
HAL Id: hal-01273903
https://hal.science/hal-01273903v1

Submitted on 15 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wireless Sensor Network Virtualization: A Survey
Imran Khan, Fatna Belqasmi, Roch Glitho, Noel Crespi, Monique Morrow,

Paul Polakos

To cite this version:
Imran Khan, Fatna Belqasmi, Roch Glitho, Noel Crespi, Monique Morrow, et al.. Wireless Sensor
Network Virtualization: A Survey. Communications Surveys and Tutorials, IEEE Communications
Society, 2016, 18 (1), pp.553 - 576. �10.1109/COMST.2015.2412971�. �hal-01273903�

https://hal.science/hal-01273903v1
https://hal.archives-ouvertes.fr

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

1

Abstract— Wireless Sensor Networks (WSNs) are the key

components of the emerging Internet-of-Things (IoT) paradigm.
They are now ubiquitous and used in a plurality of application
domains. WSNs are still domain specific and usually deployed to
support a specific application. However, as WSNs’ nodes are
becoming more and more powerful, it is getting more and more
pertinent to research how multiple applications could share a
very same WSN infrastructure. Virtualization is a technology
that can potentially enable this sharing. This paper is a survey on
WSN virtualization. It provides a comprehensive review of the
state-of-the-art and an in-depth discussion of the research issues.
We introduce the basics of WSN virtualization and motivate its
pertinence with carefully selected scenarios. Existing works are
presented in detail and critically evaluated using a set of
requirements derived from the scenarios. The pertinent research
projects are also reviewed. Several research issues are also
discussed with hints on how they could be tackled.

Index Terms— Wireless Sensor Network (WSN), Internet-of-
Things (IoT), Virtualization, Node-level Virtualization, Network-
level Virtualization

I. INTRODUCTION
HE emerging Internet-of-Things (IoT) concept is
considered to be the next technological revolution, one

that realizes communication between many types of objects,
machines and devices, and at an unprecedented scale [1].
WSNs can be seen as the basic constituents of IoT because
they can help users (humans or machines) to interact with their
environment and react to real-world events. These WSNs are
composed of nodes that are amalgamations of micro-electro-
mechanical systems, wireless communications and digital
electronics, and have the ability to sense their environment,

Manuscript received:
“This work is partially supported by CISCO systems through grant (CG-

576719), European ITEA-2 funded project Web-of-Objects (WoO) and by the
Canadian Natural Sciences and Engineering Research Council (NSERC)
through the Canada Research Chair in End-User Service Engineering for
Communications Networks.

I. Khan (imran@ieee.org) and N. Crespi (noel.crespi@it-sudparis.eu) are
with Institut Mines-Télécom, Télécom SudParis, Evry, 91011, France.

F. Belqasmi (fatna.belqasmi@zu.ac.ae) is with Zayed University, Abu
Dhabi UAE.

R. Glitho (glitho@ece.concordia.ca) is with Concordia Institute for
Information Systems Engineering (CIISE), Concordia University, Montreal,
H3G 2W1, Canada.

M. Morrow (mmorrow@cisco.com) and P. Polakos (ppolakos@cisco.com)
are with CISCO Systems, Inc.

perform computations and communicate [2]. The most
obvious drawback of the current WSNs is that they are
domain-specific and task-oriented, tailored for particular
applications with little or no possibility of reusing them for
newer applications. This strategy is inefficient and leads to
redundant deployments when new applications are
contemplated. With the introduction of the IoT, it is not
unrealistic to envision that future WSN deployments will have
to support multiple applications simultaneously.

Virtualization is a well-established concept that allows the
abstraction of actual physical computing resources into logical
units, enabling their efficient usage by multiple independent
users [3]. It is a promising technique that can allow the
efficient utilization of WSN deployments, as multiple
applications will be able to co-exist on the same virtualized
WSN. Virtualization is a key technique for the realization of
the Future Internet [4] and it is indeed quite pertinent to
explore it in the context of WSNs.

Virtualizing WSNs brings with it many benefits; for
example, even applications that were not envisioned a priori
may be able to utilize existing WSN deployments. A second,
related benefit is the elimination of tight coupling between
WSN services/applications and WSN deployments. This
allows experienced as well as novice application developers to
develop innovative WSN applications without needing to
know the technical details of the WSNs involved. Another
benefit is that WSN applications and services can utilize as
well as be utilized by third-party applications. It can also help
to define a business model, with roles such as physical WSN
provider, virtual WSN provider and WSN service provider.

The WSN virtualization concept can be applied to several
interesting application areas. Recent advances in smart phones
and autonomous vehicles [5] have made it possible to have
multiple on-board sensors on them. Mobile crowd sensing is
one area that can take advantage of virtualizing these sensors
through participatory and opportunistic sensing [6] and [7]. An
opportunistic urban sensing scenario is presented in [7] in
which thousands of sensors are required to monitor the CO2
concentration in an urban city. Instead of deploying these
sensors and managing them, WSN virtualization can be used
as a key enabling technology to utilize sensors from citizens to
provide the required data. Similarly, Sensing-as-a-Service
(SaaS) model is presented in [8] along with several use case
scenarios. WSN virtualization can help realize the SaaS model
through cost-efficient utilization of deployed sensors. Several

Wireless Sensor Network Virtualization: A
Survey

Imran Khan, Student Member, IEEE, Fatna Belqasmi, Member, IEEE, Roch Glitho, Senior Member,
IEEE, Noel Crespi, Senior Member, IEEE, Monique Morrow and Paul Polakos

T

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

2

other motivational examples can be found in [9] and [10].
Of course there are many technical challenges to resolve

before such utilization takes place but they also provide a
strong motivation for a deeper and complete search space
exploration to propose innovative solutions in this area. Many
researcher now consider WSN virtualization as a key enabling
technology and provide its motivation. According to the
authors in [11], WSN virtualization is a powerful enabler for
information sharing in the context of IoT by using it along
with data analysis techniques. A smart city environment is
considered in [12], where WSN virtualization could be used to
efficiently utilize the deployed infrastructure. To achieve this
type of utilization, the use of multiple concurrency models is
advised, depending on the usage context. In [13], WSN
virtualization is discussed as a key enabler to promote
resource efficiency, with a cooperative model that captures
several aspects of WSN virtualization. In [14] WSN
virtualization is envisioned as an important technology to
create large-scale sensor platforms that are used to satisfy
efficient usage of network resources.

There are surveys (e.g. [15]) that cover wireless network
virtualization at large, but they do not focus on the specifics of
WSN virtualization. Although it is a key enabling technology,
the few surveys published to date on WSN virtualization (e.g.
reference [16], reference [17]), have several limitations. They
do not include real world motivating scenarios and are also
dated because they do not review the most recent
developments in the area. Furthermore they lack
comprehensiveness in terms of what is reviewed and how it is
reviewed. There is for instance no well-defined yardstick for
the critical analysis of the state of the art. In addition, they do
not elaborate on potential solutions when it comes to research
directions.

This paper is a survey on wireless sensor network
virtualization. It aims at addressing the shortcomings of the
very few surveys published so far on the topic. From that
perspective it makes the following contributions:

• Real world motivating scenarios for WSN
virtualization.

• Comprehensive and in-depth review of the state of the
art including the most recent developments in the area.

• Critical analysis of the state of the art using well
defined yard-sticks derived from the motivating
scenarios.

• An overview of the open issues along with insights on
how they might be solved.

In section II we discuss the basics of WSN virtualization
concepts and its types. In section III, we first present the
motivating scenarios and then provide a set of requirements.
Based on these requirements we critically review the state-of-
the-art in section IV. Relevant WSN virtualization projects are
discussed in section V. Section VI outlines several research
directions and section VII concludes the paper.

II. WSN VIRTUALIZATION BASICS
WSN virtualization can be broadly classified into two

categories: Node-level virtualization and Network-level
virtualization. In this section we discuss both these categories.

A. Node-level Virtualization
WSN node-level virtualization allows multiple applications

to run their tasks concurrently on a single sensor node [18], so
that a sensor node can essentially become a multi-purpose
device. The basic concepts of node level virtualization are
illustrated in figure 1. There are two ways to achieve node-
level virtualization: Sequential and Simultaneous execution.

Sequential execution can be termed a weak form of
virtualization, in which the actual execution of application
tasks occurs one-by-one (in series). The advantage of this
approach is its simple implementation, while the obvious
disadvantage is that applications have to wait in a queue. In
simultaneous execution, application tasks are executed in a
time-sliced fashion by rapidly switching the context from one
task to another. The advantage of this approach is that
application tasks that take less time to execute will not be
blocked by longer running application tasks, while the
disadvantage is its complexity.

B. Network-level Virtualization
It is WSN network-level virtualization that enables a Virtual

Sensor Network (VSN). A VSN is formed by a subset of a
WSN’s nodes that is dedicated to one application at a given
time [19]. Enabling the dynamic formation of such subsets
ensures resource efficiency, because the remaining nodes are
available for different multiple applications (even for
applications that had not been envisaged when the WSN was
deployed), although not necessarily simultaneously.

WSN network-level virtualization can be achieved in two
different ways. One way is by creating multiple VSNs over
the same underlying WSN infrastructure, as illustrated in
Figure 2a. WSN nodes that are not part of any VSN remain
available for other applications or network functions, such as
routing. The second way is where a VSN is composed of
WSN nodes from three administratively different WSNs, as
shown in Figure 2b, facilitating data exchange between them
that would not be possible otherwise.

III. WSN VIRTUALIZATION – MOTIVATING SCENARIOS AND
REQUIREMENTS

In this section we first present two scenarios that are
derived from the literature, and then come up with a set of
requirements. Using these requirements we critically review
the existing work, grouping our summation of that work under
three types: node-level virtualization, network-level
virtualization and hybrid solutions.

A. Motivating Scenarios
The scenarios described here illustrate the motivation and

benefits of using WSN virtualization in common WSN
deployments.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

3

1) Fire Monitoring Scenario
Consider the example of a city near an area where brush

fires are common [9]. We assume that the city administration
is interested in the early detection of fire eruption and in its
course, using a WSN and a fire contour algorithm to determine

the curve, shape and direction of fire. One approach is that the
city administration could deploy WSN nodes all over the city
(i.e. on each street and at individual houses), but this is not
very efficient because some individuals may have already
deployed WSN nodes in their homes to detect fires. A more
efficient approach would be for the city administration to
deploy WSN nodes to areas under its jurisdiction, i.e. streets
and parks, and to re-use the WSN nodes already deployed in
private homes. In this scenario, two different applications
share the same WSN infrastructure: one, belonging to home
owners, is confined to private WSNs deployed in individual
houses, and the other belongs to the city administration and
shares the private WSN nodes with the WSN nodes deployed
by the city administration. Periodic notification or query-based
models are not suitable because the city administration
application requires complete access to all the WSN nodes for
adaptive sampling.

Another issue is that in order to execute a fire contour
algorithm in a distributed fashion, WSN nodes need to
exchange fire notification messages with each other. The
query-based data exchange approach is not efficient as it will
force the execution of the fire contour algorithm at a remote
centralized location, since two WSN nodes located in their
respective private domains cannot exchange data. An overlay
network is one possible solution. This scenario illustrates the
need for WSN virtualization, as two different users need to
share a common resource, i.e. WSN nodes.

2) Heritage Building Monitoring
A real-world deployment of a WSN is presented in [20], in

which a WSN is used to monitor the impact of constructing a
road tunnel under an ancient tower in Italy, as it was feared
that the tower could lose its ability to stand on its own and
collapse during the construction. Now consider that there are
three users interested in the fate of the tower. The first is the
construction company, as it needs make sure that the tower
does not lose its ability to stand on its own, otherwise it will
have to pay a heavy fine. The second user is the conservation
board that routinely monitors all the ancient sites around the
city, and the third user is the local municipality which will
have to plan emergency remedial/rescue actions in case the
tower falls during the construction.

It is quite possible that the conservation board has already
deployed its own WSN to monitor the health of ancient sites
including this tower. In this case the construction company
and the local municipality can use the existing sensor nodes
during the construction period. In the absence of WSN
virtualization, there are only two possible solutions. One is to
rely on the information provided by the conservation board’s
application. However this information may not be at the
required granularity level. Worse, some of the information that
is needed might simply not be available because the
requirements of the construction company and of the local
municipality were not considered when the conservation board
application was designed and implemented. The second
solution is that each user deploys redundant WSN nodes.

Fig 1: Execution of multiple applications in a general purpose WSN node

Fig 2: VSN concept

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

4

B. Requirements
In this section we present a list of eight requirements,

derived from the scenarios mentioned above. In Table IV we
indicate if the existing solutions meet our identified
requirements, and to what degree.

The first requirement is the availability of node-level
virtualization. This is a fundamental requirement which
ensures that the sensor nodes can support the concurrent
execution of multiple applications.

The second requirement is network-level virtualization,
which concerns the ability of sensor nodes to dynamically
form groups to perform the isolated and transparent execution
of application tasks in such a way that each group belongs to a
different application.

The third requirement is support for application/service
priority. It is our observation that most WSNs are deployed for
mission-critical situations like security, fire monitoring,
battlefield conditions and surveillance. In such situations,
mission-critical applications/services should have prioritized
execution mechanisms.

The fourth requirement is that any WSN virtualization
solution should be platform-independent and thus should not
depend on a particular hardware or software platform.

The fifth requirement is that the proposed solution should
have a resource discovery mechanism, for both neighbor
discovery and service discovery.

The sixth requirement is based on the applicability of the
proposed solution to resource-constrained sensor nodes,
including early generation sensor nodes. Mechanisms to allow
legacy sensor nodes to become part of a WSN virtualization
solution are also covered by this requirement.

The seventh requirement is heterogeneity, which means that
the solution should be applicable to a variety of WSN
platforms with different capabilities (e.g. processing power,
memory). These platforms would include MICAZ, MICA2,
Atmel AVR family, and MPS430 among others.

The eight requirement is the ability to select sensor nodes
for application tasks. When multiple applications concurrently
utilize a deployed WSN, selection of proper sensor nodes is
very important because applications may have spatial and
temporal requirements [21].

IV. STATE-OF-THE-ART
In this section we present the state-of-the-art and analyze it

critically. We categorize the existing work as Node-level
virtualization, Network-level virtualization or Hybrid
solutions. Hybrid solutions combine both node- and network-
level virtualization. Each category is further classified based
on the approaches used.

A. Node-level Virtualization
We group the Node-level virtualization approaches under

two umbrellas: sensor operating system (OS) based solutions
and Virtual Machine-/Middleware (VM/M) based solutions. In
sensor OS-based solutions, the node-level virtualization is part
of the sensor OS. In VM/M-based solutions, the node-level

virtualization is performed by a component running on top of
the sensor’s OS.

Node-level virtualization solutions use two types of
programming models; event-driven and thread-based. Event-
driven programming model is simple to implement in sensors.
Event-driven programs have a main loop that listens for the
events, e.g. the temperature value going above a threshold.
When the event occurs a callback function is called to handle
the event, using an event-handler. When a program is blocked,
by an I/O event, its event-handler simply returns the control
without involving context switching. Thread-based model is
more difficult to implement in sensors, due to limited
resources and use of common address space. Each program
consist of multiple threads, and when a thread is blocked,
context switching is required to execute other threads [22].

Fig. 3 shows the node-level virtualization types while Table
I illustrates the characteristics of the existing works addressing
node-level virtualization.

