
HAL Id: hal-01273906
https://hal.science/hal-01273906v1

Submitted on 15 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Getting virtualized Wireless Sensor Networks’ IaaS
ready for PaaS

Imran Khan, Fatima Zahra Errounda, Sami Yangui, Roch Glitho, Noel Crespi

To cite this version:
Imran Khan, Fatima Zahra Errounda, Sami Yangui, Roch Glitho, Noel Crespi. Getting virtualized
Wireless Sensor Networks’ IaaS ready for PaaS. DCOSS 2015 : International Conference on Distributed
Computing in Sensor Systems, Jun 2015, Fortaleza, Brazil. pp.224 - 229, �10.1109/DCOSS.2015.39�.
�hal-01273906�

https://hal.science/hal-01273906v1
https://hal.archives-ouvertes.fr


Getting Virtualized Wireless Sensor Networks’ IaaS
Ready for PaaS

Imran Khan∗†, Fatima Zahra Errounda†, Sami Yangui†, Roch Glitho† and Noël Crespi∗
∗Institut Minés-Télécom, Télécom SudParis, 91011 Evry Cedex, France

Email: imran@ieee.org, noel.crespi@it-sudparis.eu
†Dept. CIISE, Concordia University, H3G 2W1, Montreal, Canada

Email: {f errou, s yangui} @encs.concordia.ca, glitho@ciise.concordia.ca

Abstract—With the recent advances in sensor hardware and
software, architectures for virtualized Wireless Sensor Networks
(vWSNs) are now emerging. Through node- and network-level vir-
tualization, vWSNs can be offered as Infrastructure-as-a-Service
(IaaS) which can aid in realizing the true potential of Internet-
of-Things (IoT). Cloud computing offers elastic provisioning of
large-scale infrastructures to multiple concurrent users where
Platform-as-a-Service (PaaS) interacts with IaaS in order to
efficiently host and execute applications over these infrastruc-
tures. Amalgamating IoT with cloud computing potentially allows
rapid application and service provisioning in an efficient, scalable
and robust manner. However, interactions between vWSNs and
PaaS are largely an unexplored area. Indeed, existing vWSN
IaaS are not yet ready for PaaS. This paper proposes a vWSN
IaaS architecture which is ready for interactions with PaaS. The
proposed architecture is based on our previous works and is
rooted in the fundamental differences between traditional IaaS
and vWSN IaaS. We built a prototype using Java Sunspot as the
WSN tool kit and made early performance measurements.

Keywords—Wireless Sensor Networks; Internet of Things;
Cloud Computing; Virtualization; IaaS; PaaS

I. INTRODUCTION

Since their mainstream introduction towards the end of 20th
century, Wireless Sensor Network (WSN) deployments have
been used as means to bridge the gap between the physical
world and the virtual world. With their ability to sense,
compute and communicate, WSNs provide their users with
the ability to react to various physical phenomenon and take
required actions [1]. WSNs are considered as basic building
blocks of Internet-of-Things (IoT) paradigm [2] where sen-
sors, along with multitude of everyday objects communicate,
interact and share data on a massive scale [3].

Cloud computing [4] paradigm allows several inherent
benefits (e.g., efficient usage of resources, scalability, elas-
ticity, and rapid provisioning of new applications). It has
three key facets: Software-as-a-Service (SaaS), Platform-as-a-
Service (PaaS) and Infrastructure-as-a-Service (IaaS). Service
providers use PaaS to provision applications and services as
SaaS on a pay-per-use basis to the end-users. PaaS ease the
provisioning process by adding levels of abstraction to the
infrastructure. This abstraction is achieved by using the virtual-
ization concept that allows sharing of resources by abstracting
them into multiple logical units on the same physical node [5].

