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Abstract— Wireless Sensor Networks (WSNs) are the key 

components of the emerging Internet-of-Things (IoT) paradigm. 
They are now ubiquitous and used in a plurality of application 
domains. WSNs are still domain specific and usually deployed to 
support a specific application. However, as WSNs’ nodes are 
becoming more and more powerful, it is getting more and more 
pertinent to research how multiple applications could share a 
very same WSN infrastructure. Virtualization is a technology 
that can potentially enable this sharing. This paper is a survey on 
WSN virtualization. It provides a comprehensive review of the 
state-of-the-art and an in-depth discussion of the research issues. 
We introduce the basics of WSN virtualization and motivate its 
pertinence with carefully selected scenarios. Existing works are 
presented in detail and critically evaluated using a set of 
requirements derived from the scenarios. The pertinent research 
projects are also reviewed. Several research issues are also 
discussed with hints on how they could be tackled.      
 

Index Terms— Wireless Sensor Network (WSN), Internet-of-
Things (IoT), Virtualization, Node-level Virtualization, Network-
level Virtualization 
 

I. INTRODUCTION 
HE emerging Internet-of-Things (IoT) concept is 
considered to be the next technological revolution, one 

that realizes communication between many types of objects, 
machines and devices, and at an unprecedented scale  [1]. 
WSNs can be seen as the basic constituents of IoT because 
they can help users (humans or machines) to interact with their 
environment and react to real-world events. These WSNs are 
composed of nodes that are amalgamations of micro-electro-
mechanical systems, wireless communications and digital 
electronics, and have the ability to sense their environment, 
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perform computations and communicate [2].  The most 
obvious drawback of the current WSNs is that they are 
domain-specific and task-oriented, tailored for particular 
applications with little or no possibility of reusing them for 
newer applications. This strategy is inefficient and leads to 
redundant deployments when new applications are 
contemplated. With the introduction of the IoT, it is not 
unrealistic to envision that future WSN deployments will have 
to support multiple applications simultaneously.  

Virtualization is a well-established concept that allows the 
abstraction of actual physical computing resources into logical 
units, enabling their efficient usage by multiple independent 
users [3]. It is a promising technique that can allow the 
efficient utilization of WSN deployments, as multiple 
applications will be able to co-exist on the same virtualized 
WSN. Virtualization is a key technique for the realization of 
the Future Internet [4] and it is indeed quite pertinent to 
explore it in the context of WSNs.  

Virtualizing WSNs brings with it many benefits; for 
example, even applications that were not envisioned a priori 
may be able to utilize existing WSN deployments. A second, 
related benefit is the elimination of tight coupling between 
WSN services/applications and WSN deployments. This 
allows experienced as well as novice application developers to 
develop innovative WSN applications without needing to 
know the technical details of the WSNs involved. Another 
benefit is that WSN applications and services can utilize as 
well as be utilized by third-party applications. It can also help 
to define a business model, with roles such as physical WSN 
provider, virtual WSN provider and WSN service provider.  

The WSN virtualization concept can be applied to several 
interesting application areas. Recent advances in smart phones 
and autonomous vehicles [5] have made it possible to have 
multiple on-board sensors on them. Mobile crowd sensing is 
one area that can take advantage of virtualizing these sensors 
through participatory and opportunistic sensing [6] and [7]. An 
opportunistic urban sensing scenario is presented in [7] in 
which thousands of sensors are required to monitor the CO2 
concentration in an urban city. Instead of deploying these 
sensors and managing them, WSN virtualization can be used 
as a key enabling technology to utilize sensors from citizens to 
provide the required data. Similarly, Sensing-as-a-Service 
(SaaS) model is presented in [8] along with several use case 
scenarios. WSN virtualization can help realize the SaaS model 
through cost-efficient utilization of deployed sensors. Several 
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other motivational examples can be found in [9] and [10]. 
Of course there are many technical challenges to resolve 

before such utilization takes place but they also provide a 
strong motivation for a deeper and complete search space 
exploration to propose innovative solutions in this area. Many 
researcher now consider WSN virtualization as a key enabling 
technology and provide its motivation. According to the 
authors in [11], WSN virtualization is a powerful enabler for 
information sharing in the context of IoT by using it along 
with data analysis techniques. A smart city environment is 
considered in [12], where WSN virtualization could be used to 
efficiently utilize the deployed infrastructure. To achieve this 
type of utilization, the use of multiple concurrency models is 
advised, depending on the usage context. In [13], WSN 
virtualization is discussed as a key enabler to promote 
resource efficiency, with a cooperative model that captures 
several aspects of WSN virtualization. In [14] WSN 
virtualization is envisioned as an important technology to 
create large-scale sensor platforms that are used to satisfy 
efficient usage of network resources. 

There are surveys (e.g. [15]) that cover wireless network 
virtualization at large, but they do not focus on the specifics of 
WSN virtualization. Although it is a key enabling technology, 
the few surveys published to date on WSN virtualization (e.g. 
reference [16], reference [17]), have several limitations. They 
do not include real world motivating scenarios and are also 
dated because they do not review the most recent 
developments in the area. Furthermore they lack 
comprehensiveness in terms of what is reviewed and how it is 
reviewed.  There is for instance no well-defined yardstick for 
the critical analysis of the state of the art. In addition, they do 
not elaborate on potential solutions when it comes to research 
directions.  

This paper is a survey on wireless sensor network 
virtualization. It aims at addressing the shortcomings of the 
very few surveys published so far on the topic. From that 
perspective it makes the following contributions:  

• Real world motivating scenarios for WSN 
virtualization. 

• Comprehensive and in-depth review of the state of the 
art including the most recent developments in the area. 

• Critical analysis of the state of the art using well 
defined yard-sticks derived from the motivating 
scenarios. 

• An overview of the open issues along with insights on 
how they might be solved.  

In section II we discuss the basics of WSN virtualization 
concepts and its types. In section III, we first present the 
motivating scenarios and then provide a set of requirements. 
Based on these requirements we critically review the state-of-
the-art in section IV. Relevant WSN virtualization projects are 
discussed in section V. Section VI outlines several research 
directions and section VII concludes the paper. 

II. WSN VIRTUALIZATION BASICS  
WSN virtualization can be broadly classified into two 

categories: Node-level virtualization and Network-level 
virtualization. In this section we discuss both these categories.  

A. Node-level Virtualization 
WSN node-level virtualization allows multiple applications 

to run their tasks concurrently on a single sensor node [18], so 
that a sensor node can essentially become a multi-purpose 
device. The basic concepts of node level virtualization are 
illustrated in figure 1. There are two ways to achieve node-
level virtualization: Sequential and Simultaneous execution.  

Sequential execution can be termed a weak form of 
virtualization, in which the actual execution of application 
tasks occurs one-by-one (in series). The advantage of this 
approach is its simple implementation, while the obvious 
disadvantage is that applications have to wait in a queue. In 
simultaneous execution, application tasks are executed in a 
time-sliced fashion by rapidly switching the context from one 
task to another. The advantage of this approach is that 
application tasks that take less time to execute will not be 
blocked by longer running application tasks, while the 
disadvantage is its complexity. 

B. Network-level Virtualization 
It is WSN network-level virtualization that enables a Virtual 

Sensor Network (VSN). A VSN is formed by a subset of a 
WSN’s nodes that is dedicated to one application at a given 
time [19]. Enabling the dynamic formation of such subsets 
ensures resource efficiency, because the remaining nodes are 
available for different multiple applications (even for 
applications that had not been envisaged when the WSN was 
deployed), although not necessarily simultaneously. 

WSN network-level virtualization can be achieved in two 
different ways.  One way is by creating multiple VSNs over 
the same underlying WSN infrastructure, as illustrated in 
Figure 2a. WSN nodes that are not part of any VSN remain 
available for other applications or network functions, such as 
routing. The second way is where a VSN is composed of 
WSN nodes from three administratively different WSNs, as 
shown in Figure 2b, facilitating data exchange between them 
that would not be possible otherwise. 

III. WSN VIRTUALIZATION – MOTIVATING SCENARIOS AND 
REQUIREMENTS  

In this section we first present two scenarios that are 
derived from the literature, and then come up with a set of 
requirements. Using these requirements we critically review 
the existing work, grouping our summation of that work under 
three types: node-level virtualization, network-level 
virtualization and hybrid solutions.   

A. Motivating Scenarios 
The scenarios described here illustrate the motivation and 

benefits of using WSN virtualization in common WSN 
deployments. 
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1) Fire Monitoring Scenario 
Consider the example of a city near an area where brush 

fires are common [9]. We assume that the city administration 
is interested in the early detection of fire eruption and in its 
course, using a WSN and a fire contour algorithm to determine 

the curve, shape and direction of fire. One approach is that the 
city administration could deploy WSN nodes all over the city 
(i.e. on each street and at individual houses), but this is not 
very efficient because some individuals may have already 
deployed WSN nodes in their homes to detect fires. A more 
efficient approach would be for the city administration to 
deploy WSN nodes to areas under its jurisdiction, i.e. streets 
and parks, and to re-use the WSN nodes already deployed in 
private homes. In this scenario, two different applications 
share the same WSN infrastructure: one, belonging to home 
owners, is confined to private WSNs deployed in individual 
houses, and the other belongs to the city administration and 
shares the private WSN nodes with the WSN nodes deployed 
by the city administration. Periodic notification or query-based 
models are not suitable because the city administration 
application requires complete access to all the WSN nodes for 
adaptive sampling. 

Another issue is that in order to execute a fire contour 
algorithm in a distributed fashion, WSN nodes need to 
exchange fire notification messages with each other. The 
query-based data exchange approach is not efficient as it will 
force the execution of the fire contour algorithm at a remote 
centralized location, since two WSN nodes located in their 
respective private domains cannot exchange data. An overlay 
network is one possible solution. This scenario illustrates the 
need for WSN virtualization, as two different users need to 
share a common resource, i.e. WSN nodes. 

2) Heritage Building Monitoring 
A real-world deployment of a WSN is presented in [20], in 

which a WSN is used to monitor the impact of constructing a 
road tunnel under an ancient tower in Italy, as it was feared 
that the tower could lose its ability to stand on its own and 
collapse during the construction. Now consider that there are 
three users interested in the fate of the tower. The first is the 
construction company, as it needs make sure that the tower 
does not lose its ability to stand on its own, otherwise it will 
have to pay a heavy fine. The second user is the conservation 
board that routinely monitors all the ancient sites around the 
city, and the third user is the local municipality which will 
have to plan emergency remedial/rescue actions in case the 
tower falls during the construction. 

It is quite possible that the conservation board has already 
deployed its own WSN to monitor the health of ancient sites 
including this tower. In this case the construction company 
and the local municipality can use the existing sensor nodes 
during the construction period. In the absence of WSN 
virtualization, there are only two possible solutions. One is to 
rely on the information provided by the conservation board’s 
application. However this information may not be at the 
required granularity level. Worse, some of the information that 
is needed might simply not be available because the 
requirements of the construction company and of the local 
municipality were not considered when the conservation board 
application was designed and implemented. The second 
solution is that each user deploys redundant WSN nodes. 

 

Fig 1: Execution of multiple applications in a general purpose WSN node 

 
 

Fig 2: VSN concept 
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B. Requirements 
In this section we present a list of eight requirements, 

derived from the scenarios mentioned above. In Table IV we 
indicate if the existing solutions meet our identified 
requirements, and to what degree.  

The first requirement is the availability of node-level 
virtualization. This is a fundamental requirement which 
ensures that the sensor nodes can support the concurrent 
execution of multiple applications.  

The second requirement is network-level virtualization, 
which concerns the ability of sensor nodes to dynamically 
form groups to perform the isolated and transparent execution 
of application tasks in such a way that each group belongs to a 
different application.  

The third requirement is support for application/service 
priority. It is our observation that most WSNs are deployed for 
mission-critical situations like security, fire monitoring, 
battlefield conditions and surveillance. In such situations, 
mission-critical applications/services should have prioritized 
execution mechanisms.  

The fourth requirement is that any WSN virtualization 
solution should be platform-independent and thus should not 
depend on a particular hardware or software platform.  

The fifth requirement is that the proposed solution should 
have a resource discovery mechanism, for both neighbor 
discovery and service discovery.  

The sixth requirement is based on the applicability of the 
proposed solution to resource-constrained sensor nodes, 
including early generation sensor nodes. Mechanisms to allow 
legacy sensor nodes to become part of a WSN virtualization 
solution are also covered by this requirement. 

