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Abstract

We introduce a new variable selection method, suitable when the correlation be-
tween regressors is known. It is appropriate in genomics since once the genetic
map has been built, the correlation is perfectly known. Our method, based on
the LASSO, is original since the number of selected variables is bounded by
the number of predictors, instead of being bounded by the number of observa-
tions as in the classical LASSO. It is made possible by the construction of a
specific statistical test, a transformation of the data and by the knowledge of
the correlation between regressors. We prove that the signal to noise ratio is
largely increased by considering the extremes. This new technique is inspired by
stochastic processes arising from statistical genetics. Our approach and existing
methods are compared for simulated and real data, and the results points to
the validity of our approach.

Keywords: Gaussian process, Mixture model, Hypothesis testing, Extreme
values, Selective genotyping, Quantitative Trait Locus detection

1. Introduction and background

1.1. Preliminaries

There are many issues related to high dimensional data. As mentioned
in Fan and Lv (17), one of the challenge is that “important predictors can
be highly correlated with some unimportant ones”. In genomics, correlation
between predictors is highly linked to recombination between genetic markers.
Then, once the genetic map is built (see (47) for instance), the correlation
between predictors is perfectly known and we do not have to estimate these
correlations. In this context, we propose in this study, to exploit this extra
information and to introduce a new variable selection method.
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The number of selected variables by our method, is bounded by the number
of predictors, instead of being bounded by the number of observations as in the
classical LASSO Tibshirani (43). It is made possible by the construction of a
specific statistical test, a transformation of the data and by this knowledge of
the correlation between regressors. In other words, we transform the original
problem of n observations and K predictors (K ≥ n), to a situation where K is
now the number of observations and L the number of predictors (L ≥ K). The
use of a mixture model allows us to look for variables that can be viewed as
unobserved predictors. The quantity L denotes the total number of predictors
(observed and unobserved).

Moreover, in high dimensional problem, it is well known that the sparse
coefficient should be large enough (see for instance (10)) in order to recover the
true model (β-min condition). We prove that the performances of our method
can be largely increased by considering the extremes. Indeed, the signal to noise
ratio can be largely improved with the help of the selective genotyping concept
proposed by Lebowitz and al. (25), and heavily used in agronomy.

Our study, inspired by stochastic processes arising from biology, focuses on
the backcross design (see below): the mathematical theory behind this concept
has been largely studied for many years (e.g. (14)). Note that we could have
focused on an evolutionary process such as the Wright Fisher model. It could
be investigated in future research.

1.2. A statistical genetic context

We study a backcross population: A× (A × B), where A and B are purely
homozygous lines and we address the problem of detecting Quantitative Trait
Loci, so-called QTL (genes influencing a quantitative trait which is able to be
measured) on a given chromosome. The trait is observed on n individuals (pro-
genies) and we denote by Yj , j = 1, ..., n, the observations, which we will assume
to be independent and identically distributed (i.i.d.). The mechanism of genet-
ics, or more precisely of meiosis, implies that among the two chromosomes of
each individual, one is purely inherited from A while the other (the “recom-
bined” one), consists of parts originated from A and parts originated from B,
due to crossing-overs. The chromosome will be represented by the segment
[0, T ]. The distance on [0, T ] is called the genetic distance, it is measured in
Morgans. The genome X(t) of one individual takes the value +1 if, for example,
the “recombined chromosome” is originated from A at location t and takes the
value −1 if it is originated from B . The admitted model for the stochastic
structure of X(.) is due to Haldane (20) which states that:

X(0) ∼ 1

2
(δ+1 + δ−1), X(t) = X(0)(−1)N(t)

where for any b ∈ R, δb denotes the point mass at b and N(.) is a standard
Poisson process on [0, T ]. In a more practical point of view, the Haldane (20)
model assumes no crossover interference and the Poisson process represents the
number of crossovers on [0, T ] which happen during meiosis.
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1.3. Analysis of variance model

The quantitative trait Y is affected by m additive QTLs located on the
chromosome. Indeed, it is well known that there is a finite number of loci
underlying the variation in quantitative traits (e.g. in aquaculture and livestock,
see (22)). Let qs and t⋆s denote respectively the QTL effect and the location of
the sth QTL. Besides, we will consider 0 < t⋆1 < ... < t⋆m < T . We assume an
“analysis of variance model” for the quantitative trait:

Y = µ +
m∑

s=1

X(t⋆s) qs + σε (1)

where ε is a Gaussian white noise.

1.4. Mixture model

In fact the “genome information” will be available only at marker locations,
that is to say at certain fixed locations t1 = 0 < t2 < ... < tK = T , and the
observation will be

(Y, X(t1), ..., X(tK)) .

So, we observe n observations (Yj , Xj(t1), ..., Xj(tK)) i.i.d.
The aim of this study is to estimate the number m of QTLs, their locations
t⋆1, ..., t⋆m and their effects q1, ..., qm. If the QTLs were located exactly on
marker locations, a classical way to solve this problem would be to perform the
“least absolute shrinkage and selection operator”, so called LASSO (43) using
as regressors the genome information at marker locations. However, since QTLs
lie on the chromosome at unknown locations, we should not look for QTLs only
at marker locations but rather focus on the whole chromosome. As a result,
our problem can not be solved using classical variable selection tools: QTL
mapping requires the use of mixture models in a way we will explain below. In
what follows, r(t, t′) will denote the probability of recombination between two
loci (i.e. positions) located at t and t′. Calculations on the Poisson distribution
show that

r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) =
1

2
(1− e−2|t−t′|),

we set in addition

r̄(t, t′) = 1− r(t, t′), ρ(t, t′) = e−2|t−t′| .

When there is only one QTL (i.e. m = 1), conditionally to X(t1), . . . , X(tK),
Y obeys to a mixture model with known weights

p(t⋆1)f(µ+q1,σ)(.) + {1− p(t⋆1)} f(µ−q1,σ)(.), (2)

where f(µ,σ) is the Gaussian density with parameters (µ, σ) and where p(t⋆1) is
the probability P(X(t⋆1) = 1) conditionally to the observations of the markers.
It can be expressed from the functions r and r (see formula 5 for K = 2, and
formula 10 for K > 2).

3



1.5. The “Interval Mapping” of Lander and Botstein (24)

In a famous article, Lander and Botstein (24) proposed to test the presence
of the QTL (i.e. m = 0 vs m = 1), performing a likelihood ratio test (LRT) of
the null hypothesis “q1 = 0” in equation (2). Since t∗1 is unknown, the authors
suggested to scan the chromosome and to perform a LRT, Λn(t), at each location
t of the interval [0, T ]. It leads to a “LRT process”, Λn(.), and considering
the supremum of Λn(.) gives the LRT of “q1 = 0” on the whole chromosome.
Note that when the null hypothesis of the absence of QTL on [0, T ] is rejected,
arg supΛn(t) is a natural estimator of the QTL location. This method, very
popular in genetics, is called the “Interval Mapping”. The distribution of the
LRT statistic, supΛn(.), has been given using some approximations by (14;
1; 5). In (39; 38; 11), the authors focus only on the null hypothesis and are
still using some approximations. Theoretical results are also present in (12)
under non contiguous hypotheses. However, geneticists are usually interested
in detecting QTLs with small effects (see (22)). Then, in Azäıs et al. (2), we
have recently given the exact asymptotic distribution of the LRT statistic under
the null and contiguous hypotheses. We showed that the LRT process, Λn(.), is
asymptotically the square of a “non linear interpolated process” centered under
H0 (i.e. no QTL on the chromosome) and uncentered of a mean function under
the alternative which depends on the QTL effect q1 and its location t⋆1. Then,
we presented a formula (due to the interpolation) to compute the supremum of
Λn(.).

1.6. First contribution: Asymptotic results on max test and LRT process, and
a new gene mapping method

The problem is that the use of the test statistic supΛn(.) is appropriate for
testing and localizing one QTL on [0, T ], but it is not so rewarding when more
than one QTL (i.e. m > 1) lie on [0, T ]. When there are m QTLs, conditionally
on X(t1), . . . , X(tK) , Y obeys to a mixture of 2m components

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) (3)

where w~t⋆(u1, ..., um) is the probability P {X(t⋆1) = u1, ..., X(t⋆m) = um} condi-
tionally on the observations of the markers (see Sections 3 and 4).

In this paper, we propose to generalize the results of Azäıs et al. (2) to the
general alternative that there exist m QTLs on [0, T ] at t⋆1, · · · , t⋆m with additive
effects q1, · · · , qm. We will show that under the general alternative, the LRT
process is still asymptotically the square of a “non linear interpolated process”.
However, the mean function depends this time on the number of QTLs, their
positions and their effects. This theoretical result allows us to propose a new
method to estimate the number of QTLs, their positions and their effects using
the LASSO.

Note that we will also give the asymptotic distribution of the statistic supΛn(.)
when m > 1, since this test can be viewed as a global test or max test (see for
instance (6)). In this context, supΛn(.) matches the test statistic corresponding
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to the statistical test with the smallest pvalue in a multiple testing framework.
It could be used before performing our new gene mapping method, in order to
look for “some signal” on the chromosome.
Section 8.1 illustrates on simulated data, our theoretical result regarding the
max test. We will show that the empirical power matches the theoretical power
for moderate values of n. A way to increase the signal to noise ratio is to focus
on the extremes (see below).

1.7. Some background about the use of the extremes in genomics: the selective
genotyping

In the past, collecting the genome information at one marker for all the in-
dividuals was very expensive. In such a context, Lebowitz and al. (25) proposed
to genotype only the individuals who present an extreme phenotype (i.e. the
smallest and the largest Y ), since they noticed that most of the information
about the QTL is present in the extreme phenotypes. This way, at a given
power, a large increase of the number of individuals leads to a decrease of the
number of individuals genotyped. Later, Lander and Botstein (24) formalized
this approach and called it “selective genotyping”. This design has been studied
theoretically by many authors considering only one fixed location of the genome
(e.g. (25), (24), (15), (30), (33)). More recently, in Rabier (37), we investigated
the asymptotic properties of the LRT statistic on the chromosome: it can be
viewed as an answer to the simulation study presented by Rabbee et al. (32).

The model corresponding to selective genotyping is the following: we con-
sider two real thresholds S− and S+, with S− ≤ S+ and we genotype if and
only if the phenotype Y is extreme, that is to say Y ≤ S− or Y ≥ S+. Note
that in practice, the cutoffs for genotyping are based on quantiles. However,
in most of the theoretical studies about selective genotyping, authors consider
fixed thresholds. This approximation is reasonable when we deal with a large
number of observations.

If we call X(t) the random variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation will be now

(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations :

• when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK).

• when Y ∈ [S− , S+], we have X(t1) = 0, ..., X(tK) = 0, which means
that the genome information is missing at the marker locations.
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When there is only one QTL (i.e. m = 1), we have proved (see (37)) that the
probability distribution of

(
Y, X(t1), ..., X(tK)

)
is proportional to the mixture

p(t⋆1) f(µ+q1,σ)(Y ) 1Y /∈[S−,S+] + {1− p(t⋆1)} f(µ−q1,σ)(Y ) 1Y /∈[S−,S+] (4)

+
1

2
f(µ+q1,σ)(Y ) 1Y∈[S−,S+] +

1

2
f(µ−q1,σ)(Y ) 1Y∈[S−,S+] .

Recall that the function p(t⋆1) is the probability P(X(t⋆1) = 1 | X(t1), . . . ,
X(tK)) . Note that although p(t⋆1) is a function of X(t1),. . . , X(tK), the quan-
tity p(t⋆1)1Y /∈[S−,S+] present in (4) is a function of X(t1), ..., X(tK). In this
context, we have proved (37) that the LRT process, Λn(.), converges to the
square of a non linear interpolated process. This limiting process is the same as
the one of the complete data situation (as above) except that the mean functions
are proportional of a factor linked to the selective genotyping.

1.7.1. Second contribution: Asymptotic results regarding the extremes (selective
genotyping)

As explained before, we propose to tackle in this study, the problem of
recovering several genes lying on the genome. So, under selective genotyping,
when there are m QTLs, the probability distribution of

(
Y, X(t1), ..., X(tK)

)

is proportional to the mixture of 2m components

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+ v~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]

where v~t⋆(u1, ..., um) is the probability P(X(t⋆1) = u1, X(t⋆2) = u2, . . . ,
X(t⋆m) = um) and where w~t⋆(u1, ..., um) is the same quantity as previously.
Explanations about this mixture model are given in Section 6.

We will show that the mean function of the LRT process is still proportional
to the one of the complete data situation. Besides, we will compare theoretically
the case where the n genotyped individuals are extreme or not.

In Section 8.2, we will present a simulation study to illustrate our new gene
mapping method under selective genotyping. As expected, the signal to noise
ratio is largely increased by considering extreme individuals. Recall that our
proposed method takes into account explicitly the fact that the individuals are
extreme, since it relies on the mean function of the LRT process under selec-
tive genotyping. Section 8.3 compares our new method and existing methods.
According to a simulation study, our method outperforms existing methods spe-
cially when the selective genotyping is performed unilaterally. For instance, in
dairy cattle, only the superior animals are genotyped (8). Besides, our L1 pe-
nalization method dedicated to the extremes, is easy to use and does not require
a threshold as “Interval Mapping” methods. Last, Section 8.4 is devoted to a
rice data analysis.
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1.7.2. Extra models studied in this paper

In this article, we will also investigate the asymptotic properties of the LRT
process regarding two other models present in the statistical genetics literature:
the epistatic model and the interference model. First, it is well known that
interactions between QTLs (so-called epistasis phenomenon) can be responsible
for a non-negligible part of the genetic variability of a quantitative trait (see
for instance (47)). On the other hand, biologists have observed that a recombi-
nation event can inhibit the formation of another recombination event nearby
(e.g. (42; 27)). As a result, we will also deal with a model incorporating this in-
terference phenomenon. Recall that Haldane modeling assumes that crossovers
occur independently along the genome.

2. Roadmap

In this article, we will present the following theorems and lemmas corre-
sponding to the different models studied:

• Theorem 1: Two genetic markers

• Theorem 2: Several markers

• Theorem 3: Epistasis

• Theorem 4: Selective genotyping

• Lemma 1: Asymptotic Relative Efficiency for selective genotyping

• Theorem 5: Selective genotyping and epistasis

Section 7 introduces our new gene mapping method, and Section 8 illustrates the
different results on simulated and real data. Note that in Supplement C, we will
introduce Lemma 2 based on the reverse configuration of selective genotyping,
and we will also present Theorem 6 and Theorem 7 dealing with interference,
and interference combined with epistasis, respectively.