WSNs can be virtualized at node-level [6] as well as at
network-level [7]. At node-level, multiple applications can

run tasks concurrently on a single WSN node, either sequen-
tially (round-robin) or simultaneously (context switching). At
network-level, groups of WSN nodes form Virtual Sensor
Networks (VSNs) to execute a given application task at a given
time. There can be multiple such groups in a WSN deployment,
each dedicated to a different application. A detailed survey
discussing the basics, motivation, benefits and existing works
on WSN virtualization can be found in [8].

Architectures that combine WSN node- and network-level
virtualization are now emerging (e.g., [9], [10] and [11]).
However, they are still not yet ready for PaaS. They lack
the appropriate design and architectural details to enable
proper interactions with the PaaS so that service providers
are able to efficiently provision new WSN applications and
services. The problem is challenging because vWSN IaaS are
fundamentally different from traditional IaaS. For example,
in traditional IaaS the concept of Virtual Machine (VM) is
used, which is characterized by its operating system, unique
global address, processing power and memory. On the other
hand, in vWSNs the concept of Virtual Sensor (VS) is used,
which is characterized by its sensor middleware, platform-
dependent localized address and scarcity of processing power
and memory. Moreover, issues like geospatial location and
sampling rate impose additional constraints.

This paper proposes an architecture to offer competent
vWSN IaaS, which is able to interact with PaaS to allow
service providers to rapidly provision WSN-based applications
and services. The proposed architecture is based on our previ-
ous work [10] and on the fundamental differences between the
vWSN IaaS and traditional IaaS that we have identified. Unlike
our previous work, this paper focuses on architectural design
and details to enable interactions between vWSN IaaS and
PaaS for dynamic provisioning of applications and services.

The paper is organized as follows. In Section II differences
between traditional IaaS and vWSN IaaS are presented along
with the requirements for a PaaS ready vWSN IaaS. Section
III presents the proposed vWSN architecture. Details on the
implementation and the results are presented in Section VI.
Section V discusses the lessons learned and future work while
Section VI concludes the paper.

II. FUNDAMENTAL DIFFERENCES BETWEEN WSN IAAS
AND TRADITIONAL IAAS

The fundamental differences between vWSN IaaS and
traditional IaaS stem from the differences between WSNs and



traditional networks. In this section, we first briefly discuss
how WSN and traditional networks differ before introducing
the fundamental differences between vWSN IaaS and tradi-
tional IaaS. Our analysis will be structured around the concepts
of VM (i.e., the fundamental element of traditional IaaS) and
VS (i.e., the fundamental element of vWSN IaaS). Finally, we
present a set of requirements for a PaaS ready vWSN IaaS.

A. Differences between WSN and Traditional Networks

WSNs are known to be resource-constrained environments
whose nodes typically have limited processing capability,
storage and are battery operated. The nodes have low duty
cycle [12] and operate only at specific intervals [13]. This
means that WSN nodes are not always available for applica-
tions. In traditional networks, nodes (server, computers) have
considerable resources and potentially have unlimited power
source allowing high duty cycle and high availability. This
fundamental difference has led to numerous research efforts
aimed at designing energy efficient protocols [14], simple data
formats [15] and simple application design [16] for WSNs.
Another important difference between the two network types
is the availability of protocols. IP rules traditional networks
whereas in WSN it is not much prevalent yet but there have
been efforts to bring IP to the WSN world [17], [18] and [19].
HTTP is not as much useful in WSNs as in traditional networks
but alternatives like CoAP [20] have emerged for WSNs. We
observe that the advent of IoT paradigm has prompted many
efforts to provide standard protocol support for WSNs [21].