The seventh requirement is heterogeneity, which means that 
the solution should be applicable to a variety of WSN 
platforms with different capabilities (e.g. processing power, 
memory). These platforms would include MICAZ, MICA2, 
Atmel AVR family, and MPS430 among others. 

The eight requirement is the ability to select sensor nodes 
for application tasks. When multiple applications concurrently 
utilize a deployed WSN, selection of proper sensor nodes is 
very important because applications may have spatial and 
temporal requirements [21]. 

IV. STATE-OF-THE-ART 
In this section we present the state-of-the-art and analyze it 

critically. We categorize the existing work as Node-level 
virtualization, Network-level virtualization or Hybrid 
solutions. Hybrid solutions combine both node- and network-
level virtualization. Each category is further classified based 
on the approaches used.  

A. Node-level Virtualization 
We group the Node-level virtualization approaches under 

two umbrellas: sensor operating system (OS) based solutions 
and Virtual Machine-/Middleware (VM/M) based solutions. In 
sensor OS-based solutions, the node-level virtualization is part 
of the sensor OS. In VM/M-based solutions, the node-level 

virtualization is performed by a component running on top of 
the sensor’s OS.  

Node-level virtualization solutions use two types of 
programming models; event-driven and thread-based. Event-
driven programming model is simple to implement in sensors. 
Event-driven programs have a main loop that listens for the 
events, e.g. the temperature value going above a threshold. 
When the event occurs a callback function is called to handle 
the event, using an event-handler. When a program is blocked, 
by an I/O event, its event-handler simply returns the control 
without involving context switching. Thread-based model is 
more difficult to implement in sensors, due to limited 
resources and use of common address space. Each program 
consist of multiple threads, and when a thread is blocked, 
context switching is required to execute other threads [22]. 

Fig. 3 shows the node-level virtualization types while Table 
I illustrates the characteristics of the existing works addressing 
node-level virtualization. 

1) Sensor Operating System-based Solutions 
SenSmart [23] is a recent multitasking sensor OS that 

supports the execution of concurrent application tasks in very 
resource-constrained sensor nodes. It is designed to tackle the 
issues associated with the execution of concurrent application 
tasks. Normally, application tasks have their associated 
predefined stack space, but in SenSmart the stack allocation is 
managed dynamically at run time. Initially, each application 
task gets its default (stack) memory region and time slice, but 
during its execution SenSmart manages the size and location 
of the allocated stack in a transparent way. Each application 
task uses logical addresses at runtime, managed by the OS and 
mapped onto the physical memory. Stack space can be 
reclaimed from those tasks that no longer require it. When a 
new task is scheduled to run, the context of the current task is 
compressed and saved in a circular buffer for its resumption. 
The system architecture consists of a base station that 
compiles the code, links it and eventually distributes it to the 
sensor node. There is no mention of support for network layer 
support (6LoWPAN) or any radio protocol.  

The support for node-level virtualization is provided by 
compiling and linking multiple application task codes together 
in a single code image. The application task codes are 
programmed in nesC and the compiled binary code of each 
task is then modified by a rewriter, combined with other 

 
Fig 3: Example node-level virtualization solutions 
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binary codes and finally linked with the precompiled kernel 
runtime. The kernel runtime ensures that the application tasks, 
when instantiated, follow the multitasking semantics (stack 
management, context switching) and run concurrently. Once a 
final executable code is generated, it can be disseminated to 
the sensor node using any wireless reprogramming approach. 
The strategy of first compiling and linking all the binary codes 
together means that there is no separation of OS and 
application tasks, and, whenever a new application task is 
contemplated, all of the software of the sensor node is 
updated. The OS uses an event-driven programming model 
and follows a sense-and-send workflow model [24].  

SenSmart has been implemented in Mica2/MicaZ hardware 
platforms and evaluated for overhead of common system 
functions, application benchmarking, and task scheduler 
performance when concurrent tasks are executed. The 
overhead of common system functions is within acceptable 
range especially for important functions such as context 
saving, restoring and switching. All these functions take 
between 127µs to 316µs. For application benchmarking it was 
found that the same applications use more CPU cycles in 
SenSmart than in TinyOS. For concurrent tasks, the evaluation 
found that delays recorded during execution of multiple tasks 
has same order of magnitude as context switching. 

 
RIOT [25] is the latest attempt to address the challenges of 

designing a flexible OS for diverse hardware in the IoT. The 
concept of RIOT is based on the fact that none of the existing 
OSs, traditional or resource-constrained, are capable of 
supporting diverse hardware resources in the IoT. The focus of 
RIOT is to provide features such as real-time multithreading 
support, a developer-friendly programming model and 
POSIX-like API based on C/C++, as well as full TCP/IP 
network stack support for resource-constrained devices using 
6LoWPAN and RPL. RIOT is based on microkernel 
architecture and requires only 1.5kB of RAM and 5kB of 
ROM for a basic application. RIOT can run on 8-bit, 16-bit 
and full 32-bit processors, and thus has the potential to 
become unique operating system for diverse hardware devices 
in the IoT paradigm. This adaptability is achieved by using a 
hardware abstraction layer. Overall, RIOT takes a modular 
approach and the system services and the user application 
tasks run as threads. The scheduler is designed to minimize 
context switching between threads to few clock cycles. The 
kernel is based on FireKernel [26] providing maximum 
reliability and real-time multithreading. System tasks have 
static memory allocation, but for application threads dynamic 
memory management is used. RIOT is a work in progress and 
so far there are no performance results or comparisons with 
existing OSs, but the code is available on their website.  

In the context of WSN virtualization, RIOT uses a real-time 
thread-based programming model where various system 
services and application tasks are coded in standard ANSI 
C/C++ and run in parallel. Threads can be preempted based on 
their priority. Application tasks are coded independently of the 
hardware and software, which makes it possible to run them 

on different devices. In large-scale scenarios such as Smart 
Cities, sensor nodes and other IoT devices (e.g. surveillance 
cameras) can be programmed conveniently.  

So far there are no performance results regarding RIOT OS 
however, in [27] the authors do present a theoretical 
comparison of their approach against existing competition 
without any qualitative or quantitative comparison.  

SenSpire OS [28] is another recent effort that supports both 
event-driven and thread-based programming models. Their 
work has four main features: predictability – to guarantee that 
sensor nodes respond to control messages, availability – the 
nodes remain available for data forwarding when needed, 
programming mode – which is hybrid,  and efficiency – so 
that  the OS can be used on very resource-constrained sensor 
nodes.  Another contribution of SenSpire is a multi-layer 
(radio, resource and sensornet layers) abstraction to develop 
networked applications. The radio layer makes it possible to 
write device drivers using different MAC protocols. The 
resource layer exposes the lower layer and allows different 
application tasks to use it concurrently. A new object-oriented 
language (CSpire) is provided to program user application 
tasks using a hybrid programming model. SenSpire uses static 
optimizations, meaning that application tasks, their states, and 
the kernel structures should be known beforehand. This limits 
its flexibility, a requirement for the real-world deployment of 
WSNs. The kernel of SenSpire is written in C and the 
application tasks are written in CSpire. The paper describes 
extensive results based on the implementation of SenSpire on 
Mica2, MicaZ, and TelosB nodes. Its performance at various 
benchmarks is compared to that of MANTIS [29] and TinyOS 
[30]. Overall findings indicate that SenSpire offers a 
performance comparable to those OSs.  

For WSN virtualization, SenSpire incorporates both event-
driven and thread-based programming models. Tasks can be 
programmed as events or as threads. Event tasks have higher 
priority than thread tasks. System tasks are usually 
implemented as event tasks because they are predictable and 
easier to maintain. Application tasks are implanted as thread 
tasks with varying priority levels. A thread task is preempted 
either by a higher-priority thread task or when it goes to sleep. 
This set up is unlike other OSs where thread tasks are 
executed in a time-sliced manner. In SenSpire the threads 
follow run-to-completion model unless they are preempted by 
a higher priority thread. The execution of threads is sequential 
(First-in First-out) when they have the same priority level. The 
use of CSpire language to program application tasks means a 
learning curve for developers. Despite using a layered-
approach, application tasks are tightly integrated with the OS 
and so when new application tasks are contemplated, all of the 
sensor node software is updated. 

The performance results of SenSpire OS show that its 
interrupt latency is less than TinyOS. The overhead of task 
scheduling is compared against MANTIS OS [29] showing 
more delay in case of SenSpire. The energy consumption of 
various tasks including radio and CPU are almost similar to 
TinyOS.  
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MANTIS [29] is a thread-based embedded operating system 

supporting simultaneous execution on sensor nodes. The OS 
kernel and threads are programmed in C language and are 
portable across different hardware platforms. There are 
system-level threads and user-level threads. The OS kernel, 
scheduler and underlying hardware are exposed as APIs for 
the user-level threads. MANTIS supports preemptive 
multithreading by assigning priorities to threads, thereby 
allowing the interleaving of tasks and avoiding delays. Long-
running threads can be preempted by short-running threads. 
Simultaneous execution of these threads is achieved by 
context switching. When execution of a thread is suspended, 
all its current states are stored in its own stack and later 
retrieved to resume execution. Every thread has an entry in a 
thread table managed by the kernel. Its size is fixed, hence 
only a predefined number of user-level threads can be created. 
The other main features of the OS include a dynamic 
reprogramming mechanism for deployed sensor nodes, a 
remote debugging mechanism and an x86-based prototype 
platform. Dynamic reprogramming options are, the wireless 
re-flashing of the entire OS, the re-programming of single 
threads and changing the variables of a thread. The wireless 
re-flashing of the OS and reprograming of a single thread is 
work-in-progress. A command server is used for remote 

debugging. The sensor nodes run the client part of the 
command server. Any user can login to the sensor node and 
modify its setting, run or stop running threads or restart them. 
The authors implemented several demanding tasks with 
MANTIS on MICA2 nodes, including AES and RC5 
encryption algorithms, compression/decompression algorithms 
using arithmetic code, and a 64-bit FFT algorithm. These tasks 
took low execution time in MANTIS. Normally the concurrent 
execution of threads leads to context switching overhead and 
the need for additional stack space. In MANTIS, it was found 
that while context switching does not incur much performance 
loss, a stack estimation tool would be helpful. 

MANTIS is an interesting option for node-level 
virtualization, as it is completely thread-based and easier to 
program without having to manage low-level details of 
stack/memory. The time-sliced multithreading approach 
makes it possible to run application tasks simultaneously 
without using a run-to-completion model. The application 
threads are coded in C and are independent of the OS. 
Although MANTIS support dynamic reprogramming but it has 
not been fully explained in the paper. Currently it is not clear 
whether the work on MANTIS is underway or not as the 
project page [31] has quite old information. 

The performance results presented in [29] are very limited. 
No comparison is provided in against other competing 

TABLE I 
CHARACTERISTICS OF NODE-LEVEL VIRTUALIZATION SOLUTIONS 

Solution (Year) Programming 
Model 

Programming 
Language 

Separation between 
OS and application 

tasks 

Protocols 
Supported at 

different layers 

Real-time 
Applications 

SenSmart (2013) Event-driven nesC No Not discussed No 

RIOT (2013) Thread-based ANSI C/C++ Yes 6LoWPAN & RPL Yes 

PAVENET  
(2012) Thread-based C No Not discussed Yes 

SenSpire  (2011) Event- and thread-
based CSpire No CSMA, CSMA/CA, 

B-MAC & X-MAC No 

Nano-CF  (2011) Event-driven Nano-CL Yes DSR, TDMA & B-
MAC Yes 

UMADE  (2010) Event-driven nesC Yes Not discussed No 

Agilla  (2009) Mobile agent and 
tuple-space -based Assembly-like Yes Not discussed No 

LiteOS  (2008) Event- and thread-
based C Yes Not discussed No 

Squawk VM  
(2006) Thread-based J2ME No CTP, 6LoWPAN, 

AODV, LQRP No 

VMSTAR  (2005) Thread-based Java No Not discussed No 

MANTIS  (2005) Thread-based C Yes TDMA No 

TinyOS  (2005) Event-driven nesC No Geographic routing, 
flooding, unicast No 

Contiki  (2004) Event- and thread-
based C Yes HTTP, COAP, UDP, 

TCP, RPL, 6LoWPAN 
Only for event-driven 

applications 

Maté  (2002) Event-driven TinyScript No Not discussed No 
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solutions. The execution times of some complex tasks 
(compression/decompression and RC5 and AES encryption) 
and power consumption using MICA-2 platform are 
presented.  

