
HAL Id: hal-01273905
https://hal.science/hal-01273905v1

Submitted on 14 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wireless sensor network virtualization: early
architecture and research perspectives

Imran Khan, Fatna Belqasmi, Roch Glitho, Noel Crespi, Monique Morrow,
Paul Polakos

To cite this version:
Imran Khan, Fatna Belqasmi, Roch Glitho, Noel Crespi, Monique Morrow, et al.. Wireless sensor
network virtualization: early architecture and research perspectives. IEEE Network, 2015, 29 (3),
pp.104-112. �10.1109/MNET.2015.7113233�. �hal-01273905�

https://hal.science/hal-01273905v1
https://hal.archives-ouvertes.fr

Wireless Sensor Network Virtualization: Early Architecture and Research
Perspectives±

Imran Khan+ ¥, Fatna Belqasmi#, Roch Glitho*, Noel Crespi+, Monique Morrow++, Paul Polakos++

+Institut Mines-Télécom, Télécom SudParis, Evry, France
#Zayed University, Abu Dhabi, United Arab Emirates

*Concordia University, Montreal, Canada
 ++CISCO Systems

¥ imran@ieee.org
Abstract

Wireless sensor networks (WSNs) have become pervasive and are used in many applications and services.
Usually the deployments of WSNs are task oriented and domain specific; thereby precluding re-use when
other applications and services are contemplated. This inevitably leads to the proliferation of redundant
WSN deployments. Virtualization is a technology that can aid in tackling this issue, as it enables the sharing
of resources/infrastructure by multiple independent entities. In this paper we critically review the state of
the art and propose a novel architecture for WSN virtualization. The proposed architecture has four layers
(physical layer, virtual sensor layer, virtual sensor access layer and overlay layer) and relies on the
constrained application protocol (CoAP). We illustrate its potential by using it in a scenario where a single
WSN is shared by multiple applications; one of which is a fire monitoring application. We present the proof-
of-concept prototype we have built along with the performance measurements, and discuss future research
directions.

Keywords

Wireless Sensor Network (WSN), Virtualization, Node-level virtualization, Network-level virtualization,
Overlay Networks

Introduction

In the last few years, Wireless Sensor Networks (WSNs) have become ubiquitous and are being used in a
broad array of application domains, including healthcare, agriculture, surveillance and security. These
WSNs are composed of small-scale nodes that have the ability to sense, compute and communicate [1].
While early sensor nodes were resource-constrained with limited capabilities, recent advances in sensor
hardware technology have made it possible to produce sensor nodes that have more processing power,
memory and prolonged battery life.

Virtualization is a key technique for the realization of the Future Internet, and it is indeed quite pertinent to
explore it in the context of WSNs. Virtualization makes it possible to present physical computing resources
by abstracting them into logical units, enabling their efficient usage by multiple independent users,
including multiple concurrent applications [2]. Furthermore it even allows for the deployment of
applications that were not even envisioned during an infrastructure’s initial deployment.

To date, the realizations of WSNs have been domain-specific and task-oriented. Applications are bundled
with a WSN at the time of deployment, and it is next to impossible to use the same WSN for another
applications. This leads to redundant deployments and the underutilization of these resources. There are
two approaches to allow multiple applications to access deployed WSN resources. One is to allow multiple
applications to share the data gathered from a WSN. In this approach, a sink/gateway node collects all the
data from the WSN and shares it among multiple users. For example, in [3], WSNs are merged into the
± This paper is an extended version of a short paper presented at "6th Joint IFIP Wireless and Mobile
Networking Conference (WMNC'13), April, 23-25, 2013, Dubai, UAE, under the title of “A Multi-Layer
Architecture for Wireless Sensor Network Virtualization".

cloud by sending observed sensor data through a host manager that lies outside the WSN. The host manager
simply collects the sensor data, profiles/aggregates it and then allows multiple applications to use it for their
own purposes.

The second approach is to use the capabilities of the individual sensor nodes to execute multiple application
tasks concurrently, and allow applications to group these sensor nodes together according to their
requirements. The key difference between the two approaches is that the former approach allows the sharing
of WSN data among multiple users, while the latter allows sharing of WSN nodes by multiple applications.
This paper is focused on the second approach because it makes it possible to design more innovative
applications over the deployed WSNs, even applications that were not envisioned a priori. This will greatly
improve the efficiency of the deployed WSNs and will also encourage new business models.

This paper introduces the WSN virtualization concept, critically reviews the state-of-the-art in WSN
virtualization and proposes a new early architecture which focuses on fixed WSNs. We illustrate the
potential of the architecture by instantiating it for a fire monitoring scenario [4] in which multiple
applications share the same WSN. We have built a prototype to demonstrate its feasibility and to measure
its performance. We also identify further research directions.

The next section presents a critical overview of the state-of-the-art. The proposed architecture is presented
in the third section. The fourth section discusses the implementation alternatives with the proof-of-concept
prototype and the recorded performance measurements. The research directions are discussed in the fifth
section. We conclude in the last section by discussing the lessons learned.

2. A Critical Overview of the State-of-the-Art

There are two categories of WSN virtualization: node level and network level. Figure 1 shows a high-level
view of WSN virtualization. WSN node-level virtualization allows multiple applications to run their tasks
concurrently on a single WSN node [5] (Fig. 1-a). This execution can be sequential (e.g. round-robin) or it
can be simultaneous, with context switching between application tasks.

