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Abstract

The converse of Fortin’s Lemma in Banach spaces is established in this Note.
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1. Introduction

Let V and W be two complex Banach spaces equipped with the norms ‖·‖V and ‖·‖W , respectively.
We adopt the convention that dual spaces are denoted with primes and are composed of antilinear forms;
complex conjugates are denoted by an overline. Let a be a sesquilinear form on V ×W (linear w.r.t. its
first argument and antilinear w.r.t. its second argument). We assume that a is bounded, i.e.,

‖a‖ := sup
v∈V

sup
w∈W

|a(v, w)|

‖v‖V ‖w‖W
< ∞, (1)

and that the following inf-sup condition holds:

α := inf
v∈V

sup
w∈W

|a(v, w)|

‖v‖V ‖w‖W
> 0. (2)

Here and in what follows, arguments in infima and suprema are implicitly assumed to be nonzero.
Let Vh ⊂ V and Wh ⊂ W be two finite-dimensional subspaces equipped with the norms of V and W ,

respectively. A question of fundamental importance is to assert the following discrete inf-sup condition:

α̂ := inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|

‖vh‖V ‖wh‖W
> 0. (3)
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The aim of this Note is to prove the following result.

Theorem 1 (Fortin’s Lemma with converse) Under the above assumptions, consider the following
two statements:

(i) There exists a map Πh : W → Wh and a real number γΠ > 0 such that a(vh,Πhw − w) = 0, for all
(vh, w) ∈ Vh ×W , and γΠ‖Πhw‖W ≤ ‖w‖W for all w ∈ W .

(ii) The discrete inf-sup condition (3) holds.

Then, (i) ⇒ (ii) with α̂ = γΠα. Conversely, (ii) ⇒ (i) with γΠ = α̂
‖a‖ , and Πh can be constructed to be

idempotent. Moreover, Πh can be made linear if W is a Hilbert space.
The statement (i) ⇒ (ii) in Theorem 1 is classical and is known in the literature as Fortin’s Lemma,

see [5] and [1, Prop. 5.4.3]. It provides an effective tool to prove the discrete inf-sup condition (3) by
constructing explicitly a Fortin operator Πh. We briefly outline a proof that (i) ⇒ (ii) for completeness.
Assuming (i), we have

sup
wh∈Wh

|a(vh, wh)|

‖wh‖W
≥ sup

w∈W

|a(vh,Πhw)|

‖Πhw‖W
= sup

w∈W

|a(vh, w)|

‖Πhw‖W
≥ γΠ sup

w∈W

|a(vh, w)|

‖w‖W
≥ γΠα ‖vh‖V ,

since a satisfies (2) and Vh ⊂ V . This proves (ii) with α̂ = γΠα.
The converse (ii) ⇒ (i) is of independent theoretical interest and is the main object of this Note.

This property is useful when it is easier to prove the discrete inf-sup condition directly rather than
constructing a Fortin operator. Another application of current interest is the analysis framework for
discontinuous Petrov–Galerkin methods (dPG) recently proposed in [3] which includes the existence of a
Fortin operator among its key assumptions. Incidentally, we observe that there is a gap in the stability

constant γΠ between the direct and converse statements, since the ratio of the two is equal to ‖a‖
α

(which
is independent of the spaces Vh and Wh).

2. Proof of Theorem 1

Assume that the discrete inf-sup condition (3) holds. Let Ah : Vh → W ′
h be the operator defined by

〈Ahvh, wh〉W ′

h
,Wh

:= a(vh, wh). Identifying V ′′
h with Vh and W ′′

h with Wh (since these spaces are finite-
dimensional), we consider the linear map A∗

h : Wh → V ′
h. Our goal is to construct a right-inverse map

RA∗

h
: V ′

h → Wh (possibly nonlinear) such that, for all θh ∈ V ′
h, A

∗
h(RA∗

h
(θh)) = θh and α̂‖RA∗

h
(θh)‖W ≤

‖θh‖V ′

h
. Indeed, if such a map exists, we can consider the linear map Θ : W → V ′

h such that, for all

w ∈ W , 〈Θ(w), vh〉V ′

h
,Vh

:= a(vh, w) for all vh ∈ Vh. Then defining Πh = RA∗

h
◦Θ : W → Wh yields

a(vh,Πh(w)) = 〈Ahvh, RA∗

h
(Θ(w))〉W ′

h
,Wh

= 〈A∗
h(RA∗

h
(Θ(w))), vh〉V ′

h
,Vh

= 〈Θ(w), vh〉V ′

h
,Vh

= a(vh, w),

which proves that a(vh,Πh(w)− w) = 0 for all w ∈ W . Moreover,

α̂‖Πh(w)‖W = α̂‖RA∗

h
(Θ(w))‖W ≤ ‖Θ(w)‖V ′

h

≤ ‖a‖‖w‖W ,

which proves that α̂
‖a‖‖Πh(w)‖W ≤ ‖w‖W . In addition, we observe that

〈Θ(RA∗

h
(θh)), vh〉V ′

h
,Vh

= 〈Ahvh, RA∗

h
(θh)〉W ′

h
,Wh

= 〈A∗
h(RA∗

h
(θh)), vh〉V ′

h
,Vh

= 〈θh, vh〉V ′

h
,Vh

,

for all vh ∈ Vh, which proves that Θ(RA∗

h
(θh)) = θh for all θh ∈ V ′

h. As a result, Πh(Πh(w)) = RA∗

h
(Θ ◦

RA∗

h
(Θ(w))) = RA∗

h
(Θ(w)) = Πh(w), i.e., Πh is idempotent.
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It remains to build the right-inverse map RA∗

h
to complete the proof. We can rewrite (3) as follows:

α̂ = inf
vh∈Vh

sup
wh∈Wh

|〈Ahvh, wh〉W ′

h
,Wh

|

‖vh‖V ‖wh‖W
> 0.

Let us assume first that W is a Hilbert space. Let Kh be the orthogonal complement of ker(A∗
h) in Wh, i.e.,

Wh = Kh⊕ker(A∗
h). Observing that A∗

h : Kh → V ′
h is bijective, we set RA∗

h
= (A∗

h|Kh
)−1 : V ′

h → Kh ⊂ Wh.

Then A∗
hRA∗

h
θh = θh for all θh ∈ V ′

h, by definition, and

α̂ = inf
vh∈Vh

sup
wh∈Wh

|〈Ahvh, wh〉W ′

h
,Wh

|

‖vh‖V ‖wh‖W
= inf

wh∈Wh

sup
vh∈Vh

|〈Ahvh, wh〉W ′

h
,Wh

|

‖vh‖V ‖wh‖W

≤ inf
wh∈Kh

sup
vh∈Vh

|〈Ahvh, wh〉W ′

h
,Wh

|

‖vh‖V ‖wh‖W
= inf

θh∈V ′

h

sup
vh∈Vh

|〈Ahvh, RA∗

h
θh〉W ′

h
,Wh

|

‖vh‖V ‖RA∗

h
θh‖W

= inf
θh∈V ′

h

sup
vh∈Vh

|〈A∗
hRA∗

h
θh, vh〉V ′

h
,Vh

|

‖vh‖V ‖RA∗

h
θh‖W

= inf
θh∈V ′

h

‖θh‖V ′

h

‖RA∗

h
θh‖W

,

where the first equality results from Lemma 2 below (this lemma provides an abstract counterpart of the
fact that the singular values of a square matrix and its transpose coincide; this algebraic result could be
invoked here directly). This implies that α̂‖RA∗

h
‖W ≤ ‖θh‖V ′

h

for all θh ∈ V ′
h. Hence RA∗

h
has the desired

properties; note that RA∗

h
is linear.

In the more general setting of Banach spaces, we set Y := Wh, Z := V ′
h, and B := A∗

h. Identifying A∗∗
h

with Ah, we obtain

α̂ = inf
z′∈Z′

sup
y∈Y

|〈B∗z′, y〉Y ′,Y |

‖z′‖Z′‖y‖Y
> 0.

We now apply Lemma 4 below and infer that there exists a right-inverse map RA∗

h
: V ′

h → Wh with the
desired properties.

Remark 1 (Linearity and uniform stability) Assume that we have at hand a sequence of finite-dimensional
subspaces {Vh}h∈H, {Wh}h∈H. Assume the existence of a decomposition Wh = ker(A∗

h)⊕Kh that is uni-
formly stable with respect to h ∈ H, i.e., there is κ > 0, independent of h ∈ H, such that the induced
projector πKh

: Wh → Kh satisfies κ‖πKh
wh‖W ≤ ‖wh‖W for all wh ∈ Wh. This property holds in

the Hilbertian setting with κ = 1. Then, even for Banach spaces, one can use the reasoning above for
Hilbert spaces to build a linear operator Πh that is uniformly bounded; the only difference is the bound
‖RA∗

h
(θh)‖W ≤ (κα̂)−1‖θh‖V ′

h

leading to γΠ = κα̂
‖a‖ .

3. Operators in Banach spaces

Let Y and Z be two complex Banach spaces equipped with the norms ‖·‖Y and ‖·‖Z , respectively. Let
B : Y → Z be a bounded linear map.

