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Abstract

We study an original problem of pure exploration in a strategic bandit model motivated by Monte Carlo

Tree Search. It consists in identifying the best action in a game, when the player may sample random

outcomes of sequentially chosen pairs of actions. We propose two strategies for the fixed-confidence

setting: Maximin-LUCB, based on lower- and upper- confidence bounds; and Maximin-Racing, which

operates by successively eliminating the sub-optimal actions. We discuss the sample complexity of both

methods and compare their performance empirically. We sketch a lower bound analysis, and possible

connections to an optimal algorithm.

Keywords: multi-armed bandit problems, games, best-arm identification, racing, LUCB

1. Setting: A Bandit Model for Two-Player Zero-Sum Random Games

We study a statistical learning problem inspired by the design of computer opponents for playing

games. We are thinking about two-player zero sum full information games like Checkers, Chess, Go

(Silver et al., 2016) . . . , and also games with randomness and hidden information like Scrabble or Poker

(Bowling et al., 2015). At each step during game play, the agent is presented with the current game

configuration, and is tasked with figuring out which of the available moves to play. In most interesting

games, an exhaustive search of the game tree is completely out of the question, even with smart pruning.

Given that we cannot consider all states, the question is where and how to spend our computa-

tional effort. A popular approach is based on Monte Carlo Tree Search (MCTS) (Gelly et al., 2012;

Browne et al., 2012). Very roughly, the idea of MCTS is to reason strategically about a tractable (say

up to some depth) portion of the game tree rooted at the current configuration, and to use (randomized)

heuristics to estimate values of states at the edge of the tractable area. One way to obtain such estimates

is by ‘rollouts’: playing reasonable random policies for both players against each other until the game

ends and seeing who wins.

MCTS methods are currently applied very successfully in the construction of game playing agents

and we are interested in understanding and characterizing the fundamental complexity of such ap-

proaches. The existing picture is still rather incomplete. For example, there is no precise characteri-

zation of the number of rollouts required to identify a close to optimal action. Sometimes, cumulated
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Figure 1: Game tree when there are two actions by player (K =K1 =K2 = 2).

regret minimizing algorithms (e.g. UCB derivatives) are used, whereas only the simple regret is relevant

here. As a first step in this direction, we investigate in this paper an idealized version of the MCTS

problem for games, for which we develop a theory that leads to sample complexity guarantees.

More precisely, we study perhaps the simplest model incorporating both strategic reasoning and

exploration. We consider a two-player two-round zero-sum game, in which player A has K available

actions. For each of these actions, indexed by i, player B can then choose among Ki possible actions,

indexed by j. For i ∈ {1, . . . ,K} and j ∈ {1, . . . ,Ki}, when player A chooses action i and then player B

chooses action j, the probability that player A wins is µi,j . We investigate the situation (see Figure 1 for

an example) from the perspective of Player A, who wants to identify a maximin action

i∗ ∈ argmax
i∈{1,...,K}

min
j∈{1,...,Ki}

µi,j.

Assuming that Player B is strategic and picks, whatever A’s action i, the action j minimizing µi,j , this is

the best choice for A.

The parameters of the game are unknown to player A, but he can repeatedly choose a pair P = (i, j)
of actions for him and player B, and subsequently observe a sample from a Bernoulli distribution with

mean µi,j . At this point we imagine the sample could be generated e.g. by a single rollout estimate in

an underlying longer game that we consider beyond tractable strategic consideration. Note that, in this

learning phase, Player A is not playing a game: he chooses actions for himself and for his adversary, and

observes the random outcome.

The aim of this work is to propose a dynamic sampling strategy for Player A in order to minimize

the total number of samples (i.e. rollouts) needed to identify i∗. Letting

P = {(i, j) ∶ 1 ≤ i ≤K,1 ≤ j ≤Ki},

we formulate the problem as the search of a particular arm in a stochastic bandit model with K =∑K
i=1Ki Bernoulli arms of respective expectations µP , P ∈ P . In this bandit model, parametrized by

µ = (µP )P ∈P , when the player chooses an arm (a pair of actions) Pt at round t, he observes a sample Xt

drawn under a Bernoulli distribution with mean µPt .

In contrast to best arm identification in bandit models (see, e.g., Even-Dar et al. (2006); Audibert et al.

(2010)), where the goal is to identify the arm(s) with highest mean, argmaxP µP , here we want to iden-

tify as quickly as possible the maximin action i∗ defined above. For this purpose, we adopt a sequential

learning strategy (or algorithm) (Pt, τ, ı̂). Denoting by Ft = σ(X1, . . . ,Xt) the sigma-field generated

by the observations made up to time t, this strategy is made of
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MAXIMIN ACTION IDENTIFICATION

— a sampling rule Pt ∈ P indicating the arm chosen at round t, such that Pt is Ft−1 measurable,

— a stopping rule τ after which a recommendation is to be made, which is a stopping time with

respect to Ft,

— a final guess ı̂ for the maximin action i∗.

For some fixed ǫ ≥ 0, the goal is to find as quickly as possible an ǫ-maximin action, with a high accuracy.

More specifically, given δ ∈]0,1[, the strategy should be δ-PAC, i.e. satisfy

∀µ, Pµ ( min
j∈{1...Ki∗}

µi∗,j − min
j∈{1...Kı̂}

µı̂,j ≤ ǫ) ≥ 1 − δ, (1)

while keeping the total number of samples τ as small as possible. This is known, in the best-arm identifi-

cation literature, as the fixed-confidence setting; alternatively, one may consider the fixed-budget setting

where the total number of samples τ is fixed in advance, and where the goal is to minimize the probability

that ı̂ is not an ǫ-maximin action.

Related work. Tools from the bandit literature have been used in MCTS for around a decade (see

Munos (2014) for a survey). Originally, MCTS was used to perform planning in Markov Decision Pro-

cess (MDP), which is a slightly different setting with no adversary: when an action is chosen, the transi-

tion towards a new state and the reward observed are generated by some (unknown) random process. A

popular approach, UCT (Kocsis and Szepesvári, 2006) builds on Upper Confidence Bounds algorithms,

that are useful tools for regret minimization in bandit models (e.g., Auer et al. (2002)). In this slightly

different setup (see Bubeck and Cesa-Bianchi (2012) for a survey), the goal is to maximize the sum of

the sample collected during the interaction with the bandit, which amounts in our setting to favor rollouts

for which player A won (which is not necessary in the learning phase). This situation is from a certain

perspective a little puzzling and arguably confusing, because as shown by Bubeck et al. (2011), regret

minimization and best arm identification are incompatible objectives in the sense that no algorithm can

simultaneously be optimal for both.

More recently, tools from the best-arm identification literature have been used by Szorenyi et al.

(2014) in the context of planning in a Markov Decision Process with a generative model. The proposed

algorithm builds on the UGapE algorithm of Gabillon et al. (2012) to decide for which action new tra-

jectories in the MDP starting from this action should be simulated. Just like a best arm identification

algorithm is a building block for such more complex algorithms to perform planning in an MDP, we

believe that understanding the maximin action identification problem is a key step towards more gen-

eral algorithms in games, with provable sample complexity guarantees. For example, an algorithm for

maximin action identification may be useful for planning in a competitive Markov Decision Processes

Filar and Vrieze (1996) that models stochastic games.