3. Two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0
and T : 0 = t1 < t2 = T . Besides, let us consider the case m = 1 (i.e one QTL
located at t⋆1). For t ∈ [t1, t2] we define

p(t) = P
{
X(t) = 1

∣∣X(t1), X(t2)
}

and
x(t) = E

{
X(t)

∣∣X(t1), X(t2)
}
= 2p(t)− 1.
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It is clear that p(t⋆1) is effectively the probability appearing in (2). An applica-
tion of the rule of total probabilities leads to

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (5)

where

Q1,1
t =

r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)
.

We can notice that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Let θ1 = (q1, µ, σ) be the parameter of the model at t fixed. The likelihood
of the triplet (Y, X(t1), X(t2)) with respect to the measure λ⊗N⊗N , λ being
the Lebesgue measure, N the counting measure on N, is ∀t ∈ [t1, t2]:

Lt(θ
1) =

[
p(t)f(µ+q1,σ)(Y ) + {1− p(t)} f(µ−q1,σ)(Y )

]
g(t) (6)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
(7)

+
1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}

can be removed because it does not depend on the parameters. By a small abuse
of notation we still denote Lt(θ

1) for the likelihood without this function. Thus
we set

Lt(θ
1) =

[
p(t)f(µ+q1,σ)(Y ) + {1− p(t)} f(µ−q1,σ)(Y )

]

and lt(θ
1) will be the loglikelihood.

Before defining the score statistic and the LRT statistic at t, let us introduce
the notation θ10 = (0, µ, σ) which will refer to the parameter θ1 underH0. Since
the Fisher Information matrix is diagonal (cf. Section 1.1 of Supplement A), the
score statistic of the hypothesis “q1 = 0” at t, for n independent observations,
will be defined as

Sn(t) =

∂lnt
∂q1

|θ1
0√

VH0

(
∂lnt
∂q1

|θ1
0

) , (8)

where lnt (θ
1) denotes the log-likelihood at t, associated to n observations.

The LRT at t, for n independent observations, will be defined as

Λn(t) = 2
{
lnt (θ̂

1)− lnt (θ̂
1
|H0

)
}
,
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where θ̂1 is the maximum likelihood estimator (MLE), and θ̂1|H0
the MLE under

H0. As previously said, supΛn(.) is the LRT statistic of q1 = 0 on the whole
interval [0, T ]. We refer to Azäıs et al. (2) for the asymptotic distributions of
the LRT statistic.

Let us now suppose that more than one QTL (i.e. m > 1) lie on [0, T ].
In what follows, t⋆1, ..., t

⋆
m will denote the QTL locations, and we define the

parameter θm and θ0 in the following way : θm = (q1, ..., qm, µ, σ) and θm0 =
(0, ..., 0, µ, σ). Then, the full likelihood of the triplet (Y, X(t1), X(t2)), with
respect to the measure λ⊗N ⊗N , is

Lm
~t⋆
(θm) =

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) (9)

× gm(t⋆1, . . . , t
⋆
m)

where the function gm(.) is equal to the function g(.) given in formula (7) and
where

w~t⋆(u1, ..., um) = P
{
X(t⋆1) = u1, ..., X(t⋆m) = um

∣∣ X(t1), X(t2)
}
.

Note that at this time, it is clear that gm(.) does not depend on t⋆1, . . . ,t
⋆
m.

However, these parameters will be useful in the generalization in the next Sec-
tion. Note that calculations on the Poisson process lead to (proof included in
Section 1 of Supplement A).

w~t⋆(u1, ..., um)

=
{
r(t1, t

⋆
1) 1X(t1)u1=−1 + r̄(t1, t

⋆
1) 1X(t1)u1=1

}

× {r(t⋆1 , t⋆2) 1u1u2=−1 + r̄(t⋆1, t
⋆
2) 1u1u2=1}

× . . .×
{
r(t⋆m−1, t

⋆
m) 1um−1um=−1 + r̄(t⋆m−1, t

⋆
m) 1um−1um=1

}

×
{
r(t⋆m, t2) 1umX(t2)=−1 + r̄(t⋆m, t2)1umX(t2)=1

}
/
{
r(t1, t2) 1X(t1)X(t2)=−1+

r̄(t1, t2) 1X(t1)X(t2)=1

}
.

As previously, we set Lm
~t⋆
(θm) the likelihood without the function g(.). Note

that since p(t⋆) is equal to

∑

(u2,...,um)∈{−1,1}m−1

P
{
X(t⋆1) = 1, X(t⋆2) = u2, ..., X(t⋆m) = um

∣∣ X(t1), X(t2)
}
,

we have the relationship

Lm
~t⋆
(θm10...0) = Lt⋆

1
(θ1) where θm10...0 = (q1, 0, ..., 0, µ, σ) .

In the same way, under H0,

Lm
~t⋆
(θm0 ) = Lt⋆

1
(θ10).
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Notations 1. ⇒ is the weak convergence,
F.d.→ is the convergence of finite-

dimensional distributions and
L−→ is the convergence in distribution.

Our main result is the following:

Theorem 1. Suppose that the parameters (q1, ..., qm, µ, σ2) vary in a compact
and that σ2 is bounded away from zero, and also that m is finite. Let H0 be the
null hypothesis of no QTL on [0, T ], and let define the following local alternatives
Ha~t⋆ : “there are m QTLs located respectively at t⋆1, ..., t

⋆
m

with effect q1 = a1/
√
n, ..., qm = am/

√
n where a1 6= 0, ..., am 6= 0” . Then,

Sn(.) ⇒ Z(.) , Λn(.)
F.d.→ Z2(.) , supΛn(.)

L−→ supZ2(.)

as n tends to infinity, under H0 and Ha~t⋆ where Z(.) is the Gaussian process
with unit variance such as

Z(t) =
α(t) Z(t1) + β(t) Z(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
,

Cov {Z(t1), Z(t2)} = ρ(t1, t2) = e−2|t1−t2|

where α(t) = Q1,1
t −Q−1,1

t , β(t) = Q1,1
t −Q1,−1

t and with mean function

• under H0, m(t) = 0

• under Ha~t⋆ ,

m~t⋆(t) =
α(t) m~t⋆(t1) + β(t) m~t⋆(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)

where

m~t⋆(t1) =

m∑

s=1

as ρ(t1, t
⋆
s) / σ , m~t⋆(t2) =

m∑

s=1

as ρ(t2, t
⋆
s) / σ.

A proof is given in Section 1 of Supplement A. This theorem is a generalization of
Theorem 2.1 of Azäıs et al. (2), that considers only one QTL on the chromosome.
According to Theorem 1, under the general alternative, the LRT process is still
asymptotically the square of a non linear interpolated process. However, the
mean function depends this time on the number of QTLs, their positions and
their effects.

4. Several markers

In that case suppose that there are K markers 0 = t1 < t2 < ... < tK = T .
We consider values t, t′ or t⋆ of the parameters that are distinct of the markers
positions, and the result will be prolonged by continuity at the markers positions.
For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we define tℓ and tr as :

tℓ = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

10



In other words, t belongs to the “Marker interval” (tℓ, tr).
Let us briefly describe the changes with the previous section. Due to the

independent increments of the Poisson process,

P {X(t) | X(t1), . . . , X(tK)} = P
{
X(t) | X(tℓ), X(tr)

}
.

As a consequence, the likelihood ratio test Λn(t) is now built on the likelihood
of the triplet

(
Y, X(tℓ), X(tr)

)
and the quantities p(t) and g(t), introduced in

formulae (5) and (7), become

p(t) = P
{
X(t) = 1 | X(tℓ), X(tr)

}
, g(t) = P

{
X(tℓ), X(tr)

}
. (10)

Recall that our test statistic Λn(t), is the LRT corresponding to the test of
the presence of only one QTL at t. Let us now consider the true probability
distribution. Since P {X(t⋆1), . . . , X(t⋆m) | X(t1), . . . , X(tK)} is equal to

P
{
X(t⋆1), . . . , X(t⋆m) | X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}

all the information is contained in the markers flanking the QTL locations. As
a result, the focus is on the probability distribution of
(Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) and the quantities w~t⋆(u1, ..., um) and
gm(.) present in formula (9), verify now

w~t⋆(u1, ..., um) (11)

= P
{
X(t⋆1) = u1, ..., X(t⋆m) = um

∣∣ X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )
}

and

gm(t⋆1, . . . , t
⋆
m) = P

{
X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}
. (12)

Let us now introduce Theorem 2.

Theorem 2. We have the same result as in Theorem 1, provided that we make
some adjustments and that we redefine Z(.) in the following way :

• in the definition of α(t) and β(t), t1 becomes tℓ and t2 becomes tr

• under the null hypothesis, the process Z(.) considered at marker positions
is the ”squeleton” of an Ornstein-Uhlenbeck process: the stationary Gaus-
sian process with covariance ρ(tk, tk′ ) = exp(−2|tk − tk′ |)

• at the other positions, Z(.) is obtained from Z(tℓ) and Z(tr) by interpola-
tion and normalization using the functions α(t) and β(t)

• at the marker positions, the expectation is such as
m~t⋆(tk) =

∑m
s=1 asρ(tk, t

⋆
s)/σ

• at other positions, the expection is obtained from m~t⋆(t
ℓ) and m~t⋆(t

r) by
interpolation and normalization using the functions α(t) and β(t).

The proof of the theorem is the same as the proof of Theorem 1 since we can
limit our attention to the interval (tℓ, tr) when considering a unique instant t.
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5. Epistasis

It is well known that interactions between QTLs (so-called epistasis phe-
nomenon) can be responsible for a non-negligible part of the genetic variability
of a quantitative trait (see for instance (47)). Then, we propose now to in-
clude interactions between QTLs into our model. We will assume that only loci
with additive effects on the trait, are involved in interactions. The “analysis of
variance model” of formula (1) for the quantitative trait becomes

Y = µ +

m∑

s=1

X(t⋆s) qs +

m−1∑

s=1

m∑

s̃=s+1

X(t⋆s)X(t⋆s̃) qs,s̃ + σε (13)

where ε is a Gaussian white noise, and qs,s̃ is the interaction effect between loci
t⋆s and t⋆s̃.

The probability distribution of (Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )) is

∑

(u1,...,um)∈{−1,1}m

w~t⋆(u1, ..., um) f(µ+
∑

m
s=1

usqs+
∑m−1

s=1

∑
m
s̃=s+1

usus̃qs,s̃ , σ)(Y )

(14)

× gm(t⋆1, . . . , t
⋆
m)

where w~t⋆(u1, ..., um) and gm(.) are given in formulae (11) and (12).

Theorem 3. Suppose that the parameters (q1, ..., qm, q12, ..., qm−1m, µ, σ2) vary
in a compact and that σ2 is bounded away from zero, and also that m is finite.
Let define the local alternative

• Ha~t⋆,b~t⋆ :“There are m additive QTLs located respectively at t⋆1, ..., t⋆m
with effects respectively q1 = a1/

√
n, ..., qm = am/

√
n where a1 6= 0,

..., am 6= 0 . Besides, all these QTLs interact with each other : the
interaction effects are respectively q1,2 = b1,2/

√
n for loci t⋆1 and t⋆2, ...,

qm−1,m = bm−1,m/
√
n for loci t⋆m−1 and t⋆m where b1,2 6= 0, ..., bm−1,m 6=

0”.

then, with the previous notations, under Ha~t⋆,b~t⋆ ,

Sn(.) ⇒ Z(.) , Λn(.)
F.d.→ Z2(.) , supΛn(.)

L−→ supZ2(.)

where Z(.) is the Gaussian process of Theorem 2 uncentered with mean function
m~t⋆(.) defined in Theorem 2.

A proof is given in Section 2 of Supplement A. Note that the interaction effects
are not included in the mean function. In other words, those effects are uniden-
tifiable when the classical LRT is used. It is due to independent increments of
the Poisson process.
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6. Selective genotyping

We propose to consider here the classical problem (as in Sections 3 and
4), but incorporating now a selective genotyping in order to reduce the costs
of genotyping. To begin with, in order to make the reading easier, we won’t
consider interactions in our model. However, the epistasis will be investigated
later in this section. As mentioned in Section 1.7, the selective genotyping model
is the following: we consider two real thresholds S− and S+, with S− ≤ S+ and
we genotype if and only if the phenotype Y is extreme, that is to say Y ≤ S−

or Y ≥ S+.
If we call X(t) the random variable such as

X(t) =

{
X(t) if Y /∈ [S− , S+]

0 otherwise ,

then, in our problem, one observation will be now

(
Y, X(t1), ..., X(tK)

)
.

Note that with our notations :

• when Y /∈ [S− , S+], we have X(t1) = X(t1), ..., X(tK) = X(tK).

• when Y ∈ [S− , S+], we have X(t1) = 0, ..., X(tK) = 0, which means
that the genome information is missing at the marker locations.

To begin with, let us consider the case m = 1. According to Rabier (37), the
likelihood of the triplet

(
Y, X(tℓ), X(tr)

)
with respect to the measure λ⊗N⊗N ,

λ is ∀t ∈ [t1, tK ]\TK :

Lt(θ
1) =

[
p(t) f(µ+q1,σ)(Y )1Y /∈[S−,S+] + {1− p(t)} f(µ−q1,σ)(Y )1Y /∈[S−,S+]

(15)

+
1

2
f(µ+q1,σ)(Y )1Y ∈[S−,S+] +

1

2
f(µ−q1,σ)(Y )1Y ∈[S−,S+]

]
g(t)

with

g(t) = P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] + 1Y ∈[S−,S+] . (16)

Note that we use the same notations p(t) for the weights since they are exactly
the same as in Section 4. Recall that

p(t) = P
{
X(t) = 1 | X(tℓ), X(tr)

}

= Q1,1
t 1X(tℓ)=11X(tr)=1 + Q1,−1

t 1X(tℓ)=11X(tr)=−1

+Q−1,1
t 1X(tℓ)=−11X(tr)=1 + Q−1,−1

t 1X(tℓ)=−11X(tr)=−1 .
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Although p(t) is not a function of X(tℓ) and X(tr), p(t)1Y /∈[S−,S+] is the follow-

ing function of X(tℓ) and X(tr):

p(t)1Y /∈[S−,S+] = Q1,1
t 1X(tℓ)=11X(tr)=1 + Q1,−1

t 1X(tℓ)=11X(tr)=−1

+Q−1,1
t 1X(tℓ)=−11X(tr)=1 + Q−1,−1

t 1X(tℓ)=−11X(tr)=−1 .

In the same way, the quantity P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] present in the defi-

nition of g(t) verifies

P
{
X(tℓ), X(tr)

}
1Y /∈[S−,S+] =

1

2

{
r(tℓ, tr)1X(tℓ)X(tr)=1

+r(tℓ, tr)1X(tℓ)X(tr)=−1

}
.

