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A JKO SPLITTING SCHEME FOR KANTOROVICH-FISHER-RAO
GRADIENT FLOWS

THOMAS O. GALLOUËT AND LÉONARD MONSAINGEON

Abstract. In this article we set up a splitting variant of the JKO scheme in
order to handle gradient flows with respect to the Kantorovich-Fisher-Rao met-
ric, recently introduced and defined on the space of positive Radon measure
with varying masses. We perform successively a time step for the quadratic
Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao
distance. Exploiting some inf-convolution structure of the metric we show con-
vergence of the whole process for the standard class of energy functionals under
suitable compactness assumptions, and investigate in details the case of internal
energies. The interest is double: On the one hand we prove existence of weak
solutions for a certain class of reaction-advection-diffusion equations, and on the
other hand this process is constructive and well adapted to available numerical
solvers.

1. Introduction

A new Optimal Transport distance on the space of positive Radon measures has
been recently introduced independently by three different teams [12, 13, 22, 24, 25].
Contrarily to the classical Wasserstein-Monge-Kantorovich distances, which are re-
stricted to the space of measures with fixed mass (typically probability measures),
this new distance has the advantage of allowing for mass variations, can be com-
puted between arbitrary measures, and does not require decay at infinity (such as
finite moments). In [12, 13] the distance is called Wasserstein-Fisher-Rao and is
introduced with imagery applications in mind. In [24, 25] the distance is referred to
as the Hellinger-Kantorovich one, and was studied as a particular case of a larger
class of Optimal Transport problems including primal/dual and static formulations.
The second author introduced the same distance in [22], with applications to pop-
ulation dynamics and gradient flows in mind. In this paper we propose the name
Kantorovich-Fisher-Rao for this metric (KFR in the sequel), taking into account all
contributions.

On one side we aim here at understanding the local behavior of the KFRmetric with
respect to the by now classical quadratic Monge-Kantorovich/Wasserstein metric
MK2 and the Hellinger/Fisher-Rao metric FR. On the other side we want to use this
information to prove existence of weak solutions to gradient flows while avoiding
to look too closely into the geometry of the KFR space. Moreover our constructive
approach is naturally adapted to available numerical schemes and Monge-Ampère
solvers.

A possible way to formalize abstract gradient flow structures is to prove con-
vergence of the corresponding Minimizing Movement scheme, as introduced by De
Giorgi [14] and later developed by Jordan-Kinderlehrer-Otto for the MK2 metric [18].
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Given a metric space (X, d) and a functional F : X → R, the JKO scheme with
time-step τ > 0 writes

(1.1) xn+1 ∈ Argmin
x∈X

{
1

2τ
d2(x, xn) + F (x)

}
.

Letting τ → 0 one should expect to recover a weak solution of the gradient flow

(1.2) ẋ(t) = − gradd F (x(t)).

Looking at (1.2), which is a differential equality between infinitesimal variations, we
guess that only the local behavior of the metric d matters in (1.1).

The starting point of our analysis is therefore the local structure of the Kantorovich-
Fisher-Rao metric, which endows the space of positive Radon measures ρ ∈M+ with
a formal Riemannian structure [22]. Based on some inf-convolution structure, our
heuristic considerations will suggest that, infinitesimally, KFR should be the orthog-
onal sum of MK2 and FR:

(1.3) KFR2 ≈ MK2
2 + FR2.

More precisely we will show that in the tangent plane there holds

(1.4) ‖ gradKFRF(ρ)‖2 = ‖ gradMKF(ρ)‖2 + ‖ gradFRF(ρ)‖2,
at least formally for reasonable functionals F . The notion of metric gradients and
tangent norms appearing in (1.4) will be precised in section 2. This naturally leads to
a splitting approach for KFR Minimizing Movements: we successively run a time step
for MK2, leading to the diffusion term in the associated PDE, and then a second step
for FR, leading to the reaction term in the PDE. Formula (1.4) also indicates that the
energy dissipation D(t) = −dF

dt = |x′|2 = | gradF |2 will be correctly approximated
in (1.2). One elementary Monge-Kantorovich JKO step is now well known, see for
instance [34] and references therein. On the other hand the Fisher-Rao metric enjoys
a Riemannian structure that can be recast, up to a change of variable, into a Hilbert
setting, and therefore the reaction step should be easy to handle numerically.

Here we show that the classical estimates (energy monotonicity, total square dis-
tance, mass control, BV. . . ) propagate along each MK2 and FR substeps, and nicely
fit together in the unified KFR framework. This allows us prove existence of weak
solutions for a whole class of reaction-advection-diffusion PDEs associated with KFR

gradient flows
∂tρ = − gradKFRF(ρ),

including e.g. the tumor growth model introduced in [31]. Moreover we retrieve a
natural Energy Dissipation Inequality, which is well known [2] to completely char-
acterize metric gradient flows.

Our splitting method has several interests: First we avoid a possibly delicate ge-
ometrical analysis of the KFR space, in particular we do not need to differentiate the
squared KFR distance. This is usually required to derive the Euler-Lagrange equa-
tions in the JKO scheme, but might not be straightforward here (see Section 3 for
discussions). Secondly, the approach leads to a new constructive existence proof for
weak solutions to a class of PDEs, and can be implemented numerically (see [21] for
an early application of this idea). For one elementary MK2 step there are now many
discretizations available, such as the semi-discrete scheme [28, 5], the augmented La-
grangian procedure [4], or the Entropic relaxation [32]. The Fisher-Rao minimizing
step should not be difficult to implement, since the problem is convex with the good
choice of variables.
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The paper is structured as follows. In Section 2 we recall some basic facts on the
three metrics involved: the quadratic Monge-Kantorovich MK2, the Fisher-Rao FR,
and the Kantorovich-Fisher-Rao KFR distances. We highlight the three differential
Riemannian structures and gradient flow interpretations. Section 3 details the local
relation between the three metrics and in particular the inf-convolution. In section 4
we define the splitting minimizing movement scheme for the KFR distance and prove,
under natural compactness assumptions, the convergence towards a weak solution
of the expected PDE. As an example we investigate in section 5 the compactness
hypothesis for the particular case of internal energies.

2. Preliminaries

From now on we always assume that Ω ⊂ Rd is a convex subset, possibly un-
bounded. In this section we recall some facts about theWasserstein/Monge-Kantorovich
and Hellinger/Fisher-Rao distances MK2, FR, and introduce the Kantorovich-Fisher-
Rao distance KFR as recently defined independently in [22, 13, 24]. We also present
the differential points of view for each of them, allowing to retrieve the three corre-
sponding pseudo Riemannian structures and compute gradients of functionals with
respect to the MK, FR, KFR metrics.

2.1. The quadratic Monge-Kantorovich distance MK2. We refer to [37] for
an introduction and to [38] for a complete overview of the Wasserstein-Monge-
Kantorovich distances.

Definition 2.1. For any nonnegative Radon measures ρ0, ρ1 ∈M+
2 with same mass

|ρ0| = m = |ρ1| and finite second moments, the quadratic Monge-Kantorovich dis-
tance is

(2.1) MK2
2(ρ0, ρ1) = min

γ∈Γ[ρ0,ρ1]

∫
Ω×Ω
|x− y|2dγ(x, y),

where the admissible set of transference plans Γ[ρ0, ρ1] consists in nonnegative mea-
sures γ ∈ M+(Ω × Ω) with mass |γ| = m and prescribed marginals Πx(γ) = ρ0(x)
and Πy(γ) = ρ1(y).

The minimizer is unique and is called an optimal plan. When ρ0 does not charge
small sets we have the characterization in terms of transport maps:

Theorem 1 (Brenier, Gangbo-McCann, [10, 16]). With the same assumptions as in
Definition 2.1, assume that ρ0 does not give mass to Hd−1 sets. Then

(2.2) MK2
2(ρ0, ρ1) = min

ρ1=t#ρ0

∫
Ω
|x− t(x)|2dρ0(x),

and the optimal transport map is unique dρ0 almost everywhere.

We recall the definition of pushforwards by maps t : Ω→ Ω

ρ1 = t#ρ0 ⇔
∫

Ω
φ(y)dρ1(y) =

∫
Ω
φ(t(x))dρ0(x) for all φ ∈ Cc(Ω).

As first pointed out by Benamou and Brenier [3] we also have the following dynamic
representation of the Wasserstein distance:

Theorem 2 (Benamou-Brenier formula, [2, 3]). There holds

(2.3) MK2
2(ρ0, ρ1) = min

(ρ,v)∈AMK[ρ0,ρ1]

∫ 1

0

∫
Ω
|vt|2dρtdt,



4 THOMAS O. GALLOUËT AND LÉONARD MONSAINGEON

where the admissible set AMK[ρ0, ρ1] consists in curves (0, 1) 3 t 7→ (ρt,vt) ∈ R+×Rd
such that t 7→ ρt is narrowly continuous with endpoints ρt(0) = ρ0, ρt(1) = ρ1 and
solving the continuity equation

∂tρt + div(ρtvt) = 0

in the sense of distributions D′((0, 1)× Ω).

In (2.3) a minimizing curve t 7→ ρt is a geodesics, with constant metric speed
‖vt‖2L2(dρt)

= cst = MK2
2(ρ0, ρ1). Note that we allow here for any arbitrary mass

|ρ0| = m = |ρ1| > 0, and that the distance scales as MK2
2(αρ0, αρ1) = αMK2

2(ρ0, ρ1).
This is apparent in all three formulations (2.1)(2.2)(2.3), which are linear in γ, ρ0, ρ1,
and ρt respectively.

As is now well-known from the works of Otto [30], we can view the set of measures
with fixed mass as a pseudo-Riemannian manifold, endowing the tangent plane

TρM+
MK = {∂tρ = −div(ρv) evaluated at t = 0}

with the metrics

‖∂tρ‖2TρM+
MK

= inf
{
‖v‖2L2(dρ) : ∂tρ = −div(ρv)

}
.

It is easy to see formally that, among all possible velocities v representing the same
tangent vector ∂tρ = −div(ρv), there is a unique one with minimal L2(dρ) norm. A
back of the envelope computation shows that this particular velocity is necessarily
potential, v = ∇p for a pressure function p uniquely defined up to constants (see
the proof of Proposition 2.2 below for a sketchy argument). As a consequence we
always choose to represent

‖∂tρ‖2TρM+
MK

= ‖∇p‖2L2(dρ) with the identification ∂tρ = −div(ρ∇p).

Here we remained formal and refer again to [37, 38] for details. Now metric gradients
gradMK can be computed by the chain rule as follows: If ∂tρt = −div(ρt∇pt) is a
“C1” curve passing through ρt(0) = ρ with arbitrary initial velocity ζ = ∂tρ(0) =
−div(ρ∇p) then for functionals F(ρ) =

∫
Ω F (ρ(x), x)dx

〈gradMKF(ρ), ζ〉TρM+
MK

=
d

dt
F(ρt)

∣∣∣∣
t=0

=
d

dt

(∫
Ω
F (ρt(x), x)dx

)
|t=0

=

∫
Ω
F ′(ρ)× {− div(ρ∇p)} =

∫
Ω
∇F ′(ρ) · ∇p dρ

=
〈
∇F ′(ρ),∇p

〉
L2(dρ)

,

where F ′(ρ) = δF
δρ stands for the standard first variation with respect to ρ. For

the classical case F(ρ) =
∫

Ω{U(ρ) + Ψρ + 1
2ρK ? ρ} considered here this means

F ′(ρ) = U ′(ρ) + Ψ(x) +K ? ρ. This shows that one should identify gradients

(2.4) gradMKF(ρ) = −div(ρ∇F ′(ρ))

through the L2(dρ) action in the tangent plane, and as a consequence the Monge-
Kantorovich gradients flows read

(2.5) ∂tρ = − gradMKF(ρ) ↔ ∂tρ = div(ρF ′(ρ)).
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2.2. The Fisher-Rao distance FR. The classical Hellinger-Kakutani distance [17,
19], or Fisher-Rao metric, was first introduced for probability measures and is well
known in statistics and information theory for its connections with the Kullback’s
divergence and Fisher information [8]. It can be extended to arbitrary nonnegative
measures as

Definition 2.2. The Fisher-Rao distance between measures ρ0, ρ1 ∈ M+ is given
by
(2.6)

FR2(ρ0, ρ1) = min
(ρt,rt)∈AFR[ρ0,ρ1]

∫ 1

0

∫
Ω
|rt(x)|2dρt(x) dt = 4

∫
Ω

∣∣∣∣∣
√

dρ0

dλ
−
√

dρ1

dλ

∣∣∣∣∣
2

dλ.