Contributions. In this paper, we propose two algorithms for the maximin action identification in the

fixed-confidence setting, inspired by the two dominant approaches used in best arm identification algo-

rithms. The first algorithm, Maximin-LUCB, is described in Section 2: it relies on the use of Upper and

Lower Confidence Bounds. The second, Maximin-Racing is described in Section 3: it proceeds by suc-

cessive eliminations of the sub-optimal arms. We prove that both algorithms are δ-PAC, and give upper

bounds on their sample complexity. Along the way, we also propose some perspectives of improvement

that are illustrated empirically in Section 4. Finally, we propose in Section 5 for the two-actions case

a lower bound on the sample complexity of any δ-PAC algorithm, and sketch a strategy that may be

optimal with respect to this lower bound. Most proofs are deferred to the Appendix.
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Notation. To ease the notation, in the rest of the paper we assume that the actions of the two players

are re-ordered so that for each i, µi,j is increasing in j, and µi,1 is decreasing in i (so that i∗ = 1 and

µ∗ = µ1,1). These assumptions are illustrated in Figure 2. With this notation, the action ı̂ is an ǫ-maximin

action if µ1,1 − µı̂,1 ≤ ǫ. We also introduce Pi = {(i, j), j ∈ {1, . . . ,Ki}} as the group of arms related to

the choice of action i for player A.

×

µ1,1

×µ1,2

×µ1,3

×

µ2,1

× µ2,2

×µ2,3

× µ3,1

×µ3,2

×µ3,3

Figure 2: Example ‘normal form’ mean configuration. Arrows point to smaller values.

2. First Approach: M-LUCB

We first describe a simple strategy based on confidence intervals, called Maximin-LUCB (M-LUCB).

Confidence bounds have been successfully used for best-arm identification in the fixed-confidence setting

(Kalyanakrishnan et al. (2012); Gabillon et al. (2012); Jamieson et al. (2014)). The algorithm proposed

in this section for maximin action identification is inspired by the LUCB algorithm of Kalyanakrishnan et al.

(2012), based on Upper and Lower Confidence Bounds.

For every pair of actions P ∈ P , let IP (t) = [LP (t),UP (t)] be a confidence interval on µP built

using observations from arm P gathered up to time t. Such a confidence interval can be obtained by

using the number of draws NP (t) ∶= ∑t
s=1 1(Pt=P ) and the empirical mean of the observations for this

pair µ̂P (t) ∶= ∑t
s=1Xt1(Pt=P )/NP (t). The M-LUCB strategy aims at aligning the lower confidence

bounds of arms that are in the same group Pi. Arms to be drawn are chosen two by two: for any even

time t, defining for every i ∈ {1, . . . ,K}
ci(t) = argmin

1≤j≤Ki

L(i,j)(t) and ı̂(t) = argmax
i

min
j

µ̂i,j(t) ,
the algorithm draws at round t + 1 and t + 2 the arms

Ht = (̂ı(t), cı̂(t)(t)) and St = argmax
P ∈{(i,ci(t))}i≠ı̂

UP (t).
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}ǫ

Figure 3: Stopping rule (2). The algorithm stops because the lower bound of the green arm beats up to

slack ǫ the upper bound for at least one arm (marked red) in each other action. In this case

action ı̂ = 2 is recommended.

This is indeed a regular LUCB sampling rule on a time-dependent set of arms each representing one

action: {(i, ci(t))}i∈{1,...,K}. In the two-actions case, one may alternatively draw at each time t the arm

Pt+1 = argmaxP ∈{Ht,St} NP (t) only.

Concerning the stopping rule, which depends on the parameter ǫ ≥ 0 (ǫ can be set to zero if µ1,1 >
µ2,1), it is defined as the first moment when, according to the confidence intervals, some action ı̂ is

probably approximately better than all other actions’ best responses:

τ = inf {t ∈ 2N ∶ min
i
[max

i′≠i
min

1≤j′≤Ki′

Ui′,j′(t) − min
1≤j≤Ki

Li,j(t)] < ǫ} . (2)

Then arm ı̂ = ı̂(τ), the empirical maximin action at that time, is recommended to player A. The stopping

rule is illustrated in Figure 3. With the notation of the sampling rule, this amounts to stopping when

LHt(t) > USt(t) − ǫ.
2.1. Analysis of the Algorithm

We analyze the algorithm under the assumptions µ1,1 < µ2,1 and ǫ = 0. We consider the Hoeffding-

type confidence bounds

LP (t) = µ̂P (t) −
¿ÁÁÀ β(t, δ)

2NP (t) and UP (t) = µ̂P (t) +
¿ÁÁÀ β(t, δ)

2NP (t) , (3)

where β(t, δ) is some exploration rate. A choice of β(t, δ) that ensures the δ-PAC property (1) is given

below. In order to highlight the dependency of the stopping rule on the risk level δ, we denote it by τδ.

Theorem 1 Let

H∗(µ) = ∑
(i,j)∈P

1

max [(µi,1 −
µ1,1+µ2,2

2
)2 , (µi,j − µi,1)2] .
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On the event

E = ⋂
P ∈P
⋂
t∈2N

{µP ∈ [LP (t),UP (t)]} ,
the M-LUCB strategy returns the maximin action and uses a total number of samples upper-bounded by

T (µ, δ) = inf {t ∈ N ∶ 4H∗(µ)β(t, δ) < t}.
According to Theorem 1, the exploration rate should be large enough to control Pµ(E), and as small as

possible so as to minimize T (µ, δ). The self-normalized deviation bound of Cappé et al. (2013) gives

a first solution (Corollary 2), whereas Lemma 7 of Kaufmann et al. (2015) yields Corollary 3. In both

cases, explicit bounds on T (µ, δ) are obtained using the technical Lemma 12 stated in Appendix A.

Corollary 2 Let α > 0 and C = Cα be such that

eK
∞∑
t=1

(log t)(log(Ct1+α))
t1+α

≤ C ,

and δ such that 4(1 + α)(C/δ)1/(1+α) > 4.85. With probability larger than 1 − δ, the M-LUCB strategy

using the exploration rate

β(t, δ) = log (Ct1+α

δ
) , (4)

returns the maximin action within a number of steps upper-bounded as

τδ ≤ 4H∗(µ)⎡⎢⎢⎢⎢⎣log (
1

δ
) + log(C(4(1 + α)H∗(µ))1+α) + 2(1 + α) log log⎛⎝4(1 + α)H

∗(µ)C 1

1+α

δ
1

1+α

⎞⎠
⎤⎥⎥⎥⎥⎦

Corollary 3 For b, c such that c > 2 and b > c/2, let the exploration rate be

β(t, δ) = log 1

δ
+ b log log

1

δ
+ c log log(et)

and

fb,c(δ) =K√eπ2

3

1

8c/2

(√log(1/δ) + b log log(1/δ) + 2√2)c(log(1/δ))b ,

then with probability larger than 1−fb,c(δ)δ, M-LUCB returns the maximin action and, for some positive

constant Cc and for δ small enough,

τδ ≤ 4H∗(µ)[log (1
δ
) + log(8CcH

∗(µ)) + 2 log log (8CcH
∗(µ)
δ

)]
Elaborating on the same ideas, it is possible to obtain results in expectation, at the price of a less explicit

bound, that holds for a slightly larger exploration rate.