As a result, as expected, the likelihood is a function of Y , X(tℓ), X(tr), which
was not obvious at first reading. However, the expression given in formula (15)
will be very convenient for the generalization to several QTLs.

The score statistic of the hypothesis “q1 = 0” at t, for n independent obser-
vations, will be defined as

Sn(t) =

∂l
n

t

∂q1
|θ1

0√
V

(
∂l

n

t

∂q1
|θ1

0

) ,

where l
n

t (θ
1) denotes the log likelihood at t, associated to n observations.

In the same way, the LRT at t, for n independent observations, will be
defined as

Λn(t) = 2
{
l
n

t (θ̂
1)− l

n

t (θ̂
1
|H0

)
}

,

where θ̂1 is the maximum likelihood estimator (MLE), and θ̂1|H0
the MLE under

H0.
Let us now suppose that more than one QTL (i.e. m > 1) lie on [0, T ].

Using the same notations as in Sections 3 and 4, t⋆1, ..., t
⋆
m denote the QTL

locations, and the parameter θm and θ0 are defined in the following way :
θm = (q1, ..., qm, µ, σ) and θm0 = (0, ..., 0, µ, σ). Besides, recall that all the
information is contained in the markers flanking the QTL locations. Then, the
probability distribution of

(
Y,X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

)
, with respect

to the measure λ⊗N ⊗ · · · ⊗N , is

L
m
~t⋆(θ

m) =
∑

(u1,...,um)∈{−1,1}m

[
w~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+v~t⋆(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]

]
gm(t⋆1, . . . , t

⋆
m)

(17)
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with

v~t⋆(u1, ..., um) = P {X(t⋆1) = u1, X(t⋆2) = u2, . . . , X(t⋆m) = um} ,

gm(t⋆1, . . . , t
⋆
m) = P

{
X(t⋆ℓ1 ), X(t⋆r1 ), . . . , X(t⋆ℓm), X(t⋆rm )

}
1Y /∈[S−,S+]

+ 1Y ∈[S−,S+] .

Recall also that the definition of w~t⋆(u1, ..., um) is given in formula (11). As
before, formula (17) is a function of Y , X(t⋆ℓ1 ), , . . . , X(t⋆rm ). Note that the
proof of formula (17) is included in the proof of the following Theorem 4.

Notations 2. γ, γ+ and γ− are respectively the quantities
PH0

(Y /∈ [S−, S+]), PH0
(Y > S+) and PH0

(Y < S−).

Notations 3. A is the quantity such as
A = σ2

{
γ + zγ+

ϕ(zγ+
) − z1−γ−

ϕ(z1−γ−
)
}
, where ϕ(x) and zα denote re-

spectively the density of a standard normal distribution taken at the point x, and
the quantile of order 1− α of a standard normal distribution.

Theorem 4. Suppose that the parameters (q1, ..., qm, µ, σ2) vary in a compact
and that σ2 is bounded away from zero, and also that m is finite. Then,

Sn(.) ⇒ V (.) , Λn(.)
F.d.→ V 2(.) , supΛn(.)

L−→ supV 2(.)

as n tends to infinity, under H0 and Ha~t⋆ where V (.) is the Gaussian process
with unit variance such as

V (t) =
α(t) V (tℓ) + β(t) V (tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)
,

Cov
{
V (tℓ), V (tr)

}
= ρ(tℓ, tr) = e−2|tℓ−tr|

where the functions α(.) and β(.) are given in Theorem 1, and with mean func-
tion

• under H0, m(t) = 0

• under Ha~t⋆ ,

m~t⋆(t) =
α(t) m~t⋆(t

ℓ) + β(t) m~t⋆(t
r)√

α2(t) + β2(t) + 2α(t)β(t)ρ(tℓ, tr)

where

m~t⋆(t
ℓ) =

m∑

s=1

as
√
A ρ(tℓ, t⋆s) / σ2 , m~t⋆(t

r) =

m∑

s=1

as
√
A ρ(tr, t⋆s) / σ2 .

The proof is given in Section 3 of Supplement A. Under the null hypothesis,
despite the selective genotyping, V (.) is exactly the same process as the process
Z(.) of Theorem 2 obtained for the complete data situation. However, under the
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general alternative, the mean functions of the two processes are not the same
anymore : the mean functions are proportional of a factor

√
A/σ.

Before introducing our Lemma 1, let us recall that the Asymptotic Relative
Efficiency (ARE) determines the relative sample size required to obtain the same
local asymptotic power as the one of the test under the complete data situation
where the genome information at markers is known for all the individuals.

Lemma 1. Let κ denote the ARE, then we have

i) κ = γ + zγ+
ϕ(zγ+

) − z1−γ−
ϕ(z1−γ−

)

ii) κ reaches its maximum for γ+ = γ− = γ/2 .

This lemma is a generalization of Theorem 4.2 of Rabier (37) where the focus
was only on the case m = 1. To prove Lemma 1, just use the same proof as the
one of Theorem 4.2 of (37).

According to i) of Lemma 1, the ARE with respect to the complete data
situation, does not depend on the number of QTLs m, the constants a1, ...,
am linked to the QTL effects, and the QTLs locations t⋆1, ..., t⋆m. Indeed,
since the mean functions (complete data situation and selective genotyping) are
proportional of a factor

√
A/σ, it is obvious that the ARE does not depend on

those parameters. On the other hand, according to ii) of Lemma 1, if we want to
genotype only a percentage γ of the population, we should genotype the γ/2%
individuals with the largest phenotypes and γ/2% individuals with the smallest
phenotypes.

Let us consider now n⋆ individuals for a selective genotyping experiment,
and let us assume that we have the relationship n = n⋆γ. In other words, we
focus on the case where, for economical reasons, we are allowed to genotype only
n individuals. By considering n = n⋆γ, we are allowed to genotype n extreme
individuals, provided that the overall population size has been increased to n⋆.
In this context, we have

Sn⋆(tk)
Ha→ N

(√
A

γ σ4

m∑

s=1

as ρ(tk, t
⋆
s), 1

)

and the mean function of the process is still interpolated. As a result, the ratio
between the signal corresponding to selective genotyping and the one match-

ing the complete data situation is equal to
√

A
γ σ2 . This quantity verifies the

following relationship
√

A
γ σ2

=
√
zγ+

ϕ(zγ+
)/γ − z1−γ−

ϕ(z1−γ−
)/γ + 1

and if we are willing to genotype symmetrically (i.e. γ+ = γ−), it becomes

√
A

γ σ2
=
√
2zγ/2ϕ(zγ/2)/γ + 1 .
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In other words, provided that the phenotyping is free, the signal can be largely
increased, by genotyping extreme individuals (i.e. selective genotyping) instead
of genotyping random individuals (i.e. complete data situation). According to
Figure 1, when the selective genotyping is performed symmetrically, the sig-
nal corresponding respectively to the cases γ = 0.1, γ = 0.2 and γ = 0.3,
is respectively 2.09, 1.80 and 1.61 times larger under selective genotyping than
under random genotyping. The worst case is obtained when genotyping only the
largest phenotypes (see γ+/γ = 1) or genotyping only the smallest phenotypes
(same curve as the one for γ+/γ = 1). In that case, the selective genotyping
is still more rewarding than the random genotyping, provided that γ is smaller
than 0.5.

Obviously, when all the individuals are genotyped (γ = 1), all the efficiencies
are equal to one.

Let us now move on to the case where interactions are present into our model
(see formula 13). Then, under selective genotyping, we have the following result:

Theorem 5. Suppose that the parameters
(q1, ..., qm, q1,2, ..., qm−1,m, µ, σ2) vary in a compact and that σ2 is bounded away
from zero, and also that m is finite. Then, with the previous notations, under
Ha~t⋆,b~t⋆ ,

Sn(.) ⇒ V (.) , Λn(.)
F.d.→ V 2(.) , supΛn(.)

L−→ supV 2(.)

where V (.) is the Gaussian process of Theorem 4 uncentered with mean function
mt⋆(.) defined in Theorem 4.

The proof is given in Section 4 of Supplement A. As under the complete data
situation (Theorem 3), the interaction effects are not included in the mean
function.

7. A new method for gene mapping

In this section, the goal is to propose a method to estimate the number of
QTLs, their effects and their positions combining results of the theorem and a
penalized likelihood method. Note that in order to make the reading easier, we
will introduce the method in the context of Sections 3 and 4 (Haldane mapping,
no selective genotyping and no epistasis). However, it can easily be adapted to
the different models studied in this paper.

7.1. Introducing our method

According to Theorem 2, as soon as we discretize the score process at markers
positions, we have the following relationship when n is large:

~Sn = ~m~t⋆ + ~ε + oP (1)

where ~Sn = (Sn(t1) , Sn(t2) , ... , Sn(tK))
′
, ~m~t⋆ = (m~t⋆(t1) , m~t⋆(t2) , ...,

m~t⋆(tK))
′
and ~ε ∼ N(0,Σ) with Σkk′ = ρ(tk, tk′ ).
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Figure 1: Function
√

zγ+ ϕ(zγ+ )/γ − z1−γ− ϕ(z1−γ− )/γ + 1 as a function of the percent-

age γ of individuals genotyped and as a function of the ratio γ+/γ.

Since most of the penalized likelihood methods rely on i.i.d. observations, we
will decorrelate the components of ~Sn keeping only points of the process taken
at marker positions. Recall that Sn(.) is an “interpolated process”. Let us
consider the Cholesky decomposition Σ = AA′. We have

A−1~Sn = A−1B
(a1
σ

, ... ,
am
σ

)′
+ A−1~ε + oP (1)

where B is a matrix of size K ×m such as Bks = e−2|tk−t⋆s |.
Since the number m of QTLs and their positions t⋆1,...,t

⋆
m are unknown, we pro-

pose to focus on a new discretization of [0, T ] corresponding to all the putative
QTL locations: 0 ≤ t′1 < t′2 < ... < t′L ≤ T . ∆1, ...,∆L will be the correspond-
ing effects divided by σ. Note that although we focus only on the discretized
process at markers locations, we look for QTL not only on markers. The model
can be rewritten in the following way:

A−1~Sn = A−1C (∆1 , ... , ∆L)
′ + A−1~ε + oP (1) (18)

where C is a matrix of size K × L such as Ckl = e−2|tk−t′l|.
Last, in order to find the non zero ∆l, a natural approach is to use the L1
penalized regression, so-called LASSO (43):

arg min
(∆1,...,∆L)

∥∥∥A−1~Sn −A−1C∆
∥∥∥
2

2
+ ζ ‖∆‖1

where ‖ ‖2 is the L2 norm, ‖ ‖1 is the L1 norm, ∆ = (∆1, ...,∆L)
′
and ζ denotes

the tuning parameter. ζ can be estimated, for instance, by cross validation as
described in Chapter 7 of Hastie and al. (21).
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8. Illustrations

8.1. About the max test

To begin with, in Supplement B, we briefly illustrate our theoretical results
regarding the max test. Recall that it relies on the test statistic, supΛn(.). The
focus is on a sparse map: a chromosome of length 1M (T = 1), with 21 markers
(K = 21) equally spaced every 5cM. In this context, we show (see Table 1 of
Supplement B) that there is a good agreement between the empirical power and
the theoretical power under different configurations (m is equal to either 1, 2 or
3, and γ is equal to 0.3 or 1). This validates our theoretical results presented in
Theorems 2 and 4.

8.2. Selective genotyping improves the detection process

Figure 2, based on one simulated data set, illustrates the performances of
our new gene mapping method (see Section 7) under selective genotyping. The
considered genome is of length 10M (T = 10), with 201 markers (K = 201)
equally spaced every 5cM. 16 QTLs (m = 16) lie on the interval [0M,4M] whereas
no QTLs are present on the rest of the genome (i.e. [6M,10M]). The QTL
effects are equal to either +0.2 or −0.2, each QTL having its own random sign.
The presence of QTL is tracked every 2.5cM. As a consequence, 401 regressors
(L = 401) are present in the linear model (formula 18). In other words, we
use the discretization t′l = 0.025(l − 1), l = 1, . . ., 401. Recall that this grid
is different from the one corresponding to marker locations: tk = 0.05(k − 1),
k = 1, . . ., 201. Figure 2A refers to the case n = 200 whereas Figure 2B focuses
on n = 100.

Assuming that, for economical reasons, the geneticist is allowed to genotype
only n individuals, we compare here the case where those n individuals are
extreme or not. In particular, when a selective genotyping was performed, the
total number of individuals was increased to n⋆, with the relationship n⋆ = n/γ.
This way, on average, n individuals are genotyped under selective genotyping
(cf. Section 6). For instance, when the sample size n was equal to 100 under
the complete data situation (γ = 1), we considered respectively 1000, 500 and
333 individuals to handle the cases γ = 0.1, 0.2, and 0.3 respectively. According
to Figure 2A, the largest estimated effects are the ones corresponding to the
case γ = 0.1: a few QTL effects are estimated at approximately 5 (see around
1M and 4M), and at −6 around 2M. It was expected since under such selective
genotyping (i.e with n⋆ = n/γ), the quantities ∆l, present in formula (18), are
increased by a factor

√
A/

√
γ at each gene location. Then, under the configura-

tion studied, the quantities |a|
√
A/

√
γ are equal respectively to 5.92, 4.56 and

2.50 when γ takes respectively the values 0.1, 0.3, and 1. Note that the number
of selected regressors was between 15 and 17 in all studied cases.

In what follows, the L1 ratio will denote the ratio L1 norm of estimated
effects on [0M,4M] to L1 norm of estimated effects on [0M,10M]. This L1 ratio
is an indicator of whether or not the detected QTLs belong to the “signal area”.
Recall that on our example, all the simulated QTLs belong to the interval
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Figure 2: Estimated coefficients according to our new method as a function of the percentage
γ of genotyped individuals (1 sample, m = 16, T = 10, |q1| = . . . = |q16| = 0.2, QTLs
randomly located only on [0M,4M], K = 201, tk = 0.05(k − 1), L = 401, t′

l
= 0.025(k − 1),

γ+/γ = 1/2, on average n individuals genotyped).

[0M,4M]. Table 1 reports in a general framework, the mean L1 ratio over 100
samples of size n = 100 or n = 200. Different QTL effects are taken into
consideration : |qs| is either equal to 0.2, 0.1, or 0.05. Since a large number of
markers are now available in genomic studies, we also considered a dense map
consisting in K =10,001 markers equally spaced every 0.1cM. Due to this high
marker density, the presence of QTL was only investigated on markers (K = L).
For both maps (sparse an dense), we can notice that whatever the parameter
values, the more extremes the genotyped individuals are, the larger the L1 ratio
is. In other words, by considering extreme individuals, we largely improve the
detection process. Besides, we can notice that the more markers there are,
the more powerful the method is. Another interesting aspect (not shown here)
is in the choice of the tuning parameter value. The MSE curve obtained by
cross validation is flat under the complete data situation (γ = 1), suggesting
the absence of signal. In contrast, under selective genotyping, we can clearly
distinguished the minimum of the curve, due to the increase of signal.