1) Sensor Operating System-based Solutions
SenSmart [23] is a recent multitasking sensor OS that

supports the execution of concurrent application tasks in very
resource-constrained sensor nodes. It is designed to tackle the
issues associated with the execution of concurrent application
tasks. Normally, application tasks have their associated
predefined stack space, but in SenSmart the stack allocation is
managed dynamically at run time. Initially, each application
task gets its default (stack) memory region and time slice, but
during its execution SenSmart manages the size and location
of the allocated stack in a transparent way. Each application
task uses logical addresses at runtime, managed by the OS and
mapped onto the physical memory. Stack space can be
reclaimed from those tasks that no longer require it. When a
new task is scheduled to run, the context of the current task is
compressed and saved in a circular buffer for its resumption.
The system architecture consists of a base station that
compiles the code, links it and eventually distributes it to the
sensor node. There is no mention of support for network layer
support (6LoWPAN) or any radio protocol.

The support for node-level virtualization is provided by
compiling and linking multiple application task codes together
in a single code image. The application task codes are
programmed in nesC and the compiled binary code of each
task is then modified by a rewriter, combined with other

Fig 3: Example node-level virtualization solutions

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

5

binary codes and finally linked with the precompiled kernel
runtime. The kernel runtime ensures that the application tasks,
when instantiated, follow the multitasking semantics (stack
management, context switching) and run concurrently. Once a
final executable code is generated, it can be disseminated to
the sensor node using any wireless reprogramming approach.
The strategy of first compiling and linking all the binary codes
together means that there is no separation of OS and
application tasks, and, whenever a new application task is
contemplated, all of the software of the sensor node is
updated. The OS uses an event-driven programming model
and follows a sense-and-send workflow model [24].

SenSmart has been implemented in Mica2/MicaZ hardware
platforms and evaluated for overhead of common system
functions, application benchmarking, and task scheduler
performance when concurrent tasks are executed. The
overhead of common system functions is within acceptable
range especially for important functions such as context
saving, restoring and switching. All these functions take
between 127µs to 316µs. For application benchmarking it was
found that the same applications use more CPU cycles in
SenSmart than in TinyOS. For concurrent tasks, the evaluation
found that delays recorded during execution of multiple tasks
has same order of magnitude as context switching.

RIOT [25] is the latest attempt to address the challenges of

designing a flexible OS for diverse hardware in the IoT. The
concept of RIOT is based on the fact that none of the existing
OSs, traditional or resource-constrained, are capable of
supporting diverse hardware resources in the IoT. The focus of
RIOT is to provide features such as real-time multithreading
support, a developer-friendly programming model and
POSIX-like API based on C/C++, as well as full TCP/IP
network stack support for resource-constrained devices using
6LoWPAN and RPL. RIOT is based on microkernel
architecture and requires only 1.5kB of RAM and 5kB of
ROM for a basic application. RIOT can run on 8-bit, 16-bit
and full 32-bit processors, and thus has the potential to
become unique operating system for diverse hardware devices
in the IoT paradigm. This adaptability is achieved by using a
hardware abstraction layer. Overall, RIOT takes a modular
approach and the system services and the user application
tasks run as threads. The scheduler is designed to minimize
context switching between threads to few clock cycles. The
kernel is based on FireKernel [26] providing maximum
reliability and real-time multithreading. System tasks have
static memory allocation, but for application threads dynamic
memory management is used. RIOT is a work in progress and
so far there are no performance results or comparisons with
existing OSs, but the code is available on their website.

In the context of WSN virtualization, RIOT uses a real-time
thread-based programming model where various system
services and application tasks are coded in standard ANSI
C/C++ and run in parallel. Threads can be preempted based on
their priority. Application tasks are coded independently of the
hardware and software, which makes it possible to run them

on different devices. In large-scale scenarios such as Smart
Cities, sensor nodes and other IoT devices (e.g. surveillance
cameras) can be programmed conveniently.

So far there are no performance results regarding RIOT OS
however, in [27] the authors do present a theoretical
comparison of their approach against existing competition
without any qualitative or quantitative comparison.

SenSpire OS [28] is another recent effort that supports both
event-driven and thread-based programming models. Their
work has four main features: predictability – to guarantee that
sensor nodes respond to control messages, availability – the
nodes remain available for data forwarding when needed,
programming mode – which is hybrid, and efficiency – so
that the OS can be used on very resource-constrained sensor
nodes. Another contribution of SenSpire is a multi-layer
(radio, resource and sensornet layers) abstraction to develop
networked applications. The radio layer makes it possible to
write device drivers using different MAC protocols. The
resource layer exposes the lower layer and allows different
application tasks to use it concurrently. A new object-oriented
language (CSpire) is provided to program user application
tasks using a hybrid programming model. SenSpire uses static
optimizations, meaning that application tasks, their states, and
the kernel structures should be known beforehand. This limits
its flexibility, a requirement for the real-world deployment of
WSNs. The kernel of SenSpire is written in C and the
application tasks are written in CSpire. The paper describes
extensive results based on the implementation of SenSpire on
Mica2, MicaZ, and TelosB nodes. Its performance at various
benchmarks is compared to that of MANTIS [29] and TinyOS
[30]. Overall findings indicate that SenSpire offers a
performance comparable to those OSs.

For WSN virtualization, SenSpire incorporates both event-
driven and thread-based programming models. Tasks can be
programmed as events or as threads. Event tasks have higher
priority than thread tasks. System tasks are usually
implemented as event tasks because they are predictable and
easier to maintain. Application tasks are implanted as thread
tasks with varying priority levels. A thread task is preempted
either by a higher-priority thread task or when it goes to sleep.
This set up is unlike other OSs where thread tasks are
executed in a time-sliced manner. In SenSpire the threads
follow run-to-completion model unless they are preempted by
a higher priority thread. The execution of threads is sequential
(First-in First-out) when they have the same priority level. The
use of CSpire language to program application tasks means a
learning curve for developers. Despite using a layered-
approach, application tasks are tightly integrated with the OS
and so when new application tasks are contemplated, all of the
sensor node software is updated.

The performance results of SenSpire OS show that its
interrupt latency is less than TinyOS. The overhead of task
scheduling is compared against MANTIS OS [29] showing
more delay in case of SenSpire. The energy consumption of
various tasks including radio and CPU are almost similar to
TinyOS.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

6

MANTIS [29] is a thread-based embedded operating system

supporting simultaneous execution on sensor nodes. The OS
kernel and threads are programmed in C language and are
portable across different hardware platforms. There are
system-level threads and user-level threads. The OS kernel,
scheduler and underlying hardware are exposed as APIs for
the user-level threads. MANTIS supports preemptive
multithreading by assigning priorities to threads, thereby
allowing the interleaving of tasks and avoiding delays. Long-
running threads can be preempted by short-running threads.
Simultaneous execution of these threads is achieved by
context switching. When execution of a thread is suspended,
all its current states are stored in its own stack and later
retrieved to resume execution. Every thread has an entry in a
thread table managed by the kernel. Its size is fixed, hence
only a predefined number of user-level threads can be created.
The other main features of the OS include a dynamic
reprogramming mechanism for deployed sensor nodes, a
remote debugging mechanism and an x86-based prototype
platform. Dynamic reprogramming options are, the wireless
re-flashing of the entire OS, the re-programming of single
threads and changing the variables of a thread. The wireless
re-flashing of the OS and reprograming of a single thread is
work-in-progress. A command server is used for remote

debugging. The sensor nodes run the client part of the
command server. Any user can login to the sensor node and
modify its setting, run or stop running threads or restart them.
The authors implemented several demanding tasks with
MANTIS on MICA2 nodes, including AES and RC5
encryption algorithms, compression/decompression algorithms
using arithmetic code, and a 64-bit FFT algorithm. These tasks
took low execution time in MANTIS. Normally the concurrent
execution of threads leads to context switching overhead and
the need for additional stack space. In MANTIS, it was found
that while context switching does not incur much performance
loss, a stack estimation tool would be helpful.

MANTIS is an interesting option for node-level
virtualization, as it is completely thread-based and easier to
program without having to manage low-level details of
stack/memory. The time-sliced multithreading approach
makes it possible to run application tasks simultaneously
without using a run-to-completion model. The application
threads are coded in C and are independent of the OS.
Although MANTIS support dynamic reprogramming but it has
not been fully explained in the paper. Currently it is not clear
whether the work on MANTIS is underway or not as the
project page [31] has quite old information.

The performance results presented in [29] are very limited.
No comparison is provided in against other competing

TABLE I
CHARACTERISTICS OF NODE-LEVEL VIRTUALIZATION SOLUTIONS

Solution (Year) Programming
Model

Programming
Language

Separation between
OS and application

tasks

Protocols
Supported at

different layers

Real-time
Applications

SenSmart (2013) Event-driven nesC No Not discussed No

RIOT (2013) Thread-based ANSI C/C++ Yes 6LoWPAN & RPL Yes

PAVENET
(2012) Thread-based C No Not discussed Yes

SenSpire (2011) Event- and thread-
based CSpire No CSMA, CSMA/CA,

B-MAC & X-MAC No

Nano-CF (2011) Event-driven Nano-CL Yes DSR, TDMA & B-
MAC Yes

UMADE (2010) Event-driven nesC Yes Not discussed No

Agilla (2009) Mobile agent and
tuple-space -based Assembly-like Yes Not discussed No

LiteOS (2008) Event- and thread-
based C Yes Not discussed No

Squawk VM
(2006) Thread-based J2ME No CTP, 6LoWPAN,

AODV, LQRP No

VMSTAR (2005) Thread-based Java No Not discussed No

MANTIS (2005) Thread-based C Yes TDMA No

TinyOS (2005) Event-driven nesC No Geographic routing,
flooding, unicast No

Contiki (2004) Event- and thread-
based C Yes HTTP, COAP, UDP,

TCP, RPL, 6LoWPAN
Only for event-driven

applications

Maté (2002) Event-driven TinyScript No Not discussed No

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

7

solutions. The execution times of some complex tasks
(compression/decompression and RC5 and AES encryption)
and power consumption using MICA-2 platform are
presented.

LiteOS [32] is a Unix-like OS designed for sensor nodes. It

provides rich features, such as a hierarchical file system, a
command shell that works wirelessly, kernel support for
dynamic execution of multi-threaded applications, debugging
support and software updates. LiteOS maps a WSN as a
UNIX-like file system where different commands can be
executed by the user in familiar UNIX-like manner. There are
three components: i) LiteShell, ii) LiteFS and iii) Kernel.
LiteShell is a command shell that resides in a base station and
is used to communicate with sensor nodes to execute file,
process, debugging, environment and device related
commands. Within the wireless range, sensor nodes can be
mounted by LiteShell, similar to how a USB is connected to a
computer. However, this process cannot be achieved via the
Internet or by multi-hop communication. The sensor nodes do
not maintain any state regarding LiteShell and simply respond
to the commands.

 LiteFS is a hierarchical file system partitioned into three
modules that use RAM, EEPROM and Flash memory,
respectively. The RAM holds the open files, and their
allocation and data information is in EEPROM and Flash
memory, respectively. EEPROM holds the hierarchical
directory information and the actual data is stored in Flash
memory. The LiteOS programming model supports both
event-based and thread-based approaches. The scheduling
mechanism is also hybrid and supports priority-based and
round-robin based scheduling. User applications are
multithread-based, and concurrent threads do not have
memory conflicts because there is no memory sharing
between them. Overall, LiteOS’s architecture is inspired by
UNIX and works in a distributed manner. The memory
consumption of LiteOS applications is larger than that of
TinyOS because LiteOS applications are multithreaded
whereas TinyOS applications are singe threaded.

LiteOS offers a flexible approach to implement node-level
virtualization. It uses a hybrid programming model hybrid that
allows the concurrent execution of application threads and
handles events through a call-back mechanism. The
application tasks can be programmed in C language. Installing
and running application tasks is very simple and can be
accomplished by dynamically copying user applications.
Another advantage of LiteOS is its separation between
applications and the OS through callgates. Callgates are
pointers and act as application access points to they can access
system software and resources. This means that new
applications can be simply loaded on a sensor node without
reprogramming the sensor node from scratch.

The performance results of LiteShell show the average
response time of commands sent using the LiteShell. The
average delay of common network commands is under 500ms.
The delay to send file in the network using copy command

depends on the file size. The delay for 4KB file copy is around
3 seconds to 7.5 seconds for single-hop and two-hop transfer
respectively. The length of source code is compared against
TinyOS and it is found that the same application can be
written in LiteOS using few lines than TinyOS, however
because of multi-threading support LiteOS applications take
more memory than TinyOS counterparts.

PAVENET [33] OS is a thread-based OS designed to

exclusively handle the issues related to the preemption of
multithreaded application tasks. However, PAVENET has one
major drawback – its non-portability. It only works with
PIC18 microchip, and unlike other sensor OSs it cannot be
used on other hardware platforms such as MICAZ. Two types
of multithreading are provided: preemptive and cooperative.
The former is used for real-time tasks (e.g. radio access,
sensor sampling) and the latter for best-effort tasks (e.g.
routing). PAVENET makes three contributions that deal with
the issues of preemption overhead and stack/memory space
management; it offers a real-time task scheduler, a best-effort
task scheduler and a wireless communication stack to abstract
lower layers. To mitigate the effects of switching overheads,
the PIC18 chip’s functions are used for a real-time task
scheduler. One of the functions is the fast return stack that
automatically saves the context of a task. The best-effort task
scheduler makes use of cooperative task switching to avoid
stack/memory issues. The wireless communication stack
includes MAC, network and socket layers between the
physical and application layers. A buffer is shared by the
MAC, network and socket layers to handle the data flow.
Tasks with equal priority are grouped together and executed as
single task, which leads to code size that is smaller than that of
TinyOS. The average clock cycles required to execute an
application are better than those required for TinyOS. The
support for multithreading means that for complex tasks,
PAVENET uses more RAM and ROM than TinyOS.

For WSN virtualization, PAVENET provides a thread-
based programming model and uses C language. It is possible
to program multithreaded applications with varying priority
levels, but their execution will be sequential and not
simultaneous because time-sliced execution is not provided.
There is also no separation of application tasks from the OS.
The main drawback of PAVENET is its lack of portability,
although it is an interesting approach that shows how a better
CPU design can lead to an efficient sensor OS.

The performance results of PAVENET show that it uses
more RAM than TinyOS for sample applications. The
execution times of sample applications is comparable to
TinyOS. The task switching overhead is found to be 5 times
less than MANTIS and comparable to TinyOS. Another aspect
is the comparison of lines of codes needed to code sample
applications in PAVENET and TinyOS. PAVENET uses
twice as less as TinyOS (even more for complex applications).

Contiki [34] is by far one of the most popular systems for

WSNs, and over the years has grown to become a leading

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

8

platform for the IoT and low-powered embedded networked
systems. It has a kernel based on an event-driven model, but
preemptive multithreading is also provided as an option in the
form of a library and exposed as an API for applications to
call the necessary functions. Preemption is implemented using
a timer interrupt. All threads have their own execution stack.

The concept of protothreads [35] was introduced to
combine the concepts of event-driven and thread-based
approaches. Protothreads borrows the block-wait approach of
threads and combines it with the stack-less approach of events.
The advantage of protothreads is that they have lower stack
requirement than traditional threads and can be preempted,
unlike events. Contiki makes it possible for applications and
services to be dynamically uploaded/unloaded wirelessly on
sensor nodes. This is made possible by incorporating
relocation information in the application binary and later
performing runtime relocation.