 
LiteOS [32] is a Unix-like OS designed for sensor nodes. It 

provides rich features, such as a hierarchical file system, a 
command shell that works wirelessly, kernel support for 
dynamic execution of multi-threaded applications, debugging 
support and software updates. LiteOS maps a WSN as a 
UNIX-like file system where different commands can be 
executed by the user in familiar UNIX-like manner. There are 
three components: i) LiteShell, ii) LiteFS and iii) Kernel. 
LiteShell is a command shell that resides in a base station and 
is used to communicate with sensor nodes to execute file, 
process, debugging, environment and device related 
commands. Within the wireless range, sensor nodes can be 
mounted by LiteShell, similar to how a USB is connected to a 
computer. However, this process cannot be achieved via the 
Internet or by multi-hop communication. The sensor nodes do 
not maintain any state regarding LiteShell and simply respond 
to the commands. 

 LiteFS is a hierarchical file system partitioned into three 
modules that use RAM, EEPROM and Flash memory, 
respectively. The RAM holds the open files, and their 
allocation and data information is in EEPROM and Flash 
memory, respectively. EEPROM holds the hierarchical 
directory information and the actual data is stored in Flash 
memory. The LiteOS programming model supports both 
event-based and thread-based approaches. The scheduling 
mechanism is also hybrid and supports priority-based and 
round-robin based scheduling. User applications are 
multithread-based, and concurrent threads do not have 
memory conflicts because there is no memory sharing 
between them. Overall, LiteOS’s architecture is inspired by 
UNIX and works in a distributed manner. The memory 
consumption of LiteOS applications is larger than that of 
TinyOS because LiteOS applications are multithreaded 
whereas TinyOS applications are singe threaded. 

LiteOS offers a flexible approach to implement node-level 
virtualization. It uses a hybrid programming model hybrid that 
allows the concurrent execution of application threads and 
handles events through a call-back mechanism. The 
application tasks can be programmed in C language. Installing 
and running application tasks is very simple and can be 
accomplished by dynamically copying user applications. 
Another advantage of LiteOS is its separation between 
applications and the OS through callgates. Callgates are 
pointers and act as application access points to they can access 
system software and resources. This means that new 
applications can be simply loaded on a sensor node without 
reprogramming the sensor node from scratch. 

The performance results of LiteShell show the average 
response time of commands sent using the LiteShell. The 
average delay of common network commands is under 500ms. 
The delay to send file in the network using copy command 

depends on the file size. The delay for 4KB file copy is around 
3 seconds to 7.5 seconds for single-hop and two-hop transfer 
respectively. The length of source code is compared against 
TinyOS and it is found that the same application can be 
written in LiteOS using few lines than TinyOS, however 
because of multi-threading support LiteOS applications take 
more memory than TinyOS counterparts.  

 
PAVENET [33] OS is a thread-based OS designed to 

exclusively handle the issues related to the preemption of 
multithreaded application tasks. However, PAVENET has one 
major drawback – its non-portability. It only works with 
PIC18 microchip, and unlike other sensor OSs it cannot be 
used on other hardware platforms such as MICAZ. Two types 
of multithreading are provided: preemptive and cooperative. 
The former is used for real-time tasks (e.g. radio access, 
sensor sampling) and the latter for best-effort tasks (e.g. 
routing).  PAVENET makes three contributions that deal with 
the issues of preemption overhead and stack/memory space 
management; it offers a real-time task scheduler, a best-effort 
task scheduler and a wireless communication stack to abstract 
lower layers. To mitigate the effects of switching overheads, 
the PIC18 chip’s functions are used for a real-time task 
scheduler. One of the functions is the fast return stack that 
automatically saves the context of a task. The best-effort task 
scheduler makes use of cooperative task switching to avoid 
stack/memory issues. The wireless communication stack 
includes MAC, network and socket layers between the 
physical and application layers. A buffer is shared by the 
MAC, network and socket layers to handle the data flow. 
Tasks with equal priority are grouped together and executed as 
single task, which leads to code size that is smaller than that of 
TinyOS. The average clock cycles required to execute an 
application are better than those required for TinyOS. The 
support for multithreading means that for complex tasks, 
PAVENET uses more RAM and ROM than TinyOS.  

For WSN virtualization, PAVENET provides a thread-
based programming model and uses C language. It is possible 
to program multithreaded applications with varying priority 
levels, but their execution will be sequential and not 
simultaneous because time-sliced execution is not provided. 
There is also no separation of application tasks from the OS. 
The main drawback of PAVENET is its lack of portability, 
although it is an interesting approach that shows how a better 
CPU design can lead to an efficient sensor OS. 

The performance results of PAVENET show that it uses 
more RAM than TinyOS for sample applications. The 
execution times of sample applications is comparable to 
TinyOS. The task switching overhead is found to be 5 times 
less than MANTIS and comparable to TinyOS. Another aspect 
is the comparison of lines of codes needed to code sample 
applications in PAVENET and TinyOS. PAVENET uses 
twice as less as TinyOS (even more for complex applications).  

 
Contiki [34] is by far one of the most popular systems for 

WSNs, and over the years has grown to become a leading 
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platform for the IoT and low-powered embedded networked 
systems. It has a kernel based on an event-driven model, but 
preemptive multithreading is also provided as an option in the 
form of a library and exposed as an API for applications to 
call the necessary functions. Preemption is implemented using 
a timer interrupt. All threads have their own execution stack.  

The concept of protothreads [35] was introduced to 
combine the concepts of event-driven and thread-based 
approaches. Protothreads borrows the block-wait approach of 
threads and combines it with the stack-less approach of events. 
The advantage of protothreads is that they have lower stack 
requirement than traditional threads and can be preempted, 
unlike events. Contiki makes it possible for applications and 
services to be dynamically uploaded/unloaded wirelessly on 
sensor nodes. This is made possible by incorporating 
relocation information in the application binary and later 
performing runtime relocation.  

The OS is written in C language and can be ported to many 
hardware platforms. CPU multiplexing and an event handling 
mechanism are the two major functionalities provided by the 
kernel. The rest of the system-related functionalities are 
provided as system libraries that can be used by applications 
when needed. There is no hardware abstraction layer and 
applications can directly utilize the underlying hardware. 
Since the OS is event-driven, once an event handler is called, 
it can only be preempted by an interrupt – otherwise it must 
run to completion. A simple over-the-air protocol is used to 
dynamically load/unload applications in a WSN. Binary 
images of the new application code are sent to selected 
network nodes using point-to-point communication; the 
remaining sensor nodes receive the application code as 
broadcast from them.  The current version of Contiki includes 
several features like full IP support [36], including IPv6 [37], 
CoAP [38], RPL, 6LowPAN, Cooja, a network simulator to 
test applications on emulated devices before actual 
deployment, the Coffee flash file system [39] for sensors that 
have external flash memory, and a command-line shell for 
debugging applications.  

For node-level virtualization, Contiki is one of the better 
choices available. It supports multiple applications that are 
independent of the OS and run on top of it. Applications can 
be programmed in C language and updated/installed without 
reinstalling the whole OS. It provides a hybrid programming 
model. With protothreads, it is possible to create efficient 
multithreaded applications that share a common stack. Contiki 
supports many different hardware platforms.  

The original Contiki paper used in this work does not 
provide any systematic performance results. However some 
insights regarding the performance were presents. For 
example, reprogramming of a sensor node with a new code 
(6KB size) took around 30 seconds, whereas the 
reprogramming of 40 nodes with the same code took around 
30 minutes. It is found that code size of similar applications in 
Contiki is larger than TinyOS but smaller than MANTIS.  

 
TinyOS [30] is another notable effort to provide OS 

solution for sensor nodes. It is an application-specific, 
component-based OS based on two characteristics: being 
event-centric and offering a flexible platform for innovation. It 
is written in nesC, a dialect of C language, and has a 
component-based modular design using an event-driven 
programming model. Three main abstractions are used in 
TinyOS: commands, events and tasks.  Commands are 
requests to perform a service, events are generated as 
responses when services are executed, and tasks are functions 
posted by commands or events for the TinyOS scheduler to 
execute at a later time.  TinyOS components are sets of 
services, specified by the interfaces that are offered to 
applications. There are two type of components: modules and 
configurations. Modules are code snippets written in nesC for 
calling and implementing commands and events. 
Configurations connect components through their interfaces. 
Only components used by the applications are included in the 
final binary image.  

The TOSThreads [40] library was introduced to combine 
the event-based approach with a thread-based approach, 
similar to the protothreads in Contiki. Event-based code runs 
in a kernel thread and user applications run in application 
threads. Application threads can only run when kernel thread 
becomes idle. Static optimizations are used during compilation 
to ensure the removal of any issues in the final code.  The OS 
and the applications are bundled together at compile time in a 
single file. A component called Deluge [41] is used for over-
the-air network-wide reprogramming. The new application 
code is distributed as composite binaries. Many protocols can 
be implemented as components. The current version of 
TinyOS is portable to many hardware platforms.  

TinyOS is not the most suitable OS for WSN node-level 
virtualization. First of all, the programming mode is event-
driven and it is often difficult to program event-driven 
applications. In the context of WSN virtualization, it may not 
be feasible to bundle applications with the OS at the time of 
deployment. New application tasks can only be installed by 
propagating the entire OS image over a virtual machine [42]. 
TinyOS also has tight coupling between the applications and 
the OS. The task scheduler in TinyOS is sequential (FIFO 
based) and executes tasks in run-to-completion mode, 
meaning a weak form of WSN virtualization. 

The performance results of TinyOS highlight important 
features of the OS. For example, code optimization reduces 
code size of the programs as much as 60%. The timer 
component reduces CPU utilization by 38%. The interrupt and 
task switching also very less time as compared to SenSmart. 

2) Virtual Machine-/Middleware-based Solutions 
Maté [42] is a tiny virtual machine that supports sequential 

execution and uses a stack-based binary code interpreter. It 
was designed to work on the early-generation, resource-
constrained WSN nodes and it does work on TinyOS. The 
main purpose of Maté is to enable energy efficient code 
propagation in WSN with minimal overhead required to re-
task sensors. In order to achieve this, application programs are 
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broken into small code capsules and propagated throughout a 
WSN with a single command. Only predefined applications 
with predefined instruction sets are possible. There are fixed 
sets of instructions divided into three classes: basic, s-class 
and x-class. Basic instructions include arithmetic operations 
and the activation of sensors/LEDs etc., s-class instructions 
perform memory access, and x-class instructions perform 
branch operations. Up to eight user-defined instructions are 
also allowed. These user-defined instructions need to be fixed 
when Maté is installed and cannot be changed afterwards. 
Each program capsule contains up to 24 instructions. Larger 
programs consist of multiple capsules. The instructions in the 
capsules are executed in sequence until the halt instruction is 
reached. New application code is propagated in the network in 
the form of code capsules, using a viral code distribution 
scheme. Each capsule contains a version number which is 
used by a sensor node to determine if it needs to install new 
application code. Network-wide code propagation occurs 
when a sensor node forwards the code capsule to its local 
neighbors, which in turn forward it to their neighbors. Maté 
maintains two stacks, one for normal instructions and the other 
for instructions that control the program flow. When an 
instruction is under execution, a new instruction cannot be 
executed. This allows for simpler programming options. Maté 
incurs the cost of byte code interpretations before instructions 
can be executed. Propagating an 8-byte code to an entire 
network of 42 sensor nodes required around two minutes.  

Regarding node-level virtualization, Maté supports the 
sequential execution of tasks and tries to address the main 
drawback of the original TinyOS implementation. New 
application code can be injected without replacing the OS on a 
sensor node. However, applications are still tightly coupled. 
Maté is more suitable for simple event-driven networks where 
it is possible to define events and their outcomes. To end on a 
positive attribute, Maté does provide a simple mechanism to 
automatically reprogram a WSN using code capsules. 

The performance results of Maté are collected by 
implanting an ad-hoc routing protocol which is also 
implemented in standard TinyOS release with Maté. The 
implementation of simple operations (such as AND, rand, 
sense, sendr) take more CPU cycles than native TinyOS, 
worst-case taking 33 times more CPU cycles and best case 
taking 1.03 times. A setup of 42 sensor nodes (in a grid 
pattern) is used to see the propagation of code using Maté. It is 
found that Maté takes little over 120 seconds to reprogram all 
sensor nodes with the new code. Overall Maté incurs overhead 
because its each instruction is executed as a TinyOS task. 