The admissible set AFR[ρ0, ρ1] consists in curves [0, 1] 3 t 7→ (ρt, rt) ∈ R+×R such
that t 7→ ρt ∈ Cw([0, 1];M+) is weakly continuous with endpoints ρt(0) = ρ0, ρt(1) =
ρ1, and

∂tρt = ρtrt

in the sense of distributions D′((0, 1)× Ω).

In the last explicit formula λ is any reference measure such that ρ0, ρ1 are both
absolutely continuous with respect to λ, with Radon-Nikodym derivatives dρi

dλ . By
1-homogeneity this expression doe not depend on the choice of λ, and the normal-
izing factor 4 is chosen so that the metric for the pivot space in the first dynamic
formulation is exactly L2(dρt) (and not some other multiple β‖rt‖2L2(dρt)

).
One can check that the minimum in the first definition is attained along the

geodesics

ρt = [(1− t)√ρ0 + t
√
ρ1]2 and rt := 2

√
ρ1 −

√
ρ0√

ρt
∈ L2(dρt).

Moreover this optimal curve ∂tρt = ρtrt has constant metric speed ‖rt‖2L2(dρt)
=

4
∫

Ω |
√
ρ1 −

√
ρ0|2 = FR2(ρ0, ρ1), which should be expected for geodesics.

More importantly, the first Lagrangian formulation in (2.6) suggests to view the
metric space (M+, FR) as a Riemannian manifold, endowing the tangent plane

TρM+
FR =

{
∂tρt = ρtrt evaluated at t = 0

}
with the metrics

‖∂tρ‖2TρM+
FR

= ‖r‖2L2(dρ) with the identification ∂tρ = ρr.

Metric gradients gradFR can then be computed by the chain rule as follows. If
∂tρt = ρtrt is a “C1” curve passing through ρt(0) = ρ with arbitrary initial velocity
ζ = ∂tρ = ρr then for functionals F(ρ) =

∫
Ω F (ρ(x), x)dx we can compute

〈gradF(ρ), ζ〉TρM+
FR

=
d

dt
F(ρt)

∣∣∣∣
t=0

=
d

dt

(∫
Ω
F (ρt(x), x)dx

)
|t=0

=

∫
Ω
F ′(ρ)ρr =

〈
F ′(ρ), r

〉
L2(dρ)

,

where F ′(ρ) = δF
δρ as before. This shows that

(2.7) gradFRF(ρ) = ρF ′(ρ)
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with identification through the L2(dρ) action in the tangent plane, and as a conse-
quence gradients flows with respect to the Hellinger-Fisher-Rao metrics read

(2.8) ∂tρ = − gradFRF(ρ) ↔ ∂tρ = −ρF ′(ρ).

2.3. The Fisher-Rao-Hellinger-Wasserstein-Kantorovich distance KFR.
As introduced in [13], we have

Definition 2.3. The Fisher-Rao-Hellinger-Kantorovich-Wasserstein distance between
measures ρ0, ρ1 ∈M+(Ω) is

(2.9) KFR2(ρ0, ρ1) = inf
(ρ,v,r)∈AKFR[ρ0,ρ1]

∫ 1

0

∫
Ω

(|vt(x)|2 + |rt(x)|2)dρt(x) dt

The admissible set AKFR[ρ0, ρ1] is the set of curves [0, 1] 3 t 7→ (ρt,vt, rt) ∈
R+×Rd×R such that t 7→ ρt ∈ Cw([0, 1];M+) is weakly continuous (for the narrow
convergence of measures) with endpoints ρt(0) = ρ0, ρt(1) = ρ1, and the velocity
and reaction v, r ∈ L2(0, 1;L2(dρt)) solve the continuity equation with source

∂tρt + div(ρtvt) = ρtrt.

Comparing (2.9) with (2.3) and (2.6), this dynamic formulation à la Benamou-
Brenier [3] shows that the KFR distance can be viewed as an inf-convolution of the
Monge-Kantorovich and Fisher-Rao distances MK2, FR. By the results of [13, 12, 24]
the infimum in the definition is always a minimum, and the corresponding minimiz-
ing curves t 7→ ρt are of course called geodesics. As shown in [22, 13, 24] geodesics
need not be unique, see also the brief discussion in section 4. Interestingly, there
are other possible formulations of the distance in terms of static unbalanced optimal
transportation, primal-dual characterizations with relaxed marginals, lifting to prob-
ability measures on a cone over Ω, and duality with subsolutions of Hamilton-Jacobi
equations. See also [24, 25] as well as [33] for a related version with mass penaliza-
tion. As an immediate consequence of the definition 2.9 we have a first interplay
between the distances KFR, MK2, FR:

Proposition 2.1. Let ρ0, ρ1 ∈M+
2 such that |ρ0| = |ρ1|. Then

KFR2(ρ0, ρ1) ≤ MK2
2(ρ0, ρ1).

Similarly for all µ0, µ1 ∈M+ (with possibly different masses) there holds

KFR2(µ0, µ1) ≤ FR2(µ0, µ1).

Proof. If |ρ1| = |ρ1| then the optimal Monge-Kantorovich geodesics ∂tρt+div(ρtvt) =
0 from ρ0 to ρ1 gives an admissible path in (2.9) with r ≡ 0 and cost exactly
MK2

2(ρ0, ρ1). Likewise for arbitrary measures µ0, µ1 one can follow the Fisher-Rao
geodesics ∂rρt = ρtrt, which gives an admissible path with v ≡ 0 and cost FR2(µ0, µ1).

�

Proposition 2.2. The definition (2.9) of the KFR distance can be restricted to the
subclass of admissible paths such that vt = ∇rt.

Proof. By [13, thm. 2.1] there exists a minimizing curve (ρt,vt, rt) in (2.9), which
by definition is a KFR-geodesic between ρ0, ρ1 (we also refer to [22, thm. 6] and [25]
for the existence of geodesics). Here we stay at the formal and assume that ρ,v, r
are smooth with ρ > 0 everywhere.

Consider first an arbitrary smooth vector-field w such that divwt = 0 for all
t ∈ [0, 1], and let vε := v + εwρ . Then div(ρvε) = div(ρv) + 0 and the triplet
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(ρt,v
ε
t , rt) is an admissible competitor in (2.9). Writing the optimality condition we

compute

0 =
d

dε

(
1

2

∫ 1

0

∫
Ω

(|vεt (x)|2 + |rt(x)|2)dρt(x) dt

)
|ε=0

=

∫ 1

0

∫
Ω
vt(x) · wt(x)

ρt(x)
dρt(x) dt =

∫ 1

0

∫
Ω
vt(x) ·wt(x) dxdt.

This L2 orthogonality with all divergence-free vector fields classically implies that
vt is potential for all times, i-e vt = ∇ut for some ut.

Fix now any smooth φ ∈ C∞c ((0, 1)×Ω), and define ṽεt := vt+ε∇φt = ∇(ut+εφt).
Defining st by ρtst = div(ρt∇φt) and r̃εt := rt+εst it is easy to check that (ρt, ṽ

ε
t , r̃

ε
t )

solves the continuity equation, and this triplet is again an admissible competitor in
(2.9). Writing the optimality condition we get now

0 =
d

dε

(
1

2

∫ 1

0

∫
Ω

(|ṽεt (x)|2 + |r̃εt (x)|2)dρt(x) dt

)
|ε=0

=

∫ 1

0

∫
Ω

(
∇ut(x) · ∇φt + rt(x)st(x)

)
dρt(x) dt

=

∫ 1

0

∫
Ω
∇
(
ut − rt

)
(x) · ∇φtdρt(x) dt,

where we used the identity rtstρt = rt div(ρt∇φt) to integrate by parts in the last
equality. As φ was arbitrary this implies div(ρt∇ut) = div(ρt∇rt) and ‖vt‖2L2(dρt)

=

‖∇ut‖2L2(dρt)
= ‖∇rt‖2L2(dρt)

. In particular the triplet (ρt,∇rt, rt) is admissible and
has the same cost as the optimal (ρt,vt, rt), which shows indeed that one can restrict
to paths with v = ∇r in the dynamical formulation (2.9). �

As a consequence we have the alternative definition of the KFR distance as origi-
nally introduced in [22], which couples the reaction and velocity:

Theorem 3. For all ρ0, ρ1 ∈M+(Ω) there holds

(2.10) KFR2(ρ0, ρ1) = inf
(ρ,u)∈ÃKFR[ρ0,ρ1]

∫ 1

0

∫
Ω

(|∇ut(x)|2 + |ut(x)|2)dρt(x) dt,

where ÃKFR[ρ0, ρ1] is the set of weakly continuous curves t 7→ ρt ∈ Cw([0, 1];M+)
with endpoints ρ(0) = ρ0 and ρ(1) = ρ1, with potentials u ∈ L2(0, 1;H1(dρt)) such
that

∂tρt + div(ρt∇ut) = ρtut

in the sense of distributions.

This characterization of the KFR distance suggests that the metric space (M+, KFR)
has in fact a Riemannian structure, inherited from the Lagrangian minimization.
More precisely the tangent plane should be identified with

TρM+
KFR =

{
∂tρ = −div(ρ∇u) + ρu evaluated at t = 0

}
endowed with the Riemannian metrics

‖∂tρ‖2TρM+
KFR

:= ‖u‖2H1(dρ) with the identification ∂tρ = −div(ρ∇u) + ρu,

where obviously ‖u‖2H1(dρ) =
∫

Ω(|∇u|2 + |u|2)dρ.
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Metric gradients gradKFRF can be computed by the chain rule as earlier: if ∂tρt +
div(ρt∇ut) = ρtut is a “C1” curve passing through ρt(0) = ρ with arbitrary initial
velocity ζ = ∂tρt(0) = −div(ρ∇u) + ρu then for functionals F(ρ) =

∫
Ω F (ρ(x), x)dx

we have

〈gradKFRF(ρ), ζ〉TρM+
KFR

=
d

dt
F(ρt)

∣∣∣∣
t=0

=
d

dt

(∫
Ω
F (ρt(x), x)dx

)
|t=0

=

∫
Ω
F ′(ρ)× {− div(ρ∇u) + ρu}

=

∫
Ω

(
∇F ′(ρ) · ∇u+ F ′(ρ)u

)
dρ =

〈
F ′(ρ), r

〉
H1(dρ)

,

where F ′(ρ) = δF
δρ as before. This shows that

(2.11) gradKFRF(ρ) = −div
(
ρ∇F ′(ρ)

)
+ ρF ′(ρ)

through the canonical H1(dρ) action. In particular gradient flows with respect to
KFR read

(2.12) ∂tρ = − gradKFRF(ρ) ↔ ∂tρ = div(ρ∇F ′(ρ))− ρF ′(ρ),

which should be compared with (2.5) and (2.8).