The OS is written in C language and can be ported to many
hardware platforms. CPU multiplexing and an event handling
mechanism are the two major functionalities provided by the
kernel. The rest of the system-related functionalities are
provided as system libraries that can be used by applications
when needed. There is no hardware abstraction layer and
applications can directly utilize the underlying hardware.
Since the OS is event-driven, once an event handler is called,
it can only be preempted by an interrupt – otherwise it must
run to completion. A simple over-the-air protocol is used to
dynamically load/unload applications in a WSN. Binary
images of the new application code are sent to selected
network nodes using point-to-point communication; the
remaining sensor nodes receive the application code as
broadcast from them. The current version of Contiki includes
several features like full IP support [36], including IPv6 [37],
CoAP [38], RPL, 6LowPAN, Cooja, a network simulator to
test applications on emulated devices before actual
deployment, the Coffee flash file system [39] for sensors that
have external flash memory, and a command-line shell for
debugging applications.

For node-level virtualization, Contiki is one of the better
choices available. It supports multiple applications that are
independent of the OS and run on top of it. Applications can
be programmed in C language and updated/installed without
reinstalling the whole OS. It provides a hybrid programming
model. With protothreads, it is possible to create efficient
multithreaded applications that share a common stack. Contiki
supports many different hardware platforms.

The original Contiki paper used in this work does not
provide any systematic performance results. However some
insights regarding the performance were presents. For
example, reprogramming of a sensor node with a new code
(6KB size) took around 30 seconds, whereas the
reprogramming of 40 nodes with the same code took around
30 minutes. It is found that code size of similar applications in
Contiki is larger than TinyOS but smaller than MANTIS.

TinyOS [30] is another notable effort to provide OS

solution for sensor nodes. It is an application-specific,
component-based OS based on two characteristics: being
event-centric and offering a flexible platform for innovation. It
is written in nesC, a dialect of C language, and has a
component-based modular design using an event-driven
programming model. Three main abstractions are used in
TinyOS: commands, events and tasks. Commands are
requests to perform a service, events are generated as
responses when services are executed, and tasks are functions
posted by commands or events for the TinyOS scheduler to
execute at a later time. TinyOS components are sets of
services, specified by the interfaces that are offered to
applications. There are two type of components: modules and
configurations. Modules are code snippets written in nesC for
calling and implementing commands and events.
Configurations connect components through their interfaces.
Only components used by the applications are included in the
final binary image.

The TOSThreads [40] library was introduced to combine
the event-based approach with a thread-based approach,
similar to the protothreads in Contiki. Event-based code runs
in a kernel thread and user applications run in application
threads. Application threads can only run when kernel thread
becomes idle. Static optimizations are used during compilation
to ensure the removal of any issues in the final code. The OS
and the applications are bundled together at compile time in a
single file. A component called Deluge [41] is used for over-
the-air network-wide reprogramming. The new application
code is distributed as composite binaries. Many protocols can
be implemented as components. The current version of
TinyOS is portable to many hardware platforms.

TinyOS is not the most suitable OS for WSN node-level
virtualization. First of all, the programming mode is event-
driven and it is often difficult to program event-driven
applications. In the context of WSN virtualization, it may not
be feasible to bundle applications with the OS at the time of
deployment. New application tasks can only be installed by
propagating the entire OS image over a virtual machine [42].
TinyOS also has tight coupling between the applications and
the OS. The task scheduler in TinyOS is sequential (FIFO
based) and executes tasks in run-to-completion mode,
meaning a weak form of WSN virtualization.

The performance results of TinyOS highlight important
features of the OS. For example, code optimization reduces
code size of the programs as much as 60%. The timer
component reduces CPU utilization by 38%. The interrupt and
task switching also very less time as compared to SenSmart.

2) Virtual Machine-/Middleware-based Solutions
Maté [42] is a tiny virtual machine that supports sequential

execution and uses a stack-based binary code interpreter. It
was designed to work on the early-generation, resource-
constrained WSN nodes and it does work on TinyOS. The
main purpose of Maté is to enable energy efficient code
propagation in WSN with minimal overhead required to re-
task sensors. In order to achieve this, application programs are

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

9

broken into small code capsules and propagated throughout a
WSN with a single command. Only predefined applications
with predefined instruction sets are possible. There are fixed
sets of instructions divided into three classes: basic, s-class
and x-class. Basic instructions include arithmetic operations
and the activation of sensors/LEDs etc., s-class instructions
perform memory access, and x-class instructions perform
branch operations. Up to eight user-defined instructions are
also allowed. These user-defined instructions need to be fixed
when Maté is installed and cannot be changed afterwards.
Each program capsule contains up to 24 instructions. Larger
programs consist of multiple capsules. The instructions in the
capsules are executed in sequence until the halt instruction is
reached. New application code is propagated in the network in
the form of code capsules, using a viral code distribution
scheme. Each capsule contains a version number which is
used by a sensor node to determine if it needs to install new
application code. Network-wide code propagation occurs
when a sensor node forwards the code capsule to its local
neighbors, which in turn forward it to their neighbors. Maté
maintains two stacks, one for normal instructions and the other
for instructions that control the program flow. When an
instruction is under execution, a new instruction cannot be
executed. This allows for simpler programming options. Maté
incurs the cost of byte code interpretations before instructions
can be executed. Propagating an 8-byte code to an entire
network of 42 sensor nodes required around two minutes.

Regarding node-level virtualization, Maté supports the
sequential execution of tasks and tries to address the main
drawback of the original TinyOS implementation. New
application code can be injected without replacing the OS on a
sensor node. However, applications are still tightly coupled.
Maté is more suitable for simple event-driven networks where
it is possible to define events and their outcomes. To end on a
positive attribute, Maté does provide a simple mechanism to
automatically reprogram a WSN using code capsules.

The performance results of Maté are collected by
implanting an ad-hoc routing protocol which is also
implemented in standard TinyOS release with Maté. The
implementation of simple operations (such as AND, rand,
sense, sendr) take more CPU cycles than native TinyOS,
worst-case taking 33 times more CPU cycles and best case
taking 1.03 times. A setup of 42 sensor nodes (in a grid
pattern) is used to see the propagation of code using Maté. It is
found that Maté takes little over 120 seconds to reprogram all
sensor nodes with the new code. Overall Maté incurs overhead
because its each instruction is executed as a TinyOS task.

VMSTAR [43] is a Java-based software framework for

building application-specific virtual machines. It also allows
for the updating of WSN applications as well as the OS itself.
VMSTAR provides a rich programming interface that allows
developers to develop new applications which can be portable
to a variety of hardware platforms. VMSTAR generates
compact code files rather than regular Java class files. It
supports both the sequential and simultaneous execution of

thread-based applications. The framework is comprised of
three parts: a component language called BOTS [44], a
composition tool and an updating mechanism. The component
language is used to specify software systems. The composition
tool selects/composes the required components and determines
the dependencies between them to satisfy specific constraints.

 The updating mechanism uses an incremental update
technique [45] to take actual coding changes rather than
structural changes into account in the program code file like
change in number of lines. For simple applications, sequential
thread execution is supported, but for complex applications
requiring input from external events, two event-based
programming models are defined. One is the select model, in
which an application subscribes to an event, acquires the
corresponding event handle and executes it when the event
occurs. In the case of multiple events, the respective handling
methods are executed sequentially. The second model is
known as action listener, in which applications define event
handlers by extending the default handler class from the
library – they do not register for events. When an event
occurs, the registered callback method is invoked. The action
listener model allows for the simultaneous execution of
threads, but in the paper only the select model is implemented.
A base station is used as a repository for application code and
as an orchestrator for deployment and update purposes. A
native interface is also provided to allow access to the
underlying resources of a MICA platform.

For node-level virtualization, VMSTAR does support the
concurrent execution of multi-threaded application tasks but
the implementation presented only supports single-threaded
Java applications. The programming model is thread-based
and applications can be coded in Java language, making it
easier for developers. Concurrent events can be handled using
action listeners. Although VMSTAR discusses the distinction
between the user applications and the OS, for the
implementation example both are tightly coupled.

The performance results of VMSTAR show that it performs
better than Maté but not so well against native TinyOS. For
example, its memory consumption is almost double as
compared to TinyOS. The same is true for CPU utilization,
where VMSTAR sits between TinyOS and Maté.

Squawk [46] is a small Java virtual machine that runs on

sensor hardware. Compared to VMSTAR, Squawk does not
require an operating system to run; it provides the required
functionalities by itself. These include interrupt handling,
networking functions, resource management, support for the
migration of applications from one SunSpot to another and an
authentication mechanism for deployed applications.
Applications in Squawk are represented and treated as objects.
Since multiple, isolated objects can reside in a virtual
machine, concurrent applications can be executed easily.
Squawk VM runs on a specific device platform, Sun Small
Programmable Object Technology (SunSpot) which has more
processing, memory and storage capability than MICA
/MICAZ and other WSN platforms. Squawk VM can use

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

10

many standard Java features, such as garbage collection,
exception handling, pointer safety, and thread library. It is
written in Java, in compliance with J2ME CLDC [47]. The
device drivers and the MAC layer are also written in Java.
Squawk VM supports split VM architecture, where the class
file loading is performed on a desktop machine to generate its
representation file. The representation file is then deployed
and executed on SunSpots. The size of these files is much less
than standard Java class files. Green threads are used to
emulate multi-threaded environments. The threads are
managed, executed and scheduled in user space. An
application’s status, including its temporary state, can be
serialized to a stream for storage. When another Squawk VM,
on another SunSpot, reads that stream it can effectively
reconstitute the application along with its complete state
information. This allows for live-migration of applications
from one SunSpot to another. This is quite useful in situations
when a SunSpot device is about to run out of battery power.

For node-level virtualization, Squawk VM takes quite a
different approach than its competitors. A robust and efficient
application isolation mechanism is provided, which allows
multiple applications to be represented and treated as Java
objects. These objects are instance of the Isolate class and can
be started, paused and resumed using available methods.
Applications can have multiple threads which are managed by
the JVM. The programming model is thread-based and
applications can be coded in J2ME. There is also an option for
Over-The-Air (OTA) programming which can be used to load,
unload, stop and migrate applications on SunSpots.

The performance results of Squawk are presented using
some benchmark suits and a math application to measure
integer and long computation. For memory footprint, Squawk
is compared with KVM for CLDC which shows that Squawk
VM with debugging support uses less memory than KVM
equivalent. The benchmark suits for Squawk and KVM were
run of different sets of ARM platforms with different CPU and
memory sizes. The KVM ran on better hardware and hence
exhibited better results than Squawk VM. The suits files of
applications generated in Squawk have around 37% less size
than java class files and JAR files.

Agilla [48] is a mobile agent-based middleware that runs on

top of TinyOS and uses a VM engine to sequentially execute
multiple application in a round-robin fashion. It uses a mobile
agent and tuple-space programming models. The middleware
is designed to support self-adaptive applications in WSNs.
Application programs are coded as mobile agents that can
migrate themselves to other sensor nodes in the WSN in
response to changes in the network or in the physical
phenomenon that is being monitored. Each sensor node can
run several autonomous mobile agents. These mobile agents
may perform a strong migration, i.e., transfer application code
and its state to another sensor. Weak migration only transfers
application code, which means that at its new destination, a
migrated mobile agent will restart the application. Agents are
injected in the WSN from a base station and propagated one

hop at a time. Each mobile agent arrives at a new destination,
starts its execution and then migrates to the next-hop sensor
node. This process can take quite some time to propagate a
new application in the WSN. Each sensor node has a tuple
space and a local memory. In a tuple space, data is accessed
using pattern-matching techniques. This approach allows
mobile agents to be oblivious of each other’s memory
addresses. Mobile agents have a stack space, a heap and three
registers, which are used to store ID of the agent, the program
code and condition code. Every agent, including the clones,
has a unique ID. The program code register holds the address
of the next instruction and the condition code register holds
the execution status.

For node-level virtualization, Agilla relies on TinyOS to
provide concurrency, and thus mobile agents are executed in a
round-robin fashion. However, this is an OS issue, since a
multithreaded OS can execute mobile agents in parallel
allowing better concurrency. Mobile agents work
independently of the TinyOS. The use of tuple-space and
locally-stored agent states allows for quick migration, but still
much work is left to the programmers to deal with issues such
as stalled migration. In a highly dynamic WSN where
applications utilize sensor nodes on the fly, such as the IoT,
the migration of agents might lead to performance issues. The
programming language of Agilla is another difficulty, as the
agents are programmed in low-level assembly-like language.

A test-bed of 25 sensor nodes is used to gather the
performance results. Agent migration is evaluated by varying
number of hops between source and destination sensor nodes.
The migration is 99% successful for up to 3 hops but after
than it starts decreasing. Also more hops mean more latency, a
5-hop migration can take more than 1.1 second. The latency
experienced for remote operations is under 300ms.

The authors in [49] present an integrated system, the

UMADE, to promote the utilization of a deployed WSN
among multiple contending applications. The main
contribution of UMADE is a mechanism to allocate sensor
nodes to improve overall Quality of Monitoring (QoM) for the
applications. UMADE is implemented on TelosB motes and
uses Agilla VM on top of TinyOS. The proposed systems
consist of several components such as, specification of QoM
attributes, application deployment and relocation of
applications to deal with the network changes, as well as
QoM-aware application allocation algorithm. QoM attributes
are specified by variance reduction and detection probability
attributes. A variance reduction QoM attribute exploits the
correlation of sensor readings using probabilistic methods to
predict sensor readings. For the detection probability QoM
attribute, a stochastic model is used to find the probability of
an event’s detection by a group of sensor nodes. It is not clear
from the paper whether QoM attributes can only be specified
before the deployment of UMADE or if it is an evolving
process. A simple greedy heuristic is used in a QoM-aware
application allocation algorithm to maximize the overall WSN
utility. Applications are deployed using an application

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

11

allocation engine and an application deployment engine. The
allocation engine runs in a base station and uses an allocation
algorithm to find the suitable sensor nodes for an application.
The deployment engine, present in both the base station and
the sensor node, is used to wirelessly send the sensor
application to the chosen sensor nodes. The applications run
concurrently in the Agilla VM. Both preemptive and non-
preemptive allocation is used to deal with network dynamics
and sensor node failure. In preemptive allocation existing
applications are relocated to new sensor nodes to increase the
overall utility, whereas in non-preemptive allocation no
application is relocated to new sensor nodes. The base station
side code is written in Java and the sensor node code is written
in nesC.

UMADE uses Agilla VM for node-level virtualization.
Agilla VM is extended to provide dynamic memory
management for concurrent applications. UMADE has event-
driven programming model and uses nesC language to code
application tasks.

Application specific results are presented in the paper (i.e.
application that are implemented for evaluation purposes). For
example, an increase in weight of a temperature monitoring
application resulted in increase in its utility by 60%. The time
to execute multiple application over a set of nodes increases
linearly. Since UMADE uses Agilla over TinyOS its
performance is highly dependent on those two solutions.