 
VMSTAR [43] is a Java-based software framework for 

building application-specific virtual machines. It also allows 
for the updating of WSN applications as well as the OS itself. 
VMSTAR provides a rich programming interface that allows 
developers to develop new applications which can be portable 
to a variety of hardware platforms. VMSTAR generates 
compact code files rather than regular Java class files. It 
supports both the sequential and simultaneous execution of 

thread-based applications. The framework is comprised of 
three parts: a component language called BOTS [44], a 
composition tool and an updating mechanism. The component 
language is used to specify software systems. The composition 
tool selects/composes the required components and determines 
the dependencies between them to satisfy specific constraints. 

  The updating mechanism uses an incremental update 
technique [45] to take actual coding changes rather than 
structural changes into account in the program code file like 
change in number of lines. For simple applications, sequential 
thread execution is supported, but for complex applications 
requiring input from external events, two event-based 
programming models are defined. One is the select model, in 
which an application subscribes to an event, acquires the 
corresponding event handle and executes it when the event 
occurs. In the case of multiple events, the respective handling 
methods are executed sequentially. The second model is 
known as action listener, in which applications define event 
handlers by extending the default handler class from the 
library – they do not register for events. When an event 
occurs, the registered callback method is invoked. The action 
listener model allows for the simultaneous execution of 
threads, but in the paper only the select model is implemented. 
A base station is used as a repository for application code and 
as an orchestrator for deployment and update purposes. A 
native interface is also provided to allow access to the 
underlying resources of a MICA platform.  

For node-level virtualization, VMSTAR does support the 
concurrent execution of multi-threaded application tasks but 
the implementation presented only supports single-threaded 
Java applications. The programming model is thread-based 
and applications can be coded in Java language, making it 
easier for developers. Concurrent events can be handled using 
action listeners. Although VMSTAR discusses the distinction 
between the user applications and the OS, for the 
implementation example both are tightly coupled. 

The performance results of VMSTAR show that it performs 
better than Maté but not so well against native TinyOS. For 
example, its memory consumption is almost double as 
compared to TinyOS. The same is true for CPU utilization, 
where VMSTAR sits between TinyOS and Maté.  

 
Squawk [46] is a small Java virtual machine that runs on 

sensor hardware. Compared to VMSTAR, Squawk does not 
require an operating system to run; it provides the required 
functionalities by itself. These include interrupt handling, 
networking functions, resource management, support for the 
migration of applications from one SunSpot to another and an 
authentication mechanism for deployed applications. 
Applications in Squawk are represented and treated as objects. 
Since multiple, isolated objects can reside in a virtual 
machine, concurrent applications can be executed easily. 
Squawk VM runs on a specific device platform, Sun Small 
Programmable Object Technology (SunSpot) which has more 
processing, memory and storage capability than MICA 
/MICAZ and other WSN platforms. Squawk VM can use 
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many standard Java features, such as garbage collection, 
exception handling, pointer safety, and thread library. It is 
written in Java, in compliance with J2ME CLDC [47]. The 
device drivers and the MAC layer are also written in Java. 
Squawk VM supports split VM architecture, where the class 
file loading is performed on a desktop machine to generate its 
representation file. The representation file is then deployed 
and executed on SunSpots. The size of these files is much less 
than standard Java class files. Green threads are used to 
emulate multi-threaded environments. The threads are 
managed, executed and scheduled in user space. An 
application’s status, including its temporary state, can be 
serialized to a stream for storage. When another Squawk VM, 
on another SunSpot, reads that stream it can effectively 
reconstitute the application along with its complete state 
information. This allows for live-migration of applications 
from one SunSpot to another. This is quite useful in situations 
when a SunSpot device is about to run out of battery power. 

For node-level virtualization, Squawk VM takes quite a 
different approach than its competitors. A robust and efficient 
application isolation mechanism is provided, which allows 
multiple applications to be represented and treated as Java 
objects. These objects are instance of the Isolate class and can 
be started, paused and resumed using available methods.  
Applications can have multiple threads which are managed by 
the JVM. The programming model is thread-based and 
applications can be coded in J2ME. There is also an option for 
Over-The-Air (OTA) programming which can be used to load, 
unload, stop and migrate applications on SunSpots.  

The performance results of Squawk are presented using 
some benchmark suits and a math application to measure 
integer and long computation. For memory footprint, Squawk 
is compared with KVM for CLDC which shows that Squawk 
VM with debugging support uses less memory than KVM 
equivalent. The benchmark suits for Squawk and KVM were 
run of different sets of ARM platforms with different CPU and 
memory sizes. The KVM ran on better hardware and hence 
exhibited better results than Squawk VM. The suits files of 
applications generated in Squawk have around 37% less size 
than java class files and JAR files.  

 
Agilla [48] is a mobile agent-based middleware that runs on 

top of TinyOS and uses a VM engine to sequentially execute 
multiple application in a round-robin fashion. It uses a mobile 
agent and tuple-space programming models.  The middleware 
is designed to support self-adaptive applications in WSNs. 
Application programs are coded as mobile agents that can 
migrate themselves to other sensor nodes in the WSN in 
response to changes in the network or in the physical 
phenomenon that is being monitored. Each sensor node can 
run several autonomous mobile agents. These mobile agents 
may perform a strong migration, i.e., transfer application code 
and its state to another sensor. Weak migration only transfers 
application code, which means that at its new destination, a 
migrated mobile agent will restart the application. Agents are 
injected in the WSN from a base station and propagated one 

hop at a time. Each mobile agent arrives at a new destination, 
starts its execution and then migrates to the next-hop sensor 
node. This process can take quite some time to propagate a 
new application in the WSN. Each sensor node has a tuple 
space and a local memory. In a tuple space, data is accessed 
using pattern-matching techniques. This approach allows 
mobile agents to be oblivious of each other’s memory 
addresses.  Mobile agents have a stack space, a heap and three 
registers, which are used to store ID of the agent, the program 
code and condition code. Every agent, including the clones, 
has a unique ID. The program code register holds the address 
of the next instruction and the condition code register holds 
the execution status.  

For node-level virtualization, Agilla relies on TinyOS to 
provide concurrency, and thus mobile agents are executed in a 
round-robin fashion. However, this is an OS issue, since a 
multithreaded OS can execute mobile agents in parallel 
allowing better concurrency. Mobile agents work 
independently of the TinyOS. The use of tuple-space and 
locally-stored agent states allows for quick migration, but still 
much work is left to the programmers to deal with issues such 
as stalled migration. In a highly dynamic WSN where 
applications utilize sensor nodes on the fly, such as the IoT, 
the migration of agents might lead to performance issues. The 
programming language of Agilla is another difficulty, as the 
agents are programmed in low-level assembly-like language.  

A test-bed of 25 sensor nodes is used to gather the 
performance results. Agent migration is evaluated by varying 
number of hops between source and destination sensor nodes. 
The migration is 99% successful for up to 3 hops but after 
than it starts decreasing. Also more hops mean more latency, a 
5-hop migration can take more than 1.1 second. The latency 
experienced for remote operations is under 300ms. 

  
The authors in [49] present an integrated system, the 

UMADE, to promote the utilization of a deployed WSN 
among multiple contending applications. The main 
contribution of UMADE is a mechanism to allocate sensor 
nodes to improve overall Quality of Monitoring (QoM) for the 
applications. UMADE is implemented on TelosB motes and 
uses Agilla VM on top of TinyOS. The proposed systems 
consist of several components such as, specification of QoM 
attributes, application deployment and relocation of 
applications to deal with the network changes, as well as 
QoM-aware application allocation algorithm. QoM attributes 
are specified by variance reduction and detection probability 
attributes. A variance reduction QoM attribute exploits the 
correlation of sensor readings using probabilistic methods to 
predict sensor readings. For the detection probability QoM 
attribute, a stochastic model is used to find the probability of 
an event’s detection by a group of sensor nodes. It is not clear 
from the paper whether QoM attributes can only be specified 
before the deployment of UMADE or if it is an evolving 
process. A simple greedy heuristic is used in a QoM-aware 
application allocation algorithm to maximize the overall WSN 
utility. Applications are deployed using an application 
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allocation engine and an application deployment engine. The 
allocation engine runs in a base station and uses an allocation 
algorithm to find the suitable sensor nodes for an application. 
The deployment engine, present in both the base station and 
the sensor node, is used to wirelessly send the sensor 
application to the chosen sensor nodes. The applications run 
concurrently in the Agilla VM. Both preemptive and non-
preemptive allocation is used to deal with network dynamics 
and sensor node failure. In preemptive allocation existing 
applications are relocated to new sensor nodes to increase the 
overall utility, whereas in non-preemptive allocation no 
application is relocated to new sensor nodes. The base station 
side code is written in Java and the sensor node code is written 
in nesC.   

UMADE uses Agilla VM for node-level virtualization. 
Agilla VM is extended to provide dynamic memory 
management for concurrent applications. UMADE has event-
driven programming model and uses nesC language to code 
application tasks. 

Application specific results are presented in the paper (i.e. 
application that are implemented for evaluation purposes). For 
example, an increase in weight of a temperature monitoring 
application resulted in increase in its utility by 60%. The time 
to execute multiple application over a set of nodes increases 
linearly. Since UMADE uses Agilla over TinyOS its 
performance is highly dependent on those two solutions. 

A macro-programming framework, Nano-CF, for the in-
network programming and execution of multiple applications 
over a deployed WSN is presented in [50]. Nano-CF runs over 
the Nano-RK operating system [51] and allows several 
applications to utilize a common WSN infrastructure. Using 
Rate-Harmonized Scheduling (RHS) [52], Nano-CF realizes 
the coordinated delivery of data packets from multiple 
application tasks that run on sensor nodes. RHS also allows 
for data aggregation and ensures that small data packets are 
combined together before being sent to their respective 
applications. Nano-CF is a three-layer architecture consisting 
of a Coordinated Programming Environment (CPE) layer, an 
integration layer and a runtime layer. The CPE layer is present 
at the user/programmer side and allows them to write 
application programs in the Nano-Coordination Language 
(Nano-CL). Nano-CL is descriptive language with a C-like 
syntax. Its programs have two sections: service descriptor and 
job descriptor. The service descriptor section has tasks that are 
executed by the sensor nodes, as services. The job descriptor 
section has multiple services along with a set of nodes which 
will execute them. The programmer has to specify the timing 
and the periodic rate at which the services (tasks) will be 
executed at each sensor node. The program code is parsed to 
byte-code and sent to the sensor nodes by a dispatcher module 
in the CPE layer. The integration layer is also responsible for 
handling the data and control packets. It consists of a sender 
module in the gateway and a receiver module in the sensor 
nodes to deliver the application task in byte-code. The runtime 
layer resides in each sensor node and consists of a code 
interpreter module which translates the received task byte-

code for the underlying Nano-RK OS. It also provides routing 
functionality using DSR protocol.  A data aggregation module 
collects aggregated data from the sensor nodes and sends it to 
the user application using RHS.  The proposed architecture is 
evaluated using a university campus multi-application sensing 
test-bed called sensor Andrew [53].  

Nano-CF makes several contributions to node-level 
virtualization. It allows independent application developers to 
write application tasks for a common WSN infrastructure. 
Each application task runs independently and is not coupled 
with the sensor OS. The proposed framework is suitable for 
data collection applications and for sensor nodes that have 
multiple on-board sensors. The programming model is event-
driven and applications are programmed using their 
descriptive language, Nano-CL. 

The performance results of the solution cover the energy 
and overhead of code interpreter. Using RHS allows energy 
savings especially using multiple applications since packets 
are aggregating first and then transmitted. However, the 
packet size has an impact on this because bigger packets 
means they cannot be aggregated due to size issues. When 
code interpreter is used, the extra-overhead is around 55%. 

B. Network-level Virtualization 
We group the network-level virtualization approaches under 

two umbrellas: virtual network/overlay-based solutions and 
cluster-based solutions. Virtual network/overlay-based 
solutions utilize the concept of virtual networks and 
application overlays to achieve network-level virtualization. 
Virtual network/overlay are logical networks created on top of 
physical network(s). In cluster-based solutions, the nodes in a 
physical network are grouped to work together in connected 
groups, i.e. clusters. Unlike virtual network/overlays, 
clustering is more like the physical partitioning of the network 
where one part of the network is used to one application and 
another part is used by a different application. Nodes inside a 
cluster have specific roles, such as cluster-head and cluster-
member. Typically cluster-based solutions in WSNs are used 
to monitor dynamic events.  