B. Differences between VM and VS

A VM is defined as a logical unit that allows time and
resource sharing of host machines by partitioning them into
multiple dedicated execution environments [22]. Each VM has
a guest operating system that can access underlying resources.
On the other hand, a VS is a logical representation of the
physical sensor to allow sharing of its sensing capabilities (e.g.,
temperature and light sensing capabilities) [10]. VSs execute
multiple concurrent application tasks. On an abstract level, a
VS is similar to a VM, i.e., both provide a mechanism to
decouple physical resources from their host nodes in order to
be used by multiple users. For example, in traditional IaaS, the
resources of a host machine are represented by a VM Monitor
(VMM) or Hypervisor that allows multiple VMs to access
underlying resources [23]. In vWSN IaaS, if we consider the
example of Java SunSpots, the Squawk virtual machine [24]
provides a similar type of abstraction that allows multiple VSs
to access the sensing resources of a sensor. Still, there are
certain fundamental differences between the two. Table I lists
seven such differences, which are explained below.

The first difference is that a VM allows for the sharing of
resources (e.g., computing and storage) of the host machine,
whereas a VS allows sharing of sensing capabilities (e.g.,
temperature, light, humidity) by executing multiple application
tasks. The key difference is that a VM aims at sharing the host
machine resources, whereas a VS may use the computing and
storage of the host sensor, but it aims at sharing the sensing
capabilities of the host sensor. In Java SunSpots, for instance,
application tasks access the on-board sensors to sense the
physical phenomenon, and send the data accordingly.

The second difference is that multiple heterogeneous VMs
(in terms of operating systems) can be simultaneously de-
ployed on the same host. For instance, a host can support a
Linux-based VM and/or a Windows-based VM at the same
time. However, VSs are tightly coupled with their sensor
OS/middleware. For example, a sensor cannot support Contiki-
based VS and TinyOS-based VS at the same time.

The third difference is that multiple VMs can be deployed
in an isolated manner. The creation, deployment, and migration
of VMs does not affect the execution of existing VMs. On
the other hand, the deployment of new VS may disturb
the execution of existing VS(s). This is due to the limited
resources and the tight coupling between the VS and the sensor
OS/middleware. Similarly, migrating VS from one physical
sensor to another is not a standard feature yet. To the best
of our knowledge, Java SunSpots is the only platform that
provides support for VS migration (as serialized Java Isolates).
There is additional work in which a mobile agent-based system
for Java SunSpots is developed for VS migration [25].

The fourth difference is that VMs can be addressed by
other entities that are similar to their host machines. Each VM
can be assigned a public or private IP address and can be
accessed accordingly. However, there is currently no standard
mechanism for addressing a VS. Typically, a local ID is used
and may vary depending on the platform. This necessitates
some address mapping/translation mechanism to communicate
with a VS. For instance, in Java SunSpots, each VS can be
addressed by a MIDlet ID.

The fifth difference is that for a VM, there are no
power/energy-related issues, whereas a VS inherits these issues
from the host sensor nodes. This means that the creation,
deployment, and operation of a VS are not only dependent
on the capabilities/resources of the host sensor, but also on
its available energy. The always-on/always-available concept
is not applicable to WSN world.

The sixth difference is that for VMs, there are already
some open source and proprietary solutions (e.g., KVM and
VMware). However, no such solutions exist for VSs.

The seventh and final difference is that, at the IaaS level,
the role of a VM is to maximize the use of a host machines
resources (e.g., computing and storage), while the role of
a VS is to use the sensing capabilities of the host sensor
in an efficient manner. Therefore, to achieve cost-efficiency,
traditional IaaS may create several VMs on a limited number
of host machines. However, achieving cost-efficiency in vWSN
IaaS may not lead to the creation of several VSs on a few host
sensor nodes since the deployment of sensor nodes is strongly
correlated to the desired coverage of a geographic area.

C. Requirements for a PaaS Ready vWSN IaaS

The first requirement is that vWSN IaaS should support
standard interfaces for interacting with a PaaS API. These
standardized interfaces will allow easy instantiation, operation
and management of VSs from PaaS. RESTful interfaces are
lightweight and can be useful in resource-constrained environ-
ment like vWSN.