In WSN network-level virtualization, a subset of sensor nodes belonging to a deployed WSN form a Virtual
Sensor Network (VSN) to execute given application tasks at a given time [6], while the other sensor nodes
remain available for other application tasks. WSN network-level virtualization can be achieved in two ways.
Different VSNs can be created over the same underlying WSN infrastructure (Fig. 1-b), or sensor nodes
can form a single VSN over multiple WSNs in different administrative domains (Fig. 1-c). The latter
situation is possible whenever the sensor nodes can support the concurrent execution of application tasks.
It is the case these days because many popular sensor operating systems (e.g. Contiki) that run on resource
constrained devices, enable node level virtualization through the concurrent execution of applications tasks
on a same sensor node.

Figure 1: WSN Virtualization Categories

2.1. Motivating Example and Requirements

In this section we first present a motivating example and then draw requirements from it.

2.1.1. Motivating Example

A real-world deployment of a WSN is presented in [7], in which a WSN is used to monitor the impact of
constructing a road tunnel under an ancient tower in Italy, as it was feared that the tower could lose its
ability to stand on its own and that it might collapse during the construction. Now consider that there are
three users interested in the fate of the tower. The first is the construction company, as it needs make sure
that the tower does not lose its ability to stand on its own, otherwise it will have to pay a heavy fine. The
second user is the conservation board which routinely monitors all the ancient sites around the city, and the
third user is the local municipality which will have to plan emergency remedial/rescue actions in case the
tower falls during the construction.

It is quite possible that the conservation board has already deployed its own WSN to monitor the health of
ancient sites including this tower. In this case the construction company and the local municipality can reuse
the existing sensor nodes during the construction period. In the absence of WSN virtualization, there are
only two possible solutions. One is to rely on the information provided by the conservation board
application. However this information may not be at the required granularity level. Worse, some of the
information that is needed might simply not be available because the requirements of the construction
company and of the local municipality were not considered when the conservation board application was
designed and implemented. The second solution is that each user deploys redundant WSN nodes.

2.1.2. Requirements

The first requirement is the support of node-level virtualization to allow the execution of multiple
application tasks on the same sensor node. The second requirement is the ability of sensor nodes to
dynamically form groups to execute isolated and transparent application tasks concurrently (i.e. support for
WSN network-level virtualization). The third requirement is the support of application priority. In some
critical application scenarios such as fire monitoring, it is important that other tasks have less priority than
the one reporting the fire event.

The fourth requirement is that the proposed solution should be applicable to a wide range of applications
and should not be tailored for a particular scenario or domain, which is the usual case with most solutions.
The fifth requirement is that the proposed solution should be platform-independent and should not depend
on specific operating systems or customized/tailored interfaces. The sixth and final requirement is that the
solution should address heterogeneity, i.e., cope with sensor nodes that have different capabilities (e.g.
processing power, memory).

2.2. The State-of-the-Art and its Shortcomings

We divide the related work into three classes: node-level, network-level and hybrid virtualization solutions.
The hybrid solutions combine both node- and network-level virtualization.

2.2.1. Node-level Virtualization

In order to achieve node-level virtualization, mechanisms must be in place to allow deployed WSN nodes
to execute new application tasks as well as update existing ones. One solution is to reprogram WSN nodes
individually, but that is neither feasible nor efficient. Wireless reprogramming, on the other hand, allows
large number of WSN nodes to be updated with new application tasks with minimum effort. It is now the

main mechanism used for node-level virtualization. Two examples of node-level virtualization based on
wireless reprogramming are discussed below. Their main drawback is platform dependency.

Maté [5] is a pioneering work that provides sequential execution of application tasks on resource-limited,
early generation sensor nodes. It is a tiny virtual machine consisting of a stack-based binary code interpreter
and works on top of TinyOS. Application tasks are divided into code capsule(s) of up to 24 instructions and
are executed one by one. A viral code distribution scheme is used to propagate code and to reprogram the
sensor nodes. As there is tight coupling between the application code and TinyOS, installing a new code
requires the replacement of the whole OS. There is no support for application priority, and only a limited
set of applications is supported. Furthermore, the approach is not platform-independent since it only works
on TinyOS, but it does address heterogeneity.

MANTIS [8] is a thread-based embedded operating system. Programs are created as user-level threads with
dedicated memory space and static data attached to them at compile time. Long-running threads can be pre-
empted by short-running threads. The work on wireless reprogramming is ongoing, according to the
authors. The techniques being used are the wireless re-flashing of the OS and the re-programming of single
threads. Unlike Mate, MANTIS does provide application priority. However, it is not platform-independent.

2.2.2. Network-level Virtualization

In [6], sensor nodes form clusters to support applications that monitor dynamic phenomena. The sensor
nodes within each cluster executes application(s) tasks, meaning a sensor node can be part of multiple
clusters. With each cluster dedicated to an application, a WSN can be utilized by multiple applications
concurrently, hence realizing network-level virtualization. Two illustrative applications are presented as
motivation. Unfortunately the work is poor in terms of technical details (e.g. how individual nodes execute
application tasks). Furthermore, there is no discussion of how application priority, heterogeneity and
platform independence are tackled. This work has been extended in reference [9] in order to facilitate the
creation, operation and maintenance of dynamic clusters to achieve network-level virtualization. Once an
event is detected, sensor nodes are grouped as a dynamic cluster tree by exchanging VSN formation
messages. However, in terms of our requirements none of the drawbacks of reference [6] are addressed.