A macro-programming framework, Nano-CF, for the in-
network programming and execution of multiple applications
over a deployed WSN is presented in [50]. Nano-CF runs over
the Nano-RK operating system [51] and allows several
applications to utilize a common WSN infrastructure. Using
Rate-Harmonized Scheduling (RHS) [52], Nano-CF realizes
the coordinated delivery of data packets from multiple
application tasks that run on sensor nodes. RHS also allows
for data aggregation and ensures that small data packets are
combined together before being sent to their respective
applications. Nano-CF is a three-layer architecture consisting
of a Coordinated Programming Environment (CPE) layer, an
integration layer and a runtime layer. The CPE layer is present
at the user/programmer side and allows them to write
application programs in the Nano-Coordination Language
(Nano-CL). Nano-CL is descriptive language with a C-like
syntax. Its programs have two sections: service descriptor and
job descriptor. The service descriptor section has tasks that are
executed by the sensor nodes, as services. The job descriptor
section has multiple services along with a set of nodes which
will execute them. The programmer has to specify the timing
and the periodic rate at which the services (tasks) will be
executed at each sensor node. The program code is parsed to
byte-code and sent to the sensor nodes by a dispatcher module
in the CPE layer. The integration layer is also responsible for
handling the data and control packets. It consists of a sender
module in the gateway and a receiver module in the sensor
nodes to deliver the application task in byte-code. The runtime
layer resides in each sensor node and consists of a code
interpreter module which translates the received task byte-

code for the underlying Nano-RK OS. It also provides routing
functionality using DSR protocol. A data aggregation module
collects aggregated data from the sensor nodes and sends it to
the user application using RHS. The proposed architecture is
evaluated using a university campus multi-application sensing
test-bed called sensor Andrew [53].

Nano-CF makes several contributions to node-level
virtualization. It allows independent application developers to
write application tasks for a common WSN infrastructure.
Each application task runs independently and is not coupled
with the sensor OS. The proposed framework is suitable for
data collection applications and for sensor nodes that have
multiple on-board sensors. The programming model is event-
driven and applications are programmed using their
descriptive language, Nano-CL.

The performance results of the solution cover the energy
and overhead of code interpreter. Using RHS allows energy
savings especially using multiple applications since packets
are aggregating first and then transmitted. However, the
packet size has an impact on this because bigger packets
means they cannot be aggregated due to size issues. When
code interpreter is used, the extra-overhead is around 55%.

B. Network-level Virtualization
We group the network-level virtualization approaches under

two umbrellas: virtual network/overlay-based solutions and
cluster-based solutions. Virtual network/overlay-based
solutions utilize the concept of virtual networks and
application overlays to achieve network-level virtualization.
Virtual network/overlay are logical networks created on top of
physical network(s). In cluster-based solutions, the nodes in a
physical network are grouped to work together in connected
groups, i.e. clusters. Unlike virtual network/overlays,
clustering is more like the physical partitioning of the network
where one part of the network is used to one application and
another part is used by a different application. Nodes inside a
cluster have specific roles, such as cluster-head and cluster-
member. Typically cluster-based solutions in WSNs are used
to monitor dynamic events.

Fig. 4 shows the network-level virtualization types while
Table II illustrates the characteristics of the existing work
dealing with node-level virtualization.

1) Virtual Network/Overlay-based Solutions
The work in [9] uses overlays to create application-specific

virtual networks on top of the deployed WSN. The overlay is
used to allow data exchange between sensor nodes in different
administrative domains. This work is more suitable for
situations where it is difficult to bundle applications during the
deployment of a WSN. A three-layer architecture is presented
to allow multiple end-user applications to utilize sensor nodes
concurrently. The bottom layer has new-generation sensor
nodes like Java SunSpots, as well as older and less capable
ones. In order to allow older and less capable sensor nodes to
participate in overlays, another entity called Gates-to-Overlay
(GTO) nodes is incorporated. The functionality of these GTO

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

12

nodes can be implemented in gateways and sink nodes, as well
as more powerful sensor nodes. The middle layer abstracts the
simultaneous tasks executed by the physical sensors as virtual
sensors. This is the basic assumption of the work, that the
sensor nodes are capable of executing multiple application
tasks concurrently. The top layer consists of applications
implemented as overlays. These independent applications
utilize the data sent by their respective tasks running on the
sensor nodes. Each application has an independent overlay
with virtual sensors as members of that overlay. This logical
grouping allows data exchange even when sensors are
physically located in different administrative domains. The
architecture has separate paths for data and control messages.
A fire monitoring scenario is used as an example, in which the
sensor nodes in private homes are used to monitor the progress
of fire eruption using a fire contour algorithm. Since sensor
nodes are in private homes they cannot send data to each other
directly. An overlay network is created to facilitate such data
exchange and execute the fire contour algorithm. The authors
assume the prior publication of sensor nodes to a registry
which the end-user applications use to select the required
sensors. The paper does not provide any implementation
details. However, certain protocols are suggested for data,
control interfaces and for overlays.

For network-level virtualization this work makes use of

application-specific overlays to provide a robust and efficient
mechanism for sensors to communicate. There have been
some efforts to utilize DHT overlays in WSNs e.g., [54], [55],
[56] and [57]. Each sensor can be part of several overlays at
the same time and can execute their tasks. In the absence of
any implementation details, it is difficult to determine the
effectiveness of this solution, but it is quite relevant to IoT,
where WSNs will be utilized by different users to provide new
applications and services that were not envisioned during their
initial deployment. Even geographically dispersed WSNs can
be combined to provide data for new applications.

No performance results are presented in this work.

The work in [58] discusses the “Managed Ecosystems of
Networked Objects” (MENO) concept, with its broader scope
to connect sensor nodes as well as other IP-smart objects to
the Internet for end-to-end communication without the use of
traditional gateway-based approaches. The idea behind MENO
is to create a virtual network on top of physical networks and
thereby allow communication with different types of devices,
including sensor nodes. Within each virtual network, end-to-
end communication is possible using different protocols. Once
end-to-end communication is enabled, it becomes possible for
application developers to write new applications that utilize
sensors, actuators and other devices. This work is still at the
conceptual level, without any implementation details or
results. It appears to be on track to use a clean-slate approach
to integrate the physical world with the Internet in a seamless
way. Some motivational scenarios are presented to make a
case for integrating WSNs to the Internet.

The concept utilized by MENO is used to develop the
Internet of Things Virtual Network (IoT-VN) [59]. That study
presents some implementation details by applying the concept
of the IoT-VN to constrained and non-constrained
environments. For constrained environments, the IDRA
framework [60] is used to implement neighbor detection and a
tunneling mechanism to create virtual links between the
members of the virtual network. For non-constrained
environments, the Click Router [61] is used, a C++ based
framework capable of realizing network packet processing
functionality. Routing the data over virtual links is
accomplished by means of the AODV protocol. They have
extended the AODV header to include IoT-VN ID header and
a network header. A simple ping application implements basic
request and reply messages to demonstrate data exchange
inside a virtual network.

For network-level virtualization, the work in [58] and [59]
uses the concept of virtual links built over either layer 3 or
layer 2 in traditional networks, and over IEEE 802.15.4 in
WSNs. Not much detail about the actual protocols is provided,
but these researchers do mention some motivational scenarios
to open up WSN deployments and connect them to the
Internet. Overall, the focus here is on connecting different
devices (resource-constrained and non-resource constrained)
together and allowing end-to-end communication for the
deployment of new applications and services.

Fig 4: Network-level virtualization solutions

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

13

The work in [58] does not provide any performance results,
however in [59] presents early results using a simple two
sensor test-bed setup. Round trip times of a ping command are
shown which was sent from one sensor to another. Overall the
results do not give much insight in to the solution.

An embedded agent-based approach is presented in [62] to

create and maintain virtual sensor networks. This agent-based
solution is built on top of Java SunSpot devices, as they offer
Java programming support and are easier to program. The
authors first provide an analysis of the layered approach
normally used to create and maintain a Virtual Sensor
Network (VSN). In this layered approach a new VSN layer is
introduced to create and maintain a VSN, but this approach is
not flexible when the sensor nodes’ sleep and wake patterns
are taken into account. A sensor node that is part of more than
one VSN at a time cannot sleep abruptly without first
coordinating with other sensor nodes to inform them about its
unavailability. Since the layers in sensor nodes are tightly
coupled and cannot be changed without affecting the other
layers, an agent-based solution is proposed in this work. Agent
Factory Micro Edition (AFME) [63] library is used to create
agents on a sensor node. Each agent resides on a sensor node
and is responsible for creating and maintaining a VSN, as well
as for communicating with the agents working for the same
VSN on other sensor nodes. These agents can communicate
with each other to optimize performance. AFME allows
communication between agents for easy message exchange.
AFME also allows the migration and cloning of agents in the
network, which makes it easy for new sensor nodes to join a
VSN. Using the agent-based approach has obvious benefits,
not least because a sleep broker can make intelligent decision
about the sleep and wake duration of sensor nodes.

For network-level virtualization the work in [62] considers
independent VSNs created over a WSN for different
applications. To create such VSNs, mobile agents create a
virtual topology linking sensor nodes together for an
application. Although the agents are implemented using
AFME, there are no details about VSN formation and its
operation.

Interestingly the work does not provide any performance
results of the agent-based approach instead it present
simulated results of layered approach showing their obvious
drawbacks.

Pioneering work regarding network-level virtualization was
first presented in [19] and extended in [64] and [65]. In [19], a
subset of WSN nodes dynamically forms a VSN. Applications
with attributes or situations such as being geographically
dispersed, using heterogeneous WSN nodes with different
capabilities and that monitor dynamic phenomenon are
particularly suited to take advantage of VSNs. Each
independent subset executing an application is a VSN. In this
approach, it is clear that different applications can execute
sequentially, due to the dynamic VSN formation by different
node subsets. However, the authors do not give any

information about how these applications might eventually be
executed simultaneously. Two illustrative applications are
presented. One is a geographically overlapped application
which works in scenarios where heterogeneous WSN nodes
are deployed to monitor two different events spread over a
large area. Each WSN needs to be deployed without using
resource sharing even in those areas where there is no event of
interest, to provide communication and routing. With resource
sharing however, other WSNs can help, resulting in a more
efficient use of resources.

The second application illustrates the concept of monitoring
a dynamic event with a subset of WSN nodes. This subset can
expand or reduce depending on the dynamics of the event. The
work discusses the management issues of these VSNs and
describes functions to create VSNs. WSN nodes that are not
part of any subset help in the overall WSN operation, with
data routing for example, or remain asleep to conserve energy.

For network-level virtualization the authors in [19] present
the basic motivation to create VSNs. Example applications are
discussed. However, the paper presents high-level details and
does not include any technical details, e.g. how to realize these
VSNs. The paper provides the basic concept of multiple
applications sharing a WSN and using multiple WSNs for new
applications without additional deployments.

No performance results are presented in this work.

2) Cluster-based solutions
A self-organizing tree-based solution is presented in [64] to

facilitate the creation, operation and maintenance of VSNs.
When an event has been detected, a dynamic cluster tree is
formed, ensuring that nodes will join a VSN to monitor the
event in a reactive manner. In this approach the sequential
execution of applications is possible, since VSNs are formed
dynamically, but it is not clear if (or how) it is supported by
the WSN nodes. This approach uses cluster heads and child
cluster heads inside VSNs to carry out different functions.
This structural organization provides logical connectivity
among WSN nodes and ensures that two different notifications
of the same event are detected and treated as one; meaning
that no event in the deployed WSN remains unknown. Once
an event is detected, a dynamic cluster tree is formed by
exchanging VSN formation messages.

VSNs provides unicast, broadcast and multicast
communication. For unicast communication, a hierarchical
addressing scheme like DNS is used while broadcast and
multicast communication use a list. This list is used by each
cluster head to keep track of the child cluster heads it serves.
A new hierarchical clustering algorithm is proposed to create
VSNs. A simulation-based performance analysis of the
proposed algorithm is presented using a custom-built
simulator in C language. However, advanced VSN functions
like the merging and splitting of VSNs are not implemented.

A cluster tree mechanism is used to group the sensor nodes
that work for an application, as a way to realize network-level
virtualization. This work is an extension of the work in [19].
Dynamic trees are formed and communication between the

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

14

sensor nodes is also supported. There is no discussion about
the physical implementation of this proposed scheme.

For performance results a discrete-event simulator is used.
Three scenarios are implemented to detect events in different
regions and use sensor nodes to monitor them. The results
show a linear increase in number of hops similar to the
increase in sensor nodes monitoring the event. When an event
occurs, with source and destination node in the same region,
more unicast messages are exchanged but these messages are
not affected by the network size. On the other hand, when an
event occurs in another region more multicast messages are
exchanged and are affected by network size.

A proof-of-concept study that monitors an underground

plume is presented in [65]. The proof-of-concept is based on a
single application, and so it is difficult to find a link with
sequential or simultaneous execution. The authors also discuss
a phenomena-aware clustering algorithm to create and
maintain VSNs. Using this algorithm, clusters are comprised
of groups of WSN nodes that are close to dynamic
phenomenon and report on it frequently throughout their
lifetimes. With these reports, the algorithm is able to select
those WSN nodes which are relevant for clusters and that are
close to the dynamic phenomenon, allowing less-relevant
WSN nodes to save their energy for other applications. This

technique considerably reduces the required data reporting
since only relevant data is sent. As the deployed WSN is
event-based and not always on, sudden bursts of data are
avoided whenever an event of interest occurs. The algorithm is
also resilient to WSN node and link failures. To adapt to the
dynamics of an event, i.e., a merger or a split, another
algorithm, called DRAGON, is presented. When an event is
detected, DRAGON ensures its location is found and used as a
reference point to track its movement. Sensor readings and the
relative positions of WSN nodes are then used to make
decisions about whether two events should logically remain
distinct or be merged into a single event.

For network-level virtualization this work is based on [19]
and [64]. The proof-of-concept prototype is used to
demonstrate the viability of the concepts presented in earlier
papers, however only one application is demonstrated.

There are not much performance results of the prototype
except that the sensors were able to track a plume similar to
the conductivity probes.

C. Hybrid Solution
Hybrid solutions combine both node- and network-level

virtualization mechanisms. We group the Hybrid solutions
under three types: middleware and cluster-based solutions,
middleware and virtual network/overlay-based solutions and
virtual machine and dynamic grouping-based solutions.

In middleware and cluster-based solutions, a middleware
handles node-level virtualization, while network-level
virtualization is achieved by grouping sensor nodes into
clusters. In middleware and virtual network/overlay-based
solutions a middleware handles node-level virtualization while
network-level virtualization is achieved using virtual
network/overlays. In virtual machine and dynamic grouping-
based solutions, node-level virtualization is achieved using a
virtual machine, and a tailored, sensor node grouping scheme
is used for network-level virtualization.

Fig. 5 shows the hybrid virtualization solution while Table
III shows the characteristics of hybrid solutions.

1) Middleware and Cluster-based Solutions
In [66], a middleware solution, Sensomax, for Java SunSpot

[67] devices is presented. Sensomax follows a components-
based approach and provides several operational paradigms
such as data-driven, event driven, time-driven and query-
driven, to offer more flexibility. The main contributions of
Sensomax are support for multi-tasking, dynamic task
modification and re-programming at runtime. At node-level,
user applications are coded as application-specific agents.
Concurrency is implemented using a main Monolithic Kernel,
abstracting the sensor resources. Applications act as
Microkernels running atop the Monolithic Kernel and access
underlying resources in a uniform way. When an application
starts its execution in a sensor node, its corresponding agent is
loaded to an execution space and queued for execution. A
resource-algorithm is said to be used for allocating resources
to multiple agents in the execution space. However, no details

TABLE II
CHARACTERISTICS OF NETWORK-LEVEL VIRTUALIZATION SOLUTIONS

Solution
(year)

Network
Formation
Mechanism

Protocols or
Algorithms

used

Results in the
Paper are
based on

Khan et al.
(2013)

Application
Overlays

JXTA Not discussed

IoT-VN
(2012)

Virtual Links AODV Implementation

MENO
(2011)

Virtual Links Not discussed Not discussed

Taynan et
al. (2008)

Virtual
Network

using
Embedded

Agents

Coverage
Configuration

Protocol (CCP)
and

Interpolation-
based

Redundancy
Identification and

Sensor
Hibernation

(IRISH)

Simulation

Jayasuman
a et al.
(2007)

Virtual Links Not discussed Not discussed

Dilum et
al. (2008)

Cluster Tree Hop-ahead
Hierarchical

Clustering (HHC)

Simulation

Han et al.
(2008)

Cluster Tree PHenomena
AwaRE clustering
in wireless sensor
networks (PHRE)

and DRAGON

Implementation

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

15

of such allocation algorithms are discussed. Application
agents can be data-driven, event-drive, time-driven, query-
driven or hybrid models.