Last, Table 2 of Supplement B focuses on different ways of performing the
selective genotyping: different ratios γ+/γ are investigated under both maps. As
expected, when the largest and the smallest individuals are genotyped (γ+/γ =
1/2), the L1 ratio is the highest. It confirms our theoretical results presented
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in Section 6 and illustrated in Figure 1.
To conclude, selective genotyping is largely more rewarding for localizing

genes.

8.3. Comparison with existing methods

In this section, we propose to compare our new method with existing meth-
ods. We will concentrate on the LASSO, the Group LASSO (48), the “Interval
Mapping” (IM) with either a parametric threshold or a non parametric thresh-
old, and Lee and al. (26)’s method. In what follows, IM with a parametric
threshold will be called IM(parametric), whereas the non parametric version
will be called IM(shuffle). Note that LASSO methods focus only on marker
locations, whereas IM, Lee and al. (26) and our method present the advantage
to consider also locations between markers.

Recall that the Group LASSO differs from his cousin LASSO, since it allows
to handle a group structure. In the context of genomic prediction, the Bayesian
LASSO was used in Boligon et al. (8) under selective genotyping. However,
instead of studying the Bayesian LASSO, we decided to focus on the LASSO
since it is one of the most famous method in the statistical literature and it makes
our study more general. Indeed, our new method is based on the LASSO, and
we found interesting to compare its performances with the ones of the classical
LASSO (i.e. without transforming the data). Note that since the genome
information was unknown for the non extreme individuals, we performed the
LASSO only on the extreme individuals. The Group LASSO was based on
groups of 10 consecutive markers.

On the other hand, IM(shuffle) was recently used in two recent studies deal-
ing with selective genotyping experiments (31; 46). In order to perform the
same permutation test as in these studies, we considered 1000 random per-
mutations and we shuffled the phenotypes within the extremes as advised in
Manichaikul et al. (28). Recall that in our simulation framework, the number
of QTLs m was set to 16. Then, in order to compare IM(shuffle) in a satis-
factory manner with other studied methods, we adopted the following rules.
First, as in (31; 46), an inferred QTL location was a location where the ob-
served value of the test statistic was higher than the permutation threshold.
However, when more than 16 observed values (along the genome) were higher
than the permutation threshold, we kept only the 16 largest values. Last, the
same rules were used for IM(parametric) and the parametric threshold was cho-
sen according to Delong (16). Indeed, according to Theorem 4, the threshold
remains the same under selective genotyping as under the complete data situa-
tion. Furthermore, it has been proved by Cierco (14) that under a dense map
and the complete data situation, the limiting process of Λn(.) is an Ornstein-
Uhlenbeck process. The method proposed by Lee and al. (26) is available at
www.stat.sinica.edu.tw/chkao. This method was originally developped for a F2
population and we adapted it to a backcross population: instead of dealing with
a mixture model with three components, we had to handle a mixture model with
two components. Furthermore, this method is a sequential procedure whereas
our method is simultaneous. That is to say, the Lee and al. (26)’s method first
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finds one QTL, and then looks for a second one conditionally on the first one,
and so on until the 16th QTL (m = 16). In view of the results on simulated
data (cf. tables below), it is clear that this approach is not satisfactory. Then,
we will not comment it below.

Table 2 focuses on the same dense map as previously. In order to propose a
sharp comparison of the methods, we placed the QTLs on the interval [0M,1M],
still considering a genome of size 10M. We considered different ways of per-
forming the selective genotyping, by letting the ratio γ+/γ vary. All the QTL
effects were chosen such as |qs| = 0.1. According to the table, the performances
of the different methods were fair when the ratio γ+/γ took the values 1/2,
3/4 or 7/8. However, when the selective genotyping was performed unilaterally
(γ+/γ = 1), the LASSO, Group LASSO, and IM(shuffle) deteriorate heavily,
which was not the case of our method and IM(parametric). For instance, when
γ = 0.1, the power associated to the LASSO, Group LASSO, and IM(shuffle)
was found to be equal to 20.78%, 16.73% and 17%, respectively. LASSO and
Group LASSO suffer from the fact that the tails of errors are not light, and
that the conditional distribution is asymmetric around 0 (see for instance (23)).
Note that we focused on γ values equal to 0.1, 0.2 or 0.3, and as a consequence, a
selective genotyping performed unilaterally is more rewarding than the random
genotyping strategy (cf. Section 6).

In view of the fair results of IM(parametric) (power of 94% on the same
example), we can infer that the permutation threshold must be too large, and
must be responsible for the bad performances of IM(shuffle). Table 3 of Sup-
plement B deals with the case |qs| equal to 0.2: although the signal has been
increased, LASSO and Group LASSO still present a very small empirical power.
It confirms our original thoughts: the LASSO and Group LASSO do not model
explicitly the extremes, in contrast to our new method.

Last, Table 3 is dedicated to the sparse map. The selective genotyping
was performed unilaterally. Since the distance between markers became larger,
we computed the Azäıs et al. (2)’s threshold, suitable for any genetic map.
As expected, we can observe the superiority of our method over the LASSO,
Group LASSO and IM(shuffle). Besides, it is clear that our method is more
appropriate than IM(parametric), due to the low number of QTLs found by
this method. A major drawback of IM methods is in the fact that they rely
on a threshold: in order to find a given QTL, the value of the associated test
statistic has to be above the threshold. On the example studied in Table 3,
it limits drastically the number of found QTLs. For instance, when γ = 0.1
and n = 100, IM(parametric) found m̂ = 1.64 QTLs whereas our method found
m̂ = 16.64 QTLs. Besides, we will show on real data (cf. next section) that,
when the number of QTLs is unknown, the number of found QTLs (above the
threshold) can become very large. Recall that at this time m̂ is bounded by 16,
because of the adopted rule.

8.4. Real data analysis

To conclude this article, we analyzed data from the recent joint papers Spin-
del et al. (41) and Begum et al. (7) dealing respectively with genomic prediction
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and association mapping in rice.
We considered the dataset of 13,101 SNPs, randomly chosen by the authors

from their 73,147 collected SNPs (cf. p20 of Spindel et al. (41)), and we decided
to focus on the flowering date during the dry season 2012. In this context, we
propose to compare the performances of the different methods.

Assuming that the 13,101 markers are spread out along the rice genome of
length 13.101M (cf. Section “GS using marker subsets” of (41)), we can infer
that a marker is located every 0.1cM. Then, we used Delong (16)’s threshold to
compute IM(parametric). The percentage γ of genotyped individuals was set to
either 1, 0.3 or 0.2, and the selective genotyping was performed symmetrically
(γ+/γ = 1/2). Since Begum et al. (7) considered the complete data situation
(γ = 1), we removed data to mimick selective genotyping experiments. In
particular, for γ = 1 we kept the original data from Spindel et al. (41) (n = 312
by averaging the replicates), whereas for γ = 0.2 (resp. γ = 0.3), we kept the
genome information of only 62 (resp. 93) extreme individuals. In what follows,
in order to make the reading easier for non specialists, a gene will refer to a
marker selected by a method.

The 10 genes found by Begum et al. (7) (cf. their S1 Table), and obtained
after fitting a linear mixed model, are given at the top of Table 4. According
to Table 4, our method selected 15 genes under the complete data situation
(γ = 1). All the genes found by (7) and present on chromosome 3, were either
perfectly found by our method or were tagged by a marker located nearby (at
less than a distance of 4 markers, i.e. 0.4cM). In contrast, LASSO selected 20
genes and none of them were close to the findings of (7).

Let us now move on to selective genotyping. For γ = 0.3, our method selected
12 genes and as previously, all genes lying on chromosome 3 and suggested
by (7), were either found or tagged by a close marker. The LASSO kept 46
regions that were not considered as regions of interest by (7). Last, IM(shuffle)
(resp. IM(parametric)) proposed 49 (resp. 45) genes. 5 (resp. 4) of these
matched exactly the proposed genes, and 4 (resp. 5) were located nearby to a
suggested gene location. However, 40 (resp. 36) selected regressors were false
positives. Same kind of results were obtained for γ = 0.2. This large number of
false positives is not surprising since IM requires the use of a threshold and is
not an appropriate way of selecting multiple genes: it is rewarding for testing
and localizing only one gene. In opposite, our method can be viewed as a L1
penalization method dedicated to the extremes. It should be of interest for
geneticists.

23



(Sparse, n = 100) (Sparse, n = 200) (Dense, n = 100) (Dense, n = 200)
all |qs| γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.2

0.1 96.83% 14.75 99.61% 15.54 99.81% 17.2 99.88% 16.7
0.2 90.32% 18.17 97.99% 15.3 99.78% 17.35 99.64% 16.96
0.3 88.03% 17.45 95.84% 17.22 98.83% 17.25 99.72% 16.95
1 70.91% 18.47 82.57% 16.94 91.08% 16.69 98.36% 17.39

0.1

0.1 82.26% 14.74 91.29% 16.74 95.73% 17.15 98.39% 16.87
0.2 73.43% 15.64 85.43% 16.74 94.18% 17.61 96.26% 16.93
0.3 70.95% 16.59 83.48% 16.66 88.64% 16.70 96.50% 17.12
1 55.41% 18.57 62.35% 17.62 72.59% 16.23 88.37% 17.01

0.05

0.1 61.00% 15.06 68.66% 15.17 79.15% 16.08 87.25% 16.82
0.2 52.73% 15.07 63.70% 15.86 72.97% 16.47 80.58% 16.62
0.3 52.27% 15.38 68.24% 16.5 66.13% 17.39 79.91% 16.45
1 45.34% 15.64 46.49% 18.07 52.23% 16.8 67.40% 16.83

Table 1: Performances of the new method as a function of the percentage γ of genotyped individuals and as a function of the QTL effects (Mean over
100 samples, γ+/γ = 1/2, on average n individuals genotyped, T = 10, m = 16, QTLs randomly located only on [0M,4M]). Sparse map: K = 201,
tk = 0.05(k − 1), L = 401, t′

l
= 0.025(k − 1). Dense map: K = L =10,001 , tk = t′

l
= 0.001(k − 1). The L1 ratio corresponds to the quantity

∑161
i=1 |∆̂i|/

∑401
i=1 |∆̂i| for the sparse map, and to the quantity

∑4001
i=1 |∆̂i|/

∑10001
i=1 |∆̂i| for the dense map. m̂ denotes the estimated QTL number.
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Our method LASSO Group LASSO IM(parametric) IM(shuffle) Lee and al. (26)
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio

0.1

1/2 97.24% 17.22 94.21% 16.82 99.01% 19.4 99% 15.84 99.18% 16 50.32%
3/4 96.62% 17.45 92.22% 16.33 95.88% 19.1 98.10% 15.3 96.01% 15.6 49.13%
7/8 96.89% 17.58 82.32% 16.78 95.19% 22.9 97.75% 15.36 95% 15.2 45.10%
1 93.97% 17.13 20.78% 16.66 16.73% 22.3 94% 14.89 17% 2.08 32.92%

0.2

1/2 94.19% 17.39 91.69% 16.95 97.46% 19.4 95.87% 15.46 95.82% 15.68 49.28%
3/4 91.52% 16.3 84.75% 16.54 95.88% 19.1 92.74% 15.13 93.75% 15.36 45.70%
7/8 92.38% 16.29 75.46% 16.55 94.67% 17.3 95% 15.25 93% 15.09 44.20%
1 85.03% 17.09 21.14% 16.81 21.86% 26.2 77.88% 12.45 29% 3.59 20.12%

0.3

1/2 91.62% 17.55 83.45% 16.51 92.87% 18.6 82% 13.06 82% 13.91 46.12%
3/4 90.88% 17.59 76.18% 16.56 89.59% 21.6 81% 12.9 84% 13.36 42.10%
7/8 86.22% 16.82 65.03% 16.73 78.00% 17.3 77.00% 11.9 77% 12.23 30.20%
1 78.00% 17.28 20.92% 16.57 20.82% 22.1 54.38% 8.8 23% 3.22 19.20%

Table 2: Performances of different methods, under the dense map, as a function of the percentage γ of genotyped individuals and as a function of
the ratio γ+/γ. (Mean over 100 samples, on average n = 100 individuals genotyped, m = 16, |q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly
located only on [0M,1M]). Dense map: K = L =10,001 , tk = t′

l
= 0.001(k − 1). The L1 ratio, regarding our method, corresponds to the quantity

∑

1001
i=1

|∆̂i|/
∑

10001
i=1

|∆̂i|. m̂ denotes the estimated QTL number. IM(parametric) refers to the Interval Mapping method with a parametric threshold
(14.07 by Delong (16)), whereas IM(shuffle) is the same approach based on a permutation threshold.
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(Our method) (LASSO) (Group LASSO) IM(parametric) IM(shuffle) Lee and al. (26)
n γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio

100
0.1 41.07% 16.75 12.77% 16.82 8.89% 13.76 26.93% 1.64 5% 0.08 18.30%
0.2 33.53% 16.67 14.37% 16.74 16.85% 15.47 13.81% 0.91 6% 0.14 16.81%
0.3 25.07% 16.85 12.10% 16.80 14.60% 15.4 7.76% 0.56 3% 0.14 15.43%

200
0.1 55.84% 16.73 18.55% 16.66 21.54% 14.99 77.58% 7.61 23% 0.43 21.22%
0.2 45.49% 16.70 16.01% 16.71 11.46% 14.4 44.16% 2.67 9.75% 0.23 19.76%
0.3 40.79% 16.75 17.81% 16.79 21.88% 14.4 28.69% 2.38 12.05% 0.36 18.60%

Table 3: Performances of different methods, under the sparse map, when γ+/γ = 1 and as a function of the average n of genotyped individuals.
(Mean over 100 samples, m = 16, |q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly located only on [0M,1M]). Sparse map: K = 201, tk = 0.05(k−1),

L = 401, t′
l
= 0.025(k − 1). The L1 ratio, regarding our method, corresponds to the quantity

∑

41
i=1

|∆̂i|/
∑

401
i=1

|∆̂i|. Tests are only performed on
markers for LASSO and Group LASSO. IM(parametric) refers to the Interval Mapping method with a parametric threshold (12.25 by Azäıs et al.
(2)), whereas IM(shuffle) is the same approach based on a permutation threshold.