Fig. 4 shows the network-level virtualization types while 
Table II illustrates the characteristics of the existing work 
dealing with node-level virtualization. 

1) Virtual Network/Overlay-based Solutions 
The work in [9] uses overlays to create application-specific 

virtual networks on top of the deployed WSN. The overlay is 
used to allow data exchange between sensor nodes in different 
administrative domains. This work is more suitable for 
situations where it is difficult to bundle applications during the 
deployment of a WSN. A three-layer architecture is presented 
to allow multiple end-user applications to utilize sensor nodes 
concurrently. The bottom layer has new-generation sensor 
nodes like Java SunSpots, as well as older and less capable 
ones. In order to allow older and less capable sensor nodes to 
participate in overlays, another entity called Gates-to-Overlay 
(GTO) nodes is incorporated. The functionality of these GTO 
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nodes can be implemented in gateways and sink nodes, as well 
as more powerful sensor nodes. The middle layer abstracts the 
simultaneous tasks executed by the physical sensors as virtual 
sensors. This is the basic assumption of the work, that the 
sensor nodes are capable of executing multiple application 
tasks concurrently. The top layer consists of applications 
implemented as overlays. These independent applications 
utilize the data sent by their respective tasks running on the 
sensor nodes. Each application has an independent overlay 
with virtual sensors as members of that overlay. This logical 
grouping allows data exchange even when sensors are 
physically located in different administrative domains. The 
architecture has separate paths for data and control messages. 
A fire monitoring scenario is used as an example, in which the 
sensor nodes in private homes are used to monitor the progress 
of fire eruption using a fire contour algorithm. Since sensor 
nodes are in private homes they cannot send data to each other 
directly. An overlay network is created to facilitate such data 
exchange and execute the fire contour algorithm.  The authors 
assume the prior publication of sensor nodes to a registry 
which the end-user applications use to select the required 
sensors. The paper does not provide any implementation 
details. However, certain protocols are suggested for data, 
control interfaces and for overlays.  

For network-level virtualization this work makes use of 

application-specific overlays to provide a robust and efficient 
mechanism for sensors to communicate. There have been 
some efforts to utilize DHT overlays in WSNs e.g., [54], [55], 
[56] and [57]. Each sensor can be part of several overlays at 
the same time and can execute their tasks. In the absence of 
any implementation details, it is difficult to determine the 
effectiveness of this solution, but it is quite relevant to IoT, 
where WSNs will be utilized by different users to provide new 
applications and services that were not envisioned during their 
initial deployment. Even geographically dispersed WSNs can 
be combined to provide data for new applications.  

No performance results are presented in this work. 
 

The work in [58] discusses the “Managed Ecosystems of 
Networked Objects” (MENO) concept, with its broader scope 
to connect sensor nodes as well as other IP-smart objects to 
the Internet for end-to-end communication without the use of 
traditional gateway-based approaches. The idea behind MENO 
is to create a virtual network on top of physical networks and 
thereby allow communication with different types of devices, 
including sensor nodes. Within each virtual network, end-to-
end communication is possible using different protocols. Once 
end-to-end communication is enabled, it becomes possible for 
application developers to write new applications that utilize 
sensors, actuators and other devices. This work is still at the 
conceptual level, without any implementation details or 
results. It appears to be on track to use a clean-slate approach 
to integrate the physical world with the Internet in a seamless 
way. Some motivational scenarios are presented to make a 
case for integrating WSNs to the Internet.  

The concept utilized by MENO is used to develop the 
Internet of Things Virtual Network (IoT-VN) [59]. That study 
presents some implementation details by applying the concept 
of the IoT-VN to constrained and non-constrained 
environments. For constrained environments, the IDRA 
framework [60] is used to implement neighbor detection and a 
tunneling mechanism to create virtual links between the 
members of the virtual network. For non-constrained 
environments, the Click Router [61] is used, a C++ based 
framework capable of realizing network packet processing 
functionality. Routing the data over virtual links is 
accomplished by means of the AODV protocol. They have 
extended the AODV header to include IoT-VN ID header and 
a network header. A simple ping application implements basic 
request and reply messages to demonstrate data exchange 
inside a virtual network. 

For network-level virtualization, the work in [58] and [59] 
uses the concept of virtual links built over either layer 3 or 
layer 2 in traditional networks, and over IEEE 802.15.4 in 
WSNs. Not much detail about the actual protocols is provided, 
but these researchers do mention some motivational scenarios 
to open up WSN deployments and connect them to the 
Internet. Overall, the focus here is on connecting different 
devices (resource-constrained and non-resource constrained) 
together and allowing end-to-end communication for the 
deployment of new applications and services.  

 
Fig 4: Network-level virtualization solutions 
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The work in [58] does not provide any performance results, 
however in [59] presents early results using a simple two 
sensor test-bed setup. Round trip times of a ping command are 
shown which was sent from one sensor to another. Overall the 
results do not give much insight in to the solution. 

 
An embedded agent-based approach is presented in [62] to 

create and maintain virtual sensor networks. This agent-based 
solution is built on top of Java SunSpot devices, as they offer 
Java programming support and are easier to program. The 
authors first provide an analysis of the layered approach 
normally used to create and maintain a Virtual Sensor 
Network (VSN). In this layered approach a new VSN layer is 
introduced to create and maintain a VSN, but this approach is 
not flexible when the sensor nodes’ sleep and wake patterns 
are taken into account. A sensor node that is part of more than 
one VSN at a time cannot sleep abruptly without first 
coordinating with other sensor nodes to inform them about its 
unavailability. Since the layers in sensor nodes are tightly 
coupled and cannot be changed without affecting the other 
layers, an agent-based solution is proposed in this work. Agent 
Factory Micro Edition (AFME) [63] library is used to create 
agents on a sensor node. Each agent resides on a sensor node 
and is responsible for creating and maintaining a VSN, as well 
as for communicating with the agents working for the same 
VSN on other sensor nodes. These agents can communicate 
with each other to optimize performance. AFME allows 
communication between agents for easy message exchange. 
AFME also allows the migration and cloning of agents in the 
network, which makes it easy for new sensor nodes to join a 
VSN. Using the agent-based approach has obvious benefits, 
not least because a sleep broker can make intelligent decision 
about the sleep and wake duration of sensor nodes. 

For network-level virtualization the work in [62] considers 
independent VSNs created over a WSN for different 
applications. To create such VSNs, mobile agents create a 
virtual topology linking sensor nodes together for an 
application. Although the agents are implemented using 
AFME, there are no details about VSN formation and its 
operation.  

Interestingly the work does not provide any performance 
results of the agent-based approach instead it present 
simulated results of layered approach showing their obvious 
drawbacks. 

Pioneering work regarding network-level virtualization was 
first presented in [19] and extended in [64] and [65]. In [19], a 
subset of WSN nodes dynamically forms a VSN. Applications 
with attributes or situations such as being geographically 
dispersed, using heterogeneous WSN nodes with different 
capabilities and that monitor dynamic phenomenon are 
particularly suited to take advantage of VSNs. Each 
independent subset executing an application is a VSN. In this 
approach, it is clear that different applications can execute 
sequentially, due to the dynamic VSN formation by different 
node subsets. However, the authors do not give any 

information about how these applications might eventually be 
executed simultaneously. Two illustrative applications are 
presented. One is a geographically overlapped application 
which works in scenarios where heterogeneous WSN nodes 
are deployed to monitor two different events spread over a 
large area. Each WSN needs to be deployed without using 
resource sharing even in those areas where there is no event of 
interest, to provide communication and routing. With resource 
sharing however, other WSNs can help, resulting in a more 
efficient use of resources.  

The second application illustrates the concept of monitoring 
a dynamic event with a subset of WSN nodes. This subset can 
expand or reduce depending on the dynamics of the event. The 
work discusses the management issues of these VSNs and 
describes functions to create VSNs. WSN nodes that are not 
part of any subset help in the overall WSN operation, with 
data routing for example, or remain asleep to conserve energy. 

For network-level virtualization the authors in [19] present 
the basic motivation to create VSNs. Example applications are 
discussed. However, the paper presents high-level details and 
does not include any technical details, e.g. how to realize these 
VSNs. The paper provides the basic concept of multiple 
applications sharing a WSN and using multiple WSNs for new 
applications without additional deployments. 

No performance results are presented in this work. 
 

2) Cluster-based solutions 
A self-organizing tree-based solution is presented in [64] to 

facilitate the creation, operation and maintenance of VSNs. 
When an event has been detected, a dynamic cluster tree is 
formed, ensuring that nodes will join a VSN to monitor the 
event in a reactive manner. In this approach the sequential 
execution of applications is possible, since VSNs are formed 
dynamically, but it is not clear if (or how) it is supported by 
the WSN nodes. This approach uses cluster heads and child 
cluster heads inside VSNs to carry out different functions. 
This structural organization provides logical connectivity 
among WSN nodes and ensures that two different notifications 
of the same event are detected and treated as one; meaning 
that no event in the deployed WSN remains unknown. Once 
an event is detected, a dynamic cluster tree is formed by 
exchanging VSN formation messages.  

VSNs provides unicast, broadcast and multicast 
communication. For unicast communication, a hierarchical 
addressing scheme like DNS is used while broadcast and 
multicast communication use a list. This list is used by each 
cluster head to keep track of the child cluster heads it serves. 
A new hierarchical clustering algorithm is proposed to create 
VSNs. A simulation-based performance analysis of the 
proposed algorithm is presented using a custom-built 
simulator in C language. However, advanced VSN functions 
like the merging and splitting of VSNs are not implemented.  

A cluster tree mechanism is used to group the sensor nodes 
that work for an application, as a way to realize network-level 
virtualization. This work is an extension of the work in [19]. 
Dynamic trees are formed and communication between the 
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sensor nodes is also supported. There is no discussion about 
the physical implementation of this proposed scheme. 

For performance results a discrete-event simulator is used. 
Three scenarios are implemented to detect events in different 
regions and use sensor nodes to monitor them. The results 
show a linear increase in number of hops similar to the 
increase in sensor nodes monitoring the event. When an event 
occurs, with source and destination node in the same region, 
more unicast messages are exchanged but these messages are 
not affected by the network size. On the other hand, when an 
event occurs in another region more multicast messages are 
exchanged and are affected by network size. 

 
A proof-of-concept study that monitors an underground 

plume is presented in [65]. The proof-of-concept is based on a 
single application, and so it is difficult to find a link with 
sequential or simultaneous execution. The authors also discuss 
a phenomena-aware clustering algorithm to create and 
maintain VSNs. Using this algorithm, clusters are comprised 
of groups of WSN nodes that are close to dynamic 
phenomenon and report on it frequently throughout their 
lifetimes. With these reports, the algorithm is able to select 
those WSN nodes which are relevant for clusters and that are 
close to the dynamic phenomenon, allowing less-relevant 
WSN nodes to save their energy for other applications. This 

technique considerably reduces the required data reporting 
since only relevant data is sent. As the deployed WSN is 
event-based and not always on, sudden bursts of data are 
avoided whenever an event of interest occurs. The algorithm is 
also resilient to WSN node and link failures. To adapt to the 
dynamics of an event, i.e., a merger or a split, another 
algorithm, called DRAGON, is presented. When an event is 
detected, DRAGON ensures its location is found and used as a 
reference point to track its movement. Sensor readings and the 
relative positions of WSN nodes are then used to make 
decisions about whether two events should logically remain 
distinct or be merged into a single event. 

For network-level virtualization this work is based on [19] 
and [64]. The proof-of-concept prototype is used to 
demonstrate the viability of the concepts presented in earlier 
papers, however only one application is demonstrated.   

There are not much performance results of the prototype 
except that the sensors were able to track a plume similar to 
the conductivity probes. 

C. Hybrid Solution 
Hybrid solutions combine both node- and network-level 

virtualization mechanisms. We group the Hybrid solutions 
under three types: middleware and cluster-based solutions, 
middleware and virtual network/overlay-based solutions and 
virtual machine and dynamic grouping-based solutions.  

In middleware and cluster-based solutions, a middleware 
handles node-level virtualization, while network-level 
virtualization is achieved by grouping sensor nodes into 
clusters. In middleware and virtual network/overlay-based 
solutions a middleware handles node-level virtualization while 
network-level virtualization is achieved using virtual 
network/overlays. In virtual machine and dynamic grouping-
based solutions, node-level virtualization is achieved using a 
virtual machine, and a tailored, sensor node grouping scheme 
is used for network-level virtualization. 