3. Infinitesimal uncoupling of the inf-convolution

Let us first summarize the previous informal discussion on each of the three met-
rics: the quadratic Monge-Kantorovich distance is modeled on the homogeneous
Ḣ1(dρ) space, the Fisher-Rao distance is based on L2(dρ), and the KFR metrics is
constructed on the full H1(dρ) structure. Each of these Riemannian structures are
defined via identification of tangent vectors as
(3.1)
MK2 : ‖∂tρ‖2TρM+

MK

= ‖∇p‖2L2(dρ) =
∫

Ω |∇p|
2dρ, ∂tρ+ div(ρ∇p) = 0,

FR : ‖∂tρ‖2TρM+
FR

= ‖r‖2L2(dρ) =
∫

Ω |r|
2dρ, ∂tρ = ρr,

KFR : ‖∂tρ‖2TρM+
KFR

= ‖u‖2H1(dρ) =
∫

Ω(|∇u|2 + u2)dρ, ∂tρ+ div(ρ∇u) = ρu.

Note that in the uncoupled formulation (2.9) the velocity v and the reaction r in the
continuity equation ∂tρ + div(ρv) = ρr are completely independent. This suggests
that, infinitesimally, we can decompose the tangent plane as an orthogonal sum

(3.2) TρM+
KFR = TρM+

MK ⊕L
2(dρ) TρM+

FR,

and thus KFR2 ≈ MK2
2 + FR2 in some vague sense. The same independence of (v, r)

also gives a natural strategy to send a measure ρ0 to another ρ1: one can send first
ρ0 to the renormalized ρ̃0 := |ρ0|

|ρ1|ρ1 by pure Monge-Kantorovich transport (which is
possible since |ρ̃0| = |ρ0|), and then send ρ̃0 to ρ1 by pure Fisher-Rao reaction. This
amounts to following separately each of the “orthogonal” directions in the decompo-
sition (3.2).

An immediate consequence of this observation is

Proposition 3.1. For arbitrary measures ρ0, ρ1 ∈M+ let ρ̃0 := |ρ0|
|ρ1|ρ1. Then

(3.3) KFR2(ρ0, ρ1) ≤ 2
(
MK2

2(ρ0, ρ̃0) + FR2(ρ̃0, ρ1)
)
.
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Proof. It is enough to follow first a pure Monge-Kantorovich geodesics (r ≡ 0) from
ρ0 to ρ̃0 in time t ∈ [0, 1/2] and then a pure Fisher-Rao geodesic (v ≡ 0) from ρ̃0 to
ρ1 in time t ∈ [1/2, 1]. Because of the rescaling in time each of these half-paths has
an extra factor 2, amounting to a total cost of 2MK2

2(ρ0, ρ̃0)+2FR2(ρ̃0, ρ1). The result
then follows from the definition (2.9) of KFR2 as an infimum over all paths. �

Note that estimate (3.3) holds for any arbitrary measure ρ0, ρ1 ∈ M+, but has a
multiplicative factor 2 which is certainly not optimal and came from the rescaling
in time. Consider now two very close measures KFR(ρ0, ρ1) � 1. Then the above
transformation from ρ0 to ρ1 can essentially be considered as occurring infinitesimally
in the tangent plane Tρ0M+

KFR, which can be decomposed as Tρ0M+
MK⊕Tρ0M+

FR with
“L2(dρ0) orthogonality”. Roughly speaking, this means that the two advection and
reaction processes from ρ0 to ρ̃0 and from ρ̃0 to ρ1 in the previous proof can be
considered as occurring simultaneously and independently at the infinitesimal level.
Thus we do not need to follow first a Monge-Kantorovich path from ρ0 to ρ̃0 and
then a Fisher-Rao path from ρ̃0 to ρ1, the factor 2 in the previous proposition is
unnecessary, and therefore one should expect in fact

(3.4) KFR2(ρ0, ρ1) ≈ MK2
2(ρ0, ρ̃1) + FR2(ρ̃0, ρ1)

for very close measures KFR(ρ0, ρ1) � 1. This can be made more rigorous at least
for one-point mass particles

ρ0 = k0δx0 , ρ1 = k1δx1

at close distance, i-e |x1 − x0| � 1 and k1 ≈ k0. Intuitively the geodesics ρt from
ρ0 to ρ1 should be a moving one-point mass of the form ρt = ktδxt for some curve
t 7→ (xt, kt) ∈ Ω × R+ to be determined. This has been shown heuristically in [22,
Section 3.3] and proved rigorously [13, thm. 4.1] and [25, thm. 3.1].

Remark 3.1. The one-point ansatz ρt = ktδxt is in fact correct not only for short
distances |x1 − x0| � 1, but also as long as |x1 − x0| < π. Past this threshold
|x1 − x0| = π it is more efficient to virtually displace mass from x0 to x1 by pure
reaction, i-e by killing mass at x0 while simultaneously creating some at x1.

In the continuity equation ∂tρt + div(ρtvt) = ρtrt the advection moves particles
around according to d

dtxt = vt and the reaction reads d
dtkt = ktrt, each with in-

finitesimal cost kt|vt|2 and kt|rt|2. The optimal (vt, rt) for the one-point ansatz
ρt = ktδxt can be obtained explicitly by looking at the coupled formulation (2.10)
with vt = ∇ut, rt = ut, and optimizing the cost with respect to admissible poten-
tials ut. Omitting the details (see again [22, 24]), the optimal cost can be computed
explicitly as

(3.5) KFR2(ρ0, ρ1) = 4

(
k0 + k1 − 2

√
k0k1 cos

(
|x1 − x2|

2

))
for |x1 − x0| < π.

Remark 3.2. It was shown in [24, 25] that the KFR distance can be constructed by
suitably lifting measures in Ω to probability measures on a cone space CΩ = {[x, r] ∈
Ω × R+}/ ∼ over Ω, where ∼ is the identification of all the tips [x, 0] into a single
point � ∈ CΩ, and then projecting back in order to obtain a Riemaniann submersion
(P2(CΩ), MK2) → (M+(Ω), KFR). In order to retrieve exactly the KFR distance one
should endow the Polish space CΩ with the cone distance d2

C([x0, r0], [x1, r1]) = r2
0 +

r2
1 − 2r0r1 cosπ(|x1 − x0|/2) and cosπ(z) = cos(π ∧ |z|), see [24] for details. In
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formula (3.5) one sees in fact, up to the normalizing factor 4, the natural Monge-
Kantorovich distance MK2

2

(
δ[x0,

√
k0], δ[x1,

√
k1]

)
= d2

C([x0,
√
k0], [x1,

√
k1]) between unit

Dirac masses in the overlying space P2(CΩ).

In this setting and with the previous notation ρ̃0 = |ρ0|
|ρ1|ρ1 = k0δx1 we have of

course
MK2

2(ρ0, ρ̃0) = MK2
2(k0δx0 , k0δx1) = k0|x1 − x0|2,

and by (2.6)

FR2(ρ̃0, ρ1) = 4

∫
Ω

∣∣∣∣∣
√

d(k1δx1)

dδx1
−

√
d(k0δx1)

dδx1

∣∣∣∣∣
2

dδx1 = 4
∣∣∣√k1 −

√
k0

∣∣∣2 .
Taylor-expanding (3.5) at order two in |x1 − x0|, |

√
k1 −

√
k0| � 1 gives

(3.6) KFR2(ρ0, ρ1) = k0|x1 − x0|2 + 4|
√
k1 −

√
k0|2 +O

(
|x1 − x0|2|

√
k1 −

√
k0|
)

= MK2
2(ρ0, ρ̃0) + FR2(ρ̃0, ρ1) + lower order,

which shows that our claim (3.4) holds true at least for one-point particles and at
order one in the squared distances.

Remark 3.3. Due to 4|
√
k1−

√
k0|2 = FR2(ρ̃0, ρ1)� 1 we have k1 = k0 +O(|

√
k1−√

k0|). The previous expression can therefore be rewritten as

KFR2(ρ0, ρ1) =
k0 + k1

2
|x1 − x0|2 + 4|

√
k1 −

√
k0|2 + lower order

and the apparent loss of symmetry in k0, k1 in (3.6) is thus purely artificial.

Remark 3.4. An interesting question would be to determine how much information
on the transport/reaction coupling is encoded in the remainder.

Justifying and/or quantifying the above discussion and (3.4) for general measures
with d(ρ0, ρ1)� 1 is an interesting question left for future work. One can think that
the superposition principle should apply: viewing any measure as a continuum of one-
point Lagrangian particles and taking for granted that the infinitesimal uncoupling
holds for single particles, it seems natural that the result should also hold for all
measures.

4. Minimizing scheme

We turn now our attention to gradient-flows

(4.1) ∂tρ = − gradKFRF(ρ)

of functionals

F(ρ) =

{ ∫
Ω

{
U(ρ) + Ψ(x)ρ+ 1

2ρK ? ρ
}

dx if dρ� dx
∞ otherwise

with respect to the KFR distance. Without further mention we implicitly restrict to
absolutely continuous measures (with respect to Lebesgue), and still denote their
Radon-Nikodym derivatives ρ = dρ

dx with a slight abuse of notations. According to
(2.12) this corresponds in terms of PDEs to equations of the form

(4.2) ∂tρ = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(U ′(ρ) + Ψ +K ? ρ),

which appear for example in the tumor growth model studied in [31].
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The natural minimizing movement for (4.1) should be

(4.3) ρn+1 ∈ Argmin
ρ∈M+

{
1

2τ
KFR2(ρ, ρn) + F(ρ)

}
for some small time step τ > 0. In order to obtain an Euler-Lagrange equation,
a classical and natural strategy would be to consider perturbations ε 7→ ρε of the
minimizer ρε(0) = ρn+1 starting with velocity ∂ερε(0) = −div(ρn+1∇φ) + ρn+1φ
for some arbitrary smooth φ, corresponding to choosing arbitrary directions of per-
turbation in the tangent plane Tρn+1M+

KFR. Writing down the optimality criterion
d
dε

(
1
2τ KFR

2(ρε, ρ
n) + F(ρε)

)∣∣
ε=0

= 0 should then give the sought Euler-Lagrange
equation. In order to exploit this, one should in particular know how to differen-
tiate the squared distance ρ 7→ KFR2(ρ, µ) with respect to such perturbations ρε of
the minimizer. At this stage the theory does not provide yet the necessary tools,
even though what the formula should be is quite clear: For any reasonable smooth
Riemannian manifold and curve x(t) with x(0) = x we have

d

dt

(
1

2
d2(x(t), y)

)∣∣∣∣
t=0

=
〈
x′(0), ζ

〉
TxM ,

where ζ is the terminal velocity y′(1) ∈ TxM of the geodesics from y to x. Here the
KFR-geodesics (µs)s∈[0,1] from µ to ρ should solve ∂sµs + div(µs∇us) = µsus and the
terminal velocity ζ = ∂sµ(1) should be identified with some potential us(1) = u ∈
H1(dρ), see section 2.3. We should therefore expect

d

dε

(
1

2
KFR2(ρε, µ)

)
|ε=0

= 〈∂ερ(0), ∂sµ(1)〉TρM+
KFR

=

∫
Ω

(∇φ · ∇u+ φu)dρ.