2
6



Acknowledgements
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Table 4: Comparison, on rice data (Begum et al. (7); Spindel et al. (41)), of the selected genes
as a function of the methods and as function of the percentage γ of genotyped individuals. The
considered trait is the flowering date during the dry season 2012. The selective genotyping is
performed symmetrically (γ+/γ = 1/2) and K =13,101 markers lie on the rice genome (T =
13.101). IM(parametric) refers to the Interval Mapping method with a parametric threshold
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[39] Rebäı, A., Goffinet, B., and Mangin, B. (1995). Comparing power of dif-
ferent methods for QTL detection. Biometrics, 51 87-99.

[40] Siegmund, D. and Yakir, B. (2007). The statistics of gene mapping.
Springer, New York.

[41] Spindel, J., Begum, H., Akdemir, D., Virk, P., Collard, B., Redoña, E., ...,
and McCouch, S.R. (2015). Genomic Selection and Association Mapping in
rice (Oryza sativa): Effect of trait genetic architecture, training population
composition, marker number and statistical model on accuracy of rice ge-
nomic selection in elite, tropical rice breeding lines. PLoS Genetics. 11(2),
e1004982.

[42] Sturtevant, A.H. (1915). The behavior of the chromosomes as studied
through linkage. Z. Indukt. Abstammungs. Vererbungsl., 13 234-287.

[43] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society B, 58(1) 267-288.

[44] Tortereau, F., Servin, B., ..., and Groenen, M.A.M. (2012). A high den-
sity recombination map of the pig reveals a correlation between sex-specific
recombination and GC content. BMC genomics, 13, 586.

[45] Van der Vaart, A.W. (1998). Asymptotic statistics. Cambridge Series in
Statistical and Probabilistic Mathematics.

[46] Vuong, T. D., Walker, D. R., Nguyen, B. T., Nguyen, T. T., Dinh, H. X.,
Hyten, D. L., ..., and Nguyen, H. T. (2016). Molecular Characterization of
Resistance to Soybean Rust (Phakopsora pachyrhizi Syd. Syd.) in Soybean
Cultivar DT 2000 (PI 635999). PloS one, 11(12) e0164493.

[47] Wu, R., Ma, C.X., and Casella, G. (2007). Statistical Genetics of Quanti-
tative Traits. Springer, New York.

[48] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society Series B,
68(1), 49-67.

31



Supplementary A: �On gene mapping with the mixture

model and the extremes" I

C.E. Rabiera,b,c,∗, C. Delmasc

aISE-M, UMR 5554, CNRS, IRD, Université de Montpellier, France.
bLIRMM, UMR 5506, CNRS, Université de Montpellier, France.
cMIAT, Université de Toulouse, INRA, Castanet-Tolosan, France.

1. Proof of Theorem 1

The proof is divided into four parts:

• Preliminaries (i.e. computation of the Fisher Information Matrix)

• Weak convergence of the score process under H0

• Study of the score process under the local alternative Ha~t?

• Study of the supremum of the LRT process.

Note that under H0, the proof has already been given in Azaïs et al. (2012).
However, the weak convergence of the score process has not been proved in
details. Indeed, the authors only mentioned the continuous mapping theorem,
after having proved the convergence of �nite-dimensional. As a consequence, we
propose to give here a more rigorous proof by showing the tightness of the score
process. Recall that the tightness and the convergence of �nite-dimensional
imply the weak convergence of the score process (see for instance Theorem 4.9
of Azaïs and Wschebor (2009)).

In what follows, we will consider values t, t?1, ..., t
?
m of the parameters that

are distinct of the markers positions (i.e. t1 and t2), and the result will be
extended by continuity at the markers positions.

1.1. Preliminaries

The proof starts with the computation of the Fisher Information Matrix. As
a result, calculations are exactly the same as in Azaïs et al. (2012), see Section
�Study of the score process under the null hypothesis" of the proof of their
Theorem 2.1. We propose to recall here the key elements of the proof.
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First, the authors compute the score function at a point θ10 = (0, µ, σ) that
belongs to H0:

∂lt
∂q1
|θ10 =

Y − µ
σ2

x(t) (1)

∂lt
∂µ
|θ10 =

Y − µ
σ2

,
∂lt
∂σ
|θ10= − 1

σ
+

(Y − µ)2

σ3
.

Then, they introduce their key Lemma (Lemma 2.3 of Azaïs et al. (2012)),
which states that

x(t) = α(t)X(t1) + β(t)X(t2) (2)

where α(t) = Q1,1
t −Q

−1,1
t and β(t) = Q1,1

t −Q
1,−1
t .

As a result, the Fisher information at θ10, denoted Iθ10 , veri�es

Iθ10 = Diag

{
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)

σ2
,

1

σ2
,

2

σ2

}
. (3)

1.2. Weak convergence of the score process under H0

Convergence of �nite-dimensional

We have ∀k = 1, 2:

Sn(tk) =

∂lntk
∂q1
|θ10√

VH0

(
∂lntk
∂q1
|θ10
) =

n∑
j=1

εj Xj(tk)√
n

.

Since
∂lntk
∂q1
|θ10 is centered under H0, a direct application of the central limit

theorem implies that

Sn(tk)
L−→ N(0, 1) .

Then, since we have the relationship (cf. formula (2))

Sn(t) =
α(t)Sn(t1) + β(t)Sn(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
,

the continous mapping theorem implies that

Sn(t)
L−→ Z(t) .

It proves the convergence of �nite-dimensional.
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Tightness

Since we have already proved the convergence of �nite-dimensional, let us
focus on the tightness of the score process. Since p(t) and α2(t) + β2(t) +
2α(t)β(t)ρ(t1, t2) are continuous functions, each path of the process Sn(.) is a
continuous function on [t1, t2]. Recall the modulus of continuity of a continous
function h(t) on [t1, t2]:

$h(δ) = sup
|t′−t|<δ

|h(t′)− h(t)| where t1 < δ 6 t2.

According to Theorem 8.2 of Billingsley (1999), the score process is tight if and
only if the two following conditions hold:

1. the sequence Sn(t1) is tight.

2. For each positive ε and η, there exists a δ, with t1 < δ < t2, and an integer
n0 such that P ($Sn (δ) > η) 6 ε ∀n > n0.

According to Prohorov, the sequence Sn(t1) is tight. Then, Condition 1 is
veri�ed. Let us de�ne the functions α′(t) and β′(t) in the following way:

α′(t) = α(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2),

β′(t) = β(t)/
√
α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2).

First, we can notice that ∀δ such as t1 < δ 6 t2,

$Sn(δ) = sup
|t′−t|<δ

|Sn(t′)− Sn(t)|

= sup
|t′−t|<δ

|(α′ (t′)− α′ (t))Sn (t1) + (β′(t′)− β′(t))Sn (t2)|

6 max (|Sn (t1)| , |Sn (t2)|) ($α′ (δ) +$β′ (δ)) . (4)

Furthermore, the sequence max (|Sn (t1)| , |Sn (t2)|) is uniformly tight. This way,

∀ε > 0 ∃M > 0 ∀n > 1 P (max (|Sn(t1)| , |Sn(t2)|) >M) 6 ε. (5)

According to Heine's theorem, since α′(t) and β′(t) are continuous on the com-
pact [t1, t2], these functions are uniformly continuous. So,

∀υ > 0 ∃δ such as t1 < δ < t2, $α′(δ) +$β′(δ) < υ. (6)

Let η be a positive quantity. Using formulae (5) and (6) and imposing υ = η/M ,
we have

P (max (|Sn(t1)| , |Sn(t2)|) ($α′(δ) +$β′(δ)) > η ) 6 ε.

As a consequence, according to formula (4), we have

∀n > 1 P ($Sn(δ) > η) 6 ε.
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It proves Condition 2 of Theorem 8.2 of Billingsley (1999). As a result, the
tightness of the score process is proved. To conclude, the tightness and the con-
vergence of �nite-dimensional imply the weak convergence of the score process.

1.3. Study of the score process under the local alternative Ha~t?

There are m QTLs located on [0, T ] and the model for the quantitative trait
is the following:

Y = µ +

m∑
s=1

X(t?s) qs + σε (7)

where ε is a Gaussian white noise.
Since the score test statistic at t can be obtained using the following non

linear interpolation

Sn(t) =
α(t) Sn(t1) + β(t) Sn(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
,

, the mean function will be also a non linear interpolation

m~t?(t) =
α(t) m~t?(t1) + β(t) m~t?(t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
.

Let us compute the quantities m~t?(t1) and m~t?(t2).
Without loss of generality, let's consider location tk which refers to the lo-

cation of marker k. According to formulae (1) and (7), we have

Sn(tk) =
1√
n

n∑
j=1

εj Xj(tk) +
1

σn

n∑
j=1

{
m∑
s=1

Xj(t
?
s) as

}
Xj(tk)

= S0
n(tk) +

1

σn

n∑
j=1

{
m∑
s=1

Xj(t
?
s) as

}
Xj(tk) (8)

where S0
n(tk) is the score obtained under H0 at location tk.

By the law of large number :

1

n

n∑
j=1

{
m∑
s=1

Xj(t
?
s) as

}
Xj(tk)→ E

[{
m∑
s=1

X(t?s) as

}
X(tk)

]
.

We have

E

[{
m∑
s=1

X(t?s) as

}
X(tk)

]
=

m∑
s=1

as e
−2|t?s−tk| =

m∑
s=1

as ρ(t?s, tk) .
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Then,

m~t?(tk) =
1

σ

m∑
s=1

as ρ(t?s, tk) .

As a consequence, if we consider tk = t1 or tk = t2, we have

m~t?(t1) =
1

σ

m∑
s=1

as ρ(t?s, t1) , m~t?(t2) =
1

σ

m∑
s=1

as ρ(t?s, t2) .

1.4. Study of the supremum of the LRT process

At �xed t, the model is regular and it is well known that we have the following
relationship under H0 (i.e. no QTL on the whole interval studied)

Λn(t) = S2
n(t) + oP (1)

and where oP (1) is short for a sequence of random vectors that converges to
zeros in probability. Let us consider now t as an extra parameter. It easy to
check that at H0 the Fisher Information relative to t is zero so that the model is
not regular. As a consequence, Azaïs et al. (2012) studied this irregular model
and proved that

sup Λn(t) = supS2
n(t) + oP (1) . (9)

Note that the proof is based on results of Azaïs et al. (2009), Azaïs et al. (2006)
and Gassiat (2002) on empirical process theory. This result has been obtained
under H0 and under the local alternative of only one QTL (i.e. m = 1), located
at t?1 on [0, T ]. This way, our goal is now to show that the remainder converges
also to zero under Ha~t? .

Recall that the parameters θm and θm0 are de�ned in the following way : θm =
(q1, ..., qm, µ, σ) and θm0 = (0, ..., 0, µ, σ). Recall also that the full likelihood of
the triplet (Y, X(t1), X(t2)), with respect to the measure λ⊗N ⊗N , is given
in formula (9) of the main text. According to Bayes rules,

w~t?(u1, ..., um) =
P {X(t?1) = u1, ..., X(t?m) = um, X(t1), X(t2}

P {X(t1), X(t2)}
.
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Besides, we have the relationships

P {X(t?1) = u1, ..., X(t?m) = um, X(t1), X(t2)}
= P {X(t1)}P {X(t?1) = u1 | X(t1)}
× P {X(t?2) = u2 | X(t?1) = u1} · · ·P

{
X(t?m) = um | X(t?m−1) = um−1

}
× P {X(t2) | X(t?m) = um}

=
1

2

{
r(t1, t

?
1) 1X(t1)u1=−1 + r̄(t1, t

?
1) 1X(t1)u1=1

}
× {r(t?1, t?2) 1u1u2=−1 + r̄(t?1, t

?
2) 1u1u2=1}

× . . .×
{
r(t?m−1, t

?
m) 1um−1um=−1 + r̄(t?m−1, t

?
m) 1um−1um=1

}
×
{
r(t?m, t2) 1umX(t2)=−1 + r̄(t?m, t2)1umX(t2)=1

}
and in the same way,

P {X(t1), X(t2)} =
1

2

{
r(t1, t2) 1X(t1)X(t2)=−1 + r̄(t1, t2) 1X(t1)X(t2)=1

}
.

As a result,

w~t?(u1, ..., um)

=
{
r(t1, t

?
1) 1X(t1)u1=−1 + r̄(t1, t

?
1) 1X(t1)u1=1

}
× {r(t?1, t?2) 1u1u2=−1 + r̄(t?1, t

?
2) 1u1u2=1}

× . . .×
{
r(t?m−1, t

?
m) 1um−1um=−1 + r̄(t?m−1, t

?
m) 1um−1um=1

}
×
{
r(t?m, t2) 1umX(t2)=−1 + r̄(t?m, t2)1umX(t2)=1

}
/
{
r(t1, t2) 1X(t1)X(t2)=−1 + r̄(t1, t2) 1X(t1)X(t2)=1

}
.

The likelihood Lm,n~t?
(θm) for n observations is obtained by the product of n

terms as in formula (9) of the main text. Let Qn and Pn be two sequences of
probability measures de�ned on the same space (Ωn, An). Qn (respectively Pn)
is the probability distribution with density Lm,n~t?

(θm) (respectively Lm,n~t?
(θm0 )).

In what follows, log dQn
dPn

will denote the log likelihood ratio. By de�nition,
we have the relationship,

log
dQn
dPn

= log

{
Lm,n~t?

(θm)

Lm,n~t?
(θm0 )

}
. (10)

Since the model is di�erentiable in quadratic mean at θm and according to the
central limit theorem :

log

(
dQn
dPn

)
H0→ N(−1

2
ϑ2, ϑ2) with ϑ2 ∈ R+? .

As a result, according to iii) of Le Cam's �rst lemma, we have Qn /Pn, that

6



is to say the sequence Qn is contiguous with respect to the sequence Pn. Then,
formula (9) is also true under the alternative Ha~t? .

2. Proof of Theorem 3

To begin with, let us recall the epistatic model, given in formula (13) of the
manuscript:

Y = µ +

m∑
s=1

X(t?s) qs +

m−1∑
s=1

m∑
s̃=s+1

X(t?s)X(t?s̃) qs,s̃ + σε (11)

where ε is a Gaussian white noise, and qs,s̃ is the interaction e�ect between loci
t?s and t

?
s̃.

