
	5 Basic Linear Algebra Operations
	6 Advanced Linear Algebra Operations
	7 Iterative Krylov methods
	8 Concluding remarks