However, this can give rise to difficult issues at the cut-locus, where geodesics cease
to be minimizing and prevent any differentiability of the squared distance. Indeed,
it was shown in [25, section 5.2], [13, thm. 4.1], and [22, section 3.5] that such cut-
locuses do exist for Ω = Rd, and even that the set of non-unique geodesics generically
spans an infinite-dimensional convex set. This is related to the threshold |x1−x0| = π
for one-point measures, see Remark 3.1. In other words the squared distance may
very well not be differentiable, even in the case of the simplest geometry Ω = Rd
of the underlying space. This is in sharp contrast with classical mass conservative
optimal transportation, where the cut-locus in P(X) is intimately related to the
geometry of the underlying Riemannian manifold X [38].

In the context of minimizing movements one should expect two successive steps to
be extremely close, typically KFR(ρn+1, ρn) = O(

√
τ) as τ → 0. It seems reasonable

to hope that geodesics then become unique at short distance, and one might therefore
think that the previous cut-locus issue actually does not arise here. However, even
assuming that we could somehow compute a unique minimizing geodesics ρs from
ρn to ρn+1 and safely evaluate the terminal velocity ∂sρ(1) = −div(ρn+1∇un+1) +
ρn+1un+1 at s = 1 in order to differentiate the squared distance, it would remain
to derive a (possibly approximated) relation between the Riemannian point of view
and the more classical PDE framework, e.g. by proving an estimate like∫

Ω
(∇un+1 · ∇φ+ un+1φ)dρn+1 ≈

∫
Ω

ρn+1 − ρn

τ
φ+ remainder.

In this last display we see the interplay between the forward tangent vector un+1 ∈
H1(dρn+1) ! Tρn+1M+

KFR, encoding the Riemannian variation from ρn to ρn+1,
and the standard difference quotient ρn+1−ρn

τ . One should then typically prove that
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the remainder is quadratic O
(
KFR2(ρn+1, ρn)

)
. Within the framework of classical

optimal transport this is usually done exploiting the explicit representation of the MK2

metrics in terms of optimal transport maps (or transference plans, or Kantorovich
potentials), which are in turn related to some static formulations of the problem.
See later on section 4.1 and in particular the Taylor expansion (4.11) for details, and
also remark 4.1. However, and even though static formulations of the KFR distance
have been derived in [24], the current theory does not provide yet such an asymptotic
expansion.

In order to tackle these technical issues, let us recall from the discussion in section 3
that the inf-convolution formally uncouples at short distance. This strongly suggests
replacing KFR2 by the approximation MK2

2 + FR2 ≈ KFR2, and as a consequence we
naturally substitute the direct one-step minimizing scheme (4.3) by a sequence of
two elementary substeps

ρn
MK22−→ ρn+ 1

2
FR2−→ ρn+1.

Each of these substeps are pure Monge-Kantorovich/transport and Fisher-Rao/reaction
variational steps, respectively and successively

(4.4) ρn+ 1
2 ∈ Argmin

ρ∈M+
2 , |ρ|=|ρn|

{
1

2τ
MK2

2(ρ, ρn) + F(ρ)

}
and

(4.5) ρn+1 ∈ Argmin
ρ∈M+

{
1

2τ
FR2

2(ρ, ρn+ 1
2 ) + F(ρ)

}
.

Note that the first Monge-Kantorovich step is mass preserving by construction, while
the second will account for mass variations.

The underlying idea is that the scheme follows alternatively the two privileged
directions in TρM+

KFR = TρM+
MK⊕TρM+

FR, corresponding to pure Monge-Kantorovich
transport and pure Fisher-Rao reaction respectively. Another possible interpretation
is that of an operator-splitting method: from (2.5)(2.7)(2.12) we get

− gradKFRF(ρ) = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(U ′(ρ) + Ψ +K ? ρ)

= − gradMKF(ρ)− gradFRF(ρ).

Viewing the same functional F(ρ) through distinct “differential” lenses (i-e using
respectively the MK2 and FR differential structures) gives the two transport and re-
action terms in the PDE (4.2). Thus it is very natural to split the PDE into two
separate transport/reaction operators and treat separately each of them in their
own and intrinsic differential framework. This idea of hybrid variational structures
has been successfully applied e.g. in [20, 6, 7] for systems of equations where each
component is viewed from separate differential perspectives, but not to the split-
ting of one single equation as it is the case here. A related splitting scheme was
employed in [9] to construct weak solutions of fractional Fokker-Planck equations
∂tρ = ∆2sρ + div(ρ∇Ψ), using a Monge-Kantorovich variational scheme in order
to handle the transport term. However the discretization of the fractional Lapla-
cian was treated in a non metric setting, the PDE cannot be viewed as the sum of
gradient-flows of the same functional for two different “orthogonal” metrics, and the
approach is thus more a technical tool than an intrinsic variational feature.

Another natural consequence of this formal point of view is the following: From
the “L2(dρ) orthogonality” in TρM+

KFR = TρM+
MK ⊕ TρM+

FR we can compute using
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Pythagora’s theorem

D(t) := − d

dt
F(ρ(t)) = −‖ graddF‖2TρM+

KFR

= −‖ gradMKF‖2TρM+
MK

− ‖ gradFRF‖2TρM+
FR

,

which really means that the total dissipation for the coupled KFR metrics is just
the sum of the two MK2, FR dissipations. One can of course check this formula by
differentiating d

dtF (ρt) along solutions of the PDE. This may be useful at the discrete
level, since regularity is essentially related to dissipation. For example λ-convexity
ensures that the energy is dissipated at a minimum rate, which in turn can be viewed
as a quantifiable regularization in the spirit of Brézis-Pazy. This is illustrated in
Proposition 5.4, where we show that one indeed recovers an Energy Dissipation
Inequality with respect to KFR from the two elementary MK, FR geodesic convexity
and dissipation.

Before detailing each of the substeps we collect some general properties of our
two-steps MK2/FR splitting scheme, which shares common features with the intrinsic
one-step scheme (4.3). Testing ρ = ρn in (4.4) and ρ = ρn+ 1

2 in (4.5) we get as usual
1

2τ
MK2

2(ρn+ 1
2 , ρn) + F(ρn+ 1

2 ) ≤ F(ρn),

1

2τ
FR2(ρn+1, ρn+ 1

2 ) + F(ρn+1) ≤ F(ρn+ 1
2 ).

Summing over n ≥ 0 we end-up with the mixed total-square distance estimate

(4.6)
1

τ

∑
n≥0

{
FR2(ρn+1, ρn+ 1

2 ) + MK2
2(ρn+ 1

2 , ρn)
}
≤ 2

(
F(ρ0)− inf

M+
F
)
,

which is finite if F(ρ0) < ∞ and F is bounded from below (this is a reasonable
assumption, which is true e.g. if U(ρ) = ρm for some m > 1 and the external
potential Ψ(x) ≥ 0 outside of a finite measure set). By triangular inequality and
Proposition 2.1 it is easy to check that

(4.7) KFR2(ρn+1, ρn) ≤ 2
(
FR2(ρn+1, ρn+ 1

2 ) + MK2
2(ρn+ 1

2 , ρn)
)
,

and from (4.6)(4.7) we obtain the more intrinsic

(4.8)
1

τ

∑
n≥0

KFR2(ρn+1, ρn) ≤ 4

(
F(ρ0)− inf

M+
F
)
.

As already discussed the factor 2 in (4.7) is not optimal, and from the infinitesi-
mal decoupling we should expect KFR2(ρn+1, ρn) ≈ FR2(ρn+1, ρn+ 1

2 ) +MK2
2(ρn+ 1

2 , ρn).
Thus the previous (4.8) should have a factor 2 instead of 4 in the right-hand side,
which is exactly what one would get when applying a direct one-step minimizing
scheme with distance KFR as in (4.3).

We detail now each substep and retrieve the two corresponding Euler-Lagrange
equations. In order to keep our notations light we write µ for the previous step and
ρ∗ for the minimizer. Thus µ = ρn and ρ∗ = ρn+ 1

2 in the first MK2 step ρn → ρn+ 1
2 ,

while µ = ρn+ 1
2 and ρ∗ = ρn+1 in the next FR step ρn+ 1

2 → ρn+1.

4.1. The Monge-Kantorovich substep. For some fixed absolutely continuous
measure µ ∈M+

2 (finite second moment) and mass |µ| = m, let us consider here an
elementary minimization step

(4.9) ρ∗ ∈ Argmin
ρ∈M+

2 , |ρ|=m

{
1

2τ
MK2

2(ρ, µ) + F(ρ)

}
.
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Note that, if Ω is bounded, the restriction on finite second moments can be relaxed.
Further assuming that F is lower semi-continuous with respect to the weak L1 con-
vergence (which is typically satisfied for the classical models), it is easy to obtain a
minimizer ρ∗ ∈ M+

2 with mass |ρ∗| = m = |µ|. Additional assumptions (e.g. strict
convexity) sometimes guarantee uniqueness. Here we do not take interest in optimal
conditions guaranteeing existence and/or uniqueness of minimizers, and this should
be checked on a case-to-case basis depending on the structure of U,Ψ,K.

From the classical theory of optimal transportation we know that there exists an
optimal map t from ρ∗ to µ, such that

MK2
2(ρ∗, µ) =

∫
Ω
|x− t(x)|2 dρ∗(x).

A by-now standard computation [34, 37] shows that the Euler-Lagrange equation
associated with (4.9) can be written in the form

(4.10) ∀ ζ ∈ C∞c (Ω;Rd) :

∫
Ω

id−t
τ
·ζ dρ∗+

∫
Ω
∇(U ′(ρ∗)+Ψ+K?ρ∗)·ζ dρ∗ = 0.

Using the definition of the pushforward µ = t#ρ∗ we recall the classical Taylor
expansion

(4.11)
∫

Ω
(ρ∗ − µ)φ =

∫
Ω

(ρ∗ − t#ρ∗)φ =

∫
Ω

(
φ(x)− φ(t(x))

)
ρ∗(x)

=

∫
Ω

(
x− t(x)) · ∇φ(x) +O

(
‖D2φ‖∞|x− t(x)|2

) )
dρ∗(x)

=

∫
Ω

(id−t) · ∇φ dρ∗ +O
(
‖D2φ‖∞MK2

2(ρ∗, µ)
)

for all φ ∈ C∞c (Ω). Taking ζ = ∇φ in (4.10) and substituting yields

(4.12)
∫

Ω
(ρ∗−µ)φ = −τ

∫
Ω
∇(U ′(ρ∗)+Ψ+K?ρ∗)·∇φ dρ∗+O

(
‖D2φ‖∞MK2

2(ρ∗, µ)
)

for all smooth test functions φ. This is of course an approximation of the implicit
implicit Euler scheme

ρ∗ − µ
τ

= div(ρ∗∇(U ′(ρ∗ + Ψ +K ? ρ∗)),

the approximate error being controlled quadratically in the MK2 distance. Note that
this corresponds to the pure transport part ∂tρ = div(ρ∇(U ′(ρ)+Ψ+K?ρ∗))+(. . .)
in the PDE (4.2).

4.2. The Fisher-Rao substep. Let us fix as before an arbitrary measure µ ∈M+

(no restriction on the second moment), and assume that there exists somehow an
absolutely continuous minimizer

(4.13) ρ∗ ∈ Argmin
ρ∈M+

{
1

2τ
FR2(ρ, µ) + F(ρ)

}
.