Since the process Sn(.) is an interpolated process, we can focus, without loss
of generality, only on location tk (i.e. the location of marker k). According to
formulae (1) and (11), we have

Sn(tk) =
1√
n

n∑
j=1

εj Xj(tk) +
1

σn

n∑
j=1

{
m∑
s=1

Xj(t
?
s) as

}
Xj(tk)

+
1

σn

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Xj(t
?
s)Xj(t

?
s̃) bs,s̃

}
Xj(tk)

= S0
n(tk) +

1

σn

n∑
j=1

{
m∑
s=1

Xj(t
?
s) as

}
Xj(tk)

+
1

σn

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Xj(t
?
s)Xj(t

?
s̃) bs,s̃

}
Xj(tk)

where S0
n(tk) is the score obtained under H0 at location tk.

As in the previous proofs, by the law of large number

1

n

n∑
j=1

{
m∑
s=1

Xj(t
?
s) as

}
Xj(tk)→

m∑
s=1

as ρ(t?s, tk) .

In the same way,

1

σn

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Xj(t
?
s)Xj(t

?
s̃) bs,s̃

}
Xj(tk)

→ E

[{
m−1∑
s=1

m∑
s̃=s+1

X(t?s)X(t?s̃) bs,s̃

}
X(tk)

]
.
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We have the relationship

E {X(t?s)X(t?s̃)X(tk)} = E
[
X(t?s)X(t?s̃)

{
21X(tk)=1 − 1

}]
= 2 E

[
X(t?s)X(t?s̃)1X(tk)=1

]
− ρ(t?s, t

?
s̃) .

Then, if tk < min(t?s, t
?
s̃) or tk > max(t?s, t

?
s̃), we have

E
[
X(t?s)X(t?s̃)1X(tk)=1

]
= E [X(t?s)X(t?s̃) | X(tk) = 1] /2

= E [X(t?s)X(t?s̃)] /2 = ρ(t?s, t
?
s̃)/2 .

Besides, if min(t?s, t
?
s̃) < tk < max(t?s, t

?
s̃),

E
[
X(t?s)X(t?s̃)1X(tk)=1

]
= E [X(t?s)X(t?s̃) | X(tk) = 1] /2

= E [X(t?s) | X(tk) = 1]E [X(t?s̃) | X(tk) = 1] /2

= ρ(t?s, tk)ρ(tk, t
?
s̃)/2 = ρ(t?s, t

?
s̃)/2 .

As a result, we always have

E {X(t?s)X(t?s̃)X(tk)} = 0 .

To conclude,

1

n

n∑
j=1

{
m∑
s=1

Xj(t
?
s) as

}
Xj(tk) +

1

σn

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Xj(t
?
s)Xj(t

?
s̃) bs,s̃

}
Xj(tk)

(12)

→
m∑
s=1

as ρ(t?s, tk) .

We can notice that the interaction e�ects have disappeared and that we have
exactly the same mean function as in Theorem 2:

m~t?(tk) =

m∑
s=1

asρ(tk, t
?
s)/σ.

Since the model (based on formula 14 of the main text) is di�erentiable in
quadratic mean at (0, ..., 0, µ, σ2) (i.e. no additive and no epistatic e�ect), this
result is also suitable for the LRT process.

3. Proof of Theorem 4

3.0.1. Proof of formula (17) of the main text

Recall that K genetic markers are located at 0 = t1 < t2 < . . . < tK = T .
Besides, m QTLs lie on [0, T ] at locations t?1, t

?
2, ..., t

?
m, that are distinct of

marker locations. By de�nition t?1 < t?2 < ... < t?m. Let us compute the
probability distribution of

(
Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

)
.
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We have

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

Besides,

P(Y ∈ [y , y + dy] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
f(µ+u1q1+u2q2+...+umqm,σ)(y) 1y/∈[S−,S+]

P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)
.

On the other hand,

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

= P(Y /∈ [S−, S+], X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

= P(Y /∈ [S−, S+] | X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

As a result,

P(Y ∈ [y , y + dy] , Y /∈ [S−, S+] , X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm ))

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+u2q2+umqm,σ)(y) 1y/∈[S−,S+]

× P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um, X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) .

In the same way, when the genome information is missing at marker locations
(i.e. the phenotype is not extreme), we �nd

P(Y ∈ [y , y + dy] , X(t?`1 ) = 0, X(t?r1 ) = 0, . . . , X(t?`m) = 0, X(t?rm ) = 0)

=
∑

(u1,...,um)∈{−1,1}m
P(Y ∈ [y , y + dy] , Y ∈ [S−, S+], X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

=
∑

(u1,...,um)∈{−1,1}m
f(µ+u1q1+...+umqm,σ)(y) 1y∈[S−,S+] P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um) .

Then, the probability distribution of
(
Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

)
,

9



with respect to the measure λ⊗N ⊗ . . .⊗N , is

L
m
~t?(θm) =

∑
(u1,...,um)∈{−1,1}m

[
w~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y /∈[S−,S+]

+ v~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) 1Y ∈[S−,S+]

]
gm(t?1, . . . , t

?
m)

with

w~t?(u1, ..., um) = P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um | X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) ,

v~t?(u1, ..., um) = P(X(t?1) = u1, X(t?2) = u2, . . . , X(t?m) = um)

and

gm(t?1, . . . , t
?
m) = P(X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) 1Y /∈[S−,S+] + 1Y ∈[S−,S+] .

3.0.2. Study of the score process under H0

The score process Sn(.) has already been studied in Rabier (2015). Let us
recall the key elements of the proof. By de�nition, the score statistic at t is the
following

Sn(t) =

∂l
n
t

∂q1
|θ10√

V
(
∂l
n
t

∂q1
|θ10
) where θ10 = (0, µ, σ) .

The score function veri�es

∂l
n

t

∂q1
|θ10 =

n∑
j=1

Yj − µ
σ2

{2pj(t)− 1} 1Yj /∈[S−,S+]

=
α(t)

σ

n∑
j=1

εj Xj(t
`) +

β(t)

σ

n∑
j=1

εj Xj(t
r) .

As a result, the limiting process is a non linear interpolated process.
On the other hand, at location tk:

Sn(tk) =

∂l
n
tk

∂q |θ0√
V
(
∂l
n
tk

∂q |θ0
) =

n∑
j=1

σεj Xj(tk)√
n A

.

According to the Central Limit Theorem,

Sn(tk)
L−→ N(0, 1) .
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Besides, we have the relationship

CovH0

{
Sn(tk), Sn(tk′)

}
= ρ(tk, tk′) .

3.0.3. Study of the score process under the local alternative Ha~t?

There are m QTLs located on [0, T ] and that the model for the quantitative
trait is the following:

Y = µ +

m∑
s=1

X(t?s) qs + σε (13)

where ε is a Gaussian white noise.
Since the score test statistic at t can be obtained using the following non

linear interpolation

Sn(t) =
α(t) Sn(t`) + β(t) Sn(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
,

, the mean function will be also a non linear interpolation

m~t?(t) =
α(t) m~t?(t`) + β(t) m~t?(tr)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, tr)
.

Let us compute the quantities m~t?(t`) and m~t?(tr).
Without loss of generality, let's consider location tk which refers to the lo-

cation of marker k.

Sn(tk) =

n∑
j=1

(Yj − µ) Xj(tk)√
n A

=

n∑
j=1

m∑
s=1

qs Xj(t
?
s) Xj(tk)√
n A

+

n∑
j=1

σεj Xj(tk)√
n A

. (14)

We will see, that we can apply the Law of Large Numbers for the �rst term
and the Central Limit Theorem for the second term. To begin, let's focus on
the �rst term. We have

E
{
X(t?s) X(tk)

}
=

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
− E

[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
.

11



According to calculations present in Section 5,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) ,

where Φ is the cumulative distribution of a standard normal distribution. In
the same way,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) .

Since we have the relationships

1− Φ
(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
= γ and r(tk, t

?
s)− r(tk, t?s) = ρ(tk, t

?
s),

then we have

E
{
X(t?s) X(tk)

}
= ρ(tk, t

?
s) γ + o(1) .

As a consequence, according to the Law of Large Numbers,

n∑
j=1

m∑
s=1

qs Xj(t
?
s) Xj(tk)√
n A

→
m∑
s=1

as ρ(tk, t
?
s) γ√

A
. (15)

Let us now focus on the second term of formula (14). According to a technical
proof present in Section 5, we have

E
{
σε X(tk)

}
=
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

} m∑
s=1

ρ(t?s, tk) qs + o( max
16s6m

|qs|) .

Besides, according to iii) of Lemma 5 of Rabier (2014a),

E
[{
σε X(tk)

}2]
= E

(
σ2 ε2 1Y /∈[S−,S+]

)
=

∑
(u1,...,um)∈{−1,1}m

E
{
σ2 ε2 1Y /∈[S−,S+] | X(t?1) = u1, . . . , X(t?m) = um

}
× P {X(t?1) = u1, . . . , X(t?m) = um}

→
∑

(u1,...,um)∈{−1,1}m
A P {X(t?1) = u1, . . . , X(t?m) = um} → A .

12



As a result,

E
[{
σε X(tk)

}2]→ A and V


n∑
j=1

σεj Xj(tk)√
n A

→ 1 .

Then, according to the Central Limit Theorem,

n∑
j=1

σεj Xj(tk)√
n A

L−→ N

[∑m
s=1 ρ(t?s, tk) as√

A
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

}
, 1

]
.

(16)

Finally, according to formulae (15) and (16),

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
.

3.0.4. Study of the supremum of the LRT process

At �xed t, the model is regular and it is well known that we have the following
relationship under H0 (i.e. no QTL on the whole interval studied)

Λn(t) = S
2

n (t) + oP (1)

and where oP (1) is short for a sequence of random vectors that converges to zeros
in probability. The problem is that, when t is not �xed, the Fisher Information
relative to t at H0 is zero so that the model is not regular. As a result, let us
consider now t as an extra parameter. Let t?1 and θ1?, be the true parameters
that will be assumed to belong to H0. Note that t?1 makes no sense for θ
belonging to H0.

Without loss of generality, let us consider that µ and σ are known (µ = 0
and σ = 1) and as previously, let us consider values of t distinct of the markers
positions. Besides, let us consider only two genetic markers located at t1 = 0
and t2 = T . Note that in order to make the reading easier, we will use the
notation fq(.) instead of f(q,1)(.) to denote a Gaussian density with mean q and
unit variance.

For computing scores at each t separately, the likelihood of (Y, X(t1), X(t2))
can be considered in the following way ∀t ∈]t1, t2[ :

L(ψ q1, t(q1)) =
[
p {t(q1)} fψq1(Y )1Y /∈[S−,S+] + [1− p {t(q1)}] f−ψq1(Y )1Y /∈[S−,S+]

(17)

+
1

2
fψq1(Y )1Y ∈[S−,S+] +

1

2
f−ψq1(Y )1Y ∈[S−,S+]

]
g(t)

where t(q1) is a continuous function on [0, 1] into ]t1, t2[, p(t) is the classical
weight (cf. Sections 3 and 4 of the manuscript) and g(t) is given in formula (16)
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of the manuscript. Then, at each value of q1 corresponds a value of t, denoted
t(q1).

Let us compute the score function corresponding to L̃ at q1 = 0. Recall that
the null hypothesis is reached if and only if the QTL e�ect is null.

∂logL

∂q1
|q1=0 = ψ

{
2Q1,1

t(0) − 1
}
Y 1X(t1)=11X(t2)=1

+ ψ
{

2Q1,−1
t(0) − 1

}
Y 1X(t1)=11X(t2)=−1

+ ψ
{

2Q−1,1t(0) − 1
}
Y 1X(t1)=−11X(t2)=1

+ ψ
{

2Q−1,−1t(0) − 1
}
Y 1X(t1)=−11X(t2)=−1

= ψ [α {t(0)}+ β {t(0)}] Y 1X(t1)=11X(t2)=1

+ ψ [α {t(0)} − β {t(0)}] Y 1X(t1)=11X(t2)=−1

+ ψ [β {t(0)} − α {t(0)}] Y 1X(t1)=−11X(t2)=1

− ψ [β {t(0)}+ α {t(0)}] Y 1X(t1)=−11X(t2)=−1

= ψ α {t(0)} Y X(t1) + ψ β {t(0)} Y X(t2)

where α(.) and β(.) are the classical quantities introduced in Theorems 1 and
2. We have

EH0

{(
∂logL

∂q1
|q1=0

)2
}

=
A
σ4
ψ2

[
α2 {t(0)} + β2 {t(0)} + 2α {t(0)}β {t(0)} ρ(t1, t2)

]
.

This quantity is always di�erent from 0. As previously, for any function t(q1),
each sub-model L̃(q1, t(q1))q1∈R is di�erentiable in quadratic mean and Assump-
tion 2 of Azaïs et al. (2009) is veri�ed. Besides, the set of log likelihood is
Glivenko-Cantelli (cf. example 19.7 with r = 1 of Van der Vaart (1998)), so
Assumption 1 of Azaïs et al. (2009) holds.

As in Azaïs et al. (2009), let us de�ne the set of scores renormalized D. In
our case :

D =

{
sign(ψ)

α {t(0)} Y X(t1) + β {t(0)} Y X(t2)√
α2 {t(0)} + β2 {t(0)} + 2α {t(0)}β {t(0)} ρ(t1, t2)

; t(0) ∈]t1, t2[ ; ψ ∈ R

}

which can be rewritten

D =

{
ψ′

α(t) Y X(t1) + β(t) Y X(t2)√
α2(t) + β2(t) + 2α(t)β(t) ρ(t1, t2)

; t ∈]t1, t2[ ; ψ′ ∈ {−1, 1}

}
.

Since we have already shown the tightness of the score process Sn(.), D̃ is Donsker (cf.
Van der Vaart (1998)). In particular it proves that Theorem 1 of Azaïs et al. (2006)
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applies in the sense that

sup
(t,θ)

l
n
t (θ)− lnt?1 (θ1?) = sup

d∈D

[{
1√
n

n∑
j=1

d(Xj)

}2

1∑n
j=1 d(Xj)>0

]
+ oP (1) (18)

where the observation Xj stands for (Yj , Xj(t1), Xj(t2)). Note that since ψ′ ∈ {−1, 1},
the indicator function can be removed in formula (18).

Since the model (based on formula 17 of the manuscript) is di�erentiable in
quadratic mean at θm0 = (0, ..., 0, µ, σ), we can apply Le Cam �rst lemma and for-
mula (18) is also suitable under the contiguous alternative Ha~t? .

4. Proof of Theorem 5

Since the process Sn(.) is an interpolated process, we can focus, without loss of
generality, only on location tk (i.e. the location of marker k). According to formulae
(11) and (14), we have

Sn(tk) =

n∑
j=1

m∑
s=1

as Xj(t
?
s) Xj(tk)

n
√
A

+

n∑
j=1

σεj Xj(tk)√
n A

(19)

+
1

n
√
A

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Xj(t
?
s)Xj(t

?
s̃) bs,s̃

}
Xj(tk) .