The authors in [10] introduce the problem of mission assignment in WSNs. The work can be related to
network-level virtualization because the WSN is able to support multiple missions at the same time. Each
mission uses a dedicated subset of sensor nodes which are not shared with other missions. A mission
assignment problem is modelled as a weighted bipartite graph to optimally assign the sensor nodes to
missions. Achieving a mission produces a profit, so the goal is to maximize profit by efficiently achieving
as much missions as possible. Both centralized and distributed solutions are presented, using proofs and
algorithms including an energy aware solution. This solution does not consider any specific application
domain. Heterogeneity is addressed along with platform independence. However, application task priority
is not provided since each sensor node executes only one application task at a time.

2.2.3. Hybrid Solutions

The authors in [11] discuss the SenShare platform, which supports both WSN-node and network-level
virtualization. They consider TinyOS applications with an embedded hardware abstraction layer (HAL).
The underlying sensor node resources are then accessed using a run-time layer on top of TinyOS. Since
TinyOS supports multiple tasks at the same time, node-level virtualization is thus achieved. For network-
level virtualization, an overlay network using Collection Tree Protocol (CTP) is created to group sensor
nodes executing the same application. The physically scattered sensor nodes executing the same application
can be grouped into a single overlay network. SenShare is the first solution targeting comprehensive WSN
virtualization. It supports node- and network-level virtualization, application priority and heterogeneity,

and it is independent of any application domain. However, it is not platform-independent, as only TinyOS
applications are supported.

Melete [12] is an extension of Maté and supports both node- and network-level virtualization. Concurrent
execution of application tasks is achieved by making the following enhancements to Maté: dedicated
storage and execution space for applications to allow concurrency, and a code dissemination protocol to
allow selective and reactive (re)programming of sensor nodes. For network-level virtualization it uses a
dynamic grouping technique of sensor nodes. A sensor node can be part of more than one logical group at
the same time. The supported network topology is a connected graph. Melete does not support application
priority, and is not platform-independent. It only supports a limited set of applications, but it does tackle
heterogeneity.

3. Proposed Architecture

In this section, we first present the architectural principles. We then present our multi-layer architecture
based on overlays, followed by a discussion of the interfaces and the overlay creation procedure.

3.1 Architectural Principles

The first architectural principle is that new applications/services are deployed as new overlays on top of the
physical WSN. Overlays have several advantages: they are distributed, lack central control and allow
resource sharing [13]. The second principle is that any given physical sensor node can execute (locally) a
task for a given application deployed in the overlay. Any given sensor node may execute several such
application tasks at any given time.

The third principle is that not all WSN nodes perform the overlay-related operations, as they may not have
enough capabilities to support the overlay middleware. When that is the case, they will delegate the
operations to more powerful sensors and even to other nodes. This principle in effect makes it possible to
address the heterogeneity requirement and enables network level virtualization for current generation
resource constrained sensor nodes.

The fourth principle is that within the architecture there are separate data and control paths. The sensor data
(e.g. temperature values) is transmitted from sensor nodes to the overlay application using the data path.
The control data (e.g. changing application priority and overlay management) is sent over the control path.
This separation of paths makes it easy to work on new protocols for each path independently.

The last principle is the use of emerging standards, aimed at resource-constrained devices, to tackle the
platform independence challenge. These standards include protocols such as the Constrained Application
Protocol (CoAP) [14], DNS-Service Discovery (DNS-SD) [15] and standards such as Sensor Model
Language (SensorML) [16], Observations & Measurements (O&M) [17] and Sensor Markup Language
(SenML) [18]. This principle of course implies the need for converters/mappers for devices which do not
support the standards.

CoAP is an application layer transfer protocol, like HTTP, designed to work with resource-constrained
devices. It has less overhead, memory and processing requirements than HTTP. DNS-SD offers service
discovery in resource-constrained networks and allows for the seamless integration of such architectures to
the existing IP networks. SensorML provides standard models and XML-based encoding to describe sensor
measurements and processes. It is able to provide interoperability, automatic discovery, utilization and
sensor sharing. O&M is a standard which defines encoding schemas for the observations made by sensors.
SenML provides a data model for sensor measurements and simple metadata about sensors in JSON, XML
and EXI formats.

3.2 Overall Architecture

Figure 2 shows our proposed multi-layer architecture, and Table I provides the list of components used.
There are four layers (physical, virtual sensor, virtual sensor access and overlay), two paths (data and
control), five interfaces (data (Di), proprietary Di (PDi), control (Ci), proprietary Ci (PCi) and gateway
(Gi)) and a registration server.

TABLE I. COMPONENTS OF THE ARCHITECTURE

Abbreviation Component Remarks

– Type A Sensor Legacy/resource constrained sensor

– Type B Sensor New generation smart IP sensor node

GTO Node Gates-to-Overlay
Node

Gateway/sink node capable of joining application overlays on
behalf of Type A sensors

– Sensor Agent Functional entity providing a unified interface to provide
platform independence

– Registration Server Sensor repository

Di Data Interface Interface to send sensor data to application overlay

PDi Proprietary Data
Interface

Proprietary interface to send virtual sensor data to sensor agent

Ci Control Interface Interface to send/receive control data from end-user application

PCi Proprietary Control
Interface

Proprietary interface to send/receive control data from virtual
sensor to sensor agent

Gi Gates-to-Overlay
Interface

Interface to send/receive the control data between Type A
sensors and Type B sensors/GTO nodes

At the physical layer we have independent WSNs that consist of two types of sensor nodes, i.e., resource
constrained (type A) and capable (type B) sensors. Each WSN also has specialized nodes, called GTO
nodes. Their role is to help type A sensors join the application overlays and provide heterogeneity.
Gateways, sink nodes or a type B sensors can act as GTO nodes when required. For example, in the
motivating example in section 2.1.1, if the existing sensors are of type A, then either the existing gateway
node or Type B sensors, deployed by the construction company, can help those sensors to become part of
the construction company overlay. This might increase the complexity of the type B sensor nodes but it
does allow flexibility.