At the network level, the deployed WSN is divided into
multiple clusters consisting of sensor nodes. Each cluster is
dedicated to a single or multiple applications and treated as a
single entity by the application programmers. The applications
can span over multiple clusters by running application-specific
agents in each cluster. Each cluster consists of a sensor node
acting as the cluster-head and several sensor nodes acting as
cluster members. Sensor nodes can have dual roles, i.e., a
sensor node can act as cluster-head for an application while at
the same time it can be a cluster member for a different
application. Such roles depend on the application agents
residing in a sensor node. The agent-based approach is used
for network-level communication in Sensomax. The global
agents enable different network entities to communicate with
each other. The local agents are used for intra-cluster
communication, allowing the cluster-heads to communicate
with their cluster-members and vice-versa. The system agents
are used by the base-station to send configuration instructions
to cluster members via cluster heads. The system agents are
used to reprogram or update sensor nodes on the fly. The
WSN resources are divided into three main classes: global,

local and system resources. Global resources include sensors,
actuators and processes that are shared among different
network entities. Local resources include resources found
inside a cluster and can only be shared between members of
that particular cluster. System resources include items such as
system properties where resource states are defined. A one-
hop broadcasting of agents is used to propagate application-
specific agents in the WSN. Java SunSpot devices are used for
implementation and simulation-based results are presented.

For node-level virtualization, Sensomax uses Java SunSpot
devices and exploits their ability to run concurrent application
tasks. Each user application is programmed as an agent, and
multiple agents can reside on a single sensor node. Agents are
submitted via a base station and propagated into the WSN
using a one-hop broadcast. The network-level virtualization
uses the clusters concept. The WSN is divided into multiple
clusters, each with its own cluster head. Different types of
communication modes are provided to enable communication
between different network entities.

The performance results are collected by means of a test-
bed consisting of 12 sensor nodes and a simulator. The
processing time of each agent is found to be around 200ms
when the sensor node is executing 30 concurrent applications.
The simulation results follow the same trend. The sample
applications are lightweight that report temperature and light
level with various conditions. The dynamic update processing
time is under 100ms for the same number of applications.

The work in [68] presents a multi-set architectural model to

allow the execution of multiple applications over a deployed
WSN. This work is based on the concept of agents, similar to
Agilla. The agents are not application-specific, instead they
are used to control the node- and network-level functionality.
The overall design goal is the ability to run multiple
applications in a pre-defined execution order and to be able to
adjust their functional parameters. A configuration agent (C-
Agent) is used to modify the functional parameters of an
application running on a sensor node, e.g., to change its
sampling interval. The C-Agent is first propagated in the WSN
from the base station to the cluster-heads and then from
cluster-heads to the sensor nodes in their clusters. Before the
deployment of a WSN, the applications and their order of
execution are defined. This step limits flexibility, as new
applications cannot simultaneously use the deployed WSN.
At node-level, TinyOS is used to provide concurrent execution
of application tasks on a sensor node using a middleware that
runs on top of TinyOS. The solution inherits the drawbacks of
TinyOS; making applications to be executed in their
predefined order.

At the network-level, the scoping building block concept
[69] is used to divide a WSN into subsets. Within these
subsets, nodes can be grouped as clusters according to the
application requirements. Each subset is dedicated to execute
only one application, hence a WSN with n subsets will execute
n number of applications. The role of cluster-head is
performed by powerful sensor nodes, so there is no selection

Fig 5: Hybrid virtualization solutions

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

16

of cluster-heads on the fly. When the WSN is deployed
initially, only one application begins its execution, according
to a pre-defined sequence. The sensors in other subsets sleep
to conserve their energy until it is their turn to execute their
application. A switching agent (S-Agent) is used to switch
from one application to another by putting awake sensor nodes
into sleep mode and vice-versa. There is no information about
how these agents are propagated.

For node-level virtualization, the solution works similar to
the TinyOS and provides a weak form of virtualization. Pre-
defining applications and their execution sequences does not
make this solution very attractive. For network level
virtualization, the WSN is divided into subsets that have
multiple clusters. At any given time the sensor nodes in one
subset are active while others sleep to save their energy.

No performance results are presented in this work.

2) Middleware and Virtual Network/Overlay-based Solutions
The authors in [70] discuss SenShare, a platform to execute

multiple applications over a WSN. This is the first significant
effort to tackle the issue of allowing open access WSN
deployments running multiple applications concurrently. Two
roles, those of WSN infrastructure owners and application
developers, are considered. This separation opens up the
possibilities for new business models, innovative applications,
improved utilization of WSN resources, and flexibility, along
with cost benefits. At node-level a hardware abstraction layer
(HAL) and a node runtime layer is used in each sensor node to
support multiple applications. Each application is a TinyOS
program which runs on top of a multi-tasking OS that allows
the simultaneous execution of multiple application tasks. The
HAL is shared by each application and is used to break the
tight coupling between TinyOS applications and the sensor
hardware and to allow shared access to the sensor hardware.
Each application contains virtual hardware controllers (e.g.
access to LEDs, sensors, timers and network I/O) that are
linked to all TinyOS application at compile time. When an
application requires access to, e.g. a sensor, the corresponding
virtual hardware controller passes the request to a runtime
layer between the applications and the multi-tasking OS. The
runtime layer is OS-specific and all of the TinyOS
applications use it to access the sensor hardware. It runs as a
separate process inside every sensor node and mediates
between the applications and the sensor hardware. The sensor
I/O and network I/O are two components in the runtime layer
that allow managed access to sensing components and to the
network interface, respectively. This access is allowed
asynchronously to multiple applications. Each application in
SenShare, has a unique ID which is used to manage it. In order
to deploy an application, SQL-like commands are used to
select the target nodes according to the application’s
requirement. Afterwards the application’s binary code is sent
to the selected nodes using a modified version of the Deluge
protocol [71]. Once the application is up and running, the
virtual topology is formed to provide isolation from other
data/control traffic. The WSN is globally synchronized using

the TPSN protocol [72].
At the network level, a network-level overlay is created to

group WSN nodes that execute similar application, using the
Collection Tree Protocol (CTP) [73]. Physically scattered
groups executing similar applications can be joined into a
single overlay network. CTP is also used to route data and
control messages in the WSN. In order to provide isolation
between the traffic from multiple applications, each
application packet is modified to include the application ID
along with sequence number, origin and destination addresses.
The runtime layer attaches and removes this information at the
source and destination nodes, respectively.

 An application could be executed by physically scattered
sensor nodes. Linking these scattered sensor nodes (clusters)
into a single virtual connected network requires an overlay
formation protocol that utilizes the underlying CTP topology
to connect clusters together in a virtual connected network.
The protocol works by making each sensor node route its
packets to the closest cluster.

For node-level virtualization, SenShare implements
application tasks as TinyOS programs over a multi-tasking
OS. The programming model is similar to TinyOS.
Incorporating virtual hardware controllers with the
applications makes the solution less flexible, as developers
need to be aware of the type of hardware each sensor node
has. The runtime layer between the OS and the applications
does not expose the sensor hardware to the developers, so they
cannot write applications on the fly. For network-level
virtualization, SenShare uses the concept of overlays and uses
CTP protocol to create independent overlays for applications.

The performance results of this work cover the application
isolation penalty and overlay management. With more
concurrent applications in a sensor node, it is observed that
sampling rate decreases by 28% as compared to a single
application sampling the same phenomenon. The CPU
utilization also increases linearly and has less impact of the
SenShare runtime. The same is observed for memory usage.
The extra overlay traffic is found to be decreasing over the
period of time to around 10% of the network traffic.

The work in [10] discusses the node- and network-level

virtualization of sensor nodes in the context of the VITRO
project. The goals of this work are i) to design a middleware to
act as a bridge between applications and the sensor nodes, and
ii) to design advanced sensor node architecture. Node-level
virtualization is achieved by instantiating various instances of
routing and of MAC layers. There is a node virtualization
manager (NVM) inside every sensor node which is
responsible for managing the available resources and fulfilling
the requests to utilize those resources [74]. NVM interacts
with each layer to ensure the optimal, secure and energy-
efficient utilization of sensor nodes. Each sensor node has a
middleware which is responsible for its discovery and the
service it provides. This middleware sits on top of the network
layer, which is responsible for the routing data. The network
layer uses routing protocols that can support multiple routing

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

17

instances. A trust-aware routing protocol [75] is used to route
the data, and delay-tolerant network mechanisms are
suggested to counter the connectivity issues. For each
application, a newly configured MAC layer is instantiated.

A reference architecture is presented at the network level,
consisting of several autonomous WSN domains. Each of
these domains is connected to VITRO service providers
through a gateway node. The gateway node plays a major role
in providing network-level virtualization. It consists of
modules that help in the creation and management of VSNs.
The gateway node uses several registries to create and manage
a VSN. In VITRO, only gateway nodes can be part of the
VSN, which can be realized by creating a routing link between
the gateway nodes using protocols such as RPL. Individual
sensor nodes can only be part of the VSN, on their own, if
they support the functionalities of the gateway node, otherwise
they can only join a VSN with the help of a gateway node.
Details such as sensor selection and task dissemination are not
discussed. A VSN manager is responsible for service
negotiation, session establishment and monitoring. Functional
architectures of gateway nodes and advanced sensor nodes are
also presented, along with the details of the interfaces between
system components. No implementation details are discussed
and no protocol recommendations are given for interfaces or
functions such as service registration or service negotiation.

For node-level virtualization, VITRO relies on advanced
sensor nodes that enable the efficient utilization of resources
and concurrent access. However, there is no discussion
regarding the OS that will provide such functionalities, nor is
there any information on the hardware platform in the paper.
Most of the details are at the conceptual level; no technical
details such as programming model, programming language,
and OS are provided. For network-level virtualization, this
work only connects already VSN-aware/legacy/proprietary
WSNs through a gateway node. The mechanisms for creating
a VSN-aware network are not discussed, nor is there any
mention of protocols to be used.

No performance results are presented in this work.

3) Virtual Machine and Dynamic Grouping-based Solution
Melete [18] provides both node and network level support

for the concurrent execution of applications in WSNs. At the
node level, Melete supports simultaneous execution by
enhancing Maté, supporting the interleaved execution of
multiple applications on a single WSN node. Application code
images are stored, each with its own dedicated execution
space. Applications do not share variables with each other to
ensure that an application failure does not affect other
applications executing on the same WSN nodes. The number
of concurrent applications that can be executed by WSN nodes
depends on the available RAM; the implementation in the
paper supports up to five applications. Melete uses an event-
driven programming model. Another contribution of Melete is
that it supports application task code dissemination. Task code
dissemination has two main goals. One is to select the sensor
nodes which are part of a group, and send new code to them.
The second is to reactively send code to the sensor nodes that
require it. Both goals allow the task code of the relevant
sensor nodes to be sent while discouraging its unnecessary
dissemination. Actual code forwarding is done region-wise
using multi-hop communication.

At a network level, Melete supports the dynamic grouping
of deployed WSN nodes in order to execute multiple
applications simultaneously. The supported network topology
is a connected graph. It is possible for WSN nodes to be part
of more than one logical group at a time. Each logical group is
dedicated to a single application, and the implementation
supports up to 16 groups coexisting in a WSN. A new
application code is disseminated passively between members
of the group using the above-mentioned design goals. All
WSN nodes maintain the version information of the
applications, and advertise it in the group, hence making WSN
nodes aware of when to update their application codes. This
saves energy by reducing unnecessary communications, but at

TABLE III
CHARACTERISTICS OF HYBRID SOLUTIONS

Solution
(year)

Programming
Model

Programming
Language

Separation
between OS

&
Application

Tasks

Real-time
Applications

Protocols or
Algorithms

used

Network
Formation
Mechanism

Results in the
Paper are
based on

Sensormax
(2013) Thread-based Java Yes No

Market-based
resource

allocation
algorithms

Clusters Simulation &
Implementation

ShenShare
(2012) Event-driven nesC Yes Yes Collection Tree

Protocol (CTP)
Network-level

Overlays Implementation

VITRO
(2012) Not discussed Not discussed Yes No Not discussed Not discussed Not discussed

Majeed et
al., (2010) Event-driven nesC No No Not discussed Clusters Not discussed

Melete
(2006) Event-driven TinyScript No Yes Trickle Connected

Graph
Simulations &

Implementation

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

18

a cost of the delay incurred. Sensor nodes in a logical group
execute a single application at a time, hence each application
cannot be influenced by the run-time error of another
application. The paper presents extensive simulation-based as
well as actual implementation results.

For node-level virtualization, Melete improves on Maté, but
since application tasks have their own data and execution
space, only a limited number of application tasks can run
concurrently. The programming model is based on the event-
driven approach of TinyOS. The application programs are
written in TinyScript. A dynamic grouping scheme is provided
for network-level virtualization. By default, all sensor nodes
are members of a parent group, with its code stored in them.
How a sensor node will join a new group depends on the task
code it is executing. The programmer needs to be aware of the
many situations that may arise in the network and program the
responses, and this approach is not flexible at all.

The performance results of Melete include mathematical
analysis of the impact of parameters on the task code
dissemination scheme. The code size and memory
consumption of Melete was compared to Maté. The code size
of Melete is bigger than Maté even when there was only one
application. Similarly Melete exhibits higher memory
consumption than Maté. The result pertaining to dynamic
grouping show delays in the order of seconds for a motion
tracking application in an office setting.

D. Summary
Table IV illustrates the evaluation of the existing work

based on the requirements identified in section 2.4. We have
found several capable node-level virtualization solutions. In
the early-generation sensor nodes, the programming model of
choice was event-driven, as it was simple to implement, but
once its limitations were found, the thread-based approach was
used to implement more complex and concurrent tasks in
sensor nodes. Of all these works, TinyOS and Contiki have
become extremely popular and have good community support.
Contiki is now considered as a platform for the IoT [76] and
has incorporated many innovative features over the last
decade. RIOT [25] is a new work to design a capable OS to
run C/C++ applications on heterogeneous sensor platforms.

For network-level virtualization, the early work used the
concept of clusters but managing clusters itself is quite
challenging. The majority of work on cluster-based solutions
in WSNs is focused on improving routing, energy efficiency
and security. We need solutions that facilitate the creation of
application-specific clusters that adapt to the dynamics of the
network and of the monitored events. Recently overlay
solution are being used for network-level virtualization but it
is still largely unexplored territory. We have works like [54]
discussing, quite convincingly, that it is not ‘mission
impossible’ to use overlays in WSNs. Most recent research
work has focused on providing hybrid solutions for WSN
virtualization. A few recently-concluded research projects
have addressed WSN virtualization, but their solutions are
embryonic and multiple issues remain. For example, some

solutions are platform dependent, others are theoretical and at
conceptual level.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS & TUTORIALS. The content is final but
has NOT been proof-read. This is an author copy for personal record only.