According to calculations present in Section 5, when 1 6 s 6 m−1 and s+1 6 s̃ 6 m,

E
{
X(t?s)X(t?s̃)X(tk)

}
= o(1) .

Then, according to the law of large numbers,

Sn(tk) =

n∑
j=1

m∑
s=1

as Xj(t
?
s) Xj(tk)

n
√
A

+

n∑
j=1

σεj Xj(tk)√
n A

+ oP (1) .

As a result, using formulae (15) and (16),

Sn(tk)
L−→ N

[
m∑
s=1

ρ(tk, t
?
s) as

√
A/σ2, 1

]
.

15



5. Study of quantities present in the proofs

5.1. Preliminaries
To begin with, let us recall Lemma 5 of Rabier (2014a). It will be very useful for

our theoretical calculations since it is related to truncated normal distributions.

Lemma 5 (Rabier (2014a)). Let W ∼ N(µ, σ2), then

i) E
(
W 21W /∈[S−, S+]

)
= (µ2 + σ2) P(W /∈ [S−, S+]) + σ (S+ + µ) ϕ

(
S+−µ
σ

)
− σ (S− + µ) ϕ

(
S−−µ
σ

)
ii) E

(
W1W /∈[S−, S+]

)
= µ P(W /∈ [S−, S+]) + σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
iii) E

{
(W − µ)21W /∈[S−, S+]

}
= σ2 P(W /∈ [S−, S+]) + σ (S+ − µ) ϕ

(
S+−µ
σ

)
− σ (S− − µ) ϕ

(
S−−µ
σ

)
iv) E

{
(W − µ)1W /∈[S−, S+]

}
= σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
v) E

{
(W − µ)21W∈[S−, S+]

}
= σ2 − σ2P(W /∈ [S−, S+])− σ(S+ − µ) ϕ

(
S+−µ
σ

)
+ σ (S− − µ) ϕ

(
S−−µ
σ

)
.

Recall that ϕ(.) and Φ(.) denote respectively the density and the cumulative distribu-
tion of a standard normal distribution.

Since we consider q1, ..., qm small, using a Taylor expansion at �rst order, we
obtain for instance :

ϕ

(
S− − µ+

∑m
s=1 usqs

σ

)
=

1√
2π

e
− 1

2

(
S−− µ

σ

)2 {
1−

(S− − µ)
∑m
s=1 usqs

σ2
+ o(

m∑
s=1

usqs)

}
.

Since

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?m) = um}

= Φ

(
S− − µ−

∑m
s=1 usqs

σ

)
+ 1 − Φ

(
S+ − µ−

∑m
s=1 usqs

σ

)
,

using the Taylor expansions and after some work on integrals, we obtain

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?m) = um}

= Φ

(
S− − µ
σ

)
−
∑m
s=1 usqs

σ
ϕ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+

∑m
s=1 usqs

σ
ϕ

(
S+ − µ
σ

)
+ o(

m∑
s=1

usqs) .

5.2. Formulas for E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
and

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
First, let us recall that by de�nition we have t?1 < t?2 < ... < t?m. Besides, let us
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consider a genetic marker located at tk. We have

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1

}]
=

∑
(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

E
[
1Y /∈[S−,S+]1X(t?1)=u1

. . . 1X(t?s−1)=us−1
1X(t?s)=11X(t?s+1)=us+1

. . . 1X(t?m)=um1X(tk)=1

]
=

∑
(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

P {Y /∈ [S−, S+] | X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um}
P {X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um, X(tk) = 1}

=
∑

(u1,...,us−1,us+1,...,um)∈{−1,1}m−1

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
+ o(1)

}
P {X(t?1) = u1, . . . , X(t?s−1) = us−1, X(t?s) = 1, X(t?s+1) = us+1, . . . , X(t?m) = um, X(tk) = 1}

=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)
+ o(1)

}
P {X(t?s) = 1, X(tk) = 1}

=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) .

Using the same kind of proof, we have

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=−1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=−1

}]
=

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
r(t?s , tk)/2 + o(1) .

As a result, we have the relationships

E
[
1Y /∈[S−,S+]

{
1X(t?s)=11X(tk)=1 + 1X(t?s)=−11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) ,

E
[
1Y /∈[S−,S+]

{
1X(t?s)=−11X(tk)=1 + 1X(t?s)=11X(tk)=−1

}]
= r(tk, t

?
s)

{
1− Φ

(
S+ − µ
σ

)
+ Φ

(
S− − µ
σ

)}
+ o(1) .
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5.3. Formula for E
{
σε X(tk)

}
We have

E
{
σε X(tk)

}
= E

{
σε1X(tk)=11Y /∈[S−,S+]

}
− E

{
σε1X(tk)=−11Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

E
{
σε1X(tk)=11X(t?1)=u1

. . . 1X(t?m)=um1Y /∈[S−,S+]

}
−

∑
(u1,...,um)∈{−1,1}m

E
{
σε1X(tk)=−11X(t?1)=u1

. . . 1X(t?m)=um1Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

E
{
σε1Y /∈[S−,S+] | X(t?1) = u1, . . . , X(t?m) = um

}
[2P {X(tk) = 1 | X(t?1) = u1 . . . X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}

=
∑

(u1,...,um)∈{−1,1}m

{
σϕ(zγ+) + zγ+ ϕ(zγ+)

m∑
s=1

usqs − σϕ(z1−γ−) − z1−γ− ϕ(z1−γ−)

m∑
s=1

usqs

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}
+ o( max

16s6m
|qs|) .

(20)

Note that in order to obtain the last expression, we used iv) of Lemma 5 of Rabier
(2014a) (cf. Section 5.1). Recall that zα denotes the quantile of order 1 − α of a
standard normal distribution. Let us focus on the quantity∑
(u1,...,um)∈{−1,1}m

{
σϕ(zγ+) − σϕ(z1−γ−)

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1]

× P {X(t?1) = u1, . . . , X(t?m) = um}

=
{
σϕ(zγ+) − σϕ(z1−γ−)

} ∑
(u1,...,um)∈{−1,1}m

2 P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

−
{
σϕ(zγ+) − σϕ(z1−γ−)

} ∑
(u1,...,um)∈{−1,1}m

P {X(t?1) = u1, . . . , X(t?m) = um}

=
{
σϕ(zγ+) − σϕ(z1−γ−) 2 P {X(tk) = 1} −

{
σϕ(zγ+) − σϕ(z1−γ−)

}
= 0 .

(21)

Let us focus on the quantity

∑
(u1,...,um)∈{−1,1}m

{
zγ+ ϕ(zγ+)

m∑
s=1

usqs − z1−γ− ϕ(z1−γ−)

m∑
s=1

usqs

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um} .
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Let ξ denote a given QTL. We have∑
(u1,...,um)∈{−1,1}m

uξ qξ
{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
[2P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um} − 1] P {X(t?1) = u1, . . . , X(t?m) = um}

=
∑

(u1,...,uξ−1,uξ+1,...um)∈{−1,1}m−1

qξ
{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
2P
{
X(tk) = 1 | X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− 1

]
× P

{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
2P
{
X(tk) = 1 | X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
− 1

]
× P

{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

} ∑
(u1,...,uξ−1,uξ+1,...um)∈{−1,1}m−1[

2P
{
X(tk) = 1, X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−P
{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = 1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−2P

{
X(tk) = 1, X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}
−P
{
X(t?1) = u1, . . . , X(t?ξ−1) = uξ−1, X(t?ξ) = −1, X(t?ξ+1) = uξ+1, . . . , X(t?m) = um

}]
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
×
[
−P
{
X(t?ξ) = 1

}
+ P

{
X(t?ξ) = −1

}
+ 2P

{
X(tk) = 1, X(t?ξ) = 1

}
− 2P

{
X(tk) = 1, X(t?ξ) = −1

}]
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}{
r(tk, t

?
ξ)− r(tk, t?ξ)

}
= qξ

{
zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
ρ(tk, t

?
ξ) .

(22)

As a result, according to formulae (20), (21) and (22), we have

E
{
σε X(tk)

}
=
{
zγ+ ϕ(zγ+)− z1−γ− ϕ(z1−γ−)

} m∑
s=1

ρ(t?s , tk) qs + o( max
16s6m

|qs|) .
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5.4. Formula for the quantity E
{
X(t?s)X(t?s̃)X(tk)

}
We have

E
{
X(t?s)X(t?s̃)X(tk)

}
= E

{
1X(t?s)X(t?s̃)X(tk)=11Y /∈[S−,S+]

}
− E

{
1X(t?s)X(t?s̃)X(tk)=−11Y /∈[S−,S+]

}
=

∑
(u1,...,um)∈{−1,1}m

us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = −1 | X(t?1) = u1, . . . , X(t?m) = um}

+
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = 1 | X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+ o(1)

}

× P {X(t?1) = u1, . . . , X(t?m) = um} P {X(tk) = −1 | X(t?1) = u1, . . . , X(t?m) = um}

= −2
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

+ 2
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

+
∑

(u1,...,um)∈{−1,1}m
us̃=−us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
× P {X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

{
Φ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)}
× P {X(t?1) = u1, . . . , X(t?m) = um} + o(1) .

(23)

Besides,∑
(u1,...,um)∈{−1,1}m

us̃=−us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um} = P {X(tk) = 1, X(t?s)X(t?s̃) = −1}

= P {X(t?s)X(t?s̃) = −1 | X(tk) = 1} /2
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and ∑
(u1,...,um)∈{−1,1}m

us̃=us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

= P {X(tk) = 1, X(t?s)X(t?s̃) = 1} = P {X(t?s)X(t?s̃) = 1 | X(tk) = 1} /2 .

As a result,

2
∑

(u1,...,um)∈{−1,1}m
us̃=us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

− 2
∑

(u1,...,um)∈{−1,1}m
us̃=−us

P {X(tk) = 1, X(t?1) = u1, . . . , X(t?m) = um}

= 2P {X(t?s)X(t?s̃) = 1 | X(tk) = 1} − 1 = 2P {X(t?s)X(t?s̃) = 1} − 1 = ρ(t?s , t
?
s̃) .

In the same way, ∑
(u1,...,um)∈{−1,1}m

us̃=−us

P {X(t?1) = u1, . . . , X(t?m) = um}

−
∑

(u1,...,um)∈{−1,1}m
us̃=us

P {X(t?1) = u1, . . . , X(t?m) = um}

= P {X(t?s)X(t?s̃) = −1} − P {X(t?s)X(t?s̃) = 1} = −ρ(t?s , t
?
s̃) .

Then, according to formula (23), we have

E
{
X(t?s)X(t?s̃)X(tk)

}
= o(1) .

It concludes the proof.
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We propose to illustrate here our theoretical results regarding the max test.
Recall that it relies on the test statistic, sup Λn(.). The focus is on a sparse
map: a chromosome of length 1M (T = 1), with 21 markers (K = 21) equally
spaced every 5cM. In this context, Table 1 compares the theoretical power and
the empirical power, under di�erent con�gurations: either 1 QTL (m = 1) at
3cM, either 2 QTLs (m = 2) at 3cM and 28cM, or 3 QTLs (m = 3) at 3cM,
28cM and 72cM. For all cases, the absolute value of the constant linked to the
QTL e�ect was equal to 2.8284 (i.e. |as| = 2.8284), allowing to deal with a
small QTL e�ect of 0.2 when n = 200. The theoretical power was obtained
by generating 10,000 paths of the asymptotic process, whereas 1,000 samples of
size n equal to 1,000 , 200 or 100 were considered for the empirical power. The
threshold (i.e. critical value) at the 5% level was set to 7.84 using the Monte-
Carlo Quasi Monte-Carlo method, proposed by Azaïs et al. (2012) and based on
Genz (1992). In order to compute the maximum of the process, simulated data
were analyzed using Lemma 1 of Azaïs et al. (2012), that is to say performing
LRT on markers and performing only one test in each marker interval if the
ratio of the score statistics on markers ful�lls the given condition.

According to Table 1, we can notice a good agreement between the empirical
power and the theoretical power for n = 200. However, the asymptotic seems
to be really reached for n =1,000. We also investigated the behavior of the test
under a selective genotyping performed symmetrically (i.e. γ+ = γ/2). Recall
that the threshold remains the same under selective genotyping (cf. Theorem
4 of the main text). We can observe that when γ = 0.3, the empirical power
still matches the theoretical power for n =1,000. This validates our theoretical
results presented in Theorems 2 and 4 of the main text.

Last, the power of the test is reported as a function of the QTL e�ect signs.
We can see that when the two QTLs at 3cM and 28cM have the same signs,
the power is almost equal to 1 whereas it largely decreases (≈ 15% for γ = 1)
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Email addresses: ce.rabier@gmail.com (C.E. Rabier), celine.delmas@inra.fr (C.
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γ
HHH

HHHn
m 1 (+) 2 (++) 2 (+-) 3 (+-+)

1

+∞ 60.20% 99.35% 15.27% 49.74%
1,000 59.7% 98.90% 15.70% 49.00%
200 60.00% 98.80% 15.50% 47.30%
100 53.90% 98.50% 13.70% 45.80%

0.3

+∞ 48.21% 97.47% 12.71% 39.36%
1,000 47.90% 97.10% 12.20% 39.50%
200 47.70% 96.80% 10.50% 37.50%
100 46.10% 96.50% 9.40% 32.80%

Table 1: Theoretical power and empirical power associated to the test statistic sup Λn(.),
and as a function of the number m of QTLs and the percentage γ of genotyped individuals
( T = 1, K = 21, tk = 0.05(k − 1), (m = 1, t?1 = 0.03), (m = 2, t?1 = 0.03, t?2 = 0.80),
(m = 3, t?1 = 0.03, t?2 = 0.28, t?3 = 0.72), all |as| = 2.828, + for positive e�ect, − for negative
e�ect, 10,000 paths for the theoretical power, 1,000 samples of size n for the empirical power,
γ+/γ = 1/2).

when the signs are opposite. In this case, the max test is clearly not the most
appropriate test to perform. We refer to the recent study of Arias-Castro et
al. (2011) where the authors compared performances of the max test and the
ANOVA in another context.
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(Sparse, n = 100) (Sparse, n = 200) (Dense, n = 100) (Dense, n = 200)
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.1

1/2 82.86% 14.74 91.29% 16.74 95.73% 17.15 98.39% 16.87
3/4 79.17% 15.35 90.91% 16.87 94.59% 16.52 98.26% 16.39
7/8 74.61% 15.89 89.85% 16.85 93.63% 17.11 98.69% 16.77
1 68.87% 16.26 86.71% 16.69 92.77% 16.99 98.08% 16.63

0.2

1/2 73.43% 15.64 85.43% 16.74 94.18% 17.61 96.26% 16.93
3/4 71.27% 16.36 85.19% 16.80 94.01% 17.65 95.79% 16.53
7/8 68.19% 17.15 83.69% 16.77 93.43% 18.16 93.80% 17.25
1 63.80% 16.95 81.04% 16.72 90.09% 17.15 92.18% 16.91

0.3

1/2 70.95% 16.59 83.48% 16.66 88.64% 16.70 96.50% 17.12
3/4 68.84% 15.39 81.77% 16.67 85.72% 17.71 95.24% 16.09
7/8 65.36% 15.75 79.48% 16.83 84.67% 16.93 94.17% 16.98
1 61.76% 16.63 74.09% 16.74 79.96% 16.85 91.63% 16.56

Table 2: Performances of the new method as a function of the ratio γ+/γ (Mean over 100 samples, on average n = 100 individuals genotyped, m = 16,
|q1| = . . . = |q16| = 0.1, T = 10, QTLs randomly located only on [0M,4M]). Sparse map: K = 201, tk = 0.05(k − 1), L = 401, t′l = 0.025(k − 1).