Theorem 4 The M-LUCB algorithm using β(t, δ) defined by (4), with α > 1, is δ-PAC and satisfies

lim sup
δ→0

Eµ[τδ]
log(1/δ) ≤ 4H∗(µ).
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The complexity term H∗(µ) is easy to interpret: the number of draws of an arm (i, j) is upper bounded

by the typical number of samples needed to either discriminate µi,j from the smallest arm associated to

the same action, µi,1, or to discriminate µi,1 from a ‘virtual arm’ with mean (µ1,1+µ2,1)/2. We view this

virtual arm (that corresponds to the choice of a parameter c in Appendix A) as an artifact of our proof,

and we conjecture that it could be replaced by µ2,1 for arms in P1 and by µ1,1 for other arms. In the

particular case of two actions by players, we propose the following finer result, that holds for the variant

of M-LUCB that samples the least drawn arm among Ht and St at round t + 1.

Theorem 5 Assume K =K1 =K2 = 2. The M-LUCB algorithm using β(t, δ) defined by (4) with α > 1
is δ-PAC and satisfies

lim sup
δ→0

Eµ[τδ]
log(1/δ) ≤ 8[ 2(µ1,1 − µ2,1)2 +

1(µ1,2 − µ2,1)2 +
1

max [(µ1,1 − µ2,1)2, (µ2,2 − µ2,1)2]] .
2.2. Improved Intervals and Stopping Rule

The symmetry and the simple form of the sub-gaussian confidence intervals (3) are convenient for the

analysis, but they can be greatly improved thanks to better deviation bounds for Bernoulli distributions.

A simple improvement (see Kaufmann and Kalyanakrishnan (2013)) is to use Chernoff confidence inter-

vals, based on the binary relative entropy function d(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)).
Moreover, the use of a better stopping rule based on generalized likelihood ratio tests (GLRT) has been

proposed recently for best-arm identification, leading to significant improvements. We propose here an

adaptation of the Chernoff stopping rule of Garivier and Kaufmann (2016), valid for the case ǫ = 0.

This stopping rule based on the statistic:

ZP,Q(t) ∶= log maxµ′
P
≥µ′

Q
pµ′

P
(XP

NP (t)
)pµ′

Q
(XQ

NQ(t)
)

maxµ′
P
≤µ′

Q
pµ′

P
(XP

NP (t)
)pµ′

Q
(XQ

NQ(t)
) ,

where XP
s is a vector that contains the first s observations of arm P and pµ(Z1, . . . ,Zs) is the likelihood

of s i.i.d. observations from a Bernoulli distribution with mean µ. Introducing the weighted sum of

empirical means of two arms,

µ̂P,Q(t) ∶= NP (t)
NP (t) +NQ(t) µ̂P (t) + NQ(t)

NP (t) +NQ(t) µ̂Q(t),
it appears that for µ̂P (t) ≥ µ̂Q(t),

ZP,Q(t) = NP (t)d (µ̂P (t), µ̂P,Q(t)) +NQ(t)d (µ̂Q(t), µ̂P,Q(t)) ,
and ZP,Q(t) = −ZQ,P (t). The stopping rule is defined as

τ = inf {t ∈ N ∶ ∃i ∈ {1, . . . ,K} ∶ ∀i′ ≠ i,∃j′ ∈ {1, . . . ,Ki′} ∶ ∀j ∈ {1, . . . ,Ki},Z(i,j),(i′,j′)(t) > β(t, δ)}
= inf {t ∈ N ∶ max

i∈{1,...,K}
min
i′≠i

max
j′∈{1,...,Ki′}

min
j∈{1,...,Ki}

Z(i,j),(i′,j′)(t) > β(t, δ)} . (5)

Proposition 6 Using the stopping rule (5) with the exploration rate β(t, δ) = log (2K1(K−1)t
δ

), whatever

the sampling rule, if τ is a.s. finite, the recommendation is correct with probability Pµ (ı̂ = i∗) ≥ 1 − δ.
7
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Sketch of Proof. Recall that in our notation the optimal action is i∗ = 1.

Pµ (̂ı ≠ 1) ≤ Pµ (∃t ∈ N,∃i ∈ {1, . . . ,K} ∖ {1},∃j ∈ {1, . . . ,K1},Z(i,1),(1,j)(t) > β(t, δ))
≤

K∑
i=2

K1∑
j=1

Pµ (∃t ∈ N,Z(i,1),(1,j)(t) > β(t, δ)) .

Note that for i ≠ 1, µ(i,1) < µ(1,j) for all j ∈ {1, . . . ,K1}. The result follows from the following bound

proved in Garivier and Kaufmann (2016): whenever µP < µQ, for any sampling strategy,

Pµ (∃t ∈ N ∶ ZP,Q(t) > log (2t
δ
)) ≤ δ . (6)

3. A Racing algorithm

We now propose a Racing-type algorithm for the maximin action identification problem, inspired by

another line of algorithms for best arm identification (Maron and Moore, 1997; Even-Dar et al., 2006;

Kaufmann and Kalyanakrishnan, 2013). Racing algorithms are simple and powerful methods that pro-

gressively concentrate on the best actions. We give in this section an analysis of a Maximin-Racing

algorithm that relies on the refined information-theoretic tools introduced in the previous section.

3.1. A generic Maximin-Racing Algorithm

The Maximin Racing algorithm maintains a set of active arms R and proceeds in rounds, in which

all the active arms are sampled. At the end of round r, all active arms have been sampled r times and

some arms may be eliminated according to some elimination rule. We denote by µ̂P (r) the average of

the r observations on arm P . The elimination rule relies on an elimination function f(x, y) (f(x, y) is

large if x is significantly larger than y), and on a threshold function β(r, δ).
The Maximin-Racing algorithm presented below performs two kinds of eliminations: the largest arm

in each setRi may be eliminated if it appears to be significantly larger than the smallest arm inRi (high

arm elimination), and the group of armsRi containing the smallest arm may be eliminated (all the arms

in Ri are removed from the active set) if it contains one arm that appears significantly smaller than all

the arms of another group Rj (action elimination).

Maximin Racing algorithm

Parameters. Elimination function f , threshold function β

Initialization. For each i ∈ {1, . . . ,K},Ri = Pi, and R ∶= R1 ∪ ⋅ ⋅ ⋅ ∪RK .

Main Loop. At round r:

— all arms inR are drawn, empirical means µ̂P (r), P ∈ R are updated

— High arms elimination step: for each action i = 1 . . . K , if ∣Ri∣ ≥ 2 and

rf (max
P ∈Ri

µ̂P (r), min
P ∈Ri

µ̂P (r)) ≥ β(r, δ) , (7)

then remove Pm = argmax
j∈Ri

µ̂P (r) from the active set : Ri = Ri/{Pm}, R = R/{Pm}.
— Action elimination step: if (̃ı, ̃) = argmin

P ∈R
µ̂P (r) and if

rf (max
i≠ı̃

min
P ∈Ri

µ̂P (r), µ̂(ı̃,̃)(r)) ≥ β(r, δ) ,
then remove ı̃ from the possible maximin actions: R = R/Rı̃ and Rı̃ = ∅.

8
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The algorithm stops when all but one of the Ri are empty, and outputs the index of the remaining set as

the maximin action. If the stopping condition is not met for

r = r0 ∶=
2

ǫ2
log (4K

δ
) ,

then the algorithm stops and returns one of the empirical maximin actions.