The virtual sensor layer consists of the logical representation of each sensor executing multiple application
tasks concurrently. Each logical representation is called a virtual sensor in our architecture, which is an
abstraction of an application task run by a sensor.

Figure 2: Multi-layer WSN Virtualization Architecture

The virtual sensor access layer consists of sensor agents which ensure platform independence. This is
achieved by providing standardized interfaces (Di and Ci) to interact with the end-user applications, and
are mapped onto platform-specific (proprietary) interfaces (PDi and PCi) for the underlying physical sensor
nodes. Sensor agents can be implemented either in capable (type B) sensors or in GTO nodes.

The overlay layer consists of independent application-specific overlays (two are shown in the figure 2, but
there could be many more). Each application overlay is created by the end user application and consists of
virtual sensors that run the overlay application tasks. An overlay protocol is used for message exchange
inside an overlay. A Registration Server, which contains the details of the deployed sensor nodes, is used
by end-user applications to find sensor nodes.

3.3 Interfaces

The data path uses the data interface (Di) supported by all of the sensor agents to send the data received
from the virtual sensors executing the end user’s application task to the application overlays. The control
path uses the control interface (Ci) supported by all sensor agents to send/receive control data. Examples
of control data include sending requests to change application priority and sampling frequency. The
interfaces, PDi and PCi are proprietary interfaces and are used by the sensor agent to communicate with
WSNs. Figure 3 shows high level examples of when sensor data is sent over PDi and Di interfaces (3a)
(when fire is detected) and when a request to change application task priority is sent over Ci and PCi
interfaces (3b). In this case it is the priority of the task running on sensor 02. The Gates-to-overlay interface
(Gi) is provided by all the sensors as well as the GTO nodes. Any communication from type B or GTO
nodes with type A sensors is done using this interface.

3.4 Overlay Creation Procedure

This section describes the overlay creation procedure. The creation of the overlay is a three step procedure,
initiated by the end user application. The first step is the dynamic resource discovery and overlay pre-

Virtual
Sensor 2Virtual

Sensor 1

Virtual
Sensor 1

Virtual
Sensor 2

Type A
Sensor

Gi

GTO Node

Wireless Sensor Network CWireless Sensor Network B

A

A

B
B B

B

B BA
A

A BA

B

B
A

Virtual
Sensor 3

Ci

End User
Application

End User
Application

Application Overlay
Application Overlay

Ci

Registration
Server

Internet

GTO Node

Gi

PDi PCi
PDi

PDiPDi

A
A

B

B

B

A

A

A

B

PDi
PDi PDi PDi

PDi

Di

Di

Di

Di

Di

Sensor Agent

AB

Ci

Di
Di Di

Di
Di

Sensor Agent Sensor Agent

Ci

Physical Layer

Virtual Sensor Layer

Overlay Layer

(Heterogeneous sensors,
& GTO Nodes)

(Logical representation of each
sensor executing multiple

tasks)

(Independent application
overlays)

Virtual Sensor Access
Layer

(Functional entities providing
unified interfaces to support
heterogeneous sensor nodes)

A

Wireless Sensor Network A

BA AAAA

Gi

Type A Sensor

Type B Sensor
B

AA

A BBB

B
A

AA A

A

A

A

configuration, allowing the discovery of the sensors and GTO nodes on the fly according to the
requirements of the end user application. The second step is the activation of the overlay. The selected
sensor (type B) and GTO nodes receive an overlay join request (or advertisement) over the Ci interface.
After joining the overlay, the type B sensors and the GTO nodes (for type A sensors) may receive the
application task, with its desired priority level. The final step is the execution of the end user application,
which begins when each sensor starts executing the end user application task. Depending on the application
requirements, sensors may exchange messages among themselves in the overlay before sending any data to
the end user application over the Di interface.

Figure 3: Example of communication over data and control interfaces

Virtual Sensor of
Sensor01 [Type A]

GTO Node
[Sensor Agent]

End-user
Application

Fire Detected
PDi Interface

Di Interface

Content-Type = application/json

{"e":[
 { "v": 20.1 }],
 "bn": "Sensor01",
 "bt": 1376020076,
 "bu": "Cel"
}

201 Created

RadiogramConnection.send
(sensor01, 1376020076,
20.1, Cel)

Virtual Sensor
of Sensor02

[Type B]

GTO Node
[Sensor Agent]

return(true)

End-user
Application

Ci Interface

PCi Interface

200 OK

getinstance(tasks02Thread);

setPriority(DEFAULT+1)

Content-Type = application/json

{"e":[
 { "n": "task02"},
 {"sv": "increase task priority"}],
 "bn": "Sensor02"
}

RadiogramConnection.send
(task02, increase)

a) Sending sensor data over PDi and Di interfaces

b) Changing application task priority over PCi and Ci interfaces

4 Implementation Alternatives, Proof of concept Prototype and Measurements

4.1 Implementation Alternatives

Our proposed architecture consists of the data plane, the control plane and several interfaces that belong to
them. The Di interface, belonging to the data plane, carries the actual data. The Ci and Gi interfaces carry
control messages and are part of the control plane.