19

TABLE IV
SUMMARY OF THE STATE-OF-THE-ART

Solution

Requirements

Type
Node-level

Virtualization

Network-level

Virtualization

Application

Priority

Platform

Independent

Resource

Discovery

Application to

Resource-

Constrained

Nodes

Heterogeneity

Sensor

Selection for

Application

Tasks

SenSmart [23] OS-based Yes No No Yes No Yes Yes No

RIOT [25] OS-based Yes No Yes Yes Yes Yes Yes No

PAVENET [33] OS-based Yes No Yes No No Yes No No

SenSpire [28] OS-based Yes No Yes Yes No Yes Yes No

Nano-CF [50] VM-based Yes No No Yes No Yes Yes No

UMADE [49] VM-based Yes No No No No Yes No Yes

Agilla [48] VM-based Yes No No No Yes Yes Yes No

LiteOS [32] OS-based Yes No Yes No No Yes Yes No

Squawk VM [46] VM-based Yes No Yes Yes No No No No

VMSTAR [43] VM-based Yes No Yes No No Yes No No

MANTIS [29] OS-based Yes No Yes No No Yes No No

TinyOS [30] OS-based Yes No No Yes No Yes Yes No

Contiki [34] OS-based Yes No Yes Yes No Yes Yes No

Maté [42] VM-based Yes No No No No Yes Yes No

Khan et al. [9] Overlay-based No Yes Yes Yes
Offline

publication
Yes No No

MENO [58] Vm-based No Yes – – – – – –

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS & TUTORIALS. The content is final but
has NOT been proof-read. This is an author copy for personal record only.

20

Solution

Requirements

Type
Node-level

Virtualization

Network-level

Virtualization

Application

Priority

Platform

Independent

Resource

Discovery

Application to

Resource-

Constrained

Nodes

Heterogeneity

Sensor

Selection for

Application

Tasks

IoT-VN [59] VM-based No Yes No Yes Yes Yes No No

Taynan et al [62] VM-based No Yes No No No No No No

Jayasumana et al

[19]
VM-based No Yes No Yes No Yes No No

Dilum et al [64] Cluster-based No Yes No Yes No Yes No Yes

Han et al [65] Cluster-based No Yes No Yes No Yes No Yes

Sensomax [66]
Middleware- and

cluster-based
Yes Yes No No No No No No

SenShare [70]
Middleware- and

overlay-based
Yes Yes Yes No Yes No No Yes

VITRO [10]
Hypervisor- and

VM-based
Yes Yes No Yes Yes Yes No No

Majeed et al. [68]
Middleware- and

cluster-based
Yes Yes Yes No No Yes No Predetermined

Melete [18]
VM- and Dynamic

grouping-based
Yes Yes No No Yes Yes No Yes

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

21

V. WSN VIRTUALIZATION RESEARCH PROJECTS
In this section we introduce some relevant projects that

envision the utilization of WSNs by multiple applications.
Table V lists these projects and provides their summary based
on the following characteristics.

1) Project Aim
Provides the holistic aim of the overall project. FRESnel

and VITRO are the only two projects that are aimed directly at
WSN virtualization. The remaining projects have more
extended scopes, such as smart city realization, smart health in
the context of IoT, or aim to provide a large-scale test bed for
network research.

2) Project Scope:

Indicates if a project is a part of academic or industrial
research, or is being developed as a multi-partner effort.
VITRO, Smart Santander, iCore and Butler are all European
FP7 projects involving large consortiums of industrial,
telecom and academic partners. FRESnel is a joint project
between Cambridge and Oxford Universities, UK.

3) Virtualization Level:
Indicates the type of WSN virtualization. FRESnel and

VITRO are the two projects that aim to provide both node-
and network-level virtualization. CitySense, iCore, Butler and
ViSE do not explicitly address WSN virtualization, but they
do consider the utilization of sensors by multiple applications.

4) Virtualization Type:
The true realization of WSN virtualization does not involve

any gateway node managing the virtualization-related tasks;
instead, sensor nodes themselves handle such tasks. On the
other hand the gateway-based virtualization solutions make
WSNs act as capillary networks connected to the Internet or to
other networks through a single node. It is important to
mention that the presence of a gateway node for
communication cannot be ruled out.

5) Network Devices:
Another important characteristic of these projects is the type

of devices they use in their work. CitySense, Butler and ViSE
use high-end devices. While sensors are considered, they are
usually connected to high-end PCs/nodes that compliment
them for processing, data storage, power supply and
connectivity. FRESnel and VITRO utilize the usual/normal
sensor nodes, which is more relevant to WSN virtualization.

6) Evaluation Setup:
All of the projects discussed here evaluate their

contributions using real test bed setups; however the size of
these setups varies considerably. For example, the Smart
Santander project will use around 20,000 nodes deployed over
four European cities, providing a massive platform for

research and evaluation purposes. This gigantic setup will also
be used by the iCore project. In comparison, ViSE has a test
bed of 3 nodes and Fresnel’s in-campus test bed has 35.

The ViSE and CitySense projects were not designed to
provide solutions for WSN virtualization, but they do
incorporate the important virtualization concept, i.e. to allow
multiple applications to utilize the deployed WSN
infrastructure. The Smart Santander, iCore and Butler projects
are aimed to realize the IoT, and consider sensors and devices
of different types. VITRO and FRESnel are focused on WSN
virtualization, but VITRO provides gateway-based
virtualization, which is not a true realization of WSN
virtualization. The FRESnel project however, considers the
true realization of WSN virtualization, but it provides
platform-specific solutions. Overall it is clear that the idea of
WSN virtualization is receiving considerable attention, not
only from academic quarters but also from major industrial
and telecom players.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS & TUTORIALS. The content is final but
has NOT been proof-read. This is an author copy for personal record only.

22

TABLE V
WSN VIRTUALIZATION-RELATED PROJECTS

Project
(Year)

Project Aim Project Scope
Virtualization

Level
Virtualization

Type
Network Devices Evaluation Setup

CitySense [77]
Provide city-wide test
bed for distributed &
networking research

Academic
research Network-level

Gateway-based
virtualization

Embedded PCs with Linux
acting as gateways

100+ PCs distributed over an
urban area

FRESnel [78]
(2010 - 2012)

Provide a federated
WSN framework for
multiple applications

Academic
research

Node- and
Network-level

Sensor node-
based

virtualization

iMote2 nodes using
embedded Linux

35 iMote2 nodes distributed
in an academic building

VITRO [74]
(2010 - 2013)

Develop
architectures,

algorithms to provide
VSNs.

Academic
research +
Industry

Node- and
Network-level

Gateway-based
virtualization

TelosB, IRIS, iSENSE,
xbee, TmoteSkye,
AdvanticSys kit

Simulations + 5 test bed
setups by project partners

Smart Santander [79]
(2010 - 2013)

Provide a city-wide
IoT experimentation
platform for smart
city applications

Academic
research +
Industry

Network-level Gateway-based
virtualization

Sensor nodes, IoT devices,
RFID tags, GPRS devices

About 20,000 sensors
deployed in four European

cities

iCore [80]
(2011 - 2014)

Provide a cognitive
framework consisting

of virtual objects,
composite virtual

objects & business
perspectives

Academic
research +
Industry

Abstract
representation of

sensors

Gateway-based
virtualization

Sensors, ICT devices,
everyday objects

Will utilize the Smart
Santander test bed

Butler [81]
(2011 - 2014)

Provide a secure,
pervasive, energy-
efficient & context-
aware architecture

Academic
research +
Industry

Abstract
representation of

sensors

Gateway-based
virtualization

Smart objects, mobile
devices and smart servers

Several field-trials and proof-
of-concepts are planned

ViSE [82]
(2008 - 2011)

Provide public access
to a WSN test bed

using the GENI
framework for
multiple users

Academic
research

Abstract
representation of

sensors

Gateway-based
virtualization

High-end nodes running
Linux and acting as

gateway nodes

Three nodes deployed in a
town near a forested area

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

23

VI. RESEARCH ISSUES
We identify some important research issues that need to be

addressed to provide innovative WSN virtualization solutions.

1) Advanced Node-level Virtualization
Node-level virtualization has attracted considerable attention

from the research community. In many ways, it is provided as
part of the sensor OS. Multi-threaded OSs and application-
specific virtual machines (VM), working on top of an OS, can
support the concurrent execution of application tasks. As the
trend moves towards more powerful IP-WSNs, more efforts
are required to virtualize the individual components of sensor
nodes, such as MAC and routing layers. The VITRO project
has put forth the concept [10], but there are no real
implementations to date. PAVENET OS [33] takes advantage
of capable hardware to design efficient OSs but is tied to a
single platform. To exploit the recent advances in sensor
hardware, a fresh approach like RIOT OS [25] can be taken to
come up with new and general purpose solutions. Some new
solutions provide separation between the sensor OS and the
user application tasks but we still need functions like OTA
installation/updating of new user tasks without disturbing the
existing ones. One possible solution to tackle this issue is to
design an abstraction layer that works on top of sensor OS to
provide application portability like in [83]. A modular-based
approach will work much better since it will be applicable to
heterogeneous OSs, programming languages and models.

2) Network-level Virtualization
Not much work has been done in the area of network-level

virtualization to support multiple applications over a deployed
WSN, hence there is a tremendous opportunity to make
valuable contributions. Overlay networks can provide an
efficient solution as they are robust and can work efficiently
without changes in the underlying network. Some solutions
exist like those in [54], [56] and [57] do exist, but they are still
embryonic in nature and do not consider the requirements of
multiple applications utilizing a WSN concurrently. As
multiple overlay may need to co-exist, preventing them from
interacting with each other in a harmful way remains a
challenge. Cluster-based approaches have traditionally been
used in WSN’s for improving routing, energy-efficiency,
management and security. Managing clusters in a virtualized
WSN is not trivial, however, cluster-based solutions can be
quite useful in scenarios where a deployed WSN is used to
monitor dynamic events. These solutions can also be helpful
in mobile WSNs, Robotic and Vehicular Ad hoc Networks.

3) Discovery and Publication
The discovery and publication of resources and services in

WSN is already challenging, but it becomes even more
sophisticated in virtualized WSNs. For example, it will be
interesting to find whether certain kind of relationships exist
between physical and virtual sensors and whether they can be
exploited to provide quick publication and discovery
solutions. As virtual sensors are created on-demand and

destroyed when no longer required, their publication and
discovery needs to be efficient, robust, scalable and
manageable. Discovery and publication of resources and
services on the fly are very important functions, especially in
the context of IoT. A P2P based architecture can be a solution
like [84] that does not rely on any central mechanism to
discover the services. However, no such solution exists for
virtualized WSNs. Similarly a service recommendation system
can be developed, for virtualized WSNs, which allows
context-aware discovery of resources and services. Recent
IETF service discovery protocols like CoAP resource
discovery [85], [86] and DNS-SD [87] can be used to design
efficient discovery and publication solutions in resource-
constrained environments. Moreover, new algorithms that
adapt to evolving WSN conditions and nodes’ mobility or
failures are required, to ensure service continuity.

4) Service Composition
Service composition using virtual sensor nodes is another

important research challenge. In our view, future WSN
deployments will involve multiple actors, such as WSN
providers, virtual sensor providers, service providers, third-
party application/services providers and end-user applications.
A cloud-based approach could be a solution [88]. WSN
resources could be offered as Infrastructure-as-a-Service
(IaaS) and used by Platform-as-a-Service (PaaS) to offer
services to end users. In this regard, existing projects like [79],
[80] and [81] can be used for inspiration about end user
services. Using semantics and ontologies to compose services
based on application requirements and the capabilities of
sensor nodes can provide improved solutions. It is also
important to note that the service composition may use
existing or third-party services on the fly. Location and
mapping services are typical examples of such services.

5) Sensor Node Selection and Task Assignment
The issues of sensor selection and task assignment are very

much related to each other. Selecting the right set of sensor
nodes according to the temporal and spatial requirements of
applications is crucial [21] to improving the overall Quality of
Monitoring (QoM) systems. A more detailed task assignment
problem formulation and its solutions are presented in detail in
[89], but it does not consider the possibility of multiple
applications using a single sensor node at the same time. In
[90] cost-effective market-based algorithms are used for task
allocation and resource management. But the proposed
algorithms are OS specific (Sensomax) and require more work
to determine their suitability. A QoS-aware task allocation
algorithm in [91] brings a new dimension into the sensor node
selection while satisfying QoS requirements of multiple
applications at the same time. New algorithms that not only
consider the QoS requirements of the applications but also
take into account the properties of the events being monitored
by the sensor nodes are needed to advance in this area.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

24

6) Application Task Dissemination
When new applications are being contemplated, it is not

unrealistic to assume that a new algorithm or application task
will need to be sent for the sensor node(s) to execute. Sending
the new task code (or updating an existing one) in a seamless
way, with no disruption of existing tasks, is quite a challenge.
Much of this will depend on the sensor OS and its ability to
install and update user tasks without disturbing the existing
ones or requiring the reboot of the sensor node. Another issue
is how to get the user input and program it to compile it to
generate executable code. In the context of IoT, the user may
not have technical expertise to code the required program.
There needs to be a clear separation between the WSN
infrastructure and the user. This can be achieved by having an
entity, like service provider, to allow a user to provide her
requirements in an easy manner, e.g. in a web-form. This way
only some aspects of the (re)programming a sensor nodes can
be exposed to the user. Once the input is gathered, the service
provider can send it to the physical WSN provider to generate
executable code for the selected sensor node(s) and reprogram
them. Such a system will have two benefits: one is that the
sensor nodes not able to fulfill a task, due to some reason, can
be filtered out. Second, based on previous usage patterns of
the user, a recommendation system can be devised that makes
use of the historical data to recommend and (re)program the
sensor nodes. An alternative approach would be to develop a
cloud-based PaaS solution and provide toolkits specifically
designed to develop, compile, verify, test and deploy sensor
application tasks for different sensor platforms.

7) Reference Designs and Architectures
A comprehensive virtualization platform for WSNs is

required, one that covers all aspects: data acquisition from the
sensors, end-to-end communication (including data
management and computation), as well as service composition
for end-user applications. Such a platform will allow a deeper
and complete search space exploration to find the optimal
solution for any given WSN application. Furthermore, this
complete framework will ensure that all the relevant aspects
can be modeled and evaluated comprehensively. Decentralized
architectures are required that will enable robust and
objective-based solutions depending on application
requirements like time sensitivity, QoS, and QoM. Another
important aspect is that most of the existing work focuses on
the fixed WSNs but in the context of IoT, we can expect more
and more deployments of mobile WSNs and even spontaneous
ad hoc WSNs. These ad hoc WSNs will be created when large
number of sensors communicate together to provide on-
demand services for a certain time period and then cease to
exist. Participatory sensing and crowed-based sensing, using
smart phones, are two forms of the ad hoc WSNs. There is an
early work in this area [92] that aims to utilize external sensors
with the smart phones. This is achieved by means of a sensor
virtualization module developed for the android platform. Still
we require more solutions that focus on mobile, ad hoc WSNs
and even hybrid variations.

8) New Protocols, Algorithms and Simulation Tools
As mentioned in the introduction, recently WSN

virtualization is getting attention from the research community
and we’re now seeing some new contributions in this area. For
example, in [93] a harmonized transmission protocol is
presented that combines transmissions from a sensor node
when it is being used by multiple concurrent applications.
References [94] and [95] put forth a reconfiguration scheme
and a management scheme, respectively, to manage
concurrent applications over a deployed WSN. It will be a
good idea to have a capable simulation tool to analyze and
evaluate proposed protocols and solutions, simply because
initially it may not be possible to have a sizeable WSN
deployment for such purposes. A new simulation tool is
presented in [96] which simulates multiple concurrent
applications over a WSN. While it is a good start, more effort
is required to integrate such support in already well-known
and established simulation tools.