3.2. Tuning the Elimination and Threshold Functions

In the best-arm identification literature, several elimination functions have been studied. The first

idea, presented in the Successive Elimination algorithm of Even-Dar et al. (2006), is to use the simple

difference f(x, y) = (x − y)21(x≥y); in order to take into account possible differences in the deviations

of the arms, the KL-Racing algorithm of Kaufmann and Kalyanakrishnan (2013) uses an elimination

function equivalent to f(x, y) = d∗(x, y)1(x≥y), where d∗(x, y) is defined as the common value of

d(x, z) and d(y, z) for the unique z satisfying d(x, z) = d(y, z). In this paper, we use the divergence

function

f(x, y) = I(x, y) ∶= [d(x, x + y
2
) + d(y, x + y

2
)]1(x≥y) (8)

inspired by the deviation bounds of Section 2.2. In particular, using again Inequality (6) for the uniform

sampling rule yields, whenever µP < µQ,

Pµ (∃r ∈ N ∶ rI(µ̂P (r), µ̂Q(r)) ≥ log 2r

δ
) ≤ δ. (9)

Using this bound, Proposition 7 (proved in Appendix B.1) proposes a choice of the threshold function

for which the Maximin-Racing algorithm is δ-PAC.

Proposition 7 With the elimination function I(x, y) of Equation (8) and with the threshold function

β(t, δ) = log (4CKt/δ), the Maximin-Racing algorithm satisfies

Pµ (µ1,1 − µı̂,1 ≤ ǫ) ≥ 1 − δ,
with CK ≤ (K)2. If µ1,1 > µ1,2 and if ∀i, µi,1 < µi,2, then CK =K ×maxiKi.

3.3. Sample Complexity Analysis

We propose here an asymptotic analysis of the number of draws of each arm (i, j) under the Maximin-

Racing algorithm, denoted by τδ(i, j). These bounds are expressed with the deviation function I , and

hold for ǫ > 0. For ǫ = 0, one can provide similar bounds under the additional assumption that all arms

are pairwise distinct.

Theorem 8 Assume µ1,1 > µ2,1. For every ǫ > 0, and for β(t, δ) chosen as in Proposition 7, the

Maximin-Racing algorithm satisfies

lim sup
δ→0

Eµ[τδ(1,1)]
log(1/δ) ≤

1

max (ǫ2/2, I(µ2,1, µ1,1))
and, for any (i, j) ≠ (1,1),

lim sup
δ→0

Eµ[τδ(i, j)]
log(1/δ) ≤

1

max (ǫ2/2, I(µi,1, µ1,1), I(µi,j , µi,1)) .
9
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It follows from Pinsker’s inequality that I(x, y) > (x − y)2, and hence Theorem 8 implies in particular

that for the M-Racing algorithm (for a sufficiently small ǫ)

lim sup
δ→0

Eµ[τδ]
log(1/δ) ≤ 1(µ1,1 − µ2,1)2 +

K1∑
j=2

1(µ1,j − µ1,1)2 +
K∑
i=2

Ki∑
j=1

1(µ1,1 − µi,1)2 ∨ (µi,j − µi,1)2 .
The complexity term on the right-hand side is reminiscent of the quantity H∗(µ) introduced in Theo-

rem 1. The terms corresponding to arm in P ∖P1 are comparable to the corresponding terms in H∗(µ)
(they are actually strictly smaller since no ‘virtual arm’ (µ1,1 + µ2,1)/2 have been introduced in the

analysis of M-Racing). However, the terms corresponding to the arms (1, j), j ≥ 2 are strictly larger

than the corresponding terms in H∗(µ). But this is mitigated by the fact that there is no multiplica-

tive constant in front of the complexity term. Besides, as Theorem 8 involves the deviation function

I(x, y) = d(x, (x + y)/2) + d(y, (x + y)/2 and not a subgaussian approximation, they can indeed be

significantly better.

4. Numerical Experiments and Discussion

In the previous sections, we have proposed two different algorithms for the maximin action identifi-

cation problem. The analysis that we have given does not clearly advocate the superiority of one or the

other. The goal of this section is to propose a brief numerical comparison in different settings, and to

compare with other possible strategies.

We will notably study empirically two interesting variants of M-LUCB. The first improvement that

we propose is the M-KL-LUCB strategy, based on KL-based confidence bounds (Kaufmann and Kalyanakrishnan

(2013)). The second variant, M-Chernoff, additionally improves the stopping rule as presented in Sec-

tion 2.2. Whereas Proposition 6 justifies the use of the exploration rate β(t, δ) = log(4K2
t/δ), which is

over-conservative in practice, we use β(t, δ) = log((log(t) + 1)/δ) in all our experiments, as suggested

by Corollary 3 (this appears to be already quite a conservative choice in practice). In the experiments,

we set δ = 0.1, ǫ = 0.

To simplify the discussion and the comparison, we first focus on the particular case in which there

are two actions for each player. As an element of comparison, one can observe that finding i∗ is at most

as hard as finding the worst arm (or the three best) among the four arms (µi,j)1≤i,j≤2. Thus, one could

use standard best-arm identification strategies like the (original) LUCB algorithm. For the latter, the

complexity is of order

2(µ1,1 − µ2,1)2 +
1(µ1,2 − µ2,1)2 +

1(µ2,2 − µ2,1)2 ,

which is much worse than the complexity term obtained for M-LUCB in Theorem 5 when µ2,2 and

µ2,1 are close to one another. This is because a best arm identification algorithm does not only find the

maximin action, but additionally figures out which of the arms in the other action is worst. Our algorithm

does not need to discriminate between µ2,1 and µ2,2, it only tries to assess that one of these two arms is

smaller than µ1,1. However, for specific instances in which the gap between µ2,2 and µ2,1 is very large,

the difference vanishes. This is illustrated in the numerical experiments of Table 1, which involve the

following three sets of parameters (the entry (i, j) in each matrix is the mean µi,j):

µ1 = [ 0.4 0.5

0.3 0.35
] µ2 = [ 0.4 0.5

0.3 0.45
] µ3 = [ 0.4 0.5

0.3 0.6
]

10



MAXIMIN ACTION IDENTIFICATION

τ1,1 τ1,2 τ2,1 τ2,2 τ1,1 τ1,2 τ2,1 τ2,2 τ1,1 τ1,2 τ2,1 τ2,2
M-LUCB 1762 198 1761 462 1761 197 1760 110 1755 197 1755 36

M-KL-LUCB 762 92 733 237 743 92 743 54 735 93 740 16

M-Chernoff 315 59 291 136 325 61 327 41 321 61 326 13

M-Racing 324 152 301 298 329 161 318 137 322 159 323 35

KL-LUCB 351 64 3074 2768 627 83 841 187 684 88 774 32

Table 1: Number of draws of the different arms under the models parameterized by µ1,µ2,µ3 (from

left to right), averaged over N = 10000 repetitions

We also perform experiments in a model with 3x3-actions with parameters:

µ =

⎡⎢⎢⎢⎢⎢⎣
0.45 0.5 0.55

0.35 0.4 0.6

0.3 0.47 0.52

⎤⎥⎥⎥⎥⎥⎦
Figure 4 shows that the best three algorithms in the previous experiments behave as expected: the num-

ber of draws of the arms are ordered exactly as suggested by the bounds given in the analysis. These