There are several options for implementing a data plane interface. Both HTTP and CoAP can be used as
application layer protocols, but we chose CoAP as it will allow type A nodes to support the same protocol
for Di and Gi interfaces. We use SenML specifications to encode the sensor data in standard JSON format.
The combination of SensorML and O&M is another option, but we selected SenML since it is less complex.

For the control plane, one candidate protocol is JXTA [19], an open source peer-to-peer protocol
specification that allows the creation of independent, robust and efficient overlay networks. ScatterPastry
[20] is another option. For our work we opted to use JXTA since its implementations are readily available.

4.2 Prototype

We implemented a simple brush fire scenario discussed in [4] as a prototype. In this scenario, the city
administration is interested in the early detection of brush fire eruption and in its evolution, using a WSN
and a Fire Contour Algorithm (FCA). Some houses in the area already have their own sensors to detect fire.
To accelerate the deployment of its application and to avoid redundancy, the city administration has opted
to deploy sensors in areas under its jurisdiction (i.e. streets and parks) and to incorporate the sensor nodes
already deployed in private homes. The home owners get incentives like tax rebates for allowing the use of
their sensors by city administration. The home gateways acts as GTO nodes. All of the privately-owned
sensors execute two application tasks – one for the home owner and one for the city administration. Figure
4a shows the mapping of the scenario onto our architecture.

We make the following assumptions. First we assume that the city administration has already discovered
and sent its application task to each of these sensors. The second assumption is that all of the sensors in the
prototype are type A sensors which need a GTO node for overlay-related tasks. Third, as it was not possible
to generate a fire in a lab environment, the city administration application task periodically measured the
temperature value in a sensor and sent it to the GTO node. We used six Java SunSpots sensors, each
executing three application tasks concurrently. The application tasks and the FCA were coded in Java 2
Platform Micro Edition (J2ME). J2ME is a robust, flexible Java platform that enables the development of
applications for mobile and embedded devices. The city administration’s overlay network was implemented
using a Java based implementation of the JXTA protocol, JXSE 2.6.

A RESTful web service is used by the city administration node to receive fire alerts. Each GTO node, upon
receiving fire notification from its sensor, sends an HTTP POST message to a URI
(http://…/FireContourService/events/fire/) to create a fire event. The content type of the HTTP POST
message is set to application/senml+json and the event data received from Java SunSpot is mapped to JSON
format according to SenML specifications. Once the event is created, the city administration node sends a
fire notification message to the peers in the overlay.

The overlay is created by the city admin node, acting as rendezvous peer, by advertising its peer group (fire
contour service) using JXTA pipe advertisements before the fire event. The GTO nodes join the fire contour
service as edge peers by replying to the received pipe advertisement. The city admin node sends the fire
notification message using the JXTA multicast socket, which provides efficient message exchange between

members of the same peer group. After the execution of the fire contour algorithm, the reply message is
sent directly to the city admin node instead of being multicast.

The prototype uses a simple probabilistic fire contour algorithm, considering that a distant house will send
fire notifications less frequently than a nearby house because the fire is far from it. The city administrations’
application is created using JavaFX, and receives the fire alert messages as well as the peers’ replies and
displays the output on the area map. JavaFX is a set of Java libraries that allow developers to rapidly design,
create and deploy client applications that operate across diverse platforms.

The prototype setup is illustrated in Fig. 4b. The city administration application and its fire contour web
service ran on a laptop with an Intel Core i5 CPU clocked at 2.67 GHz, and a 4GB RAM with 32bit
Windows 7 Enterprise. The other two laptops acted as GTO nodes for Java SunSpots and ran three JXTA
peers each. Their configurations were an Intel Core i7 CPU clocked at 2.70 GHz with 8GB RAM, 64-bit
Windows 7 Professional and an Intel Core i5 CPU clocked at 2.60 GHz, and a 4GB RAM with Windows 7
Enterprise. All three laptops used JVM version 1.7.0_21 and were connected to a private LAN.

Figure 4: Instantiation of the architecture and Prototype setup

USB USB

House A House B

GTO
Node

Home
Task

City Admin
Task 1

City Admin
Overlay

Sensor
Agent

Sensor
Agent

PDi

PDi

Di

Di

Di

Ci
Ci

Ci

City Admin
Application

GTO Node
A

GTO Node
B

Sensor Agent Sensor Agent

RESTful City Admin
Web Service

HTTP POST message
In JSON format

City Admin Overlay
(JXTA Peer Group)

JXTA
Peer A

JXTA
Peer B

JXTA
Peer C

JXTA
Peer D

JXTA
Peer E

JXTA
Peer F

Sensor B

Sensor C
Sensor F Sensor A

Sensor D

Sensor E

City
Admin
JXTA
Peer

City Admin
Control Task

City Admin
Task 1

City Admin
Node

City Admin Area
Map Display

a) Instantiation of the architecture b) Prototype Setup

Gi

Home
Task

City Admin
Task 1

GTO
Node

Gi

4.3 Performance Measurements

Performance Metrics – The performance of the prototype was assessed in terms of the following delays:
HTTP POST Delay (HPD), Overlay Creation Delay (OCD) and Fire Notification Delay (FND).

HPD is the time difference between when the GTO node sends an HTTP POST request and when it receives
the corresponding success code (201 created). HPD is calculated for each sensor. OCD is the time it takes
to set up the city administration overlay from a non-existent state to a ready state, when it advertises its fire
contour service and is ready to accept join requests. We measured this delay inside the Java code to ensure
that the OCD does not include the JVM start-up delay. FND is measured as the time it takes for the city
admin node to multicast fire notification messages to JXTA peers and to receive their replies after they
execute fire contour algorithm. For each experiment we restarted the JVM and cleared the previous JXTA
configuration cache. All delays are measured in milliseconds and calculated at the sender side.