Again, the existence and uniqueness of minimizers can be obtained under suitable
superlinearity, lower semi-continuity, and convexity assumptions on U,Ψ,K, and we
do not worry about this issue.

Let us start by differentiating the squared distance for suitable perturbations ρε of
the minimizer ρ∗. According to section 2.2 an arbitrary ψ ∈ C∞c (Ω) can be considered
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as a tangent vector in Tρ∗M+
FR through{

∂ερε = ρεψ
ρε(0) = ρ∗

⇔ ρε = ρ∗eεψ.

Denoting by µs = [(1 − s)√µ + s
√
ρ∗]2 the Fisher-Rao geodesics from µ to ρ∗, the

terminal velocity ∂sµ(1) = 2
√
ρ∗(
√
ρ∗ − √µ) can be represented by the L2(dρ∗)

action of r = 2
√
ρ∗−√µ√
ρ∗

. Using the first variation formula d
dt

(
1
2d

2(x(t), y)
)∣∣
t=0

=

〈x′(0), y′(1)〉x(0) and our L2(dρ) identification of the tangent spaces in section 2.3 we
can guess that

d

dε

(
1

2
FR2(ρε, µ)

)∣∣∣∣
ε=0

= 〈∂ερ(0), ∂sµ(1)〉Tρ∗M+
FR

= (ψ, r)L2(dρ∗) = 2

∫
Ω

(
√
ρ∗ −√µ)

√
ρ∗ψ,

which can be checked by differentiating w.r.t. ε in the explicit representation (2.6).
Using the same Riemannian formalism we anticipate that

d

dε
F(ρε)

∣∣∣∣
ε=0

= 〈gradFRF , ∂ερ(0)〉Tρ∗M+
FR

=
〈
F ′(ρ∗), ψ

〉
L2(dρ∗)

=

∫
Ω
ρ∗(U ′(ρ∗) + Ψ +K ? ρ∗)ψ,

and this can be checked again by differentiating F(ρε) =
∫

Ω(. . .) under the integral
sign. Writing the the optimality condition d

dε

(
1
2τ FR

2(ρε, µ) + F(ρε)
)∣∣
ε=0

= 0 thus
gives the Euler-Lagrange equation

(4.14) ∀ψ ∈ C∞c (Ω) :

∫
Ω

(
√
ρ∗−√µ)

√
ρ∗ψ = −τ

2

∫
Ω

{
U ′(ρ∗)+Ψ+K?ρ∗

}
ρ∗ψ.

In order to relate this with the more standard Euclidean difference quotient, we first
assume that U ′(ρ∗) + Ψ +K ?ρ∗ ∈ L2(dρ∗), or in other words that gradFRF(ρ∗) can
indeed be considered as a tangent vector of Tρ∗M+

FR. This should be natural, but may
require a case-to-case analysis depending on the structure of U,Ψ,K. Ignoring this
technical issue and thus assuming the L2(dρ∗) regularity, an easy density argument
shows that the previous equality holds for all ψ ∈ L2(dρ∗). Taking in particular
ψ =

√
ρ∗+
√
µ√

ρ∗
φ ∈ L2(dρ∗) for arbitrary φ ∈ C∞c (Ω), we obtain a slight variant of the

previous Euler-Lagrange equation (4.14) in the form
(4.15)

∀φ ∈ C∞c (Ω) :

∫
Ω

(ρ∗ − µ)φ = −τ
∫

Ω

√
ρ∗(
√
ρ∗ +

√
µ)

2

{
U ′(ρ∗) + Ψ +K ? ρ∗

}
φ.

Recalling that in the minimizing scheme we only deal with measures at short O(
√
τ)

distance, one should essentially think of this as if ρ∗ ≈ µ in the right-hand side, and
(4.15) is thus an approximation to the implicit Euler scheme

ρ∗ − µ
τ

= −ρ∗(U ′(ρ∗) + Ψ +K ? ρ∗).

Note that this is the reaction part ∂tρ = (. . .)− ρ(U ′(ρ) + Ψ +K ? ρ∗) in the PDE
(4.2).

Remark 4.1. Contrarily to the corresponding approximate Euler-Lagrange equation
(4.12) for one elementary Monge-Kantorovich substep, (4.15) does not involve any
quadratic remainder O(FR2(ρ∗, µ)). The price to pay for this is that the right-hand
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side appears now as a slight “twist” of the more natural and purely Riemannian
object −ρ∗(U ′(ρ∗) + Ψ) = − gradFRF(ρ∗) in (4.15), the twist occurring through the
approximation

√
ρ∗(
√
ρ∗+
√
µ)

2 ≈ ρ∗.

Remark 4.2. A technical issue might appear here for unbounded domains Ω. Indeed

since we construct recursively ρn
MK22−→ ρn+ 1

2
FR2−→ ρn+1 one should make sure that, in

the second reaction substep, the minimizer ρn+1 keeps finite second moment so that
the scheme can be safely iterated afterward. This should be generally guaranteed if the
external potential Ψ is quadratically confining, but may require once again a delicate
analysis depending on the structure of U,Ψ,K (see section 5 for a simple example
Ψ,K ≡ 0).

4.3. Convergence to a weak solution. Assuming that we can solve recursively
(4.4)-(4.5) for some given initial datum

ρ0 ∈M+, F(ρ0) <∞,

we construct two piecewise-constant interpolating curves

(4.16) t ∈ ((n− 1)τ, nτ ], n ≥ 0 :

{
ρ̃τ (t) = ρn+ 1

2 ,
ρτ (t) = ρn+1.

By construction we have the energy monotonicity
(4.17)
∀ 0 ≤ t1 ≤ t2 : F(ρτ (t2)) ≤ F(ρ̃τ (t2)) ≤ F(ρτ (t1)) ≤ F(ρ̃τ (t1)) ≤ F(ρ0),

and an easy application of the Cauchy-Schwarz inequality with the total square-
distance estimate (4.8) gives moreover the classical 1

2 -Hölder estimate

(4.18) ∀ 0 ≤ t1 ≤ t2 :

{
KFR(ρτ (t2), ρτ (t1)) ≤ C|t2 − t1 + τ |

1
2

KFR(ρ̃τ (t2), ρ̃τ (t1)) ≤ C|t2 − t1 + τ |
1
2

.

Moreover for all t > 0 we have ρ̃τ (t) = ρn+ 1
2 and ρτ (t) = ρn+1 for some n ≥ 0.

From the total square estimate (4.6) we have therefore FR2(ρ̃τ (t), ρτ (t)) ≤ Cτ , and
by Proposition 2.1 we conclude that the two curves ρτ , ρ̃τ stay close

(4.19) ∀ t ≥ 0 : KFR(ρ̃τ (t), ρτ (t)) ≤ FR(ρ̃τ (t), ρτ (t)) ≤ C
√
τ

uniformly in τ .
We begin with a fairly general result, giving pointwise convergence in time when

τ → 0 for a weak topology:

Proposition 4.1. Assume that F(ρ0) < ∞ and F is bounded from below on M+.
Then there exists a KFR-continuous curve ρ ∈ C

1
2 ([0,∞);M+

KFR) and a discrete sub-
sequence τ → 0 (not relabeled here) such that

(4.20) ∀ t ≥ 0 : ρτ (t), ρ̃τ (t)→ ρ(t) weakly- ∗ when τ → 0.

We recall that the weak-∗ convergence of measures is defined in duality with Cc(Ω)
test-functions. Observe that the two interpolated curves converge to the same limit,
and note that because ρ ∈ C([0,∞);M+

KFR) the initial datum ρ(0) = ρ0 is taken
continuously in the KFR metric sense. In particular since KFR metrizes the narrow
convergence of measures [22, thm. 3] the initial datum ρ(0) = ρ0 will be taken at least
in the narrow sense, which is stronger than weak-∗ or distributional convergence.
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Proof. From the proof of [22, lem. 2.2] it is easy to see that we have mass control

∀µ, ν ∈M+ : |ν| ≤ |µ|+ KFR2(ν, µ).

Applying this with ν = ρτ (t), ρ̃τ (t) and µ = ρ0, and noting that the square-distance
estimate (4.8) controls KFR2(ρτ (t), ρ0), KFR2(ρ̃τ (t), ρ0) ≤ C(t + τ), we see that the
masses are controlled as |ρτ (t)| + |ρ̃τ (t)| ≤ CT uniformly in τ in any finite time
interval t ∈ [0, T ]. By the Banach-Alaoglu inM = C∗c we see that ρτ (t), ρ̃τ (t) lie in
the fixed weakly-∗ relatively compact set KT = {|ρ| ≤ CT } for all t ∈ [0, T ]. By [22,
thm. 5] we know that the KFR distance is lower semi-continuous with respect to the
weak-∗ convergence of measures, and the metric space (M+, KFR) is complete [22,
thm. 3]. Exploiting the time equicontinuity (4.18), the lower semi-continuity, and
the completeness, we can apply a refined version of the Arzelà-Ascoli theorem [2,
prop. 3.3.1] to conclude that, up to extraction of a discrete subsequence if needed,
ρτ (t) → ρ(t) and ρ̃τ (t) → ρ̃(t) pointwise in t ∈ [0, T ] for the weak-∗ convergence
and for some limit curves ρ, ρ̃ ∈ C

1
2 ([0, T ];M+

KFR). Moreover ρ(t), ρ̃(t) ∈ KT for
all t ∈ [0, T ], and by diagonal extraction we can assume that this holds for all
T > 0. Finally as we already know that ρτ (t) and ρ̃τ (t) converge weakly-∗ to ρ(t)
and ρ̃(t) respectively, we conclude by (4.19) and the same lower semi-continuity that
KFR(ρ(t), ρ̃(t)) ≤ lim inf

τ→0
KFR(ρτ (t), ρ̃τ (t)) = 0 for any arbitrary t ≥ 0. Thus ρ = ρ̃ as

desired and the proof is complete. �

Our next statement is more vague and requires some compactness conditions to
be checked in each particular case, but guarantees that the previous limit should
generically be a weak solution of the original PDE:

Theorem 4. Assume that one could strengthen the convergence ρτ , ρ̃τ → ρ from
Proposition 4.1 into any strong convergence (e.g. pointwise a.e. t, x ∈ (0,∞)× Ω),
guaranteeing that

(4.21)
{

ρ̃τ∇ (U ′(ρ̃τ ) + Ψ +K ? ρ̃τ ) ⇀ ρ∇ (U ′(ρ) + Ψ +K ? ρ)
√
ρτ
√
ρτ+
√
ρ̃τ

2 (U ′(ρτ ) + Ψ +K ? ρτ ) ⇀ ρ(U ′(ρ) + Ψ +K ? ρ)

at least in D′((0,∞) × Ω) as τ → 0 with limits in L1
loc((0,∞) × Ω). Then ρ is a

nonnegative weak solution of
(4.22){

∂t = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(F ′(ρ) + Ψ +K ? ρ) in (0,∞)× Ω
ρ|t=0 = ρ0 inM+(Ω)

For the sake of generality we simply assumed here that the nonlinear terms pass to
the limit as in (4.21). This is of course a strong hypothesis, and we shall discuss in
section 5 some strategies to retrieve such compactness.