τM-KLLUCB =

⎡⎢⎢⎢⎢⎢⎣
798 212 92

752 248 22

210 44 21

⎤⎥⎥⎥⎥⎥⎦
τM-Ch. =

⎡⎢⎢⎢⎢⎢⎣
367 131 67

333 156 18

129 31 17

⎤⎥⎥⎥⎥⎥⎦
τM-Racing =

⎡⎢⎢⎢⎢⎢⎣
472 291 173

337 337 42

161 185 71

⎤⎥⎥⎥⎥⎥⎦
Figure 4: Number of draws of each arm under the bandit model µ, averaged of N = 10000 repetitions

experiments tend to show that, in practice, the best two algorithms are M-Racing and M-Chernoff, with

a slight advantage for the latter. However, we did not provide theoretical sample complexity bounds for

M-Chernoff, and it is to be noted that the use of Hoeffding bounds in the M-LUCB algorithm (that has

been analyzed) is a cause of sub-optimality. Among the algorithms for which we provide theoretical

sample complexity guarantees, the M-Racing algorithm appears to perform best.

5. Perspectives

To finish, let us sketch the (still speculative) perspective of an important improvement. For simplicity,

we focus on the case where each player chooses among only two possible actions, and we change our

notation, using: µ1 ∶= µ1,1, µ2 ∶= µ1,2, µ3 ∶= µ2,1, µ4 ∶= µ2,2. As we will see below, the optimal strategy

is going to depend a lot on the position of µ4 relatively to µ1 and µ2. Given w = (w1, . . . ,w4) ∈ ΣK ={w ∈ R4
+ ∶ w1 + ⋅ ⋅ ⋅ +w4 = 1}, we define for a, b, c in {1, . . . ,4}:

µa,b(w) = waµa +wbµb

wa +wb

and µa,b,c(w) = waµa +wbµb +wcµc

wa +wb +wc

.

Using a similar argument than the one of Garivier and Kaufmann (2016) in the context of best-arm

identification, one can prove the following (non explicit) lower bound on the sample complexity.

11
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Theorem 9 Any δ-PAC algorithm satisfies

Eµ[τδ] ≥ T ∗(µ)d(δ,1 − δ),
where

T ∗(µ)−1 ∶= sup
w∈ΣK

inf
µ′∶µ′

1
∧µ′

2
<µ′

3
∧µ′

4

( K∑
a=1

wa d(µa, µ
′
a))

= sup
w∈ΣK

min[F1(µ,w), F2(µ,w)], (10)

where

Fa(µ,w) = { wa d(µa, µa,3(w)) +w3 d(µ3, µa,3(w)) if µ4 ≥ µa3(w) ,
wa d(µa, µa,3,4(w)) +w3 d(µ3, µa,3,4(w)) +w4 d(µ4, µa,3,4(w)) otherwise.

A particular case. When µ4 > µ2, for any w ∈ ΣK it holds that µ4 ≥ µ1,3(w) and µ4 ≥ µ2,3(w).
Hence the complexity term can be rewritten to

T ∗(µ)−1 = sup
w∈ΣK

min
a=1,2

wa d(µa, µa,3(w)) +w3 d(µ3, µa,3(w)) .
In that case it is possible to show that the following quantity,

w∗(µ) = argmax
w∈ΣK

min
a=1,2

wa d(µa, µa,3(w) ) +w3 d(µ3, µa,3(w))
is unique and to give a more explicit expression. This quantity is to be interpreted as the vector of

proportions of draws of the arms by a strategy matching the lower bound. In this particular case, one

finds w∗4(µ) = 0, showing that an optimal strategy could draw arm 4 only an asymptotically vanishing

proportion of times as δ and ǫ go to 0.

Towards an Asymptotically Optimal Algorithm. Assume that the solution of the general optimiza-

tion problem (10) is well-behaved (unicity of the solution, continuity in the parameters,...) and that we

can find an efficient algorithm to compute

w∗(µ) = argmax
w∈ΣK

min[F1(µ,w), F2(µ,w)]
for any given µ. In particular, for a fixed w and µ, we need to be able to compute

F (w,µ) = inf
µ′∈Alt(µ)

4∑
a=1

wad(µa, µ
′
a),

where Alt(µ) = {µ′ ∶ i∗(µ) ≠ i∗(µ′)}. Then, if we can design a sampling rule ensuring that for all a,

Na(t)/t tends to w∗a(µ), and if we combine it with the stopping rule

τδ = inf {t ∈ N ∶ F((Na(t))a=1...4, µ̂(t)) > log(Ct/δ)}
for some positive constant C , then one could expect the following asymptotic optimality property:

lim sup
δ→0

Eµ[τδ]
log(1/δ) ≤ T ∗(µ).

But proving that this stopping rule does ensures a δ-PAC algorithm is not straightforward, and the anal-

ysis remains to be done.
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Appendix A. Analysis of the Maximin-LUCB algorithm

We define the event

Et = ⋂
P ∈P

(µP ∈ [LP (t),UP (t)]),
so that the event E defined in Theorem 1 rewrites E = ⋂t∈2N Et.

Assume that the event E holds. The arm ı̂ recommended satisfies, by definition of the algorithm, for

all i ≠ ı̂
min
j∈Kı̂

L(ı̂,j)(τδ) >min
j∈Ki

U(i,j)(τδ) − ǫ.
Using that LP (τδ) ≤ µP ≤ UP (τδ) for all P ∈ P (by definition of E) yields for all i

µı̂,1 =min
j∈Kı̂

µı̂,j >min
j∈Ki

µi,j − ǫ = µi,1 − ǫ,

hence maxi≠ı̂ µi,1 − µı̂,1 < ǫ. Thus, either ı̂ = 1 or ı̂ satisfies µ1,1 − µı̂,1 < ǫ. In both case, ı̂ is ǫ-optimal,

which proves that M-LUCB is correct on E .

Now we analyze M-LUCB with ǫ = 0. Our analysis is based on the following two key lemmas,

whose proof is given below.

Lemma 10 Let c ∈ [µ2,1, µ1,1] and t ∈ 2N. On Et, if (τδ > t), there exists P ∈ {Ht, St} such that

(c ∈ [LP (t),UP (t)]) .

14
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Lemma 11 Let c ∈ [µ2,1, µ1,1] and t ∈ 2N. On Et, for every (i, j) ∈ {Ht, St},
c ∈ [L(i,j)(t),U(i,j)(t)] ⇒ N(i,j)(t) ≤min( 2(µi,1 − c)2 ,

2(µi,j − µi,1)2)β(t, δ)
Defining, for every arm P ∈ P the constant

cP =
1

max [(µi,1 −
µ1,1+µ2,1

2
)2 , (µi,j − µi,1)2] ,

combining the two lemmas (for the particular choice c = µ1,1+µ2,1

2
) yields the following key statement:

Et ∩ (τδ > t) ⇒ ∃P ∈ {Ht, St} ∶ NP (t) ≤ 2cPβ(t, δ). (11)

Note that H∗(µ) = ∑P ∈P cP , from its definition in Theorem 1.