Figure 5: Results

Performance Results – The HPD measurements are shown in Fig. 5(a) (for clarity, only 15 measurements
are shown). The dark blue horizontal line shows the average delay for the 50 measurements, 18.96ms. It is
observed that the delay for first POST message is much larger than that for the subsequent messages. This
long delay is due to the three-way handshake of TCP connection that takes place during the first POST
message, whereas for subsequent requests a persistent HTTP connection (a.k.a. HTTP keep-alive) reduces
delay considerably. Figure 5(b) shows the OCD of a city admin JXTA peer with an average value of 1983ms
from 50 iterations indicated by the horizontal blue line. The delay includes the JXTA core start-up, the
creation of a fire contour service, related pipe advertisement, a JXTA multicast socket and the thread for
accepting join requests from other JXTA peers. For each iteration a new JXTA cache was generated instead

a) HTTP POST message delay b) Overlay creation delay

c) Fire notification message delay

of using the old one. Figure 5(c) shows the average FND of five sensors that executed a fire contour
algorithm in response to the notification message sent by a city admin JXTA peer. In this case sensor E
reported the fire. The average FND of five sensors is 19.58ms.

In order to determine the overhead of WSN virtualization, we consider the scenario where sensors do not
support node-level virtualization and only execute city admin tasks. There is also no network-level
virtualization and no overlay network for message exchange. In this case, the fire counter algorithm will be
executed by the GTO nodes after getting an HTTP POST message from the city admin node. For a simple
comparison, if we consider that the FND without WSN virtualization is similar to HPD, i.e., 18.96ms, and
FND with WSN virtualization is 19.58ms, then with WSN virtualization we have approximately 3.27%
overhead. This overhead is due to the processing of XML-based JXTA messages. Our implementation
demonstrates that WSN virtualization is indeed feasible and does not incur much overhead. Node-level
virtualization is achieved with Java SunSpots with very little effort. Network-level virtualization is achieved
using JXTA, and once JXTA is operational, the delays are minimal. OCD is inevitable, but in the long-run,
using JXTA is beneficial as it provides a robust, highly scalable and efficient solution.

Overall the results show the typical delays experienced in a private LAN setting. The same JXTA pipe
advertisement of the fire contour service was used to send and receive the fire notification messages over
JXTA multicast socket, which greatly improved the overall performance.

5 Research Directions

WSN virtualization is a very rich research area and our proposed preliminary architecture has raised several
interesting issues. This section provides a non-exhaustive sample. A first issue is a dynamic publication
and discovery framework for sensor and GTO nodes. In this work, we assumed a static publication process
where the sensor and GTO owners publish their nodes to a central repository. To automate the process of
WSN virtualization, an on-the-fly publication and discovery mechanism would be required. A CoAP-based
framework could be used as starting point. For a centralized solution, a CoAP Resource Directory (RD)
mechanism can be used, while a CoAP resource discovery mechanism would be more appropriate for a
distributed solution. Similarly, a DNS-SD mechanism can be used in combination with CoAP to provide
new, powerful solutions.

The choice of data formats for various interfaces is another issue. The current OGC – O&M and SensorML
specifications use the XML format, which is inefficient in resource-constrained environments. SenML
addresses this issue by using JSON and EXI formats, and it works with both HTTP and CoAP, but it also
has some open issues. For example, we can use it to specify simple metadata about measurements but there
is no mechanism to provide such data for describing the sensors, their capabilities and their resources
(memory, space, and battery-life) at a particular time. The possibility of a lightweight mechanism for
reporting a sensors’ run-time status is very appealing. Similarly, a semantically-enriched format would be
of particular use for creating intelligent sensor-based systems in the context of IoT, which is currently not
possible with SenML.

An important issue is optimal task assignment to sensors. The problem is essentially the mapping of end-
user application requirements to the available resources, which is very challenging in a virtualized
environment. Reference [10] proposes a solution, but it assumes that every sensor executes a single task,
which is not the case in a virtualized environment. However, it could be used as starting point for further
research. WSN-oriented overlay middleware is yet another issue to investigate. We need an efficient
solution that prevents overlays from interacting in a harmful way when they compete for underlying
resources. JXTA and similar protocols work well, but not in resource-constrained environments. Some early
attempts like [20] exist, but they must be combined with the concept of WSN virtualization.

A signalling framework to support Quality of Service (QoS) and session management is also needed. Issues
like handling application requests for setting/changing task priority will be tackled by such a general QoS
framework. There are several signalling frameworks, such as SIP/RSVP, but they may not be suitable for
sensors. Again, a CoAP-based signalling protocol is a potential solution. Virtualization as applied to mobile
WSNs is also a key issue, since mobile WSNs are becoming more and more popular. Vehicular ad hoc
networks, social networks and crowd-based sensing can provide concrete application scenarios to motivate
the virtualization of mobile WSNs.

6 Lessons learned

In this paper we have proposed a new preliminary multi-layer architecture for WSN virtualization and have
identified several research directions.