Proof. As already discussed just after Proposition 4.1, the initial datum ρ(0) = ρ0 is
taken continuously at least in the metric sense (M+, KFR), and any limit ρ = lim

τ→0
ρτ

in any weak sense will automatically be nonnegative.
Fix now any 0 < t1 < t2 and φ ∈ C∞c (Ω). For fixed τ we have ρτ (ti) = ρNi for

Ni = dti/τe, and Ti = Niτ → ti as τ → 0. Moreover for fixed n ≥ 0 we have
by construction the two Euler-Lagrange equations (4.12)(4.15), one for each Monge-
Kantorovich and Fisher-Rao substep as in section 4.1 and section 4.2 respectively.
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More explicitly, there holds∫
Ω

(ρn+ 1
2 − ρn)φ = −τ

∫
Ω
ρn+ 1

2∇(U ′(ρn+ 1
2 ) + Ψ +K ? ρn+ 1

2 ) · ∇φ

+O
(
‖D2φ‖∞MK2

2(ρn+ 1
2 , ρn)

)
and∫

Ω
(ρn+1− ρn+ 1

2 )φ = −τ
∫

Ω

√
ρn+1(

√
ρn+1 +

√
ρn+ 1

2 )

2

{
U ′(ρn+1) + Ψ +K ? ρn+1

}
φ.

Summing from n = N1 to n = N2 − 1, using the square-distance estimate (4.6) to
control the remainder term in the first Euler-Lagrange equation above, and recalling
that the interpolated curves are piecewise constant, we immediately get∫

Ω
(ρτ (t2)− ρτ (t1))φ =

N2−1∑
n=N1

∫
Ω

(
ρn+1 − ρn

)
φ =

N2−1∑
n=N1

τ

∫
Ω

(. . .)

= −
∫ T2

T1

∫
Ω

√
ρτ (
√
ρτ +

√
ρ̃τ )

2

{
U ′(ρτ ) + Ψ +K ? ρτ

}
φ

−
∫ T2

T1

∫
Ω
ρ̃τ∇(U ′(ρ̃τ ) + Ψ +K ? ρ̃τ ) · ∇φ +O

(
‖D2φ‖∞τ

)
.

From the previous Proposition we know that ρτ (t) converge weakly-∗ to ρ(t) point-
wise in time, so the left-hand side immediately passes to the limit when τ → 0. Due
to our strong assumption (4.21) and because Ti → ti the right-hand side also passes
to the limit. As a consequence we get
(4.23)∫

Ω
(ρ(t2)− ρ(t1))φ = −

∫ t2

t1

∫
Ω
ρ
(
∇(U ′(ρ)+Ψ+K?ρ) ·∇φ+

(
U ′(ρ)+Ψ+K?ρ

)
φ
)

for all 0 < t1 < t2 and φ ∈ C∞c (Ω), which is clearly an admissible weak formulation
of ∂tρ = div(ρ∇(U ′(ρ) + Ψ +K ? ρ))− ρ(U ′(ρ) + Ψ +K ? ρ). �

If Ω has a nontrivial boundary, some further work may be needed to retrieve the
homogeneous Neumann condition ρ∇(U ′(ρ)+Ψ+K?ρ) ·ν = 0 on ∂Ω. This amounts
to extending the class of C∞c (Ω) test functions to C1

loc(Ω) and should generically hold
with just enough regularity on the solution, but we will not consider this technical
issue for the sake of simplicity.

5. Compactness issues: an illustrative example

In Theorem 4 we assumed that the nonlinear terms pass to the limit, mainly in
the distributional sense. In order to prove this, the usual strategy is to obtain first
some energy/dissipation-type estimates to show that the nonlinear terms have a weak
limit, and then prove pointwise convergence ρτ (t, x)→ ρ(t, x) a.e. (t, x) ∈ R+×Ω to
identify the weak limit (typically as weak-strong products of limits). Thus the prob-
lem should amount to retrieving enough compactness on the interpolating curves
ρτ , ρ̃τ . With the help of any Aubin-Lions-Simon type results this essentially requires
compactness in time and space, which can be handled separately for different topolo-
gies in a flexible way. Compactness in space usually follows from the aforementioned
energy estimates, and the energy monotonicity should of course help: if e.g. the
total energy F(ρ) =

∫
Ω U(ρ)+(. . .) controls any Lq(Ω) norm then F(ρτ (t)) ≤ F(ρ0)
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immediately controls ‖ρτ‖L∞(0,∞;Lq) uniformly in τ . A rule of thumbs for parabolic
equations is usually that space regularity can be transferred to time regularity. Thus
the parabolic nature of the scheme should allow here to transfer space estimates,
if any, to time estimates. Note also that some sort of compactness (approximate
equicontinuity in time) is already guaranteed by (4.18), but in a very weak metric
sense for which the standard Aubin-Lions-Simon theory does not apply directly.

A slight modification of the usual arguments should however be required here,
because the scheme is decomposed in two separate substeps. The first Monge-
Kantorovich substep (4.9) encodes the higher order part of the PDE, which is para-
bolic and should therefore be smoothing. This regualization can often be quantified
using by-now classical methods in (Monge-Kantorovich) optimal transport theory,
such as BV estimates [15], the flow-interchange technique from [26], regularizing
λ-displacement convexity in the spirit of [27, 2], or any other strategy. On the other
hand the second Fisher-Rao substep (4.13) encodes the reaction part of the PDE,
hence we cannot expect any smoothing at this stage. One should therefore make sure
that, in the step ρn+ 1

2
FR−→ ρn+1, the regularity of ρn+ 1

2 inherited from the previous
step ρn MK2−→ ρn+ 1

2 propagates to ρn+1 at least to some extent.
At this stage we would like to point out one other possible advantage of our split-

ting scheme: it is well known [2] that λ-geodesic convexity is a central tool in the
setting of gradient flows in abstract metric spaces, and leads to quantified regulariza-
tion properties at the discrete level. Second order differential calculus à la Otto [30]
with respect to the KFR Riemannian structure was discussed in [22, 25] (also earlier
suggested in [23]) and allows to determine at least formally if a given functional F is
λ-geodesically convex for the distance KFR. However, in our scheme each step only
sees either one of the differential MK2/FR structures and therefore only separate ge-
odesic convexity comes into play. Consider for example the case of internal energies
F(ρ) =

∫
Ω U(ρ). Then the celebrated condition for McCann’s displacement convex-

ity [27] with respect to MK2 reads ρP ′(ρ) −
(
1− 1

d

)
P (ρ) ≥ 0 in space dimension d,

where the pressure P (ρ) = ρU ′(ρ)− U(ρ). On the other hand using the Riemanian
formalism in section 2.2 it is easy to see that, at least formally, this same functional
is λ-geodesically convex with respect to FR if and only if ρU ′′(ρ) + U ′(ρ)

2 ≥ λ. This
condition can be interpreted as s 7→ U(s2) being λ/4-convex in s =

√
ρ, the latter

change of variables naturally arising through (2.6) and FR2(ρ0, ρ1) = 4‖√ρ1−
√
ρ0‖2L2 .

Those two conditions are very easy to check separately and, in the light of the in-
finitesimal uncoupling, it seems likely that simultaneous convexity with respect to
each of the MK, FR metrics is equivalent to convexity with respect to the coupled KFR

structure. See [22, section 3] and [25, section 5.1] for related discussions.

The rest of this section is devoted to the illustration of this compactness strategy
in the simple case

(H)


Ψ,K ≡ 0,
U ∈ C1([0,∞)) ∩ C2(0,∞) with U(0) = 0,
U ′, U ′′ ≥ 0,
ρU ′′(ρ) is bounded for small ρ ∈ (0, ρ0],

which from now is assumed without further mention. We would like to stress here
that (H) holds for any Porous-Medium-type nonlinearity U(ρ) = ρm,m > 1, but not
for the Boltzmann entropy U(ρ) = ρ log ρ−ρ. Even though the latter is well behaved
(displacement convex) with respect to the Monge-Kantorovich structure [18, 37], it
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is not with respect to the Fisher-Rao one. Indeed it is easy to check that ρ log ρ−ρ is
not convex in √ρ, so that the Boltzmann entropy is not λ-displacement convex with
respect to FR for any λ ∈ R. This would require ρU ′′(ρ) + U ′(ρ)

2 = 1 + log ρ
2 ≥ λ for

some constant λ, which obviously fails for small ρ (this can be related to ρ = 0 being
an extremal point in M+, where all the Riemannian formalism from section 2.3
degenerates).

5.1. Propagation of regularity at the discrete level. Whenever U ′, U ′′ ≥ 0, the
PDE ∂tρ = div(ρ∇U ′(ρ))− ρU ′(ρ) = div(ρU ′′(ρ)∇ρ)− ρU ′(ρ) should be parabolic,
satisfy the maximum principle in the form ‖ρ(t)‖∞ ≤ ‖ρ0‖∞, and initial regularity
should propagate. We prove below that this holds at the discrete level:

Proposition 5.1 (BV and L∞ estimates). Assume that the initial datum ρ0 ∈
BV ∩ L∞(Ω). Then for any τ < 2/U ′(‖ρ0‖∞) there holds

∀ t ≥ 0 : ‖ρτ (t)‖BV(Ω) ≤ ‖ρ̃τ (t)‖BV(Ω) ≤ ‖ρ0‖BV(Ω)

and
∀ t ≥ 0 : ‖ρτ (t)‖L∞(Ω) ≤ ‖ρ̃τ (t)‖L∞(Ω) ≤ ‖ρ0‖L∞(Ω).

Proof. We argue at the discrete level by showing that the estimates propagate in
each substep. We shall actually prove a more precise result, namely

(5.1) ‖ρn+ 1
2 ‖BV ≤ ‖ρn‖BV, ‖ρn+ 1

2 ‖L∞ ≤ ‖ρn‖L∞

and

(5.2) ‖ρn+1‖BV ≤ ‖ρn+ 1
2 ‖BV, ρn+1(x) ≤ ρn+ 1

2 (x) a.e.

The propagation (5.1) in the first MK2 only requires convexity U ′′ ≥ 0 and no
smallness condition on the time step τ . This should be expected since the MK2

step is an implicit discretization of ∂tρ = div(ρ∇U ′(ρ)) = div(ρU ′′(ρ)∇ρ), which is
formally parabolic as soon as U ′′ ≥ 0. We recall first that by construction the step is
mass preserving, ‖ρn+ 1

2 ‖L1 = ‖ρn‖L1 . With our assumption U ′′ ≥ 0 we can directly
apply [15, thm. 1.1] to obtain ‖ρn+ 1

2 ‖TV ≤ ‖ρn‖TV, which immediately entails the
BV estimate. An early proof of ‖ρn+ 1

2 ‖L∞ ≤ ‖ρn‖L∞ can be found in [29] for the
particular case U(ρ) = ρ2, and the case of general convex U is covered by [34, prop.
7.32] (see also [11, 35]).

For the propagation (5.2) in the FR step we show below that the minimizer ρn+1

can be written as
ρn+1(x) = R(ρn+ 1

2 (x)) a.e. x ∈ Ω

for some 1-Lipschitz function R : R+ → R+ with R(0) = 0. This will ensure
that 0 ≤ ρn+1(x) ≤ ρn+ 1

2 (x) and entail the L∞ and L1 bounds as well as the
total variation estimate (see [1] for the composition of Lip ◦ BV maps). Note that
ρn+1(x) ≤ ρn+ 1

2 (x) shows in particular that the second moments propagate to the
next step, which might be difficult to check in general and should require further
assumptions on U,Ψ. In the rest of the proof we write ρ∗ = ρn+1 and µ = ρn+ 1

2 for
simplicity, in agreement with the notations in section 4.2.