A.1. Proof of Theorem 1

Let T be a deterministic time. On the event E = ⋂t∈2N Et, using (11) and the fact that for every even

t, (τδ > t) = (τδ > t + 1) by definition of the algorithm, one has

min(τδ, T ) = T∑
t=1

1(τδ>t) = 2 ∑
t∈2N
t≤T

1(τδ>t) = 2 ∑
t∈2N
t≤T

1(∃P ∈{Ht,St}∶NP (t)≤2cpβ(t,δ))

≤ 2 ∑
t∈2N
t≤T

∑
P ∈P

1(Pt+1=P )∪(Pt+2=P )1(NP (t)≤2cP β(T,δ))

≤ 4 ∑
P ∈P

cPβ(T, δ) = 4H∗(µ)β(T, δ).
For any T such that 4H∗(µ)β(T, δ) < T , one has min(τδ, T ) < T , which implies τδ < T . Therefore

τδ ≤ T (µ, δ) for T (µ, δ) defined in Theorem 1.

A.2. Proof of Theorem 4

Let γ > 0. Let T be a deterministic time. On the event GT = ⋂ t∈2N
⌊γT ⌋≤t≤T

Et, one can write

min(τδ, T ) = 2γT + 2 ∑
t∈2N

⌊γT ⌋≤t≤T

1(τδ>t) = 2γT + 2 ∑
t∈2N

⌊γT ⌋≤t≤T

1(∃P ∈{Ht,St}∶NP (t)≤2cpβ(t,δ))

≤ 2γT + 2 ∑
t∈2N

⌊γT ⌋≤t≤T

∑
P ∈P

1(Pt+1=P )∪(Pt+1=P )1(NP (t)≤2cP β(T,δ))

≤ 2γT + 4H∗(µ)β(T, δ).
Introducing Tγ(µ, δ) ∶= inf{T ∈ N ∶ 4H∗(µ)β(T, δ) < (1−2γ)T}, for all T ≥ Tγ(µ, δ), GT ⊆ (τδ ≤ T ).
One can bound the expectation of τδ in the following way (using notably the self-normalized deviation

inequality of Cappé et al. (2013)):
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Eµ[τδ] = ∞∑
T=1

Pµ(τδ > T ) ≤ Tγ +

∞∑
T=Tγ

Pµ (τδ > T ) ≤ Tγ +

∞∑
T=Tγ

Pµ (GcT )
≤ Tγ +

∞∑
T=1

T∑
t=γT

∑
P ∈P

⎡⎢⎢⎢⎢⎢⎣
Pµ

⎛⎜⎝µP > µ̂P (t) +
¿ÁÁÀ β(t, δ)

2NP (t)
⎞⎟⎠ + Pµ

⎛⎜⎝µP < µ̂P (t) −
¿ÁÁÀ β(t, δ)

2NP (t)
⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦

≤ Tγ +

∞∑
T=1

T∑
t=γT

2KPµ

⎛⎜⎝µP > µ̂P (t) +
¿ÁÁÀ β(t,1)

2NP (t)
⎞⎟⎠

≤ Tγ +

∞∑
T=1

T∑
t=γT

2Ke log(t)β(t,1) exp(−β(t,1))
≤ Tγ +

∞∑
T=1

2KeT log(T )β(T,1) exp(−β(γT,1))
= Tγ +

∞∑
T=1

2KeT log(T ) log(CT 1+α)
Cγ1+αT 1+α

,

where the series is convergent for α > 1. One has

Tγ(µ, δ) = inf {T ∈ N ∶ log (CT 1+α

δ
) < (1 − 2γ)T

4H∗(µ) } .
The technical Lemma 12 below permits to give an upper bound on Tγ(µ, δ) for small values of δ, that

implies in particular

lim sup
δ→0

Eµ[τδ]
log(1/δ) ≤ 4H∗(µ)

1 − 2γ
.

Letting γ go to zero yields the result.

Lemma 12 If α, c1, c2 > 0 are such that a = (1 + α)c1/(1+α)2 /c1 > 4.85, then

x =
1 + α

c1
( log(a) + 2 log(log(a)))

is such that c1x ≥ log(c2x1+α).
Proof. One can check that if a ≥ 4.85, then log2(a) > log(a) + 2 log(log(a)). Thus, y = log(a) +
2 log(log(a)) is such that y ≥ log(ay). Using y = c1x/(1 + α) and a = (1 + α)c1/(1+α)2 /c1, one obtains

the result.

◻

A.3. Proof of Lemma 10

We show that on Et ∩ (τδ > t), the following four statements cannot occur, which yields that the

threshold c is contained in one of the intervals IHt(t) or ISt(t):
1. (LHt(t) > c) ∩ (LSt(t) > c)
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2. (UHt(t) < c) ∩ (USt(t) < c)
3. (UHt(t) < c) ∩ (LSt(t) > c)
4. (LHt(t) > c) ∩ (USt(t) < c)

1. implies that there exists two actions i and i′ such that ∀j ≤Ki,Li,j(t) ≥ c and∀j′ ≤Ki′ ,Li′,j′(t) ≥
c. Because Et holds, one has in particular µi,1 > c and µj,1 > c, which is excluded since µ1,1 is the only

such arm that is larger than c.

2. implies that for all i ∈ {1,K}, U(i,ci(t))(t) ≤ c. Thus, in particular U(1,c1(t)) ≤ c and, as Et holds,

there exists j ≤K1 such that µ1,j < c, which is excluded.

3. implies that there exists i ≠ ı̂(t) such that minj µ̂i,j(t) > µ̂Ht(t) ≥ minj µ̂(ı̂(t),j)(t), which

contradicts the definition of ı̂(t).
4. implies that UHt(t) > LSt(t), thus the algorithm must have stopped before the t-th round, which

is excluded since τδ > t.
We proved that there exists P ∈ {Ht, St} such that c ∈ IP (t).

A.4. Proof of Lemma 11

Assume that Et holds and that c ∈ [L(i,j)(t),U(i,j)(t)]. We first show that (i,1) is also contained in[L(i,j)(t),U(i,j)(t)]. First, by definition of the algorithm, if (i, j) =Ht or St, one has (i, j) = (i, ci(t)),
hence

L(i,j)(t) ≤ L(i,1)(t) ≤ µi,1,

using that Et holds. Now, if we assume that µi,1 > U(i,j)(t), because Et holds, one has µi,1 > µi,j , which

is a contradiction. Thus, µi,1 ≤ U(i,j)(t).
As c and µi,1 are both contained in [L(i,j)(t),U(i,j)(t)], whose diameter is 2

√
β(t, δ)/(2N(i,j)(t)),

one has

∣c − µi,1∣ < 2
¿ÁÁÀ β(t, δ)

2N(i,j)(t) ⇔ N(i,j)(t) ≤ 2β(t, δ)(µi,1 − c)2 .
Moreover, one can use again that L(i,j)(t) ≤ L(i,1)(t) to write

U(i,j)(t) − 2
¿ÁÁÀ β(t, δ)

2N(i,j)(t) ≤ L(i,1)(t)
µi,j − 2

¿ÁÁÀ β(t, δ)
2N(i,j)(t) ≤ µi,1,

which yields N(i,j)(t) ≤ 2β(t,δ)
(µi,j−µi,1)2

and concludes the proof.

