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1 Abstract

The present paper describes the energy analysis of a regenerative vapour power
system.
The regenerative steam turbines based on the Rankine cycle and comprised of
vapour extractions have been used industrially since the beginning of the 20th
century, particularly regarding the processes of electrical production.
After having performed worked in the first stages of the turbine, part of the
vapour is directed toward a regenerative exchanger and heats feedwater coming
from the condenser. This process is known as regeneration, and the heat ex-
changer where the heat is transferred from steam is called a regenerator (or a
feedwater heater).
The profit in the output brought by regenerative rakings is primarily enabled
by the lack of exchange of the tapped vapour reheating water with the low-
temperature reservoir. The economic optimum is often fixed at seven extrac-
tions.
One knows the Carnot relation, which is the best possible theoretical yield of a
dual-temperature cycle; in a Carnot cycle, one makes the assumption that both
compressions and expansions are isentropic.
This article studies an ideal theoretical machine comprised of vapour extractions
in which each cycle partial of tapped vapour obeys these same compressions and
isentropic expansions.
Keywords: thermodynamic - Carnot factor - Rankine Cycle – power plant -
energy - efficiency - entropy - second law analysis- irreversibility.

2 Introduction

The work output is maximised when the process between the two specified
states is executed in a reversible manner. However, according to the second
law of thermodynamics, such a reversible process is not possible in practice. A
system delivers the maximum possible work as it undergoes a reversible process
from the specified initial state to the state of its environment, that is, the dead
state.
The study of thermodynamic cycles applied to power stations is of great im-
portance due to the increasing energy consumption, the opening of electricity
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markets and the increasingly strict environmental restrictions (specifically re-
garding the carbon dioxide emissions issue). Power plants that use steam as
their working fluid operate on the basis of the Rankine cycle. The first stage in
designing these power plants is performing the thermodynamic analysis of the
Rankine cycle.
Many industries use steam based thermodynamic cycles. Water steam is gener-
ated in a boiler, which brings the steam to a high pressure and a high tempera-
ture. The steam expands in a turbine to produce work. The steam then passes
through a condenser. In this cycle, referred to as the Rankine or Hirn cycle, the
heat referred to as ”waste” is the heat exchanged in the condenser.
A regenerative cycle is a cycle in which part of the waste heat is used for heating
the heat-transfer fluid. Since the early 20th century, steam turbines have been
most frequently used in regenerative cycles, e.g., in thermal and nuclear power
plants. These steam engines are equipped with five to seven steam extractions.
Part of the steam that performed work in the turbine is drawn off for use in
heating the water. Regeneration or the heating up of the feedwater by the steam
extracted from the turbine has a marked effect on the cycle efficiency.
The mass of steam generated for the given flow rate of flue gases is determined
by the energy balance. In fact, the drawn-off steam is proportional to the flow
of water to be heated to conserve both mass and energy.

Figure 1- diagram of a regenerative steam extraction cycle.

3 Simple Rankine cycle

3.1 Real Cycle.

The thermodynamics first principle stipulates that over a cycle, W + Q = 0.

W +Q = 0 (1)
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−W +QH −QC = 0 (2)

QH −QC = W (3)

Where,
QH = mass enthalpy of the high-temperature reservoir.
QC = mass enthalpy of the low-temperature reservoir.
The transferred energy is equal to the differential specific enthalpy multiplied
by the fluid mass

E = m×∆h (4)

The energy efficiency of the engine power is defined as

η =
|W |

QH
(5)

The efficiency is rewritten using (1), (3) and (5) as follows:

η =
QH −QC

QH
(6)

The following is deduced from (4) and (6):

QH = m(hHS − hCW ) (7)

QC = m(hCS − hCW ) (8)

Where:
m = fluid mass.
hHS= specific enthalpy of the hot vapour to the admission of the turbine.
hCW= specific enthalpy in liquid form.
hCS= specific enthalpy of the cold vapour to the exhaust of the turbine.
The cycle performance is deduced from (5), (6), (7) and (8) as