Fig. 5 shows the hybrid virtualization solution while Table 
III shows the characteristics of hybrid solutions. 

1) Middleware and Cluster-based Solutions 
In [66], a middleware solution, Sensomax, for Java SunSpot 

[67] devices is presented.  Sensomax follows a components-
based approach and provides several operational paradigms 
such as data-driven, event driven, time-driven and query-
driven, to offer more flexibility. The main contributions of 
Sensomax are support for multi-tasking, dynamic task 
modification and re-programming at runtime. At node-level, 
user applications are coded as application-specific agents. 
Concurrency is implemented using a main Monolithic Kernel, 
abstracting the sensor resources. Applications act as 
Microkernels running atop the Monolithic Kernel and access 
underlying resources in a uniform way. When an application 
starts its execution in a sensor node, its corresponding agent is 
loaded to an execution space and queued for execution. A 
resource-algorithm is said to be used for allocating resources 
to multiple agents in the execution space. However, no details 

TABLE II 
CHARACTERISTICS OF NETWORK-LEVEL VIRTUALIZATION SOLUTIONS 

Solution 
(year) 

Network 
Formation 
Mechanism 

Protocols or 
Algorithms 

used 

Results in the 
Paper are 
based on 

Khan et al. 
(2013) 

Application 
Overlays 

JXTA Not discussed 

IoT-VN 
(2012) 

Virtual Links AODV Implementation 

MENO 
(2011) 

Virtual Links Not discussed Not discussed 

Taynan et 
al. (2008) 

Virtual 
Network 

using 
Embedded 

Agents 

Coverage 
Configuration 

Protocol (CCP)  
and  

Interpolation-
based 

Redundancy 
Identification and 

Sensor 
Hibernation 

(IRISH) 

Simulation 

Jayasuman
a et al. 
(2007) 

Virtual Links Not discussed Not discussed 

Dilum et 
al. (2008) 

Cluster Tree Hop-ahead 
Hierarchical 

Clustering (HHC) 

Simulation 

Han et al. 
(2008) 

Cluster Tree PHenomena 
AwaRE clustering 
in wireless sensor 
networks (PHRE) 

and DRAGON 

Implementation 
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of such allocation algorithms are discussed. Application 
agents can be data-driven, event-drive, time-driven, query-
driven or hybrid models. 

At the network level, the deployed WSN is divided into 
multiple clusters consisting of sensor nodes. Each cluster is 
dedicated to a single or multiple applications and treated as a 
single entity by the application programmers. The applications 
can span over multiple clusters by running application-specific 
agents in each cluster. Each cluster consists of a sensor node 
acting as the cluster-head and several sensor nodes acting as 
cluster members. Sensor nodes can have dual roles, i.e., a 
sensor node can act as cluster-head for an application while at 
the same time it can be a cluster member for a different 
application. Such roles depend on the application agents 
residing in a sensor node. The agent-based approach is used 
for network-level communication in Sensomax. The global 
agents enable different network entities to communicate with 
each other. The local agents are used for intra-cluster 
communication, allowing the cluster-heads to communicate 
with their cluster-members and vice-versa. The system agents 
are used by the base-station to send configuration instructions 
to cluster members via cluster heads. The system agents are 
used to reprogram or update sensor nodes on the fly. The 
WSN resources are divided into three main classes: global, 

local and system resources. Global resources include sensors, 
actuators and processes that are shared among different 
network entities. Local resources include resources found 
inside a cluster and can only be shared between members of 
that particular cluster. System resources include items such as 
system properties where resource states are defined. A one-
hop broadcasting of agents is used to propagate application-
specific agents in the WSN. Java SunSpot devices are used for 
implementation and simulation-based results are presented.  

For node-level virtualization, Sensomax uses Java SunSpot 
devices and exploits their ability to run concurrent application 
tasks. Each user application is programmed as an agent, and 
multiple agents can reside on a single sensor node. Agents are 
submitted via a base station and propagated into the WSN 
using a one-hop broadcast. The network-level virtualization 
uses the clusters concept. The WSN is divided into multiple 
clusters, each with its own cluster head. Different types of 
communication modes are provided to enable communication 
between different network entities.  

The performance results are collected by means of a test-
bed consisting of 12 sensor nodes and a simulator. The 
processing time of each agent is found to be around 200ms 
when the sensor node is executing 30 concurrent applications. 
The simulation results follow the same trend. The sample 
applications are lightweight that report temperature and light 
level with various conditions. The dynamic update processing 
time is under 100ms for the same number of applications.  

 
The work in [68] presents a multi-set architectural model to 

allow the execution of multiple applications over a deployed 
WSN. This work is based on the concept of agents, similar to 
Agilla. The agents are not application-specific, instead they 
are used to control the node- and network-level functionality. 
The overall design goal is the ability to run multiple 
applications in a pre-defined execution order and to be able to 
adjust their functional parameters.  A configuration agent (C-
Agent) is used to modify the functional parameters of an 
application running on a sensor node, e.g., to change its 
sampling interval. The C-Agent is first propagated in the WSN 
from the base station to the cluster-heads and then from 
cluster-heads to the sensor nodes in their clusters. Before the 
deployment of a WSN, the applications and their order of 
execution are defined. This step limits flexibility, as new 
applications cannot simultaneously use the deployed WSN.  
At node-level, TinyOS is used to provide concurrent execution 
of application tasks on a sensor node using a middleware that 
runs on top of TinyOS. The solution inherits the drawbacks of 
TinyOS; making applications to be executed in their 
predefined order.  

At the network-level, the scoping building block concept 
[69] is used to divide a WSN into subsets. Within these 
subsets, nodes can be grouped as clusters according to the 
application requirements. Each subset is dedicated to execute 
only one application, hence a WSN with n subsets will execute 
n number of applications. The role of cluster-head is 
performed by powerful sensor nodes, so there is no selection 

 
Fig 5: Hybrid virtualization solutions 
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of cluster-heads on the fly. When the WSN is deployed 
initially, only one application begins its execution, according 
to a pre-defined sequence. The sensors in other subsets sleep 
to conserve their energy until it is their turn to execute their 
application. A switching agent (S-Agent) is used to switch 
from one application to another by putting awake sensor nodes 
into sleep mode and vice-versa. There is no information about 
how these agents are propagated.  

For node-level virtualization, the solution works similar to 
the TinyOS and provides a weak form of virtualization. Pre-
defining applications and their execution sequences does not 
make this solution very attractive. For network level 
virtualization, the WSN is divided into subsets that have 
multiple clusters. At any given time the sensor nodes in one 
subset are active while others sleep to save their energy. 

No performance results are presented in this work. 

2) Middleware and Virtual Network/Overlay-based Solutions 
The authors in [70] discuss SenShare, a platform to execute 

multiple applications over a WSN. This is the first significant 
effort to tackle the issue of allowing open access WSN 
deployments running multiple applications concurrently. Two 
roles, those of WSN infrastructure owners and application 
developers, are considered. This separation opens up the 
possibilities for new business models, innovative applications, 
improved utilization of WSN resources, and flexibility, along 
with cost benefits. At node-level a hardware abstraction layer 
(HAL) and a node runtime layer is used in each sensor node to 
support multiple applications. Each application is a TinyOS 
program which runs on top of a multi-tasking OS that allows 
the simultaneous execution of multiple application tasks. The 
HAL is shared by each application and is used to break the 
tight coupling between TinyOS applications and the sensor 
hardware and to allow shared access to the sensor hardware. 
Each application contains virtual hardware controllers (e.g. 
access to LEDs, sensors, timers and network I/O) that are 
linked to all TinyOS application at compile time. When an 
application requires access to, e.g. a sensor, the corresponding 
virtual hardware controller passes the request to a runtime 
layer between the applications and the multi-tasking OS. The 
runtime layer is OS-specific and all of the TinyOS 
applications use it to access the sensor hardware. It runs as a 
separate process inside every sensor node and mediates 
between the applications and the sensor hardware. The sensor 
I/O and network I/O are two components in the runtime layer 
that allow managed access to sensing components and to the 
network interface, respectively. This access is allowed 
asynchronously to multiple applications.  Each application in 
SenShare, has a unique ID which is used to manage it. In order 
to deploy an application, SQL-like commands are used to 
select the target nodes according to the application’s 
requirement. Afterwards the application’s binary code is sent 
to the selected nodes using a modified version of the Deluge 
protocol [71]. Once the application is up and running, the 
virtual topology is formed to provide isolation from other 
data/control traffic. The WSN is globally synchronized using 

the TPSN protocol [72]. 
At the network level, a network-level overlay is created to 

group WSN nodes that execute similar application, using the 
Collection Tree Protocol (CTP) [73]. Physically scattered 
groups executing similar applications can be joined into a 
single overlay network. CTP is also used to route data and 
control messages in the WSN. In order to provide isolation 
between the traffic from multiple applications, each 
application packet is modified to include the application ID 
along with sequence number, origin and destination addresses. 
The runtime layer attaches and removes this information at the 
source and destination nodes, respectively. 

 An application could be executed by physically scattered 
sensor nodes. Linking these scattered sensor nodes (clusters) 
into a single virtual connected network requires an overlay 
formation protocol that utilizes the underlying CTP topology 
to connect clusters together in a virtual connected network. 
The protocol works by making each sensor node route its 
packets to the closest cluster.  

For node-level virtualization, SenShare implements 
application tasks as TinyOS programs over a multi-tasking 
OS. The programming model is similar to TinyOS. 
Incorporating virtual hardware controllers with the 
applications makes the solution less flexible, as developers 
need to be aware of the type of hardware each sensor node 
has. The runtime layer between the OS and the applications 
does not expose the sensor hardware to the developers, so they 
cannot write applications on the fly. For network-level 
virtualization, SenShare uses the concept of overlays and uses 
CTP protocol to create independent overlays for applications. 

The performance results of this work cover the application 
isolation penalty and overlay management. With more 
concurrent applications in a sensor node, it is observed that 
sampling rate decreases by 28% as compared to a single 
application sampling the same phenomenon. The CPU 
utilization also increases linearly and has less impact of the 
SenShare runtime. The same is observed for memory usage. 
The extra overlay traffic is found to be decreasing over the 
period of time to around 10% of the network traffic.   

 
The work in [10] discusses the node- and network-level 

virtualization of sensor nodes in the context of the VITRO 
project. The goals of this work are i) to design a middleware to 
act as a bridge between applications and the sensor nodes, and 
ii) to design advanced sensor node architecture. Node-level 
virtualization is achieved by instantiating various instances of 
routing and of MAC layers. There is a node virtualization 
manager (NVM) inside every sensor node which is 
responsible for managing the available resources and fulfilling 
the requests to utilize those resources [74]. NVM interacts 
with each layer to ensure the optimal, secure and energy-
efficient utilization of sensor nodes. Each sensor node has a 
middleware which is responsible for its discovery and the 
service it provides. This middleware sits on top of the network 
layer, which is responsible for the routing data. The network 
layer uses routing protocols that can support multiple routing 
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instances. A trust-aware routing protocol [75] is used to route 
the data, and delay-tolerant network mechanisms are 
suggested to counter the connectivity issues. For each 
application, a newly configured MAC layer is instantiated. 

A reference architecture is presented at the network level, 
consisting of several autonomous WSN domains. Each of 
these domains is connected to VITRO service providers 
through a gateway node. The gateway node plays a major role 
in providing network-level virtualization. It consists of 
modules that help in the creation and management of VSNs. 
The gateway node uses several registries to create and manage 
a VSN. In VITRO, only gateway nodes can be part of the 
VSN, which can be realized by creating a routing link between 
the gateway nodes using protocols such as RPL. Individual 
sensor nodes can only be part of the VSN, on their own, if 
they support the functionalities of the gateway node, otherwise 
they can only join a VSN with the help of a gateway node. 
Details such as sensor selection and task dissemination are not 
discussed. A VSN manager is responsible for service 
negotiation, session establishment and monitoring. Functional 
architectures of gateway nodes and advanced sensor nodes are 
also presented, along with the details of the interfaces between 
system components. No implementation details are discussed 
and no protocol recommendations are given for interfaces or 
functions such as service registration or service negotiation.  

For node-level virtualization, VITRO relies on advanced 
sensor nodes that enable the efficient utilization of resources 
and concurrent access. However, there is no discussion 
regarding the OS that will provide such functionalities, nor is 
there any information on the hardware platform in the paper. 
Most of the details are at the conceptual level; no technical 
details such as programming model, programming language, 
and OS are provided. For network-level virtualization, this 
work only connects already VSN-aware/legacy/proprietary 
WSNs through a gateway node. The mechanisms for creating 
a VSN-aware network are not discussed, nor is there any 
mention of protocols to be used.  