Lemma 2 (Inf-sup) Assume that B is bijective and that Y is reflexive. Then

inf
y∈Y

sup
z′∈Z′

|〈z′, By〉Z′,Z |

‖z′‖Z′‖y‖Y
= inf

z′∈Z′

sup
y∈Y

|〈z′, By〉Z′,Z |

‖z′‖Z′‖y‖Y
. (4)

Proof Denote by l and r the left- and right-hand side of (4), respectively. The left-hand side being
equal to l means that l is the largest number such that ‖By‖Z ≥ l ‖y‖Y for all y in Y . Let z′ ∈ Z ′ and
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z ∈ Z. Since B is surjective, there is yz ∈ Y so that Byz = z and the previous statement regarding l

implies that l ‖yz‖Y ≤ ‖z‖Z . This in turn implies that

‖z′‖Z′ = sup
z∈Z

|〈z′, z〉Z′,Z |

‖w‖Z
= sup

z∈Z

|〈w′, Byz〉Z′,Z |

‖z‖Z
= sup

z∈Z

|〈B∗w′, yz〉Y ′,Y |

‖z‖Z

≤ ‖B∗z′‖Y ′ sup
z∈Z

‖yz‖Y
‖z‖Z

≤
1

l
‖B∗z′‖Y ′ ,

which implies l ≤ r. That r ≤ l is proved similarly by working with Z ′ in lieu of Y , Y ′ in lieu of Z and
B∗ in lieu of B (which is also surjective). We infer that

inf
z′∈Z′

sup
y′′∈Y ′′

〈y′′, B∗z′〉Y ′′,Y ′

‖y′′‖Y ′′‖z′‖Z′

≤ inf
y′′∈Y ′′

sup
z′∈Z′

〈y′′, B∗z′〉Y ′′,Y ′

‖y′′‖Y ′′‖z′‖Z′

,

and we conclude using the reflexivity of Y . �

The following result is a consequence of Banach’s Open Mapping and Closed Range Theorems, see,
e.g., [4, Lem. A.36 & A.40].

Lemma 3 (Surjectivity) The following three statements are equivalent:

(i) B : Y → Z is surjective.

(ii) B∗ : Z ′ → Y ′ is injective and im(B∗) is closed in Y ′.

(iii) The following holds:

β := inf
z′∈Z′

sup
y∈Y

〈B∗z′, y〉Y ′,Y

‖z′‖Z′‖y‖Y
> 0. (5)

Assume that B is surjective, i.e., the inf-sup condition (5) holds. We now show that it is possible to
construct a right-inverse map of B and to control its norm by the inf-sup constant β.

Lemma 4 (Right inverse) Assume that (5) holds and that Y is reflexive. Then there is a right-inverse
map RB : Z → Y such that

∀z ∈ Z, B(RB(z)) = z and β‖RB(z)‖Y ≤ ‖z‖Z . (6)

Moreover, it is possible to construct a linear map RB if Y is a Hilbert space.

Proof This result can be found in [4, Lem. A.42]; for completeness, we present a proof. The inf-sup
condition (5) implies that B∗ is injective (see Lemma 3(ii)). Let us set H := im(B∗) ⊂ Y ′ equipped with
the norm of Y ′. Let RB∗ : H → Z ′ be such that, for all y′ ∈ H, B∗(RB∗(y′)) = y′. B∗ being injective,
RB∗ is uniquely defined and is a linear map; notice also that RB∗(B∗(z′)) = z′ for all z′ ∈ Z ′ since
RB∗(B∗(z′)) − z′ is in ker(B∗) = {0}. Moreover, the inf-sup condition (5) implies that ‖RB∗(y′)‖Z′ ≤
β−1‖y′‖Y ′ . We next define the linear map φ : Z → H′ such that, for all z ∈ Z, 〈φ(z), y′〉H′,H =

〈RB∗(y′), z〉Z′,Z for all y′ ∈ H. We infer that

|〈φ(z), y′〉H′,H| ≤ ‖RB∗(y′)‖Z′‖z‖Z ≤β−1‖y′‖Y ′‖z‖Z .

This means that φ(z) is bounded on H ⊂ Y ′ with ‖φ(z)‖H′ ≤ β−1‖z‖Z . Owing to the Hahn–Banach
Theorem in complex Banach spaces (see [2, Prop. 11.23]), φ(z) can be extended to Y ′ with the same
norm. Let E(φ(z)) ∈ Y ′′ be the extension in question with ‖E(φ(z))‖Y ′′ ≤ β−1‖z‖Z . Since Y is reflexive,
the canonical isometry JY : Y → Y ′′ is a linear isomorphism. Let us set RB(z) := J−1

Y (E(φ(z))); notice
that JY (RB(z)) = E(φ(z)). Then, the following holds for all z′ ∈ Z ′:

〈z′, B(RB(z))〉Z′,Z = 〈B∗z′, RB(z)〉Y ′,Y = 〈JY (RB(z)), B∗z′〉Y ′′,Y ′ = 〈E(φ(z)), B∗z′〉Y ′′,Y ′

= 〈φ(z), B∗z′〉H′,H = 〈RB∗(B∗z′), z〉Z′,Z = 〈z′, z〉Z′,Z ,
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showing that B(RB(z)) = z. Moreover, ‖RB(z)‖Y = ‖JY (RB(z))‖Y ′′ = ‖E(φ(z))‖Y ′′ = ‖φ(z)‖H′ ≤
β−1‖z‖Z , showing that (6) holds. In conclusion, RB = J−1

Y ◦ E ◦ φ, where the first and third maps are
linear. If Y is a Hilbert space, then the extension map E is also linear; it suffices to extend linear forms
on H by zero on the orthogonal complement of H in Y ′. �
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