η =
m(hHS − hCW )−m(hCS − hCW )

m(hHS − hCW )
(9)
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Figure 2- The real Rankine cycle (shown in red).
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3.2 Ideal Carnot cycle

Let us consider now that the cycle is performed with ideally isentropic compres-
sions and isentropic expansions.
The heat exchanged with the high-temperature reservoir is equal to

QH =

∫ TH

0

ds = mTH(sCS − sCW ) (10)

Where
TH = temperature of the high-temperature reservoir.
sCS = cold vapour specific entropy to the exhaust of the turbine.
sCW = cold condensate water specific entropy.

5



Figure 3 The real cycle is represented in red. The coloured surface
corresponds to the total energy of a high-temperature reservoir that
would be necessary if the cycle obeyed the assumptions of isentropic
compressions and isentropic expansions (10).
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The heat exchanged with the low-temperature reservoir is equal to

QC =

∫ TC

0

ds = mTC(sCS − sCW ) (11)

Where
TC= temperature of the low-temperature reservoir
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Figure 4 – The Real cycle is represented in red. The coloured surface
corresponds to the total energy of low-temperature reservoir that
would be necessary if the cycle obeyed the assumptions of isentropic
compressions and expansions (11).
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The cycle efficiency is deduced from (6), (10) and (11) as

η =
mTH(sCS − sCW )−mTC(sCS − sCW )

mTH(sCS − sCW )
(12)

which is equal to the Carnot factor.

η =
TH − TC

TH
= 1−

TC

Th
(13)

4 Thermodynamics analysis of steam power cy-

cle with one feed waterheater.

4.1 Real cycle with one feedwater heater.

We study here the evaluation of the output of a cycle comprised of only 1 steam
extraction
To determine the output of the cycle comprising an extraction, we separate this
cycle into 2 partial cycles.
The heat of the hot reservoir in the cycle is equal to the sum of the heat of the
hot reservoir of the principal cycle and the heat of hot reservoir of the cycle
partial of the extraction vapour:
The heat of hot reservoir of the principal cycle is equal to (7).
The heat of hot reservoir of the cycle partial of the extraction vapour is equal
to

QHEX = mex(hHS − hEXW ) (14)

Where
QHEX = enthalpy of the hot reservoir of the cycle partial of extraction.
mex = extraction vapour mass.
hEXW = extracted steam specific enthalpy in liquid form.
One form of the deduced total heat from the hot reservoir:

QH = m(hHS − hCW ) +mex(hHS − hEXW ) (15)

Where
m = vapour mass exchanging with the low-temperature reservoir in the con-
denser
The heat of the low-temperature reservoir in the cycle is equal to the sum of
the heat of the low-temperature reservoir of the principal cycle and the heat of
the low-temperature reservoir of the partial cycle of the tapped vapour:
The heat of low-temperature reservoir of the principal cycle is equal to (8)

QC = m(hCS − hCW )

The heat of low-temperature reservoir of the cycle partial of the tapped vapour
is equal to:

QCEX = mex(hEXS − hEXW ) (16)
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Where
QCEX = enthalpy of the low-temperature reservoir of the partial cycle of ex-
traction
hEXS = the mass vapour enthalpy harnessed by the extraction side.
One form of the deduced total heat from the low-temperature reservoir:

QC = [m (hCS − hCW ) +mex(hEXS − hEXW )] (17)

The cycle efficiency is deduced from (6), (15) and (17)

η =
[m(hHS − hCW ) +mex(hHS − hEXW )]− [m (hCS − hCW ) +mex(hEXS − hEXW )]

m(hHS − hCW ) +mex(hHS − hEXW )
(18)

The output of a regenerative cycle comprising an extraction is clearly higher
than that of a non-regenerative simple cycle. It is enough to compare the ex-
pressions of the output in (18) and in (9).
The mass of the steam generated for the given flow rate of flue gases, mex, is
obtained from the energy balance.
Heat gained by the steam = Heat lost by the flue gases.

mex(hEXW − hEXS) = m(hEXW − hCW )

mex = m
hEXW − hCW

hEXW − hEXS
(19)
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Figure 5 – The cycle represented in red is the principal cycle traversed
by the vapour mass “m”. The cycle represented in blue is the cycle
traversed by the mass “mex”of the tapped vapour.
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5.1 Ideal cycle comprised of one feedwater heater.