The second requirement is that once created, the VS should
be addressable similar to a VM in traditional IaaS. This



TABLE I. CONCEPTUAL DIFFERENCES BETWEEN VM AND VS

Virtual Machine Virtual Sensor

Logical representation of
host machine

Logical representation of sensing
capabilities of host sensor

Deployment of multiple
OS-heterogeneous VMs

Middleware-dependent
deployment of VS

Isolated deployment Non-isolated deployment

Standard IP-based
address mechanism

No standard mechanism
to address

Unlimited power supply
(for the physical host, i.e. server)

Battery operated
(for physical host; i.e., sensor)

Proprietary and
open source solutions Currently no solutions

Uses resources of host machine
(computing, storage)

Uses sensing capabilities of
host sensor

will allow PaaS to seamlessly manage these VSs (e.g. start,
stop, migrate and/or delete). Similarly, depending on the PaaS
requirements and vWSN IaaS capabilities, certain parameters
could be dynamically adjusted to configure VSs, such as
sampling rate, reporting interval or even task migration (e.g.
when monitoring dynamic events). In traditional IaaS, VMs
get IP address and are accessible from anywhere, whereas the
addressing mechanism of VSs depends on the platform and
can be either a task-ID, MIDlet-ID, or some variation of 64-
bit IEEE hardware address. A mapping scheme at vWSN IaaS
can be used to map global addresses to local ones.

The third requirement is that the vWSN IaaS should be
able to publish available services provided by the deployed
sensors. For application development, PaaS will need to dis-
cover services provided by sensors, for example it might
look for temperature service at a particular location for a
certain duration and upon finding appropriate sensor, proceed
to create a VS on it. In this situation a static or simple service
description will not suffice for publication, instead it should
include the spatial/temporal characteristics while considering
the current load on that particular sensor. A centralized or
distributed repository can be used for this purpose.

The fourth requirement is the lifecycle management and
monitoring of VSs by the vWSN IaaS. In resource-constrained
environments, VSs may not be as stable as VMs in tradi-
tional IaaS. Energy deficiency coupled with low bandwidth
and hardware issues make it difficult to have always-on or
always-available VSs. A robust VS lifecycle management and
monitoring will be useful, e.g. in releasing VS (deleting them)
when they are no longer in use, map application requirements
from PaaS to available sensors, and help in fault detection and
solution in the vWSN IaaS. However, satisfying spatial and
temporal requirements is not trivial.

The fifth and final requirement is the support for inter-
vWSN IaaS interactions. Typical WSN deployments will span
over a geographic area and may need to interact with each
other according to the requirements of the applications. Such
interaction needs to involve SLAs, policy enforcement and of
course deal with privacy and security issues.

Reference [8] provides an exhaustive survey of vWSN
solutions but none of them meets all these requirements.

III. PROPOSED WSN IAAS ARCHITECTURE

In this section, we first present our previous vWSN archi-
tecture since we use it as a starting point for this work. Later
we discuss our proposed vWSN IaaS architecture.

A. vWSN Architecture

This work is based on our previous work [10] in which we
proposed a vWSN architecture shown in Fig. 1. It is a multi-
layer architecture that exploits the capabilities of individual
sensor nodes to run concurrent application tasks at node-
level and dynamically assembles such nodes at network-level
for data sharing. The Physical layer has resource-constrained
sensors (e.g., TelosB motes) and capable sensors (e.g., Java
SunSpots). Since resource-constrained sensors may not support
WSN network-level virtualization, they rely on capable Gate-
to-Overlay (GTO) nodes (e.g., base station nodes, sink nodes
and capable sensors) for this purpose.

Next, in the Virtual Sensor layer, we have VSs that are
abstractions of the application tasks run by the physical sen-
sors. For each application, there is one VS running its task.
The third layer is the Virtual Sensor Access layer. It consists
of Sensor Agents (SAs) that provide platform independence
by using standardized north-bound interfaces and proprietary
south-bound interfaces. The final layer is the Overlay layer,
which consists of multiple application overlays that use the
deployed WSN. There are separate interfaces for data and
control messages. The architecture is platform independent,
applicable to different types of sensors, and does not cater any
specific application domain.