9) WSN Virtualization Business Model & Standardization
A viable business model is required to allow broader (and

more commercial) acceptance of WSN virtualization. This can
be accomplished easily if WSN entities are decoupled into
distinct roles of WSN providers, virtual sensor providers,
service providers and third-party applications/service
providers. Allowing third-party applications will allow for the
rapid development of applications and solutions, since the
existing components will be reusable. Another benefit of such
business model is that it will pave the way for standardization
activities in this area. In our review of WSN virtualization area
we strongly felt the need for harmonization between different
protocols, data formats, encoding schemes, and consortium-
led efforts such as Sensor Web Enablement (SWE) [97].
Currently these incompatibilities act as major roadblocks for
proposing generic and open solutions.

10) Energy Efficient Solutions
Energy efficiency will remain a key research area in WSNs,

even more so when WSN virtualization is involved. While we
can safely predict that future sensor nodes will be more
capable and resourceful, energy efficient communications,
discovery, routing and applications will still be required. So
far the main focus has been on making a sensor node sleep for
maximum duration possible so that it utilizes less energy. This
strategy has worked reasonably well for simple applications
but this trend is not sustainable in emerging IoT paradigm.
Energy harvesting mechanisms need to be incorporated with
WSN platforms as main or alternative source of energy. This
will ensure that sensor nodes have a continuous power supply
in addition to their batteries. Example of energy harvesting
mechanisms are, use of ambient energy like vibrations or solar
energy to generate energy [98]. There is considerable research
work in this area [99] but commercial platforms are missing.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

25

11) Access Control, Authentication, and Accounting
Another important area is to provide a controlled access to

deployed WSN resources. In the context of the IoT, sensors
deployed by entities like city administrations will probably
allow for public access, but they will still require access
control, authentication and authorization. For example, such
deployments will also be used for monitoring or security
applications along with public applications, hence providing
access according to users will be challenging. Another aspect
is that it may not be feasible for a single authority to deploy a
WSN on a large scale. For areas where WSN deployments are
not possible, participatory sensing can be used as an
alternative. Motivating private owners to share their deployed
sensors and allow remote access is a challenge. Incentives like
tax rebates or reduced utility rates need to be devised to
encourage voluntary participation. Using a WSN deployment
for monetary benefits brings in the accounting issue – how to
charge users in accordance with service contracts.

12) WSN Virtualization Application Scenarios and Test-beds
Applications from domains such as smart cities, smart

health, smart homes, green computing and pervasive
computing can potentially use the WSN virtualization concept
for cost effective solutions. New trends like mobile WSNs,
participatory/crowd-based sensing, cloud-based remote
sensing and vehicular networks can also benefit from this
concept. The availability of test-bed setups like Smart
Santander [79] provides a massive basis for prototyping and
evaluation purposes.

VII. CONCLUSION
We have presented a detailed overview of WSN

virtualization, as well as the current state of the art. First we
categorized WSN virtualization into node-level, network-level
and hybrid virtualization, and explained them. We then
provided a critical analysis of the existing state-of-the-art in
each category and evaluated them based on a set of
requirements derived from the motivating scenarios. Several
research projects pertinent to this topic were also presented.
We outlined several important research challenges and their
possible solutions. WSN virtualization is very much relevant
in the context of the IoT, in which small-scale devices, at an
unprecedented scale, are expected to provide services to
multiple applications concurrently, but we have yet to find a
comprehensive solution that meets this challenge.

 REFERENCES
[1] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, “The Internet

of Things: The Next Technological Revolution,” Computer, vol. 46, no.
2, pp. 24–25, 2013.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol. 38, no.
4, pp. 393–422, Mar. 2002.

[3] S. Loveland, et al., “Leveraging virtualization to optimize high-
availability system configurations,” IBM Systems Journal, vol. 47, no. 4,
pp. 591–604, 2008.

[4] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: state
of the art and research challenges,” IEEE Communications Magazine,
vol. 47, no. 7, pp. 20–26, Jul. 2009.

[5] Z. J. Chong, et al., “Autonomy for Mobility on Demand,” in Intelligent
Autonomous Systems 12, S. Lee, H. Cho, K.-J. Yoon, and J. Lee, Eds.
Springer Berlin Heidelberg, 2013, pp. 671–682.

[6] G. Cardone, A. Cirri, A. Corradi, and L. Foschini, “The participact
mobile crowd sensing living lab: The testbed for smart cities,” IEEE
Communications Magazine, vol. 52, no. 10, pp. 78–85, Oct. 2014.

[7] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Communications Magazine, vol. 52, no. 8, pp. 29–35, Aug. 2014.

[8] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by Internet of Things,”
Trans. Emerging Tel. Tech., vol. 25, no. 1, pp. 81–93, Jan. 2014.

[9] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer
architecture for wireless sensor network virtualization,” in Wireless and
Mobile Networking Conference (WMNC), 2013 6th Joint IFIP, 2013,
Dubai, UAE, pp. 1–4.

[10] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, “A framework
for service provisioning in virtual sensor networks,” J Wireless Com
Network, vol. 2012, no. 1, pp. 1–19, Dec. 2012.

[11] A. Merentitis, et al., “WSN Trends: Sensor Infrastructure Virtualization
as a Driver Towards the Evolution of the Internet of Things,” presented
at the UBICOMM 2013, The Seventh International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies,
Porto, Portugal, 2013, pp. 113–118.

[12] Ramdhany, Rajiv and Coulson, Geoff. "Towards the Coexistence of
Divergent Applications on Smart City Sensing Infrastructure”
Proceedings of 4th International Workshop on Networks of Cooperating
Objects for Smart Cities 2013 (CONET/UBICITEC 2013), Philadelphia,
USA, April 8, 2013: pp.26-30

[13] E. Patouni, A. Merentitis, P. Panagiotopoulos, A. Glentis, and N.
Alonistioti, “Network Virtualisation Trends: Virtually Anything Is
Possible by Connecting the Unconnected,” in Future Networks and
Services (SDN4FNS), 2013 IEEE SDN for, 2013, pp. 1–7.

[14] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling
Smart Cloud Services Through Remote Sensing: An Internet of
Everything Enabler,” IEEE Internet of Things Journal, vol. 1, no. 3, pp.
276–288, Jun. 2014.

[15] C. Liang and F. R. Yu, “Wireless Network Virtualization: A Survey,
Some Research Issues and Challenges,” IEEE Communications Surveys
Tutorials, vol. PP, no. 99, pp. 1–1, 2014.

[16] M. M. Islam, M. M. Hassan, G.-W. Lee, and E.-N. Huh, “A Survey on
Virtualization of Wireless Sensor Networks,” Sensors, vol. 12, no. 2, pp.
2175–2207, Feb. 2012.

[17] M. M. Islam and E.-N. Huh, “Virtualization in Wireless Sensor
Network: Challenges and Opportunities,” Journal of Networks, vol. 7,
no. 3, Mar. 2012.

[18] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting
Concurrent Applications in Wireless Sensor Networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, New York, NY, USA, 2006, pp. 139–152.

[19] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual Sensor
Networks – A Resource Efficient Approach for Concurrent
Applications,” in Fourth International Conference on Information
Technology, 2007. ITNG ’07, 2007, pp. 111–115.

[20] M. Ceriotti, et al., “Monitoring Heritage Buildings with Wireless Sensor
Networks: The Torre Aquila Deployment,” in Proceedings of the 2009
International Conference on Information Processing in Sensor
Networks, Washington, DC, USA, 2009, pp. 277–288.

[21] X. Wang, J. Wang, Z. Zheng, Y. Xu, and M. Yang, “Service
Composition in Service-Oriented Wireless Sensor Networks with
Persistent Queries,” in 6th IEEE Consumer Communications and
Networking Conference, 2009. CCNC 2009, 2009, pp. 1–5.

[22] Dargie, W., Poellabauer, C., 2010. Fundamentals of Wireless Sensor
Networks: Theory and Practice. John Wiley & Sons.

[23] R. Chu, L. Gu, Y. Liu, M. Li, and X. Lu, “SenSmart: Adaptive Stack
Management for Multitasking Sensor Networks,” IEEE Transactions on
Computers, vol. 62, no. 1, pp. 137–150, Jan. 2013.

[24] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis
Diffusion for Robust Aggregation in Sensor Networks,” ACM Trans.
Sen. Netw., vol. 4, no. 2, pp. 7:1–7:40, Apr. 2008.

[25] Baccelli, Emmanuel, et al. "RIOT OS: Towards an OS for the Internet of
Things." Proc. of the 32nd IEEE INFOCOM. Poster. NJ, USA: IEEE
Press (2013).

[26] H. Will, K. Schleiser, and J. Schiller, “A real-time kernel for wireless
sensor networks employed in rescue scenarios,” in IEEE 34th

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

26

Conference on Local Computer Networks, 2009. LCN 2009, 2009, pp.
834–841.

[27] E. Baccelli, et al., “OS for the IoT - Goals, Challenges, and Solutions,
OS for the IoT - Goals, Challenges, and Solutions,” in Workshop
Interdisciplinaire sur la Sécurité Globale (WISG2013), Troyes, France,
2013, pp. 1-6.

[28] W. Dong, C. Chen, X. Liu, Y. Liu, J. Bu, and K. Zheng, “SenSpire OS:
A Predictable, Flexible, and Efficient Operating System for Wireless
Sensor Networks,” IEEE Transactions on Computers, vol. 60, no. 12,
pp. 1788–1801, Dec. 2011.

[29] S. Bhatti, J. et al, “MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms,” Mob. Netw.
Appl., vol. 10, no. 4, pp. 563–579, Aug. 2005.

[30] P. Levis, et al., “TinyOS: An Operating System for Sensor Networks,”
in Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts, Eds.
Springer Berlin Heidelberg, 2005, pp. 115–148.

[31] www.cs.colorado.edu/~rhan/sensornets.html (accessed 27/10/2014)
[32] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS Operating

System: Towards Unix-Like Abstractions for Wireless Sensor
Networks,” in International Conference on Information Processing in
Sensor Networks, 2008. IPSN ’08, 2008, pp. 233–244.

[33] S. Saruwatari, M. Suzuki, and H. Morikawa, “PAVENET OS: A
Compact Hard Real-Time Operating System for Precise Sampling in
Wireless Sensor Networks,” SICE Journal of Control, Measurement,
and System Integration, vol. 5, pp. 24–33, 2012.

[34] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, 2004,
2004, pp. 455–462.

[35] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying Event-driven Programming of Memory-constrained
Embedded Systems,” in Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems, New York, NY, USA, 2006,
pp. 29–42.

[36] D. Yazar and A. Dunkels, “Efficient Application Integration in IP-based
Sensor Networks,” in Proceedings of the First ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Buildings, New
York, NY, USA, 2009, pp. 43–48.

[37] M. Durvy, et al., “Making Sensor Networks IPv6 Ready,” in
Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems, New York, NY, USA, 2008, pp. 421–422.

[38] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power CoAP for
Contiki,” in 2011 IEEE 8th International Conference on Mobile Adhoc
and Sensor Systems (MASS), 2011, pp. 855–860.

[39] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling Large-scale
Storage in Sensor Networks with the Coffee File System,” in
Proceedings of the 2009 International Conference on Information
Processing in Sensor Networks, Washington, DC, USA, 2009, pp. 349–
360.

[40] K. Klues, et al., “TOSThreads: Thread-safe and Non-invasive
Preemption in TinyOS,” in Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, New York, NY, USA, 2009, pp.
127–140.

[41] Hui, Jonathan. "Deluge 2.0-TinyOS network programming." at
http://www.cs.berkeley.edu/jwhui/research/deluge/deluge-manual.pdf
(2005) (accessed 27/10/2014).

[42] P. Levis and D. Culler: "Maté: A tiny virtual machine for sensor
networks.” In ASPLOSX: Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, 2002, pp. 85-95.

[43] J. Koshy and R. Pandey, “VMSTAR: Synthesizing Scalable Runtime
Environments for Sensor Networks,” in Proceedings of the 3rd
International Conference on Embedded Networked Sensor Systems, New
York, NY, USA, 2005, pp. 243–254.

[44] R. Pandey and J. Wu, “BOTS: A Constraint-based Component System
for Synthesizing Scalable Software Systems,” in Proceedings of the
2006 ACM SIGPLAN/SIGBED Conference on Language, Compilers,
and Tool Support for Embedded Systems, New York, NY, USA, 2006,
pp. 189–198.

[45] J. Koshy and R. Pandey, “Remote incremental linking for energy-
efficient reprogramming of sensor networks,” in Proceedings of the
Second European Workshop on Wireless Sensor Networks, 2005, 2005,
pp. 354–365.

[46] D. Simon, et al. "Java™ on the Bare Metal of Wireless Sensor Devices:
The Squawk Java Virtual Machine,” in Proceedings of the 2nd
International Conference on Virtual Execution Environments, New
York, NY, USA, 2006, pp. 78–88.

[47] Muchow, John W. "Core J2ME technology and MIDP." Prentice Hall
PTR, 2001.

[48] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A Mobile Agent
Middleware for Self-adaptive Wireless Sensor Networks,” ACM Trans.
Auton. Adapt. Syst., vol. 4, no. 3, pp. 16:1–16:26, Jul. 2009.

[49] S. Bhattacharya, A. Saifullah, C. Lu, and G. Roman, “Multi-Application
Deployment in Shared Sensor Networks Based on Quality of
Monitoring,” in 2010 16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2010, pp. 259–268.

[50] V. Gupta, et al., “Nano-CF: A coordination framework for macro-
programming in Wireless Sensor Networks,” in 2011 8th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), 2011, pp. 467–475.

[51] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: an energy-aware
resource-centric RTOS for sensor networks,” in Real-Time Systems
Symposium, 2005. RTSS 2005. 26th IEEE International, 2005, p. 10 pp.–
265.

[52] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-Harmonized
Scheduling and Its Applicability to Energy Management,” IEEE
Transactions on Industrial Informatics, vol. 6, no. 3, pp. 265–275, Aug.
2010.

[53] A. Rowe, et al., “Sensor Andrew: Large-scale campus-wide sensing and
actuation,” IBM Journal of Research and Development, vol. 55, no. 1.2,
pp. 6:1–6:14, Jan. 2011.

[54] Ali, Muneeb, and Koen Langendoen. "A case for peer-to-peer network
overlays in sensor networks." International Workshop on Wireless
Sensor Network Architecture (WWSNA’07), 2007, pp.56-61.

[55] G. Fersi, W. Louati, and M. B. Jemaa, “Distributed Hash table-based
routing and data management in wireless sensor networks: a survey,”
Wireless Netw, vol. 19, no. 2, pp. 219–236, Feb. 2013.

[56] Luu, Hai Van, and Xueyan Tang. "Constructing rings overlay for robust
data collection in wireless sensor networks." Journal of Network and
Computer Applications 36.5 (2013): 1372-1386.

[57] A. A.-B. Al-Mamou and H. Labiod, “ScatterPastry: An Overlay Routing
Using a DHT over Wireless Sensor Networks,” in The 2007
International Conference on Intelligent Pervasive Computing, 2007.
IPC, 2007, pp. 274–279.

[58] J. Hoebeke, et al., “Managed Ecosystems of Networked Objects,”
Wireless Pers Commun, vol. 58, no. 1, pp. 125–143, May 2011.

[59] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of Things
Virtual Networks: Bringing Network Virtualization to Resource-
Constrained Devices,” in 2012 IEEE International Conference on Green
Computing and Communications (GreenCom), 2012, pp. 293–300.