Let us now consider that the two cycles are ideally performed via compressions
and expansions that are isentropic.
Let us separate the cycles into two partial cycles.
The heat of the hot reservoir in the cycle is equal to the sum of the heat of
the hot reservoir of the principal cycle and the heat of the hot reservoir of the
partial cycle of the tapped vapour:
The heat of hot reservoir of the principal cycle is equal to (10).

QH =

∫ TH

0

ds = mTH(sCS − sCW )
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Figure 6 - The real principal cycle traversed by the vapour “m” mass
is represented in red. The coloured surface corresponds to the total
energy of the hot reservoir that would be necessary if the cycle obeyed
the assumptions of isentropic compressions and isentropic expansions
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(10).
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QHEX =

∫ TH

TEX

ds = mEXTH(sCS − sCW ) (20)

Figure 7 - The cycle represented in blue is the real cycle traversed
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by the mass “mex”of the tapped vapour. The coloured surface corre-
sponds to the total energy of the hot reservoir that would be necessary
if the 2 cycles obeyed the assumptions of isentropic expansions and
isentropic compressions (20).

One deduces the total heat from the hot reservoir as follows:

QH = mTH(sCS − sCW ) +mEXTH(sCS − sCW ) (21)
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The heat of the low-temperature reservoir in the cycle is equal to the sum of
the heat of the low-temperature reservoir of the principal cycle and the heat of
the low-temperature reservoir of the partial cycle of the tapped vapour:
The heat of the low-temperature reservoir of the principal cycle is equal to (11).

QC =

∫ TC

0

ds = mTC(sCS − sCW )
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Figure 8 - The cycle represented in red is the real cycle traversed by
the mass “m” of the vapour. The coloured surface corresponds to the
total energy of the low-temperature reservoir that would be necessary
if the 2 cycles obeyed the assumptions of isentropic compressions and
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isentropic expansions.

The heat of the low-temperature reservoir of the extracted steam partial cycle
is equal to:

QCEX =

∫ TEX

0

ds = mEXTEX(sCS − sCW ) (22)
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Figure 9 – The heat of the low-temperature reservoir of the partial
cycle of extraction is represented by the coloured surface. Note that
the difference in entropy mass s is equal to the difference between the
mass entropy of the cold vapour and the mass entropy of condensate
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of the principal cycle.
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Applying equations (12) and (22) to this system, we obtain the total heat of
the low-temperature reservoir:

QC = mTC(sCS − sCW ) +mEXTEX(sCS − sCW ) (23)

The energy efficiency is deduced from (6), (22), and(23):

η =
TH(sCS − sCW )(m+mEX)− [mTC(sCS − sCW ) +mEXTEX(sCS − sCW )]

TH(sCS − sCW )(nm+mEX)

which can be expressed as:

η =
TH(m+mEX)− (mTC +mEXTEX)

TH(m+mEX)
= 1−

(mTC +mEXTEX)

TH(m+mEX)
(24)

Applying equation (19), one determines the mex mass value according to the m
mass:

mEX = m
TEX − TC

TEX
(25)

η = 1−

(

mTC +mTEX−TC

TEX
TEX

)

TH
(

m+mTEX−TC

TEX

) = 1−

(

TC + TEX−TC

TEX
TEX

)

TH
(

1 + TEX−TC

TEX

)

η = 1−
TEX

TH
(

1 + TEX−TC

TEX

) (26)

6 Generalised thermodynamics analysis of a steam

power cycle with “n” number of feedwater

heaters.