B. Proposed vWSN IaaS Architecture

The proposed vWSN IaaS architecture is shown in Fig. 2.
The following is the detailed description of the architecture.

The bottom two layers (WSN Infrastructure and Virtual
Sensors) are similar to the ones in the previous architecture
and consist of heterogeneous sensors, GTO nodes and virtual
sensors. The functionality of these two layers and the roles of
their entities are same as described in the Section III-A.

We have added a new layer called Virtual Sensor Manager,
which contains two new functional entities: The VS Manager
and VS Communicator. VS Manager receives requests to
instantiate, start, stop, delete, and migrate VS. Tasks such as
VS migration can only be accomplished if supported by the
vWSN IaaS. The task code, which is to be run by the VS, is
also disseminated through the VS Manager.

The VS Communicator supports platform-specific proto-
cols to interact with different sensor platforms to promote
platform heterogeneity. Examples of these protocols include
IEEE 802.15.4, Bluetooth, Cellular, and RESTful.

Next, we renamed the Virtual Sensor Access layer from
our previous architecture to the Virtualized WSN Infrastructure
Management layer to make it more appropriate for this work.
It now contains several new entities in addition as well as SAs.
SAs interact with the WSN PaaS components on behalf of the
VS in order to provide platform independence. The additional
entities are described as follows.



Fig. 1. Original vWSN Architecture

The Sensor Description Repository contains all relevant
information about the deployed sensors, including their type,
properties (i.e., protocol, data format, supported sampling in-
tervals, physical location and supported units) and capabilities
(i.e., sensing abilities). The repository can be distributed or
centrally located and it is the responsibility of the WSN
infrastructure owner to keep it up-to-date.

The Sensor Discovery entity, interacts with the repository
to search for the required sensors using any criteria, e.g., sensor
type, location and its availability.

The VS Provider is the main entity that receives VS
creation requests from the WSN PaaS. Based on these requests,
sensors are selected from the repository. The VS Provider
also makes decision about when to create, start, or stop a
VS by communicating with the VS Manager. There is also
a small cache of the most recent sensors used by applications
to prevent the need to search for sensors every time a request
comes from the PaaS.

The VS Configurator entity prepares task codes based on
the requests received from the VS Provider. These tasks will
be run by a given VS. VS Configurator uses platform-specific
code templates that allow for configurable parameters. A code
template is a skeleton code file that does nothing useful on its
own but can read from a parameter list and run a desired task.
An example is the skeleton code that reads a manifest file (i.e.,
used in Java SunSpot platform) to initialize parameters such as
sensor type, sampling interval, desired unit, and an end-point
address to send data output. Creating these manifest files on
the fly is programmatically simple and can be easily achieved.

The VS Configurator should ideally be implemented in a
modular fashion to allow for the possibility of adding future
code templates when new types of sensors are deployed.
Additionally, VS Configurator compiles and generates the final
executable code (e.g., jar file for Java SunSpot).

The role of VS Scheduler entity is to create, start, stop,
and disseminate task codes either right away or at a later time,
depending on the application requirements. It interacts with
VS Manager to accomplish this.

The final layer is the Cloud Management layer, which
includes an entity called the IaaS Access/Control Interface.

Fig. 2. Proposed vWSN IaaS Architecture

This interface exposes a RESTful API that allows multiple
users (i.e. PaaS) to interact with the deployed vWSN IaaS
through a set of REST-based operations.

IV. AN EARLY IMPLEMENTATION AND RESULTS

In this section, we first discuss a simple scenario used for
implementation. Then, we present our implementation choices
and prototype setup. Next, we discuss performance metrics and
finish off this section with a discussion on the results.