By (4.14) with Ψ,K ≡ 0 we see that

(5.3) (
√
ρ∗ −√µ)

√
ρ∗ = −τ

2
ρ∗U ′(ρ∗)

at least in L1
loc(Ω), hence a.e. x ∈ Ω. From U ′ ≥ 0 we immediately get that either

ρ∗ = 0 or
√
ρ∗ ≤ √µ, which gives in any case ρ∗(x) ≤ µ(x) a.e.
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We show now that if the CFL condition τ ≤ U ′(‖ρ0‖∞)/2 holds then ρ∗ and µ share
the same support, i-e ρ∗(x) > 0 ⇔ µ(x) > 0. From the previous inequality ρ∗ ≤ µ
we only have to show that ρ∗(x) > 0 as soon as µ(x) > 0. Assume by contradiction
that there is some subset E ⊂ Ω with positive Lebesgue measure such that ρ∗(x) = 0
but µ(x) > 0 in E. We claim that

ρ := ρ∗χE{ + µχE

is then a strictly better competitor than the minimizer ρ∗. In order to check this we
first compute the square distance

1

4

(
FR2(ρ, µ)− FR2(ρ∗, µ)

)
=

∫
Ω

∣∣∣√ρ−√µ∣∣∣2 − ∫
Ω

∣∣∣√ρ∗ −√µ∣∣∣2
=

(∫
E{

∣∣∣√ρ∗ −√µ∣∣∣2 +

∫
E
|√µ−√µ|2

)
−
(∫

E{

∣∣∣√ρ∗ −√µ∣∣∣2 +

∫
E
|0−√µ|2

)
= −

∫
E
µ < 0.

For the energy contribution we have by convexity

F(ρ)−F(ρ∗) =

∫
Ω
U(ρ)− U(ρ∗) ≤

∫
Ω
U ′(ρ)(ρ− ρ∗)

=

∫
E
U ′(ρ)(µ− 0) ≤ U ′(‖ρ0‖∞)

∫
E
µ.

Note that 0 ≤ ρ∗, ρ, µ ≤ ‖ρ0‖∞ almost everywhere, so that all these integrals are
well-defined. Gathering these two inequalities we obtain

1

2τ

(
FR2(ρ, µ)− FR2(ρ∗, µ)

)
+ (F(ρ)−F(ρ∗)) ≤

(
−2

τ
+ U ′(‖ρ0‖∞)

)∫
E
µ < 0

because
∫
E µ > 0 and τ < 2/U ′(‖ρ0‖∞). This shows that ρ is a strictly better

competitor and yields the desired contradiction, thus ρ∗ > 0⇔ µ > 0.
Now inside the common support of ρ∗, µ we can divide (5.3) by

√
ρ∗ > 0, and

ρ∗(x) is a solution of the implicit equation

f(ρ, µ) = 0 with f(ρ, µ) :=
√
ρ
(

1 +
τ

2
U ′(ρ)

)
−√µ.

An easy application of the implicit functions theorem shows that, for any µ > 0, this
has a unique solution ρ = R(µ) for a C1(0,∞) function R satisfying 0 < R(µ) ≤ µ.
Moreover one can compute explicitly for all µ > 0

0 <
dR

dµ
(µ) = − ∂µf

∂ρf

∣∣∣∣
ρ=R(µ)

=

1
2
√
µ

1
2
√
ρ

(
1 + τ

2U
′(ρ)
)

+ τ
2

√
ρU ′′(ρ)

≤
1

2
√
µ

1
2
√
ρ

(
1 + τ

2U
′(ρ)
) =

1
√
µ√
ρ

(
1 + τ

2U
′(ρ)
) =

ρ

µ
≤ 1,

where we used successively U ′′ ≥ 0, f(ρ, µ) = 0⇔ 1+ τ
2U
′(ρ) =

√
µ√
ρ , and ρ = R(µ) ≤

µ. Extending by continuity R(0) = 0, we have shown that ρ∗(x) = R(µ(x)) for some
1-Lipschitz function R : R+ → R+ with R(0) = 0, and the proof is complete. �

Remark 5.1. A closer analysis of the implicit functions theorem above reveals that
the argument only requires U ′ ≥ 0 and ρU ′′(ρ) + U ′(ρ)/2 ≥ 0, which is less strin-
gent than our assumption U ′, U ′′ ≥ 0 as in (H). As already suggested this former
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condition corresponds to convexity of U(ρ) in the square root variable s =
√
ρ, or

more intrinsically to geodesic convexity of F(ρ) =
∫

Ω U(ρ) with respect to the dis-
tance FR. We also point out that the same approach should work with external po-
tentials Ψ 6≡ 0 under suitable structural assumptions: one should show first that
strict positivity is preserved in the sense that supp ρn+1 = supp ρn+ 1

2 , which is to
be expected since the ODE ∂tρ = −ρ(U ′(ρ) + Ψ(x)) formally preserves positivity.
Exploiting the Euler-Lagrange equations (4.14)(4.15), an implicit functions theorem
f(ρ, µ,Ψ) = 0⇔ ρ = R(µ,Ψ) should then apply inside the common support to prop-
agate the regularity. This should still control ∇ρ = ∂µR∇µ+ ∂ΨR∇Ψ provided that
Ψ is smooth enough. Nonlocal interaction terms

∫
ρK ∗ ρ are more involved.

5.2. Compactness and Energy Dissipation Inequality. Here we intend to show
how the strong compactness in space from Proposition 5.1 can be transferred to full
compactness, thus allowing to check our strong assumption (4.21) in Theorem 4 and
passing to the limit in the nonlinear terms.

Proposition 5.2. Assume (H). Then

ρτ , ρ̃τ → ρ in L1
loc([0,∞);L1)

for some (discrete) subsequence τ → 0.

We give two proofs: the first one is elementary and fully exploits the uniform-in-
time compactness estimates from Proposition 5.1. The second is less straightforward
but enlightens the transfer of space to time regularity.

First proof of Proposition 5.2. Let us recall from Proposition 4.1 that ρτ (t), ρ̃τ (t)
both converge weakly-∗ to the same limit ρ(t) pointwise in time. We claim that
this weak-∗ convergence can be strengthened into strong L1(Ω) convergence. Indeed
for any fixed t ≥ 0 we have ‖ρτ (t)‖BV, ‖ρ̃τ (t)‖BV ≤ ‖ρ0‖BV so by compactness
BV(Ω) ⊂⊂ L1(Ω) we see that {ρτ (t)}, {ρ̃τ (t)} are L1 relatively compact. Because
strong L1 convergence implies in particular weak-∗ convergence of measures, and
because we already know that these sequences are weakly-∗ relatively compact, the
uniqueness of the limit shows in fact that the whole sequences are strongly converging
in L1 to the same limit

∀ t ≥ 0 : lim
L1

ρτ (t) = lim
w−∗

ρτ (t) = ρ(t) = lim
w−∗

ρ̃τ (t) = lim
L1

ρ̃τ (t).

From this strong pointwise-in time L1 convergence and the uniform L∞(0,∞;L1)
bounds from Proposition 5.1, an easy application of Lebesgue’s dominated conver-
gence theorem in any finite time interval [0, T ] finally gives ‖ρτ − ρ‖L1((0,T );L1) → 0
and ‖ρ̃τ − ρ‖L1((0,T );L1) → 0 for all T > 0. �

Before giving the second proof we need a well known technical result:

Lemma 5.1. Let µ0, µ1 be any absolutely continuous measures with finite second
moments, same mass |µ0| = |µ1|, and bounded in Lp(Ω) for some 1 ≤ p ≤ ∞ by the
same constant Cp. Then

∀φ ∈W 1,2p′(Ω) :

∣∣∣∣∫
Ω

(µ1 − µ0)φ

∣∣∣∣ ≤√CpMK2(µ0, µ1)‖∇φ‖L2p′ ,

with the convention 1′ =∞ and ∞′ = 1.

Proof. Let (µt,vt)t∈[0,1] be the unique Monge-Kantorovich geodesics from µ0 to µ1,
satisfying ∂tµt + div(µtvt) = 0 with constant metric speed ‖vt‖L2(dµt) = cst =
MK(µ0, µ1). We first claim that ‖µt‖Lp ≤ Cp as well along this geodesics. Indeed if
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p = 1 this is simply the mass conservation, and the proof for p = ∞ can be found
in [29]. For 1 < p <∞ this is a simple consequence of the well-known displacement
convexity of Ep[µ] =

∫
Ω

µp

p−1 , [37, thm. 5.15]. Using the weak formulation of the
continuity equation, we compute by Hölder’s inequality∣∣∣∣∫

Ω
(µ1 − µ0)φ

∣∣∣∣ =

∣∣∣∣∫ 1

0

∫
Ω
vt · ∇φ dµtdt

∣∣∣∣ ≤ ∫ 1

0

(∫
Ω
|vt|2dµt

) 1
2
(∫

Ω
|∇φ|2µt

) 1
2

dt

≤ MK2(µ0, µ1)

∫ 1

0
(‖µt‖Lp‖|∇φ|2‖Lp′ )

1
2 dt ≤

√
CpMK2(µ0, µ1)‖∇φ‖L2p′

and the proof is complete. �

Second proof of Proposition 5.2. We assume here that Ω is bounded for simplicity,
but the same argument would actually work for unbounded domains simply replacing
all the functional spaces by their local counterparts (BVloc, H1

loc, L
p
loc. . . ).

We first control the difference quotient ‖ρn+1 − ρn‖Y in the dual space Y :=
H1(Ω)∗. For the Monge-Kantorovich step we can apply the previous Lemma 5.1
with p =∞, 2p′ = 2, ‖ρn+ 1

2 ‖L∞ ≤ ‖ρn‖L∞ ≤ ‖ρ0‖L∞ and obtain by duality

‖ρn+ 1
2 − ρn‖Y ≤ CMK2(ρn+ 1

2 , ρn).

For the reaction step we recall the Euler-Lagrange equation (4.15), which reads for
Ψ,K ≡ 0

∀φ ∈ C∞c (Ω) :

∫
Ω

(ρn+1−ρn+ 1
2 )φ = −τ

∫
Ω

√
ρn+1(

√
ρn+1 +

√
ρn+ 1

2 )

2
U ′(ρn+1)φ.

Because in the right-hand side ρn+ 1
2 , ρn+1 are bounded in L1 ∩ L∞(Ω) uniformly in

n this gives
‖ρn+1 − ρn+ 1

2 ‖Y ≤ ‖ρn+ 1
2 − ρn+1‖L2 ≤ Cτ.

By triangular inequality we deduce from the previous two estimates that

‖ρn+1 − ρn‖Y ≤ C(τ + MK2(ρn+1, ρn)),

and using the square distance estimate (4.6) and Cauchy-schwarz inequality we ob-
tain the approximate equicontinuity

∀ 0 ≤ t1 ≤ t2 : ‖ρτ (t2)− ρτ (t1)‖Y ≤ C(|t2 − t1 + τ |+ |t2 − t1 + τ |
1
2 ).

Because the embedding H1 ⊂⊂ L2 is compact we have L2 ⊂⊂ Y as well. Thanks to
the L1∩L∞(Ω) bounds from Proposition 5.1 we have τ -uniform bounds ‖ρτ (t)‖L2 ≤
C, and we see that there is a Y -relatively compact set KY = {‖ρ‖L2 ≤ C} such
that ρτ (t) ∈ KY for all t ≥ 0. Exploiting the above equicontinuity we can apply
again the same variant of the Arzelá-Ascoli theorem [2, prop. 3.3.1] in any bounded
time interval to deduce that there exists a subsequence (not relabeled) and ρ ∈
C([0, T ];Y ) such that ρτ (t) → ρ(t) in Y for all t ∈ [0, T ]. A further application of
Lebesgue’s dominated convergence theorem with ‖ρτ (t)‖Y ≤ C shows that ρτ → ρ
in Lp([0, T ];Y ) for all p ≥ 1 and fixed T > 0, and by Cantor’s procedure

ρτ → ρ in Lploc([0,∞);Y ).