A.5. Proof of Theorem 5

In the particular case of two actions by player, we analyze the version of LUCB that draws only one

arm per round. More precisely, in this particular case, letting

Xt = argmin
j=1,2

L(1,j)(t) and Yt = argmin
j=1,2

L(2,j)(t),
one has Pt+1 = argmax

P ∈{Xt,Yt}

NP (t).
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The analysis follows the same lines as that of Theorem 4. First, we notice that the algorithm outputs

the maximin action on the event E = ∩t∈NEt, and thus the exploration rate defined in Corollary 2 guaran-

tees a δ-PAC algorithm. Then, the sample complexity analysis relies on a specific characterization of the

draw of each of the arms given in Lemma 13 below (which is a counterpart of Lemma 11). This result

justifies the new complexity term that appears in Theorem 5.

Lemma 13 On the event E , for all P ∈ P , one has

(Pt+1 = P ) ∩ (τδ > t) ⊆ (NP (t) ≤ 8cPβ(t, δ)) ,
with

c(1,1) =
1(µ1,1 − µ2,1)2 , c(1,2) =

1(µ1,2 − µ2,1)2 , c(2,1) =
1(µ1,1 − µ2,1)2 ,

and

c(2,2) =
1

min(4(µ2,2 − µ2,1)2, (µ1,1 − µ2,1)2) .
Proof of Lemma 13. The proof of this result uses extensively the fact that the confidence intervals in

(3) are symmetric:

UP (t) = LP (t) + 2
¿ÁÁÀ β(t, δ)

2NP (t) .
Assume that (Pt+1 = (1,1)). By definition of the sampling strategy, one has L(1,1)(t) ≤ L(1,2)(t)

and N(1,1)(t) ≤ NYt(t). If (τδ > t), one has

L(1,1)(t) ≤ UYt(t)
U(1,1)(t) − 2

¿ÁÁÀ β(t, δ)
2N(1,1)(t) ≤ LYt(t) + 2

¿ÁÁÀ β(t, δ)
2NYt(t) .

On E , µ1,1 ≤ U(1,1)(t) and LYt(t) =min(L(2,1)(t),L(2,2)(t)) ≤min(µ2,1, µ2,2) = µ2,1. Thus

µ1,1 − µ2,1 ≤ 2

¿ÁÁÀ β(t, δ)
2NYt(t) + 2

¿ÁÁÀ β(t, δ)
2N(1,1)(t) ≤ 4

¿ÁÁÀ β(t, δ)
2N(1,1)(t) ,

using that N(1,1)(t) ≤ NYt(t). This proves that

(Pt+1 = (1,1)) ∩ (τδ > t) ⊆ (N(1,1)(t) ≤ 8β(t, δ)(µ1,1 − µ2,1)2) .
A very similar reasoning shows that

(Pt+1 = (1,2)) ∩ (τδ > t) ⊆ (N(1,2)(t) ≤ 8β(t, δ)(µ1,2 − µ2,1)2) .
Assume that (Pt+1 = (2,1)). If (τδ > t), one has

LXt(t) ≤ U(2,1)(t)
UXt(t) − 2

¿ÁÁÀ β(t, δ)
2NXt(t) ≤ L(2,1)(t) + 2

¿ÁÁÀ β(t, δ)
2N(2,1)(t) .
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On E , µ1,1 ≤ µXt ≤ UXt(t) and L(2,1)(t) ≤ µ2,1. Thus

µ1,1 − µ2,1 ≤ 2

¿ÁÁÀ β(t, δ)
2NXt(t) + 2

¿ÁÁÀ β(t, δ)
2N(2,1)(t) ≤ 4

¿ÁÁÀ β(t, δ)
2N(2,1)(t) ,

using that N(2,1)(t) ≤ NXt(t). This proves that

(Pt+1 = (2,1)) ∩ (τδ > t) ⊆ (N(2,1)(t) ≤ 8β(t, δ)(µ1,1 − µ2,1)2) .
Assume that (Pt+1 = (2,2)). First, using the fact that L(2,2)(t) ≤ L(2,1)(t) yields, on E ,

U(2,2)(t) − 2
¿ÁÁÀ β(t, δ)

2N(2,2)(t) ≤ µ2,1

µ2,2 − µ2,1 ≤ 2

¿ÁÁÀ β(t, δ)
2N(2,2)(t) ,

which leads to N(2,2)(t) ≤ 2β(t, δ)/(µ2,2 − µ2,1)2. Then, if (τδ > t), on E (using also that L(2,2)(t) ≤
L(2,1)(t)),

LXt(t) ≤ U(2,2)(t)
UXt(t) − 2

¿ÁÁÀ β(t, δ)
2NXt(t) ≤ L(2,2)(t) + 2

¿ÁÁÀ β(t, δ)
2N(2,2)(t)

UXt(t) − 2
¿ÁÁÀ β(t, δ)

2NXt(t) ≤ L(2,1)(t) + 2
¿ÁÁÀ β(t, δ)

2N(2,2)(t)
µ1,1 − 2

¿ÁÁÀ β(t, δ)
2NXt(t) ≤ µ2,1 + 2

¿ÁÁÀ β(t, δ)
2N(2,2)(t)

µ1,1 − µ2,1 ≤ 4

¿ÁÁÀ β(t, δ)
2N(2,2)(t) .

Thus, if µ2,2 < µ1,1, one also has N(2,2)(t) ≤ 8β(t, δ)/(µ1,1 − µ2,1)2. Combining the two bounds yield

(Pt+1 = (2,2)) ∩ (τδ > t) ⊆ (N(2,2)(t) ≤ 8β(t, δ)
max (4(µ2,2 − µ2,1)2, (µ1,1 − µ2,1)2)) .

Appendix B. Analysis of the Maximin-Racing algorithm

B.1. Proof of Lemma 7.

First note that for every P ∈ P , introducing an i.i.d. sequence of successive observations from arm

P , the sequence of associated empirical means (µ̂P (r))r∈N is defined independently of the arm being

active.
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We introduce the event E = E1 ∩ E2 with

E1 =
K⋂
i=1

⋂
(i,j)∈Pi∶
µi,j=µi,1

⋂
(i,j′)∈Pi∶
µi,j′>µi,1

(∀r ∈ N, f(µ̂i,j(r), µ̂i,j′(r)) ≤ β(r, δ))
E2 = ⋂

i∈{1,...,K}∶
µi,1<µ1,1

⋂
(i,j)∈Ai∶
µi,j=µi,1

⋂
i′∈{1,...,K}∶
µi′,1=µ1,1

⋂
(i′,j′)∈Ai′

(∀r ∈ N, rf(µ̂i,j(r), µ̂i′,j′(r)) ≤ β(r, δ))

and the event

F = ⋂
P ∈P

(∣µ̂P (r0) − µP ∣ ≤ ǫ

2
) .

From (9) and a union bound, P(Ec) ≤ δ/2. From Hoeffding inequality and a union bound, using also the

definition of r0, one has P(Fc) ≤ δ/2. Finally, Pµ (E ∩F) ≥ 1 − δ.