A. Implementation Scenario

A smart home application is required that allows home
owners to configure the use of their appliances when environ-
mental conditions change. For example, the A/C should start
automatically when temperature exceeds a given threshold.
Similarly, the deck lights should be turned-on automatically
when natural light drops below a given threshold.

The developer first discovers the light and temperature
services to design and create the smart home application. When
the application is deployed, the PaaS allocates an application
container along with two REST-Based interfaces. One interface
is for the VS corresponding to the light sensor and the other
for the VS corresponding to the temperature sensor.



B. Implementation Choices and Prototype Setup

The WSN infrastructure consists of Java SunSpots, which
have multiple on-board sensing capabilities. Unlike the earlier
generation of sensor nodes, Java SunSpots are quite capable
and are based on Java 2 Micro Edition (J2ME), which makes
them easier to program. The Squawk VM supports multi-
threading, making them suitable for our work. We used two
Java SunSpot kits: two base station nodes and four SunSpots
with on-board sensors. The vWSN IaaS layers were imple-
mented as a standalone application.

We programmed a simple PaaS, as a standalone Java
application. Eclipse IDE and JDK 1.7 were used for the
application development. The application code was annotated
with a description of the VS services and was given to
the developers beforehand. The smart home application was
developed as a simple Java application.

We used two laptops for the prototype. The first one had
the PaaS, and the second one had the vWSN IaaS. The two
laptops were connected via Ethernet and established as a
LAN network. The vWSN IaaS laptop was connected to the
Java SunSpot base stations to communicate with the remote
SunSpots Over-the-Air (OTA).

C. Performance Metrics

The performance of the prototype was assessed in terms
of the following metrics: VS Creation Delay (VSCD) and
VS Start Time (VSST). The time spent between the moment
the developer sends the application code to the PaaS for
deployment and the moment the PaaS sends the creation
requests to the vWSN IaaS was found to be negligible.

VSCD is the time spent between the moment the WSN
infrastructure receives the VS creation request from the PaaS
and the moment the VS is successfully created. Because
it is required to create a shared base station instance to
communicate with remote Java SunSpot OTA, we measured
two types of VSCD. In the first type, the shared base station
instance is created once and used repeatedly for VS creation,
hence it only shows VS creation delay. In the second type, a
shared base station is created every time a VS creation request
is received from the PaaS, hence it shows VS creation delay
plus the delay to create the shared base station instance.

VSST is the time spent when the WSN infrastructure
receives the VS start request from the PaaS and when the
corresponding VS is successfully started. All experiments were
repeated 50 times with a confidence interval of 95%.

D. Results

Fig. 3 shows the values of both types of VSCD over 50
iterations. On average, it took about 14.973 seconds to create
a VS on a remote Java SunSpot when the shared base station
was created once. However, for the second type of VSCD, the
average value increased by around 62%, to 24.282 seconds.
One reason for this increase is that the shared base station
instance spends some time probing for the available remote
SunSpots. This delay is unavoidable and is not related to our
architecture. Another reason for both of these high values is the
fact that we used Ant build tool (as required by Java SunSpot
platform) to first build, compile and create the executable file

Fig. 3. VS Creation Delay

Fig. 4. VS Start Time

and then send it to remote Java SunSpots OTA. The last step
included the delay to synchronize the target Java SunSpot. The
actual dissemination of the VS code to the remote SunSpot
took the very less time.

Fig. 4 shows the VSST of the 50 iterations. On average,
it took 4.2 seconds to start the newly created VS after re-
ceiving the request from the PaaS. Again, this delay included
the remote SunSpot synchronization delay before the newly
created VS was started. Overall, these results are promising
and prompt us to explore the problem area further in order to
provide more optimized solutions.

V. LESSONS LEARNED AND FUTURE WORK

In this work, we have learned several lessons and have also
identified many research issues to further pursue.