Let now X := BV ∩ L∞(Ω) ⊂⊂ L2(Ω) =: B. We just proved that

X ⊂⊂ B ⊂ Y and
{
ρτ is bounded in L∞(0,∞;X),
ρτ is relatively compact in Lploc([0,∞);Y )
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for all p ≥ 1. By standard Aubin-Lions-Simon theory [36, lem. 9] we get that ρτ is
relatively compact in Lploc([0,∞);B) for all p ≥ 1. In particular we get pointwise a.e.
convergence ρτ (t, x)→ ρ(t, x) (up to extraction of a further subsequence), and a last
application of Lebesgue’s dominated convergence allows to conclude. The argument
is identical for ρ̃τ . �

In order to show that the nonlinear terms pass to the limit as in (4.21) we shall
need the following variant of the Banach-Alaoglu theorem with varying measures:

Lemma 5.2 (compactness for vector-fields). Let O ⊂ Rm be an open set (not neces-
sarily bounded), {σn}n≥0 ⊂M+(O) a sequence of finite nonnegative Radon measures
narrowly converging to σ ∈M+(O), and vn a sequence of vector fields on O. If

‖vn‖L2(O,dσn;Rm) ≤ C

then there exists v ∈ L2(O,dσ;Rm) such that, up to extraction of some subsequence,

∀ ζ ∈ C∞c (O;Rm) : lim
n→∞

∫
O
vn · ζdσn =

∫
O
v · ζdσ

and
‖v‖L2(O,dσ;Rm) ≤ lim inf

n→∞
‖vn‖L2(O,dσn;Rm).

The proof can be found in [2, thm. 5.4.4] for probability measures, see also [22, prop.
5.3] for an abstract version. As anticipated, we have now

Proposition 5.3. Assume (H). Then ρτ , ρ̃τ satisfy the compactness assumption
(4.21) in Theorem 4.

Proof. From the strong L1
loc([0,∞);L1) convergence in Proposition 5.2 and the uni-

form L1∩L∞(Ω) bounds in Proposition 5.1, a straightforward application of Lebesgue’s
dominated convergence theorem yields strong convergence

√
ρτ
√
ρ̃τ+
√
ρτ

2 U ′(ρτ ) →
ρU ′(ρ) at least in L1

loc((0,∞) × Ω). Therefore the reaction terms pass to the limit
as in (4.21), and we only have to check that the diffusion part does too.

Let tn+ 1
2 be the (backwards) optimal map from ρn+ 1

2 to ρn, and recall that
the Euler-Lagrange equation (4.10) holds with µ = ρn and minimizer ρ∗ = ρn+ 1

2 .

An easy density argument shows that (4.10) can in fact be written as id−tn+
1
2

τ =

−∇U ′(ρn+ 1
2 ) in L2(dρn+ 1

2 ), which should be interpreted as an equality in the tangent
plane T

ρn+
1
2
M+

MK. Taking thus the L2(dρn+ 1
2 ) norm we obtain

τ‖∇U ′(ρn+ 1
2 )‖2

L2(dρn+
1
2 )

=
1

τ
‖ id−tn+ 1

2 ‖2
L2(dρn+

1
2 )

=
1

τ
MK2

2(ρn+ 1
2 , ρn).

Recalling that the interpolated curve ρ̃τ (t) is piecewise constant and summing from
n = 0 to n = dT/τe+1 for fixed any T > 0, we obtain from the total square-distance
estimate (4.6)

(5.4)
∫ T

0

∫
Ω
|∇U ′(ρ̃τ (t))|2dρ̃τ (t) dt ≤ C ⇔

∫
O
|∇U ′(ρ̃τ )|2dστ ≤ C

with O = (0, T )×Ω ⊂ R1+d and dστ (t, x) = dρ̃τt (x)⊗dt. Recall that ‖ρ̃τ (t)‖L1(Ω) ≤
‖ρ0‖Ω, so that στ is really a finite measure on O for finite T > 0. From the strong
L1

loc([0,∞);L1) convergence ρ̃τ → ρ (Proposition 5.2) it is easy to check that στ
converges narrowly to dσ(t, x) = dρt(x) ⊗ dt = ρ(t, x)dxdt. Applying Lemma 5.2
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we see that there is a vector-field v ∈ L2(O,dσ) = L2(0, T ;L2(dρt)) such that, up
to extraction of a subsequence,

(5.5)
∫ T

0

∫
Ω
ρ̃τ∇U ′(ρ̃τ ) · ζ →

∫ T

0

∫
Ω
ρ(t, x)v(t, x) · ζ(t, x) dxdt

for all ζ ∈ C∞c ((0, T ) × Ω;Rn). In order to identify the weak limit v, recall that
the thermodynamic pressure P (ρ) := ρU ′(ρ) − U(ρ). Since P ′(ρ) = ρU ′′(ρ) our
assumptions on U show that P is Lipschitz in any bounded interval ρ ∈ [0,M ]. With
the strong convergence ρτ → ρ and the uniform L1∩L∞(Ω) bounds one immediately
gets P (ρ̃τ )→ P (ρ) in L1

loc((0,∞)× Ω), and as a consequence ∇P (ρ̃τ ) ⇀ ∇P (ρ) in
the sense of distributions D′((0, T )×Ω). Note that the measure dσ(t, x) = dρt(x)⊗dt
is finite on any subdomain (0, T ) × Ω, hence v ∈ L2(O, dσ) ⊂ L1(O,dσ) and ρv ∈
L1((0, T ) × Ω). Using the chain rule ∇P (ρ) = P ′(ρ)∇ρ = ρU ′′(ρ)∇ρ = ρ∇U ′(ρ)
we conclude that ρv = ∇P (ρ) = ρ∇U ′(ρ), thus v = ∇U ′(ρ) at least in L2(dρ). A
further diagonal extraction shows that the limit v can be chosen independent of T ,
and the proof is complete. �

At this stage we can safely apply Theorem 4 to conclude that ρ = lim ρτ = lim ρ̃τ

is a weak solution of the PDE. Our next and final result illustrates perhaps even
better the deep interplay between our two-steps variational discretization and the
three metrics:

Proposition 5.4. In addition to (H), assume that F(ρ) is geodesically convex with
respect to the MK2 structure, i-e ρP ′(ρ) ≥

(
1− 1

d

)
P (ρ) with P (ρ) = ρU ′(ρ) − U(ρ)

[37]. Then we have

(5.6) F(ρ(t2)) +

∫ t2

t1

∫
Ω

(|∇U ′(ρ)|2 + |U ′(ρ)|2) dρdt ≤ F(ρ(t1))

for all 0 ≤ t1 ≤ t2.

From the discussion in section 2.3 we known that ‖U ′(ρ)‖2H1(dρ) can be interpreted
either as the metric slope |∂F(ρ)|2 = ‖ gradKFRF(ρ)‖2 or, through the continuity
equation ∂tρ = div(ρ∇U ′(ρ)) − ρU ′(ρ), as the metric speed |ρ′(t)|2 with respect to
our distance KFR. Therefore (5.6) can be rephrased as the classical Energy Dissipation
Inequality

F(ρ(t2)) +

∫ t2

t1

{
1

2
|ρ′(t)|2 +

1

2
|∂F(ρ(t))|2

}
dt ≤ F(ρ(t1)),

which is one of the possible formulations of gradient flows in abstract metric spaces as
in [2]. Note also that (H) already implies ρU ′′(ρ) +U ′(ρ)/2 ≥ 0, which is equivalent
to geodesic convexity with respect to FR. Thus we essentially assumed here that F
is geodesically convex with respect to each of the MK2, FR structures, and it is not
surprising that we recover in the end a dissipation inequality for the full KFR metrics.

Proof. Let tn+ 1
2 be the optimal map from ρn+ 1

2 to ρn. By the above-tangent char-
acterization of the displacement convexity with respect to MK2 [37, prop. 5.29] we
have

F(ρn) ≥ F(ρn+ 1
2 ) +

∫
Ω

(tn+ 1
2 − id) · ∇U ′(ρn+ 1

2 )dρn+ 1
2

= F(ρn+ 1
2 ) + τ

∫
Ω
|∇U ′(ρn+ 1

2 )|2dρn+ 1
2 ,
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where the last equality follows by noticing that the Euler-Lagrange (4.10) really
means tn+ 1

2 − id = τ∇U ′(ρn+ 1
2 ) in L2(dρn+ 1

2 ).
For the reaction part let us recall that ρU ′′(ρ) + U ′(ρ)

2 ≥ 0 can be reinterpreted as
the convexity of s 7→ U(s2) in s =

√
ρ. Using this convexity we obtain

F(ρn+ 1
2 ) ≥ F(ρn+1) +

∫
Ω

2
√
ρn+1U ′(ρn+1)

(√
ρn+ 1

2 −
√
ρn+1

)
= F(ρn+1) + τ

∫
Ω
|U ′(ρn+1)|2dρn+1,

where the second line follows now by reinterpreting the Euler-Lagrange equation

(4.14) as 2

√
ρn+1−

√
ρn+

1
2√

ρn+1
= −τU ′(ρn+1) in L2(dρn+1). We get altogether

F(ρn+1) + τ

(∫
Ω
|∇U ′(ρn+ 1

2 )|2dρn+ 1
2 +

∫
Ω
|U ′(ρn+1)|2dρn+1

)
≤ F(ρn).

For any 0 ≤ t1 ≤ t2 let now N1, N2 ∈ N such that ρτ (ti) = ρNi , and Ti = Niτ .
Summing the previous inequality from n = N1 to n = N2 − 1 gives

(5.7) F(ρτ (t2)) +

∫ T2

T1

∫
Ω
|∇U ′(ρ̃τ )|2 dρ̃τdt+

∫ T2

T1

∫
Ω
|U ′(ρτ )|2 dρτdt ≤ F(ρτ (t1)).

We proved in Proposition 5.3 that ρ̃τ∇U ′(ρ̃τ ) ⇀ ρ∇U ′(ρ), and observe that Ti → ti
as τ → 0. From the energy estimate (5.4) and the lower semi-continuity in Lemma 5.2
we deduce that∫ t2

t1

∫
Ω
|∇U ′(ρ)|2 dρdt ≤ lim inf

τ→0

∫ T2

T1

∫
Ω
|∇U ′(ρ̃τ )|2 dρ̃τdt,

and from the strong convergence in Proposition 5.2 with the uniform L1 ∩ L∞(Ω)
bounds (Proposition 5.1) it is easy to see that∫ t2

t1

∫
Ω
|U ′(ρ)|2 dρdt = lim

τ→0

∫ T2

T1

∫
Ω
|U ′(ρτ )|2 dρτdt.

Similarly one can verify that

∀ t ≥ 0 : F(ρτ (t)) =

∫
Ω
U(ρτ (t))→

∫
Ω
U(ρ(t)) = F(ρ(t)).

Indeed with our assumptions U is Lipschitz in any bounded interval ρ ∈ [0,M ],
‖ρτ (t)‖L∞ ≤M = ‖ρ0‖L∞ uniformly in τ , and in the first proof of Proposition 5.2 we
obtained strong L1(Ω) convergence ρτ (t)→ ρ(t) pointwise in time. As a consequence
we can pass to the lim inf in (5.7) to retrieve (5.6) and the proof is complete. �
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