We now show that on E ∩F , the algorithm outputs an ǫ-optimal arm. On the event E , the following

two statements are true for any round r ≤ r0:

1. For all i, ifRi ≠ Ø, then there exists (i, j) ∈ Ri such that µi,j = µi,1

2. If there exists i such that Ri ≠ Ø, then there exists i′ ∶ µi′,1 = µ1,1 such that Ri′ ≠ Ø.

Indeed, if 1. is not true, there is a non empty set Ri in which all the arms in the set {(i, j) ∈ Pi ∶ µi,j =
µi,1} have been discarded. Hence, in a previous round at least one of these arms must have appeared

strictly larger than one of the arms in the set {(i, j′) ∈ Pi ∶ µi,j′ > µi,1} (in the sense of our elimination

rule), which is not possible from the definition of E1. Now if 2. is not true, there exists i′ ∶ µi′,1 = µ1,1,

such that Ri′ has been discarded at a previous round by some non-empty set Ri, with µi,1 < µ1,1.

Hence, there exists (i′, j′) ∈ Ai′ that appears significantly smaller than all arms in Ri (in the sense of

our elimination rule). As Ri contains by 1. some arm µi,j with µi,j = µi,1, there exists r such that

rd(µ(i,j)(r), µ(i′,j′)(r)) > β(r, δ), which contradicts the definition of E2.

From the statements 1. and 2., on E ∩F if the algorithm terminates before r0, using that the last set

in the race Ri must satisfy µi,1 = µ1,1, the action ı̂ is in particular ǫ-optimal. If the algorithm has not

stopped at r0, the arm ı̂ recommended is the empirical maximin action. Letting Ri some set still in the

race with µi,1 = µ1,1, one has,

min
P ∈Rı̂

µ̂P (r0) ≥ min
P ∈Ri

µ̂P (r0).
As F holds and because there exists (̂ı, ̂) ∈ Rı̂ with µı̂,̂ = µı̂,1, and (i, j) ∈ Ri with µi,j = µ1,1, one has

min
P ∈Ri

µ̂P (r0) ≥ min
P ∈Ri

(µP − ǫ/2) = µi,j − ǫ/2 = µ1,1 − ǫ/2.
min
P ∈Rı̂

µ̂P (r0) ≤ min
P ∈Rı̂

(µP + ǫ/2) = µı̂,̂ + ǫ/2 = µı̂,1 + ǫ/2.
and thus ı̂ is ǫ-optimal, since

µı̂,1 +
ǫ

2
≥ µ1,1 −

ǫ

2
⇔ µ1,1 − µı̂,1 ≤ ǫ.

◻
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B.2. Proof of Theorem 8

Recall µ1,1 > µ2,1. We present the proof assuming additionally that for all i ∈ {1,K}, µi,1 < µi,2 (an

assumption that can be relaxed, at the cost of more complex notations).

Let α > 0. The function f defined in (8) is uniformly continuous on [0,1]2, thus there exists ηα such

that ∣∣(x, y) − (x′, y′)∣∣∞ ≤ ηα ⇒ ∣f(x, y) − f(x′, y′)∣ ≤ α.
We introduce the event

Gα,r = ⋂
P ∈P

(∣µ̂P (r) − µP ∣ ≤ ηα)
and let E be the event defined in the proof of Lemma 7, which rewrites in a simpler way with our

assumptions on the arms :

E =
K⋂
i=2

K1⋂
j=1

(∀r ∈ N, rf(µ̂i,1(r), µ̂1,j(r)) ≤ β(r, δ)) K⋂
i=1

Ki⋂
j=2

(∀r ∈ N, f(µ̂i,1(r), µ̂i,j(r)) ≤ β(r, δ))
Recall that on this event, arm (1,1) is never eliminated before the algorithm stops and whenever an arm(i, j) ∈ R, we know that the corresponding minimal arm (i,1) ∈ R.

Let (i, j) ≠ (1,1) and recall that τδ(i, j) is the number of rounds during which arm (i, j) is drawn.

One has

Eµ[τδ(i, j)] = Eµ[τδ(i, j)1E ] + Eµ[τδ(i, j)1Ec] ≤ Eµ[τδ(i, j)1E ] + r0δ

2
.

On the event E , if arm (i, j) is still in the race at the end of round r,

— it cannot be significantly larger than (i,1): rf(µ̂i,j(r), µ̂i,1(r)) ≤ β(r, δ)
— arm (i,1) cannot be significantly smaller than (1,1) (otherwise all arms in Ri, including (i, j),

are eliminated): rf(µ̂i,1(r), µ̂1,1(r)) ≤ β(r, δ)
Finally, one can write

Eµ[τδ(i, j)1E ] ≤ Eµ [1E r0∑
r=1

1((i,j)∈R at round r)]
≤ Eµ [ r0∑

r=1

1(rmax[f(µ̂i,j(r),µ̂i,1(r)),f(µ̂i,1(r),µ̂1,1(r))]≤β(r,δ))]
≤ Eµ [ r0∑

r=1

1(rmax[f(µ̂i,j(r),µ̂i,1(r)),f(µ̂i,1(r),µ̂1,1(r))]≤β(r,δ))1Gα,r] + r0∑
r=1

Pµ(Gcα,r)
≤

r0∑
r=1

1(r(max[f(µi,j ,µi,1),f(µi,1,µ1,1)]−α)≤log(4CKr/δ) +

∞∑
r=1

Pµ(Gcα,r)
≤ T(i,j)(δ,α) + ∞∑

r=1

2K exp(−2(ηα)2r),
using Hoeffding inequality and introducing

T(i,j)(δ,α) ∶= inf {r ∈ N ∶ r (max [f(µi,j, µi,1), f(µi,1, µ1,1)] −α) > log (4CKr

δ
)}

Some algebra (Lemma 12) shows that T(i,j)(δ,α) = 1
max[f(µi,j ,µi,1),f(µi,1,µ1,1)]−α

log (4CK

δ
)+oδ→0 (log 1

δ
)

and finally, for all α > 0,

Eµ [τδ(i, j)] ≤ 1

max[f(µi,j, µi,1), f(µi,1, µ1,1)] −α log (4CK

δ
) + o(log 1

δ
) .

21



GARIVIER KAUFMANN KOOLEN

As this holds for all α, and keeping in mind the trivial bound Eµ [τδ(i, j)] ≤ r0 = 2
ǫ2
log (4K

δ
), one

obtains

lim sup
δ→0

Eµ[τδ(i, j)]
log(1/δ) ≤

1

max [ǫ2/2, I∗(µi,j , µi,1), I∗(µi,1, µ1,1)] .
To upper bound the number of draws of the arm (1,1), one can proceed similarly and write that, for

all α > 0,

τδ(1,1)1E = sup
(i,j)∈P/{(1,1)}

τδ(i, j)1E
≤ sup
(i,j)∈P/{(1,1)}

r0∑
r=1

1(rmax[f(µ̂i,j(r),µ̂i,1(r)),f(µ̂i,1(r),µ̂1,1(r))]≤β(r,δ))

≤ sup
(i,j)∈P/{(1,1)}

r0∑
r=1

1(r(f(µi,j ,µi,1)∧f(µi,1,µ1,1)−α)≤β(r,δ)) +

∞∑
r=1

1Gcα,r

≤ sup
(i,j)∈P/{(1,1)}

T(i,j)(δ,α) + ∞∑
r=1

1Gcα,r
.

Taking the expectation and using the more explicit expression of the T(i,j) yields

lim sup
δ→0

Eµ[τδ(1,1)]
log(1/δ) ≤

1

max [ǫ2/2, I∗(µ(2,1), µ1,1)] .
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