The first lesson learned is that while RESTful interfaces
provide an easy way to access VSs, however, integrating them
with existing open source PaaS (e.g., CloudFoundry) will be
quite challenging. The second lesson is that there are other
capable sensor kits in addition to Java SunSpots, such as
Preon32 sensor kits from Virtenio GmbH [26] (Java-based
and similar to SunSpots) and Phidgets kit [27]. The third
lesson learned is that during the creation of VS on a Java
SunSpot, the execution of existing VSs is not disturbed. This
feature is very useful for ensuring that existing applications
do not suffer when new ones utilize a SunSpot. Similarly, the
VS migration feature is also supported by SunSpots, and we



intend to work on this in the future. The fourth lesson is that
the delay associated the creation of VSs will largely depend
on the platform. Java SunSpots need Ant build tool whose
performance heavily depends on the installed Java version and
the workload on the host machine.

As for the future work, first we plan to work towards the
complete implementation of the architecture as presented in
Section III-B and satisfy all the requirements mentioned in
Section II-C. To this end, we intend to incorporate additional
sensor platforms to allow for the heterogeneity of sensor nodes.
The Preon32 and Phidgets kits are two possible candidates.
Second we plan to work on exploiting the capabilities of avail-
able Java SunSpot kits by implementing the full features (e.g.,
VS stop, delete and migration to another remote SunSpot on
the fly) they offer. Third we plan to provide the VS reservation
mechanism by implementing a VS Scheduler entity, which
would be very useful for a business model wherein a vWSN
IaaS could be leased to users against certain incentives [28].

While this work focuses on the vWSN IaaS, we also felt the
need to have a capable PaaS for vWSNs IaaS, because existing
PaaS solutions do not consider the possibility of using VSs for
application and service provisioning. For example, there is a
need to discover and manage VSs and their details at the PaaS
level but currently there is no solution for this. Instead most
solutions simply receive sensor data and use it without taking
full advantage of a vWSN IaaS.

VI. CONCLUSION

In this paper we have presented an architecture for a
competent vWSN IaaS that is able to interact with the PaaS
to support the concurrent VS-based applications and services
deployment on-demand. The architecture uses the principles of
cloud computing and the basics of WSN virtualization to offer
WSN deployments as IaaS. Using a capable sensor kit, an early
implementation has demonstrated its feasibility. We have also
identified several interesting and potent research issues and
plan to tackle them in future contributions.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science and
Engineering Council of Canada (NSERC) Canada Research
Chair in End-User Service Engineering for Communications
Networks and by an NSERC Discovery Grant.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp.
393422, Mar. 2002.

[2] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart
objects as building blocks for the Internet of things, IEEE Internet
Computing, vol. 14, no. 1, pp. 4451, Jan. 2010.

[3] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, The Internet
of Things: The Next Technological Revolution, Computer, vol. 46, no.
2, pp. 2425, 2013.

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres and M. Lindner, “A break
in the clouds,” ACM SIGCOMM Computer Communication Review, vol.
39, pp. 50, 2008.

[5] A. Khan, A. Zugenmaier, D. Jurca and W. Kellerer, “Network virtualiza-
tion: a hypervisor for the Internet?,” IEEE Communications Magazine,
vol. 50, pp. 136-143, 2012.

[6] P. Levis and D. Culler: “Mat: A tiny virtual machine for sensor net-
works, In ASPLOSX: Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating
Systems, San Jose, CA, 2002, pp. 85-95.

[7] A. P. Jayasumana, et al., “Virtual sensor networks a resource efficient
approach for concurrent applications, In Proc. Information Technology,
2007. ITNG07. Fourth International Conference on, Las Vegas, 2007,
pp. 111-115

[8] I. Khan, et al., “Wireless Sensor Network Virtualization: A Survey,”
Communications Surveys & Tutorials, IEEE, vol.PP, no.99, pp.1,1 2015,
doi: 10.1109/COMST.2015.2412971

[9] I. Leontiadis, et al. “SenShare: transforming sensor networks into multi-
application sensing infrastructures, Wireless Sensor Networks, Springer
Berlin Heidelberg, 2012, pp. 65-81.