No performance results are presented in this work. 

3) Virtual Machine and Dynamic Grouping-based Solution 
Melete [18] provides both node and network level support 

for the concurrent execution of applications in WSNs. At the 
node level, Melete supports simultaneous execution by 
enhancing Maté, supporting the interleaved execution of 
multiple applications on a single WSN node. Application code 
images are stored, each with its own dedicated execution 
space. Applications do not share variables with each other to 
ensure that an application failure does not affect other 
applications executing on the same WSN nodes. The number 
of concurrent applications that can be executed by WSN nodes 
depends on the available RAM; the implementation in the 
paper supports up to five applications. Melete uses an event-
driven programming model. Another contribution of Melete is 
that it supports application task code dissemination. Task code 
dissemination has two main goals. One is to select the sensor 
nodes which are part of a group, and send new code to them. 
The second is to reactively send code to the sensor nodes that 
require it. Both goals allow the task code of the relevant 
sensor nodes to be sent while discouraging its unnecessary 
dissemination. Actual code forwarding is done region-wise 
using multi-hop communication.  

At a network level, Melete supports the dynamic grouping 
of deployed WSN nodes in order to execute multiple 
applications simultaneously. The supported network topology 
is a connected graph. It is possible for WSN nodes to be part 
of more than one logical group at a time. Each logical group is 
dedicated to a single application, and the implementation 
supports up to 16 groups coexisting in a WSN. A new 
application code is disseminated passively between members 
of the group using the above-mentioned design goals. All 
WSN nodes maintain the version information of the 
applications, and advertise it in the group, hence making WSN 
nodes aware of when to update their application codes. This 
saves energy by reducing unnecessary communications, but at 
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a cost of the delay incurred. Sensor nodes in a logical group 
execute a single application at a time, hence each application 
cannot be influenced by the run-time error of another 
application. The paper presents extensive simulation-based as 
well as actual implementation results.  

For node-level virtualization, Melete improves on Maté, but 
since application tasks have their own data and execution 
space, only a limited number of application tasks can run 
concurrently. The programming model is based on the event-
driven approach of TinyOS. The application programs are 
written in TinyScript. A dynamic grouping scheme is provided 
for network-level virtualization. By default, all sensor nodes 
are members of a parent group, with its code stored in them. 
How a sensor node will join a new group depends on the task 
code it is executing. The programmer needs to be aware of the 
many situations that may arise in the network and program the 
responses, and this approach is not flexible at all. 

The performance results of Melete include mathematical 
analysis of the impact of parameters on the task code 
dissemination scheme. The code size and memory 
consumption of Melete was compared to Maté. The code size 
of Melete is bigger than Maté even when there was only one 
application. Similarly Melete exhibits higher memory 
consumption than Maté. The result pertaining to dynamic 
grouping show delays in the order of seconds for a motion 
tracking application in an office setting. 

D. Summary 
Table IV illustrates the evaluation of the existing work 

based on the requirements identified in section 2.4. We have 
found several capable node-level virtualization solutions. In 
the early-generation sensor nodes, the programming model of 
choice was event-driven, as it was simple to implement, but 
once its limitations were found, the thread-based approach was 
used to implement more complex and concurrent tasks in 
sensor nodes. Of all these works, TinyOS and Contiki have 
become extremely popular and have good community support. 
Contiki is now considered as a platform for the IoT [76] and 
has incorporated many innovative features over the last 
decade. RIOT [25] is a new work to design a capable OS to 
run C/C++ applications on heterogeneous sensor platforms.   

For network-level virtualization, the early work used the 
concept of clusters but managing clusters itself is quite 
challenging. The majority of work on cluster-based solutions 
in WSNs is focused on improving routing, energy efficiency 
and security. We need solutions that facilitate the creation of 
application-specific clusters that adapt to the dynamics of the 
network and of the monitored events. Recently overlay 
solution are being used for network-level virtualization but it 
is still largely unexplored territory. We have works like [54] 
discussing, quite convincingly, that it is not ‘mission 
impossible’ to use overlays in WSNs. Most recent research 
work has focused on providing hybrid solutions for WSN 
virtualization. A few recently-concluded research projects 
have addressed WSN virtualization, but their solutions are 
embryonic and multiple issues remain. For example, some 

solutions are platform dependent, others are theoretical and at 
conceptual level.  
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TABLE IV 
SUMMARY OF THE STATE-OF-THE-ART  

Solution 

Requirements 

Type 
Node-level 

Virtualization 

Network-level 

Virtualization 

Application 

Priority 

Platform 

Independent 

Resource 

Discovery 

Application to 

Resource-

Constrained 

Nodes 

Heterogeneity 

Sensor 

Selection for 

Application 

Tasks 

SenSmart [23] OS-based Yes No No Yes No Yes Yes No 

RIOT [25] OS-based Yes No Yes Yes Yes Yes Yes No 

PAVENET [33] OS-based Yes No Yes No No Yes No No 

SenSpire [28] OS-based Yes No Yes Yes No Yes Yes No 

Nano-CF [50] VM-based Yes No No Yes No Yes Yes No 

UMADE [49] VM-based Yes No No No No Yes No Yes 

Agilla [48] VM-based Yes No No No Yes Yes Yes No 

LiteOS [32] OS-based Yes No Yes No No Yes Yes No 

Squawk VM [46] VM-based Yes No Yes Yes No No No No 

VMSTAR [43] VM-based Yes No Yes No No Yes No No 

MANTIS [29] OS-based Yes No Yes No No Yes No No 

TinyOS [30] OS-based Yes No No Yes No Yes Yes No 

Contiki [34] OS-based Yes No Yes Yes No Yes Yes No 

Maté [42] VM-based Yes No No No No Yes Yes No 

Khan et al. [9] Overlay-based No Yes Yes Yes 
Offline 

publication 
Yes No No 

MENO [58] Vm-based No Yes – – – – – – 

 



This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS & TUTORIALS. The content is final but 
has NOT been proof-read. This is an author copy for personal record only. 

 

20 

 

Solution 

Requirements 

Type 
Node-level 

Virtualization 

Network-level 

Virtualization 

Application 

Priority 

Platform 

Independent 

Resource 

Discovery 

Application to 

Resource-

Constrained 

Nodes 

Heterogeneity 

Sensor 

Selection for 

Application 

Tasks 

IoT-VN [59] VM-based No Yes No Yes Yes Yes No No 

Taynan et al [62] VM-based No Yes No No No No No No 

Jayasumana et al 

[19] 
VM-based No Yes No Yes No Yes No No 

Dilum et al [64] Cluster-based No Yes No Yes No Yes No Yes 

Han et al [65] Cluster-based No Yes No Yes No Yes No Yes 

Sensomax [66] 
Middleware- and 

cluster-based 
Yes Yes No No No No No No 

SenShare [70] 
Middleware- and 

overlay-based 
Yes Yes Yes No Yes No No Yes 

VITRO [10] 
Hypervisor- and 

VM-based 
Yes Yes No Yes Yes Yes No No 

Majeed et al.  [68] 
Middleware- and 

cluster-based 
Yes Yes Yes No No Yes No Predetermined 

Melete [18] 
VM- and Dynamic 

grouping-based 
Yes Yes No No Yes Yes No Yes 
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V. WSN VIRTUALIZATION RESEARCH PROJECTS 
In this section we introduce some relevant projects that 

envision the utilization of WSNs by multiple applications. 
Table V lists these projects and provides their summary based 
on the following characteristics. 

1) Project Aim   
Provides the holistic aim of the overall project. FRESnel 

and VITRO are the only two projects that are aimed directly at 
WSN virtualization. The remaining projects have more 
extended scopes, such as smart city realization, smart health in 
the context of IoT, or aim to provide a large-scale test bed for 
network research. 

2) Project Scope:  
 

Indicates if a project is a part of academic or industrial 
research, or is being developed as a multi-partner effort. 
VITRO, Smart Santander, iCore and Butler are all European 
FP7 projects involving large consortiums of industrial, 
telecom and academic partners. FRESnel is a joint project 
between Cambridge and Oxford Universities, UK. 

3) Virtualization Level:  
Indicates the type of WSN virtualization. FRESnel and 

VITRO are the two projects that aim to provide both node- 
and network-level virtualization. CitySense, iCore, Butler and 
ViSE do not explicitly address WSN virtualization, but they 
do consider the utilization of sensors by multiple applications.   

4) Virtualization Type:  
The true realization of WSN virtualization does not involve 

any gateway node managing the virtualization-related tasks; 
instead, sensor nodes themselves handle such tasks. On the 
other hand the gateway-based virtualization solutions make 
WSNs act as capillary networks connected to the Internet or to 
other networks through a single node. It is important to 
mention that the presence of a gateway node for 
communication cannot be ruled out. 

5) Network Devices:  
Another important characteristic of these projects is the type 

of devices they use in their work. CitySense, Butler and ViSE 
use high-end devices. While sensors are considered, they are 
usually connected to high-end PCs/nodes that compliment 
them for processing, data storage, power supply and 
connectivity. FRESnel and VITRO utilize the usual/normal 
sensor nodes, which is more relevant to WSN virtualization.  

6) Evaluation Setup:  
All of the projects discussed here evaluate their 

contributions using real test bed setups; however the size of 
these setups varies considerably. For example, the Smart 
Santander project will use around 20,000 nodes deployed over 
four European cities, providing a massive platform for 

research and evaluation purposes. This gigantic setup will also 
be used by the iCore project. In comparison, ViSE has a test 
bed of 3 nodes and Fresnel’s in-campus test bed has 35.  

The ViSE and CitySense projects were not designed to 
provide solutions for WSN virtualization, but they do 
incorporate the important virtualization concept, i.e. to allow 
multiple applications to utilize the deployed WSN 
infrastructure. The Smart Santander, iCore and Butler projects 
are aimed to realize the IoT, and consider sensors and devices 
of different types. VITRO and FRESnel are focused on WSN 
virtualization, but VITRO provides gateway-based 
virtualization, which is not a true realization of WSN 
virtualization. The FRESnel project however, considers the 
true realization of WSN virtualization, but it provides 
platform-specific solutions. Overall it is clear that the idea of 
WSN virtualization is receiving considerable attention, not 
only from academic quarters but also from major industrial 
and telecom players. 
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TABLE V 
WSN VIRTUALIZATION-RELATED PROJECTS  

Project 
(Year) 

Project Aim Project Scope 
Virtualization 

Level 
Virtualization 

Type 
Network Devices Evaluation Setup 

CitySense [77] 
Provide city-wide test 
bed for distributed & 
networking research 

Academic 
research Network-level 

Gateway-based 
virtualization 

Embedded PCs with Linux 
acting as gateways 

100+ PCs distributed over an 
urban area 

FRESnel [78] 
(2010 - 2012) 

Provide a federated 
WSN framework for 
multiple applications 

Academic 
research 

Node- and 
Network-level 

Sensor node-
based 

virtualization 

iMote2 nodes using 
embedded Linux 

35 iMote2 nodes distributed 
in an academic building 

VITRO [74] 
(2010 - 2013) 

Develop 
architectures, 

algorithms to provide 
VSNs. 

Academic 
research + 
Industry 

Node- and 
Network-level 

Gateway-based 
virtualization 

TelosB, IRIS, iSENSE, 
xbee, TmoteSkye, 
AdvanticSys kit 

Simulations + 5 test bed 
setups by project partners 

Smart Santander [79] 
(2010 - 2013) 

Provide a city-wide 
IoT experimentation 
platform for smart 
city applications 

Academic 
research + 
Industry 

Network-level Gateway-based 
virtualization 

Sensor nodes, IoT devices, 
RFID tags, GPRS devices 

About 20,000 sensors 
deployed in four European 

cities 

iCore [80] 
(2011 - 2014) 

Provide a cognitive 
framework consisting 

of virtual objects, 
composite virtual 

objects & business 
perspectives 

Academic 
research + 
Industry 

Abstract 
representation of 

sensors 

Gateway-based 
virtualization 

Sensors, ICT devices, 
everyday objects 

Will utilize the Smart 
Santander test bed 

Butler [81] 
(2011 - 2014) 

Provide a secure, 
pervasive, energy-
efficient & context-
aware architecture 

Academic 
research + 
Industry 

Abstract 
representation of 

sensors 

Gateway-based 
virtualization 

Smart objects, mobile 
devices and smart servers 

Several field-trials and proof-
of-concepts are planned 

ViSE [82] 
(2008 - 2011) 

Provide public access 
to a WSN test bed  

using the GENI 
framework for 
multiple users 

Academic 
research 

Abstract 
representation of 

sensors 

Gateway-based 
virtualization 

High-end nodes running 
Linux and acting as 

gateway nodes 

Three nodes deployed in a 
town near a forested area 
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VI. RESEARCH ISSUES 
We identify some important research issues that need to be 

addressed to provide innovative WSN virtualization solutions. 