We have learned several lessons. The first is that WSN node-level virtualization is still in its infancy and
very few WSN kits supporting node level virtualization are readily available. This is certainly due to the
challenges of designing hypervisors in resource-constrained environments. A second lesson is that most
existing WSN standard specifications pertinent to our work are still embryonic. SenML, for instance, is
very promising. However, in its present form, it is not suitable for control functions. On the other hand,
SensorML is complex and comes with additional functionalities that are unsuitable for a general purpose
and efficient solution. A third lesson is that most existing overlay middleware are unsuitable for WSN
because they are usually not designed for resource-constrained devices. We used JXSE, which is one of the
best choices available. However, its current open source implementation is rather old and the future of the
initiative is uncertain.

Acknowledgement

This work is partially supported by CISCO systems through grant CG-576719, and by the Canadian
National Science and Engineering Research Council (NSERC) through the Canada Research Chair in End-
User Service Engineering for Communications Networks.

References

[1] – Akyildiz, Ian F., et al. "Wireless sensor networks: a survey," Computer networks, 38.4 (2002): pp. 393-422.

[2] – S. Loveland et.al, "Leveraging virtualization to optimize high-availability system configurations," IBM Systems
Journal, vol. 47, no. 4, 2008, pp. 591-604

[3] – Fazio, M.; Paone, et al., "Huge amount of heterogeneous sensed data needs the cloud", in Proceedings of the 9th
IEEE International Multi-Conference on Systems, Signals and Devices (SSD), Chemnitz, 20-23 March 2012

[4] – Khan, Imran, et al., "A Multi-Layer Architecture for Wireless Sensor Network Virtualization," in Proceedings
of the 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC'13), April, 23-25, 2013, Dubai, UAE,
pp. 1-4

[5] – P. Levis and D. Culler: "Maté: A tiny virtual machine for sensor networks," In ASPLOSX: Proceedings of the
10th International Conference on Architectural Support for Programming Languages and Operating Systems,
San Jose, CA, 2002, pp. 85-95.

[6] – A. P. Jayasumana, et al., "Virtual sensor networks a resource efficient approach for concurrent applications," In
Proc. Information Technology, 2007. ITNG’07. Fourth International Conference on, Las Vegas, 2007, pp. 111-
115

[7] –.Ceriotti, Matteo, et al. "Monitoring heritage buildings with wireless sensor networks: The Torre Aquila
deployment." in Proceedings of the 2009 International Conference on Information Processing in Sensor
Networks., IEEE Computer Society, 2009.

[8] – S. Bhatti, J. et al, "MANTIS OS: an embedded multithreaded operating system for wireless micro sensor
platforms," Mob. Netw. Appl., 10(4), 2005, pp.563–579

[9] – H. M. N. Dilum Bandara, et al., "Cluster Tree Based Self Organization of Virtual Sensor Networks," In Proc.
IEEE Globecom workshop on Wireless Mesh and Sensor Networks, New Orleans, Nov. 2008

[10] – Rowaihy, Hosam, et al. "Sensor-mission assignment in wireless sensor networks." ACM Transactions on Sensor
Networks (TOSN), 6.4, (2010): 36

[11] – Leontiadis, Ilias, et al. "SenShare: transforming sensor networks into multi-application sensing infrastructures,"
Wireless Sensor Networks, Springer Berlin Heidelberg, 2012, pp. 65-81.

[12] – Y. Yu et al., "Supporting concurrent applications in wireless sensor networks," In proceedings of the 4th
International Conference on Embedded Networked Sensor Systems, SenSys’06, Boulder, Colorado, 2006,
pp.139-152

[13] – Lua, Eng Keong, et al. "A survey and comparison of peer-to-peer overlay network schemes," IEEE
Communications Surveys and Tutorials, 7.2 (2005): 72-93.

[14] – Shelby, Z., "Embedded web services," Wireless Communications, IEEE, vol.17, no.6, Dec. 2010, pp.52-57

[15] – Jara, A.J, et al., "Light-Weight Multicast DNS and DNS-SD (lmDNS-SD): IPv6-Based Resource and Service
Discovery for the Web of Things," Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
2012 Sixth International Conference on , vol., no., pp.731,738, 4-6 July 2012

[16] – Botts, M., Robin, A., "Sensor Model Language (SensorML)," Open Geospatial Consortium (OGC) document
number: 07-000, Wayland, Massachusetts, USA.

[17] – Cox, S. (Ed.), "Observations and Measurements—Part 1—Observation Schema," Open Geospatial Consortium
(OGC) document number: 07-002r1, Wayland, Massachusetts, USA

[18] – Jennings, et al., "draft-jennings-senml-10", Internet Draft, IETF, October 22, 2012, expires April 25, 2013
(work in progress)

[19] - Gong, Li. "JXTA: A network programming environment." Internet Computing, IEEE 5.3 (2001): 88-95.

[20] – Al-Mamou, AA-B., and Houda Labiod. "ScatterPastry: An overlay routing using a DHT over wireless sensor
networks." Intelligent Pervasive Computing, 2007. IPC. The 2007 International Conference on. IEEE, 2007.
274-279

Biographies

IMRAN KHAN (imran@ieee.org) received his BCS degree in Computer Science from COMSATS Institute of IT,
Pakistan in 2005 and M.S. degree in Multimedia and Communication from M.A. Jinnah University, Pakistan in 2009.
Since May 2011 he is a Ph.D. research student in CNRS Lab UMR5157 at Institut Mines-Télécom, Télécom SudParis
jointly with Paris VI (UPMC). Currently he is a collaborating researcher at Concordia University, Montreal working
on a CISCO project. In past he worked on projects funded by ISOC and ITEA2. He is student member of IEEE. His
research interests are Virtualization, Wireless Sensor Networks, Internet of Thing (IoT), and M2M Communications.