[10] I. Khan, et al., “Wireless Sensor Network Virtualization: Early Archi-
tecture and Research Perspectives”, Accepted, IEEE Network. 2015

[11] I. Khan, et al., “A Data Annotation Architecture for Semantic Applica-
tions in Virtualized Wireless Sensor Networks”, in proceedings of 14th
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM 2015) Technical Session, 2015, May 11-15, Ottawa, Canada.

[12] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008.

[13] R. C. Carrano, D. Passos, L. C. S. Magalhaes and C. V. N. Albuquerque,
“Survey and Taxonomy of Duty Cycling Mechanisms in Wireless
Sensor Networks,” IEEE Communications Surveys & Tutorials, vol. 16,
pp. 181-194, 2014.

[14] N. Pantazis,, S. Nikolidakis, and D. Vergados. “Energy-efficient routing
protocols in wireless sensor networks: A survey,” Communications
Surveys & Tutorials, IEEE, 15.2 (2013): 551-591.

[15] A. Gyrard, C. Bonnet, and K. Boudaoud, “A machine-to-machine
architecture to merge semantic sensor measurements,” in WWW 2013,
22nd International World Wide Web Conference, Doctoral Consortium,
Rio de Janeiro, BRAZIL, 2013.

[16] H. Alemdar and C. Ersoy, “Wireless sensor networks for healthcare: A
survey,” Computer Networks, vol. 54, pp. 2688-2710, 2010.

[17] J. Rodrigues, and P. ACS Neves. “A survey on IPBased wireless sensor
network solutions,” International Journal of Communication Systems
23.8, pp. 963-981.2010

[18] X. Wang and H. Qian, “Research on all-IP communication between
wireless sensor networks and IPv6 networks,” Computer Standards &
Interfaces, vol. 35, pp. 403-414, 2013.

[19] Hui, J., Ed., and P. Thubert, “Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks”, RFC 6282, September 2011.

[20] Z. Shelby, “Embedded web services,” IEEE Wireless Communications,
vol. 17, pp. 52-57, 2010.

[21] M. Kamio, T. Yashiro, and K. Sakamura. “6LoWPAN framework for
efficient integration of embedded devices to the Internet of Things,”
Consumer Electronics (GCCE), 2014 IEEE 3rd Global Conference on.
IEEE, 2014. in 2014, pp. 302-303.

[22] V. Medina and J. M. Garca, “A survey of migration mechanisms of
virtual machines,” ACM Computing Surveys, vol. 46, pp. 1-33, 2014.

[23] J-Y., Hwang et al. “Xen on ARM: System virtualization using Xen
hypervisor for ARM-based secure mobile phones,” Consumer Commu-
nications and Networking Conference. 2008, 5th IEEE. pp. 257-261.

[24] D. Simon, et al. “Java on the bare metal of wireless sensor devices:
the squawk Java virtual machine,” Proceedings of the 2nd international
conference on Virtual execution environments. ACM, 2006.

[25] R. Lopes, F. Assis, and C. Montez. “MASPOT: A mobile agent system
for Sun SPOT., In Autonomous decentralized systems (ISADS), 2011
10th international symposium on, pp. 25-31. IEEE, 2011. Kobe, Japan

[26] Preon32 sensor kit – http://www.virtenio.com/en/products/evaluations-
kits.html - [accessed 20-04-2015]

[27] Phidgets kit – http://www.phidgets.com/products.php?category=18 [ac-
cessed 20-04-2015]

[28] Y. Zhang, J. Wen, “An IoT electric business model based on the protocol
of BitCoin”, in 2015 18th Int. Conf. Intelligence in Next Generation
Networks: Innovations in Services, Networks and Clouds (ICIN 2015),
Paris, France, Feb. 2015.