1) Advanced Node-level Virtualization 
Node-level virtualization has attracted considerable attention 

from the research community. In many ways, it is provided as 
part of the sensor OS. Multi-threaded OSs and application-
specific virtual machines (VM), working on top of an OS, can 
support the concurrent execution of application tasks. As the 
trend moves towards more powerful IP-WSNs, more efforts 
are required to virtualize the individual components of sensor 
nodes, such as MAC and routing layers. The VITRO project 
has put forth the concept [10], but there are no real 
implementations to date. PAVENET OS [33] takes advantage 
of capable hardware to design efficient OSs but is tied to a 
single platform. To exploit the recent advances in sensor 
hardware, a fresh approach like RIOT OS [25] can be taken to 
come up with new and general purpose solutions. Some new 
solutions provide separation between the sensor OS and the 
user application tasks but we still need functions like OTA 
installation/updating of new user tasks without disturbing the 
existing ones. One possible solution to tackle this issue is to 
design an abstraction layer that works on top of sensor OS to 
provide application portability like in [83]. A modular-based 
approach will work much better since it will be applicable to 
heterogeneous OSs, programming languages and models. 

2) Network-level Virtualization 
Not much work has been done in the area of network-level 

virtualization to support multiple applications over a deployed 
WSN, hence there is a tremendous opportunity to make 
valuable contributions. Overlay networks can provide an 
efficient solution as they are robust and can work efficiently 
without changes in the underlying network. Some solutions 
exist like those in [54], [56] and [57] do exist, but they are still 
embryonic in nature and do not consider the requirements of 
multiple applications utilizing a WSN concurrently. As 
multiple overlay may need to co-exist, preventing them from 
interacting with each other in a harmful way remains a 
challenge. Cluster-based approaches have traditionally been 
used in WSN’s for improving routing, energy-efficiency, 
management and security. Managing clusters in a virtualized 
WSN is not trivial, however, cluster-based solutions can be 
quite useful in scenarios where a deployed WSN is used to 
monitor dynamic events. These solutions can also be helpful 
in mobile WSNs, Robotic and Vehicular Ad hoc Networks.  

3) Discovery and Publication 
The discovery and publication of resources and services in 

WSN is already challenging, but it becomes even more 
sophisticated in virtualized WSNs. For example, it will be 
interesting to find whether certain kind of relationships exist 
between physical and virtual sensors and whether they can be 
exploited to provide quick publication and discovery 
solutions. As virtual sensors are created on-demand and 

destroyed when no longer required, their publication and 
discovery needs to be efficient, robust, scalable and 
manageable. Discovery and publication of resources and 
services on the fly are very important functions, especially in 
the context of IoT. A P2P based architecture can be a solution 
like [84] that does not rely on any central mechanism to 
discover the services. However, no such solution exists for 
virtualized WSNs. Similarly a service recommendation system 
can be developed, for virtualized WSNs, which allows 
context-aware discovery of resources and services. Recent 
IETF service discovery protocols like CoAP resource 
discovery [85], [86] and DNS-SD [87] can be used to design 
efficient discovery and publication solutions in resource-
constrained environments. Moreover, new algorithms that 
adapt to evolving WSN conditions and nodes’ mobility or 
failures are required, to ensure service continuity. 

4) Service Composition 
Service composition using virtual sensor nodes is another 

important research challenge. In our view, future WSN 
deployments will involve multiple actors, such as WSN 
providers, virtual sensor providers, service providers, third-
party application/services providers and end-user applications. 
A cloud-based approach could be a solution [88]. WSN 
resources could be offered as Infrastructure-as-a-Service 
(IaaS) and used by Platform-as-a-Service (PaaS) to offer 
services to end users. In this regard, existing projects like [79], 
[80] and [81] can be used for inspiration about end user 
services.  Using semantics and ontologies to compose services 
based on application requirements and the capabilities of 
sensor nodes can provide improved solutions. It is also 
important to note that the service composition may use 
existing or third-party services on the fly. Location and 
mapping services are typical examples of such services. 

5) Sensor Node Selection and Task Assignment  
The issues of sensor selection and task assignment are very 

much related to each other. Selecting the right set of sensor 
nodes according to the temporal and spatial requirements of 
applications is crucial [21] to improving the overall Quality of 
Monitoring (QoM) systems. A more detailed task assignment 
problem formulation and its solutions are presented in detail in 
[89], but it does not consider the possibility of multiple 
applications using a single sensor node at the same time. In 
[90] cost-effective market-based algorithms are used for task 
allocation and resource management. But the proposed 
algorithms are OS specific (Sensomax) and require more work 
to determine their suitability. A QoS-aware task allocation 
algorithm in [91] brings a new dimension into the sensor node 
selection while satisfying QoS requirements of multiple 
applications at the same time. New algorithms that not only 
consider the QoS requirements of the applications but also 
take into account the properties of the events being monitored 
by the sensor nodes are needed to advance in this area.  
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6) Application Task Dissemination  
When new applications are being contemplated, it is not 

unrealistic to assume that a new algorithm or application task 
will need to be sent for the sensor node(s) to execute. Sending 
the new task code (or updating an existing one) in a seamless 
way, with no disruption of existing tasks, is quite a challenge. 
Much of this will depend on the sensor OS and its ability to 
install and update user tasks without disturbing the existing 
ones or requiring the reboot of the sensor node. Another issue 
is how to get the user input and program it to compile it to 
generate executable code. In the context of IoT, the user may 
not have technical expertise to code the required program. 
There needs to be a clear separation between the WSN 
infrastructure and the user. This can be achieved by having an 
entity, like service provider, to allow a user to provide her 
requirements in an easy manner, e.g. in a web-form. This way 
only some aspects of the (re)programming a sensor nodes can 
be exposed to the user. Once the input is gathered, the service 
provider can send it to the physical WSN provider to generate 
executable code for the selected sensor node(s) and reprogram 
them. Such a system will have two benefits: one is that the 
sensor nodes not able to fulfill a task, due to some reason, can 
be filtered out. Second, based on previous usage patterns of 
the user, a recommendation system can be devised that makes 
use of the historical data to recommend and (re)program the 
sensor nodes. An alternative approach would be to develop a 
cloud-based PaaS solution and provide toolkits specifically 
designed to develop, compile, verify, test and deploy sensor 
application tasks for different sensor platforms. 

7) Reference Designs and Architectures 
A comprehensive virtualization platform for WSNs is 

required, one that covers all aspects: data acquisition from the 
sensors, end-to-end communication (including data 
management and computation), as well as service composition 
for end-user applications. Such a platform will allow a deeper 
and complete search space exploration to find the optimal 
solution for any given WSN application. Furthermore, this 
complete framework will ensure that all the relevant aspects 
can be modeled and evaluated comprehensively. Decentralized 
architectures are required that will enable robust and 
objective-based solutions depending on application 
requirements like time sensitivity, QoS, and QoM. Another 
important aspect is that most of the existing work focuses on 
the fixed WSNs but in the context of IoT, we can expect more 
and more deployments of mobile WSNs and even spontaneous 
ad hoc WSNs. These ad hoc WSNs will be created when large 
number of sensors communicate together to provide on-
demand services for a certain time period and then cease to 
exist. Participatory sensing and crowed-based sensing, using 
smart phones, are two forms of the ad hoc WSNs. There is an 
early work in this area [92] that aims to utilize external sensors 
with the smart phones. This is achieved by means of a sensor 
virtualization module developed for the android platform. Still 
we require more solutions that focus on mobile, ad hoc WSNs 
and even hybrid variations. 

8) New Protocols, Algorithms and Simulation Tools 
As mentioned in the introduction, recently WSN 

virtualization is getting attention from the research community 
and we’re now seeing some new contributions in this area. For 
example, in [93] a harmonized transmission protocol is 
presented that combines transmissions from a sensor node 
when it is being used by multiple concurrent applications. 
References [94] and [95] put forth a reconfiguration scheme 
and a management scheme, respectively, to manage 
concurrent applications over a deployed WSN. It will be a 
good idea to have a capable simulation tool to analyze and 
evaluate proposed protocols and solutions, simply because 
initially it may not be possible to have a sizeable WSN 
deployment for such purposes. A new simulation tool is 
presented in [96] which simulates multiple concurrent 
applications over a WSN. While it is a good start, more effort 
is required to integrate such support in already well-known 
and established simulation tools. 

9) WSN Virtualization Business Model & Standardization 
A viable business model is required to allow broader (and 

more commercial) acceptance of WSN virtualization. This can 
be accomplished easily if WSN entities are decoupled into 
distinct roles of WSN providers, virtual sensor providers, 
service providers and third-party applications/service 
providers. Allowing third-party applications will allow for the 
rapid development of applications and solutions, since the 
existing components will be reusable. Another benefit of such 
business model is that it will pave the way for standardization 
activities in this area. In our review of WSN virtualization area 
we strongly felt the need for harmonization between different 
protocols, data formats, encoding schemes, and consortium-
led efforts such as Sensor Web Enablement (SWE) [97]. 
Currently these incompatibilities act as major roadblocks for 
proposing generic and open solutions. 

10) Energy Efficient Solutions 
Energy efficiency will remain a key research area in WSNs, 

even more so when WSN virtualization is involved. While we 
can safely predict that future sensor nodes will be more 
capable and resourceful, energy efficient communications, 
discovery, routing and applications will still be required. So 
far the main focus has been on making a sensor node sleep for 
maximum duration possible so that it utilizes less energy. This 
strategy has worked reasonably well for simple applications 
but this trend is not sustainable in emerging IoT paradigm. 
Energy harvesting mechanisms need to be incorporated with 
WSN platforms as main or alternative source of energy. This 
will ensure that sensor nodes have a continuous power supply 
in addition to their batteries. Example of energy harvesting 
mechanisms are, use of ambient energy like vibrations or solar 
energy to generate energy [98]. There is considerable research 
work in this area [99] but commercial platforms are missing. 
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11) Access Control, Authentication, and Accounting 
Another important area is to provide a controlled access to 

deployed WSN resources. In the context of the IoT, sensors 
deployed by entities like city administrations will probably 
allow for public access, but they will still require access 
control, authentication and authorization. For example, such 
deployments will also be used for monitoring or security 
applications along with public applications, hence providing 
access according to users will be challenging. Another aspect 
is that it may not be feasible for a single authority to deploy a 
WSN on a large scale. For areas where WSN deployments are 
not possible, participatory sensing can be used as an 
alternative. Motivating private owners to share their deployed 
sensors and allow remote access is a challenge. Incentives like 
tax rebates or reduced utility rates need to be devised to 
encourage voluntary participation. Using a WSN deployment 
for monetary benefits brings in the accounting issue – how to 
charge users in accordance with service contracts. 

12) WSN Virtualization Application Scenarios and Test-beds 
Applications from domains such as smart cities, smart 

health, smart homes, green computing and pervasive 
computing can potentially use the WSN virtualization concept 
for cost effective solutions. New trends like mobile WSNs, 
participatory/crowd-based sensing, cloud-based remote 
sensing and vehicular networks can also benefit from this 
concept. The availability of test-bed setups like Smart 
Santander [79] provides a massive basis for prototyping and 
evaluation purposes. 

VII. CONCLUSION 
We have presented a detailed overview of WSN 

virtualization, as well as the current state of the art. First we 
categorized WSN virtualization into node-level, network-level 
and hybrid virtualization, and explained them. We then 
provided a critical analysis of the existing state-of-the-art in 
each category and evaluated them based on a set of 
requirements derived from the motivating scenarios. Several 
research projects pertinent to this topic were also presented. 
We outlined several important research challenges and their 
possible solutions. WSN virtualization is very much relevant 
in the context of the IoT, in which small-scale devices, at an 
unprecedented scale, are expected to provide services to 
multiple applications concurrently, but we have yet to find a 
comprehensive solution that meets this challenge. 
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