FATNA BELQASMI (fatna.belqasmi@zu.ac.ae) holds a Ph.D. and an M.Sc. degree in electrical and computer
engineering from Concordia University, Canada. She is current working as Assistant Professor at Zayed University
Abu Dhabi, UAE. In the past, she worked as a research associate at Concordia University, Canada and as a researcher
at Ericsson Canada. She was part of the IST Ambient Network project (a research project sponsored by the European
Commission within the Sixth Framework Programme -FP6-). She worked as an R&D engineer for Maroc Telecom in
Morocco. Her research interests include next generation networks, service engineering, distributed systems, and
networking technologies for emerging economies.

ROCH GLITHO [SM] (http://users.encs.concordia.ca/~glitho/) holds a Ph.D. (Tekn. Dr.) in tele-informatics (Royal
Institute of Technology, Stockholm, Sweden) and M.Sc. degrees in business economics (University of Grenoble,
France), pure mathematics (University Geneva, Switzerland), and computer science (University of Geneva). He works
in Montreal, Canada, as an associate professor of networking and telecommunications at the Concordia Institute of
Information Systems Engineering (CIISE) where he leads the telecommunication service engineering (TSE) research
laboratory (.http://users.encs.concordia.ca/~tse/). In the past he has worked in industry for almost a quarter of a century
and has held several senior technical positions at LM Ericsson in Sweden and Canada (e.g. expert, principal engineer,
senior specialist). His industrial experience includes research, international standards setting (e.g. contributions to
ITU-T, ETSI, TMF, ANSI, TIA, and 3GPP), product management, project management, systems engineering and
software/firmware design. In the past he has served as IEEE Communications Society distinguished lecturer, Editor-
In-Chief of IEEE Communications Magazine and Editor-In-Chief of IEEE Communications Surveys & Tutorials. His
research areas are: virtualization and cloud computing; Machine-to-Machine communications (M2M) and Internet of
Things; Distributed systems (e.g. SOAP Based – Web Services, RESTful Web Services); Rural communications and
networking technologies for emerging economies.

NOEL CRESPI (noel.crespi@mines-telecom.fr) holds a Master’s from the Universities of Orsay and Kent, a diplome
d’ingénieur from Telecom ParisTech, and a Ph.D. and a Habilitation from Paris VI University. He worked from 1993
in CLIP, Bouygues Telecom, France Telecom R&D in 1995, and Nortel Networks in 1999. He joined Institut Mines-
Télécom in 2002 and is currently professor and program director, leading the Service Architecture Laboratory. He is
appointed as coordinator for the standardization activities in ETSI and 3GPP. He is also a visiting professor at the
Asian Institute of Technology and is on the four-person Scientific Advisory Board of FTW, Austria. His current
research interests are in service architectures, P2P service overlays, future Internet, and Web-NGN convergence. He
is the author/co-author of more than 230 papers and contributions in standardization.

MONIQUE MORROW (mmorrow@cisco.com) holds the title of CTO Cisco Services. Ms. Morrow’s focus is in
developing strategic technology and business architectures for Cisco customers and partners. With over 13 years at
Cisco, Monique has made significant contributions in a wide range of roles, from Customer Advocacy to Corporate
Consulting Engineering. With particular emphasis on the Service Provider segment, her experience includes roles in
the field (Asia-Pacific) where she undertook the goal of building a strong technology team, as well as identifying and
grooming a successor to assure a smooth transition and continued excellence. Monique has consistently shown her
talent for forward thinking and risk taking in exploring market opportunities for Cisco. She was an early visionary in
the realm of MPLS as a technology service enabler, and she was one of the leaders in developing new business
opportunities for Cisco in the Service Provider segment, SP NGN. Monique holds 3 patents, and has an additional
nine patent submissions filed with US Patent Office. Ms. Morrow is the co-author of several books, and has authored
numerous articles. She also maintains several technology blogs, and is a major contributor to Cisco’s Technology
Radar, having achieved Gold Medalist Hall of Fame status for her contributions. Monique is also very active in
industry associations. She is a new member of the Strategic Advisory Board for the School of Computer Science at
North Carolina State University. Monique is particularly passionate about Girls in ICT and has been active at the ITU
on this topic - presenting at the EU Parliament in April of 2013 as an advocate for Cisco. Within the Office of the

CTO, first as an individual contributor, and now as CTO, she has built a strong leadership team, and she continues to
drive Cisco’s globalization and country strategies.

PAUL POLAKOS (ppolakos@cisco.com) is currently a Cisco Fellow and member of the Mobility CTO team at Cisco
Systems focusing on emerging technologies for future Mobility systems. Prior to joining Cisco, Paul was Senior
Director of Wireless Networking Research at Bell Labs, Alcatel-Lucent in Murray Hill, NJ and Paris, France. During
his 28 years at Bell Labs he worked on a broad variety of topics in Physics and in Wireless Networking Research
including the flat-IP cellular network architecture, the Base Station Router, femtocells, intelligent antennas and
MIMO, radio and modem algorithms and ASICSs, autonomic networks and dynamic network optimization. Prior to
joining Bell Labs, he was a member of the research staff at the Max-Planck Institute for Physics and Astrophysics
(Munich) and visiting scientist at CERN and Fermilab. He holds BS, MS, and Ph.D. degrees in Physics from
Rensselaer Polytechnic Institute and the University of Arizona, is a Bell Labs and Cisco Fellow, and author of more
than 50 publications and 30 patents.