[60] E. De Poorter, E. Troubleyn, I. Moerman, and P. Demeester, “IDRA: A
Flexible System Architecture for Next Generation Wireless Sensor
Networks,” Wirel. Netw., vol. 17, no. 6, pp. 1423–1440, Aug. 2011.

[61] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[62] R. Tynan, G. M. P. O’Hare, M. J. O’Grady, and C. Muldoon, “Virtual
Sensor Networks: An Embedded Agent Approach,” in International
Symposium on Parallel and Distributed Processing with Applications,
2008. ISPA ’08, 2008, pp. 926–932.

[63] C. Muldoon, G. M. P. O’Hare, and J. F. Bradley, “Towards Reflective
Mobile Agents for Resource-constrained Mobile Devices,” in
Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, New York, NY, USA, 2007, pp. 141:1–
141:3.

[64] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illangasekare,
“Cluster Tree Based Self Organization of Virtual Sensor Networks,” in
2008 IEEE GLOBECOM Workshops, 2008, pp. 1–6.

[65] Q. Han, A. P. Jayasumana, T. Illangaskare, and T. Sakaki, “A wireless
sensor network based closed-loop system for subsurface contaminant
plume monitoring,” in IEEE International Symposium on Parallel and
Distributed Processing, 2008. IPDPS 2008, 2008, pp. 1–5.

[66] M. Haghighi and D. Cliff, “Multi-agent Support for Multiple Concurrent
Applications and Dynamic Data-Gathering in Wireless Sensor
Networks,” in 2013 Seventh International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013, pp.
320–325.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

27

[67] R. B. Smith, “SPOTWorld and the Sun SPOT,” in Proceedings of the
6th International Conference on Information Processing in Sensor
Networks, New York, NY, USA, 2007, pp. 565–566.

[68] A. Majeed and T. A. Zia, “Multi-set Architecture for Multi-applications
Running on Wireless Sensor Networks,” in 2010 IEEE 24th
International Conference on Advanced Information Networking and
Applications Workshops (WAINA), 2010, pp. 299–304.

[69] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann, “Towards multi-
purpose wireless sensor networks,” in Systems Communications, 2005.
Proceedings, 2005, pp. 336–341.

[70] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare:
Transforming Sensor Networks into Multi-application Sensing
Infrastructures,” in Wireless Sensor Networks, G. P. Picco and W.
Heinzelman, Eds. Springer Berlin Heidelberg, 2012, pp. 65–81.

[71] J. W. Hui and D. Culler, “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale,” in
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, New York, NY, USA, 2004, pp. 81–94.

[72] J. Lu, et al., “The Smart Thermostat: Using Occupancy Sensors to Save
Energy in Homes,” in Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems, New York, NY, USA, 2010, pp.
211–224.

[73] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection Tree Protocol,” in Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, New York, NY, USA, 2009,
pp. 1–14.

[74] M. Navarro, M. Antonucci, L. Sarakis, and T. Zahariadis, “VITRO
Architecture: Bringing Virtualization to WSN World,” in 2011 IEEE 8th
International Conference on Mobile Adhoc and Sensor Systems (MASS),
2011, pp. 831–836.

[75] T. Zahariadis, P. Trakadas, H. C. Leligou, S. Maniatis, and P. Karkazis,
“A Novel Trust-Aware Geographical Routing Scheme for Wireless
Sensor Networks,” Wireless Pers Commun, vol. 69, no. 2, pp. 805–826,
Mar. 2013.

[76] P. Levis, “Experiences from a Decade of TinyOS Development,” in
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, Berkeley, CA, USA, 2012, pp. 207–220.

[77] R. N. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain, J.
Bers, and M. Welsh, “CitySense: An Urban-Scale Wireless Sensor
Network and Testbed,” in 2008 IEEE Conference on Technologies for
Homeland Security, 2008, pp. 583–588.

[78] C. Efstratiou, I. Leontiadis, C. Mascolo, and J. Crowcroft, “A Shared
Sensor Network Infrastructure,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, New York, NY,
USA, 2010, pp. 367–368.

[79] L. Sanchez, et al., “SmartSantander: IoT experimentation over a smart
city testbed,” Computer Networks, vol. 61, pp. 217–238, Mar. 2014.

[80] F. Berkers, et al., “Constructing a multi-sided business model for a smart
horizontal IoT service platform,” in 2013 17th International Conference
on Intelligence in Next Generation Networks (ICIN), 2013, pp. 126–132.

[81] A. Andrushevich, B. Copigneaux, R. Kistler, A. Kurbatski, F. L. Gall,
and A. Klapproth, “Leveraging Multi-domain Links via the Internet of
Things,” in Internet of Things, Smart Spaces, and Next Generation
Networking, S. Balandin, S. Andreev, and Y. Koucheryavy, Eds.
Springer Berlin Heidelberg, 2013, pp. 13–24.

[82] Irwin, David, et al. "Towards a virtualized sensing environment," in
Testbeds and Research Infrastructures. Development of Networks and
Communities. Springer Berlin Heidelberg, 2011, pp. 133-142.

[83] R. S. Oliver, I. Shcherbakov, and G. Fohler, “An Operating System
Abstraction Layer for Portable Applications in Wireless Sensor

Networks,” in Proceedings of the 2010 ACM Symposium on Applied
Computing, New York, NY, USA, 2010, pp. 742–748.

[84] J. Mäenpää, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP
for wide area sensor and actuator networking,” J Wireless Com Network,
vol. 2012, no. 1, pp. 1–22, Dec. 2012.

[85] Z. Shelby, “Embedded web services,” IEEE Wireless Communications,
vol. 17, no. 6, pp. 52–57, Dec. 2010.

[86] Shelby, Z., et al. "Constrained Application Protocol (CoAP), draft-ietf-
core-coap-18", work in progress. The Internet Engineering Task Force–
IETF, June (2013).

[87] Cheshire, S. and M. Krochmal, "Multicast DNS", IETF RFC 6762,
February 2013.

[88] R. Glitho, M. Morrow, and P. Polakos, “A cloud based — Architecture
for cost-efficient applications and services provisioning in wireless
sensor networks,” in Wireless and Mobile Networking Conference
(WMNC), 2013 6th Joint IFIP, 2013, pp. 1–4.

[89] H. Rowaihy, M. P. Johnson, O. Liu, A. Bar-Noy, T. Brown, and T. L.
Porta, “Sensor-mission Assignment in Wireless Sensor Networks,” ACM
Trans. Sen. Netw., vol. 6, no. 4, pp. 36:1–36:33, Jul. 2010.

[90] M. Haghighi, “Market-Based Resource Allocation for Energy-Efficient
Execution of Multiple Concurrent Applications in Wireless Sensor
Networks,” in Mobile, Ubiquitous, and Intelligent Computing, Jong H.
Park, H. Adeli, N. Park, and I. Woungang, Eds. Springer Berlin
Heidelberg, 2014, pp. 173–178.

[91] W. Li, F. C. Delicato, P. F. Pires, and A. Y. Zomaya, “Energy-efficient
task allocation with quality of service provisioning for concurrent
applications in multi-functional wireless sensor network systems,”
Concurrency Computat.: Pract. Exper., vol. 26, no. 11, pp. 1869–1888,
Aug. 2014.7

[92] J. Ko, B.-B. Lee, S. G. Hong, and N. Kim, “Poster Abstract: Virtualizing
External Wireless Sensors for Designing Personalized Smartphone
Services,” in Proceedings of the 12th International Conference on
Information Processing in Sensor Networks, New York, NY, USA,
2013, pp. 353–354.

[93] V. Gupta, N. Pereira, E. Tovar, and R. (Raj) Rajkumar, “Poster Abstract:
A Harmony of Sensors: Achieving Determinism in Multi-application
Sensor Networks,” in Proceedings of the 13th International Symposium
on Information Processing in Sensor Networks, Piscataway, NJ, USA,
2014, pp. 299–300.

[94] C.-M. Hsieh, Z. Wang, and J. Henkel, “DANCE: Distributed
Application-aware Node Configuration Engine in Shared
Reconfigurable Sensor Networks,” in Proceedings of the Conference on
Design, Automation and Test in Europe, San Jose, CA, USA, 2013, pp.
839–842.

[95] T. M. Cao, B. Bellata, and M. Oliver, “Design of a generic management
system for wireless sensor networks,” Ad Hoc Networks, vol. 20, pp. 16–
35, Sep. 2014.

[96] Haghighi, Mo. "An Agent-based Multi-model Tool for Simulating
Multiple Concurrent Applications in WSNs." Journal of Advances in
Computer Networks (JACN), 5th International Conference on
Communication Software and Networks, Malaysia (June 2013). 2013.

[97] C. Reed, et al. "Ogc® sensor web enablement:overview and high level
achhitecture.,” in 2007 IEEE Autotestcon, 2007, pp. 372–380.

[98] E. Gelenbe, D. Gesbert, D. Gunduz, H. Kulah, and E. Uysal-Biyikoglu,
“Energy harvesting communication networks: Optimization and
demonstration (the E-CROPS project),” in 2013 24th Tyrrhenian
International Workshop on Digital Communications - Green ICT
(TIWDC), 2013, pp. 1–6.

[99] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes:
Survey and Implications,” IEEE Communications Surveys Tutorials, vol.
13, no. 3, pp. 443–461, Sep. 2011.

This paper has been accepted for publication in forthcoming issue of IEEE COMMUNICATION SURVEYS &
TUTORIALS. The content is final but has NOT been proof-read. This is an author copy for personal record only.

28

IMRAN KHAN (imran@ieee.org) received his BCS degree in Computer
Science from COMSATS Institute of IT, Pakistan in 2005 and M.S.
degree in Multimedia and Communication from M.A. Jinnah University,
Pakistan in 2009. Currently he is a Ph.D. research student at Institut
Mines-Télécom, Télécom SudParis jointly with Paris VI (UPMC). He is
also a collaborating researcher at Concordia University, Montreal
working on a CISCO project. In past he worked on projects funded by
ISOC and ITEA2. He is student member of IEEE. His research interests
are virtualization, cloud computing, wireless sensor networks, Internet of
Thing (IoT), and M2M communications.

FATNA BELQASMI (fatna.belqasmi@zu.ac.ae) holds a Ph.D. and an M.Sc.
degree in electrical and computer engineering from Concordia
University, Canada. She is current working as Assistant Professor at
Zayed University Abu Dhabi, UAE. In the past, she worked as a
research associate at Concordia University, Canada and as a researcher
at Ericsson Canada. She was part of the IST Ambient Network project (a
research project sponsored by the European Commission within the
Sixth Framework Programme -FP6-). She worked as an R&D engineer
for Maroc Telecom in Morocco. Her research interests include next
generation networks, service engineering, distributed systems, and
networking technologies for emerging economies.

ROCH GLITHO [SM] (http://users.encs.concordia.ca/~glitho/) holds a Ph.D.
(Tekn. Dr.) in tele-informatics (Royal Institute of Technology,
Stockholm, Sweden) and M.Sc. degrees in business economics
(University of Grenoble, France), pure mathematics (University Geneva,
Switzerland), and computer science (University of Geneva). He works in
Montreal, Canada, as an associate professor of networking and
telecommunications at the Concordia Institute of Information Systems
Engineering (CIISE) where he leads the telecommunication service
engineering (TSE) research laboratory
(.http://users.encs.concordia.ca/~tse/). In the past he has worked in
industry for almost a quarter of a century and has held several senior
technical positions at LM Ericsson in Sweden and Canada (e.g. expert,
principal engineer, senior specialist). His industrial experience includes
research, international standards setting (e.g. contributions to ITU-T,
ETSI, TMF, ANSI, TIA, and 3GPP), product management, project
management, systems engineering and software/firmware design. In the
past he has served as IEEE Communications Society distinguished
lecturer, Editor-In-Chief of IEEE Communications Magazine and
Editor-In-Chief of IEEE Communications Surveys & Tutorials. His
research areas are: virtualization and cloud computing; Machine-to-
Machine communications (M2M) and Internet of Things; Distributed
systems (e.g. SOAP Based – Web Services, RESTful Web Services);
Rural communications and networking technologies for emerging
economies.

NOEL CRESPI (noel.crespi@mines-telecom.fr) holds a Master’s from the
Universities of Orsay and Kent, a diplome d’ingénieur from Telecom
ParisTech, and a Ph.D. and a Habilitation from Paris VI University. He
worked from 1993 in CLIP, Bouygues Telecom, France Telecom R&D
in 1995, and Nortel Networks in 1999. He joined Institut Mines-
Télécom in 2002 and is currently professor and program director,
leading the Service Architecture Laboratory. He is appointed as
coordinator for the standardization activities in ETSI and 3GPP. He is
also a visiting professor at the Asian Institute of Technology and is on
the four-person Scientific Advisory Board of FTW, Austria. His current
research interests are in service architectures, P2P service overlays,
future Internet, and Web-NGN convergence. He is the author/co-author
of more than 230 papers and contributions in standardization.

MONIQUE MORROW (mmorrow@cisco.com) holds the title of CTO
Cisco Services. Ms. Morrow’s focus is in developing strategic
technology and business architectures for Cisco customers and partners.
With over 13 years at Cisco, Monique has made significant contributions
in a wide range of roles, from Customer Advocacy to Corporate
Consulting Engineering. With particular emphasis on the Service
Provider segment, her experience includes roles in the field (Asia-
Pacific) where she undertook the goal of building a strong technology
team, as well as identifying and grooming a successor to assure a smooth
transition and continued excellence. Monique has consistently shown her
talent for forward thinking and risk taking in exploring market
opportunities for Cisco. She was an early visionary in the realm of

MPLS as a technology service enabler, and she was one of the leaders in
developing new business opportunities for Cisco in the Service Provider
segment, SP NGN. Monique holds 3 patents, and has an additional nine
patent submissions filed with US Patent Office. Ms. Morrow is the co-
author of several books, and has authored numerous articles. She also
maintains several technology blogs, and is a major contributor to Cisco’s
Technology Radar, having achieved Gold Medalist Hall of Fame status
for her contributions. Monique is also very active in industry
associations. She is a new member of the Strategic Advisory Board for
the School of Computer Science at North Carolina State University.
Monique is particularly passionate about Girls in ICT and has been
active at the ITU on this topic - presenting at the EU Parliament in April
of 2013 as an advocate for Cisco. Within the Office of the CTO, first as
an individual contributor, and now as CTO, she has built a strong
leadership team, and she continues to drive Cisco’s globalization and
country strategies.

PAUL POLAKOS (ppolakos@cisco.com) is currently a Cisco Fellow and
member of the Mobility CTO team at Cisco Systems focusing on
emerging technologies for future Mobility systems. Prior to joining
Cisco, Paul was Senior Director of Wireless Networking Research at
Bell Labs, Alcatel-Lucent in Murray Hill, NJ and Paris, France. During
his 28 years at Bell Labs he worked on a broad variety of topics in
Physics and in Wireless Networking Research including the flat-IP
cellular network architecture, the Base Station Router, femtocells,
intelligent antennas and MIMO, radio and modem algorithms and
ASICSs, autonomic networks and dynamic network optimization. Prior
to joining Bell Labs, he was a member of the research staff at the Max-
Planck Institute for Physics and Astrophysics (Munich) and visiting
scientist at CERN and Fermilab. He holds BS, MS, and Ph.D. degrees
in Physics from Rensselaer Polytechnic Institute and the University of
Arizona, is a Bell Labs and Cisco Fellow, and author of more than 50
publications and 30 patents.