6.1 Real cycle with two feedwater heaters

The thermodynamic cycles of steam turbines are comprised of between five
and eight extractions. We treat here the case of a machine comprised of two
extractions; this methodology can be extended to account for a higher number
of extractions. The output is deduced from (18)

η = 1−
[m (HCS −HCW ) +mex1(HEX1S −HEX1W ) +mex2(HEX2S −HEX2W )]

m(HHS −HCW ) +mex(HHS −HEXW ) +mex2(HHS −HEX2W )
(27)

Where:
mex1 = vapour mass of the first extraction. (Recall that the classification
numbering of conventional feedwater heaters starts from the condenser.)
hEX1W = specific enthalpy of the steam that heats feedwater heater number
1.
mEX2 = mass of condensate from extraction number 2.
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hEX1S = specific enthalpy of extraction number 1 vapour.
hEX2W = specific enthalpy of the condensed water into feedwater heater num-
ber 1.
hEX2S = specific enthalpy of extraction number 2 vapour.
Calculation of mEX2
One deduces mEX2 from (19)

mEX2 = (m+mEX1)
HEX2W −HEX1S

HEX2S −HEX2W
(28)

6.2 Ideal cycle “n” number of feed water heaters

One deduces the output from the ideal cycle from (30) and (26):

η = 1−
[mTC +mEX1TEX1+mEX2TEX2]

TH (m+mex1 +mex2)
(29)

Where:
TEX1 = temperature of the condensate with extraction vapour number 1
TEX2 = temperature of the condensate with extraction vapour number 2
One generalises the following:

η = 1−
(mTC +

∑n

i=1
mexi.T exi)

TH(m+
∑n

i=1
mexi)

(30)

One deducesmEX2from (26) and (28)

mEX2 =

(

1 +
TEX1− TC

TEX1

)

TEX2− TEX1

TEX2
(31)

One deduces from (29) and (31) the following:

η = 1 =

[

TEX1 +
(

1 + TEX1−TC

TEX1

)

(TEX2− TEX1)
]

TH
[

1 + TEX1−TC

TEX1
+
(

1 + TEX1−TC

TEX1

)

TEX2−TEX1

TEX2

] (32)

The above result can be generalised as follows:

η = 1−

[

TEX1 +
∑n−1

i=1

[

(

1 + TEX1−TC

TEX1

)
∏i

x=1
(TEXx+ 1− TEXx)

]]

TH
[

1 + TEX1−TC

TEX1

∑n−1

i=1

[

(

1 + TEX1−TC

TEX1

)

(

∏i

x=1

TEXx+1−TEXx

TEXx+1

)]]

(33)

7 Conclusions

The Carnot factor, as is universally known, is a typical case limited to the cycles
that do not involve feedwater heaters. In the case of regenerative cycles, the
Carnot factor of a machine is given by the following relationship:

η = 1−

[

TEX1 +
∑n−1

i=1

[

(

1 + TEX1−TC

TEX1

)
∏i

x=1
(TEXx+ 1− TEXx)

]]

(sCS − sCW )

TH
[

1 + TEX1−TC

TEX1

∑n−1

i=1

[

(

1 + TEX1−TC

TEX1

)

(

∏i

x=1

TEXx+1−TEXx

TEXx+1

)]]

(sCS − sCW )
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This relationship obeys the second principle of thermodynamics: the variation
of the entropy of an unspecified thermodynamic system, due to the internal
operations, can be only positive or worthless.
Nomenclature

Symbols
T Temperature (K)
s Specific Entropy (J/kg.K)
P Pressure (Pa)
h Specific Enthalpy (J/kg)
W Work (J)
Q Heat (J)
H Enthalpy (J)
m Main Steam Cycle Mass (kg)
mex Extraction Steam Feedwater Mass (kg)
mex1 Extraction Steam Feedwater Number 1 Mass (kg)
mex2 Extraction Steam Feedwater Number 2 Mass (kg)
η Energy Efficiency (%)
Σ Sum
Π Product
∫

Integral
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