Dense map: K = L =10,001 , tk = t′l = 0.001(k− 1). The L1 ratio corresponds to the quantity
∑161

i=1 |∆̂i|/
∑401

i=1 |∆̂i| for the sparse map, and to the

quantity
∑4001

i=1 |∆̂i|/
∑10001

i=1 |∆̂i| for the dense map. m̂ denotes the estimated QTL number.

Our method LASSO Group LASSO IM(parametric) IM(shu�e) Lee and al. (2014)
γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂ L1 ratio

0.1 99.69% 16.64 31.43% 16.83 18.30% 22.61 100% 16 38% 4.5 22.41%
0.2 99.36% 17.79 24.53% 17.15 11.97% 29.1 99% 16 34% 4.36 20.52%
0.3 98.69% 17.5 42.93% 17.00 38.46% 19.1 99% 16 58% 8.28 25.22%

Table 3: Same framework as Table 2 of the manuscript, except that γ+/γ = 1 and |q1| = . . . = |q16| = 0.2.
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1. Introduction

We propose to focus here on the model introduced by Rebaï et al. (1995)
(see in particular their Section 2) in which double recombination between the
QTL and its �anking markers is not allowed. Note that in Rebaï et al. (1994),
the authors extended their previous model to several markers, keeping Haldane
(1919) modeling for the genetic information at marker locations. As a result, the
probability distribution of (X(t1), . . . , X(tK)) is unchanged. In order to extend
the interference model to m QTLs, we will impose that the QTLs do not belong
to the same marker intervals. Obviously, double recombination between each
QTL and the corresponding �anking markers is not allowed. Then, under the
interference model, the �analysis of variance model� for the quantitative trait is
the following:

Y = µ +

m∑
s=1

U(t?s) qs + σε (1)

where ε is a Gaussian white noise, and U(t?s) is the analogue of X(t?s) under
interference (more details in the next section).

When there are m QTLs, conditionally to X(t1), . . . , X(tK) , we will show
that Y obeys to a mixture of 2m components∑

(u1,...,um)∈{−1,1}m
w̃~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y )

where w̃~t?(u1, ..., um) is the probability P {U(t?1) = u1, ..., U(t?m) = um} condi-
tionally to the observations of the markers. Note that the weights w̃~t?(u1, ..., um)
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are di�erent from the weights w~t?(u1, ..., um) obtained under Haldane (cf. for-
mula 3 of the manuscript).

2. Interference model and asymptotic results

Let us consider the case m = 1. Then, under the model considered by Rebaï
et al. (1995), if the QTL is lying for instance between the �rst two markers (i.e.
t?1 ∈]t1, t2[), we can not have the scenario X(t1) = 1, U(t?1) = −1 and X(t2) =
1. Indeed, this would have supposed that there had been a recombination
between the �rst marker and the QTL, and also a recombination between the
second marker and the QTL. In particular, the model considers that if we have
a recombination between the QTL and one of its �anking marker, we could not
have a recombination between the QTL and the other �anking marker. In other
words, if X(t1) = 1 and U(t?1) = −1, then we have automatically X(t2) = −1.
In the same way, if X(t2) = 1 and U(t?1) = −1, then we have automatically
X(t1) = −1. As said before, Rebaï et al. (1994) extended their previous model
to several markers, keeping Haldane (1919) modeling for the genetic information
at marker locations. In other words, as previously, X(0) is a random sign and
X(tk) = X(0)(−1)N(tk) where N(.) is a standard Poisson process on [0, T ]. We
will �rst study the classical model under interference, and later we will consider
the epistatic model. Note that the results can easily be generalized to selective
genotyping experiments.

To begin with, let us consider the case m = 1 (i.e. one QTL on [0, T ]).
According to Rabier (2014a), the likelihood of the triplet

(
Y, X(t`), X(tr)

)
with respect to the measure λ⊗N ⊗N , λ being the Lebesgue measure, N the
counting measure on N, is ∀t ∈]t`, tr[ :

L̃t(θ
1) =

[
p̃(t)f(µ+q1,σ)(Y ) + {1− p̃(t)} f(µ−q1,σ)(Y )

]
g(t) (2)

where the function

p̃(t) = P
{
U(t) = 1 | X(t`), X(tr)

}
, g(t) = P

{
X(t`), X(tr)

}
.

In particular,

p̃(t) = 1X(t`)=11X(tr)=1 +
tr − t
tr − t`

1X(t`)=11X(tr)=−1 +
t− t`

tr − t`
1X(t`)=−11X(tr)=1 .

(3)

As in the manuscript, the score statistic of the hypothesis �q1 = 0� at t, for
n independent observations, will be de�ned as

S̃n(t) =

∂l̃nt
∂q1
|θ10√

V
(
∂l̃nt
∂q1
|θ10
) ,

2



where l̃nt (θ1) denotes the log likelihood at t, associated to n observations.
In the same way, the LRT at t, for n independent observations, will be

de�ned as
Λ̃n(t) = 2

{
l̃nt (θ̂1)− l̃nt (θ̂1|H0

)
}

.

Let us now move on to the case m > 1.
Recall that we impose that the QTLs do not belong to the same marker

intervals and that we consider Haldane modeling for the genome information
at genetic markers. As a result, since all the information is contained in the
markers �anking the QTL locations, we have the relationship

P {U(t?1), . . . , U(t?m) | X(t1), . . . , X(tK)}
= P

{
U(t?1), . . . , U(t?m) | X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

}
.

The full likelihood of (Y,X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )) is

L̃m~t?(θm) =
∑

(u1,...,um)∈{−1,1}m
w̃~t?(u1, ..., um) f(µ+u1q1+...+umqm,σ)(Y ) gm(t?1, . . . , t

?
m)

(4)

where

w̃~t?(u1, ..., um) = P
{
U(t?1) = u1, ..., U(t?m) = um

∣∣ X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )
}
,

gm(t?1, . . . , t
?
m) = P

{
X(t?`1 ), X(t?r1 ), . . . , X(t?`m), X(t?rm )

}
.

Theorem 6. Suppose that the parameters (q1, ..., qm, µ, σ
2) vary in a compact

and that σ2 is bounded away from zero, and also that m is �nite. Then,

S̃n(.)⇒W (.) , Λ̃n(.)
F.d.→ W 2(.) , sup Λ̃n(.)

L−→ supW 2(.)

as n tends to in�nity, under H0 and Ha~t? where W (.) is the Gaussian process

with unit variance such as

W (t) =
α̃(t) W (t`) + β̃(t) W (tr)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(t`, tr)
,

Cov
{
W (t`),W (tr)

}
= ρ(t`, tr) = e−2|t

`−tr|

where α̃(t) = tr−t
tr−t` , β̃(t) = t−t`

tr−t` and with mean function

• under H0, m(t) = 0

• under Ha~t? ,

m̃~t?(t) =
α̃(t) m̃~t?(t`) + β̃(t) m̃~t?(tr)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(t`, tr)

3



where

m̃~t?(t`) =

m∑
s=1

as h(t`, t?s) / σ , m̃~t?(tr) =

m∑
s=1

as h(tr, t?s) / σ ,

∀k h(tk, t
?
s) = ρ(tk, t

?`
s )
{
α̃(t?s) + β̃(t?s)ρ(t?`s , t

?r
s )
}

1t?s>tk

+ ρ(tk, t
?r
s )
{
α̃(t?s)ρ(t?`s , t

?r
s ) + β̃(t?s)

}
1t?s<tk .

The proof is given in the next section. Note that the functions α̃(t) and

β̃(t) are di�erent from the ones of Theorems 1 and 2 of the manuscript. As
in Rabier (2014a), the limiting process is the square of a linear interpolated
process. As expected, the mean function depends now on the number of QTLs,
their positions and their e�ects.

Let us now introduce Theorem 7, that deals with interference and epistasis.

Theorem 7. Suppose that the parameters (q1, ..., qm, q1,2, ..., qm−1,m, µ, σ
2) vary

in a compact and that σ2 is bounded away from zero, and also that m is �nite.

Then, with the previous notations, under Ha~t?,b~t? ,

S̃n(.)⇒W (.) , Λ̃n(.)
F.d.→ W 2(.) , sup Λ̃n(.)

L−→ supW 2(.)

where W (.) is the Gaussian process of Theorem 6 uncentered with mean function

m̃~t?(.) de�ned in Theorem 6.

We can notice that the interaction e�ects are not present in the mean function.

3. Proofs

3.1. Proof of Theorem 6

3.1.1. Study of the score process under H0

The score process S̃n(.) has already been studied in details in Rabier (2014a),
under H0. We propose to recall here the main elements of the proof. By
de�nition, the score statistic at t is the following

S̃n(t) =

∂l̃nt
∂q1
|θ10√

V
(
∂l̃nt
∂q1
|θ10
) where θ10 = (0, µ, σ) .
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The score function veri�es

∂l̃nt
∂q1
|θ10 =

n∑
j=1

Yj − µ
σ2

{2p̃j(t)− 1}

=
α̃(t)

σ

n∑
j=1

εj Xj(t
`) +

β̃(t)

σ

n∑
j=1

εj Xj(t
r) . (5)

Recall also that the score statistic at tk which refers to the location of marker
k, veri�es:

S̃n(tk) =

n∑
j=1

(Yj − µ) Xj(tk)√
n

=

n∑
j=1

σεj Xj(tk)√
n

.

Finally, according to formula (5) and the computation of the Fisher informa-
tion matrix, the score statistic at t can be obtained using the following linear
interpolation

S̃n(t) =
α̃(t) S̃n(t`) + β̃(t) S̃n(tr)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(t`, tr)
.

3.1.2. Study of the score process under the local alternative Ha~t?

Since the mean function is the following linear interpolation

m̃~t?(t) =
α̃(t) m̃~t?(t`) + β̃(t) m̃~t?(tr)√

α̃2(t) + β̃2(t) + 2α̃(t)β̃(t)ρ(t`, tr)
,

we only need to compute the quantities m̃~t?(t`) and m̃~t?(tr).
Without loss of generality, let us consider location tk. According to formula

(1),

S̃n(tk) =

n∑
j=1

(Yj − µ) Xj(tk)√
n

=
1

σn

n∑
j=1

m∑
s=1

as Uj(t
?
s) Xj(tk) +

1√
n

n∑
j=1

εj Xj(tk) .

As in the previous proofs, we can apply the law of large number to the �rst
term. Then, we have

1

σn

n∑
j=1

{
m∑
s=1

Uj(t
?
s) as

}
Xj(tk)→

m∑
s=1

as h(tk, t
?
s)/σ
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where

h(tk, t
?
s) = ρ(tk, t

?`
s )
{
α̃(t?s) + β̃(t?s)ρ(t?`s , t

?r
s )
}

1t?s>tk

+ ρ(tk, t
?r
s )
{
α̃(t?s)ρ(t?`s , t

?r
s ) + β̃(t?s)

}
1t?s<tk .

Indeed, the quantity h(tk, t
?
s) is equal to E {Uj(t?s)Xj(tk)}, which was computed

in Theorem 2 of Rabier (2014a).

3.2. Proof of Theorem 7

Let us �rst introduce the model for the quantitative trait in presence of
interference and epistasis:

Y = µ +

m∑
s=1

U(t?s) qs +

m−1∑
s=1

m∑
s̃=s+1

U(t?s)U(t?s̃) qs,s̃ + σε (6)

where ε is a Gaussian white noise, and qs,s̃ is the interaction e�ect between loci
t?s and t?s̃. Recall that we impose that the QTLs do not belong to the same
marker intervals.

Since the process S̃n(.) is an interpolated process, we can focus, without loss
of generality, only on location tk (i.e. the location of marker k). According to
formulae (6), we have

S̃n(tk) =
1√
n

n∑
j=1

εj Xj(tk) +
1

σn

n∑
j=1

{
m∑
s=1

Uj(t
?
s) as

}
Xj(tk)

+
1

σn

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Uj(t
?
s)Uj(t

?
s̃) bs,s̃

}
Xj(tk) .

According to the previous section, by the law of large number, we have

1

σn

n∑
j=1

{
m∑
s=1

Uj(t
?
s) as

}
Xj(tk)→

m∑
s=1

as h(t?s, tk)/σ .

In the same way,

1

σn

n∑
j=1

{
m−1∑
s=1

m∑
s̃=s+1

Uj(t
?
s)Uj(t

?
s̃) bs,s̃

}
Xj(tk)→ E

[{
m−1∑
s=1

m∑
s̃=s+1

U(t?s)U(t?s̃) bs,s̃

}
X(tk)

]

If tk < min(t?s, t
?
s̃) or tk > max(t?s, t

?
s̃), since under the interference model t?s and

t?s̃ do not belong to the same marker interval, we have

E
[
U(t?s)U(t?s̃)1X(tk)=1

]
= E [U(t?s)U(t?s̃) | X(tk) = 1] /2 = E [U(t?s)U(t?s̃)] /2 .
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As a consequence,

E {U(t?s)U(t?s̃)X(tk)} = E
[
U(t?s)U(t?s̃)

{
21X(tk)=1 − 1

}]
= 0 .

Let us consider now the case min(t?s, t
?
s̃) < tk < max(t?s, t

?
s̃). By de�nition,

conditionnally to X(tk), U(t?s) and U(t?s̃) are independent. As a consequence,
we have the relationship

E {U(t?s)U(t?s̃)X(tk)}
= E {U(t?s)U(t?s̃) | X(tk) = 1}P {X(tk) = 1} − E {U(t?s)U(t?s̃) | X(tk) = −1}P {X(tk) = −1}
= E {U(t?s) | X(tk) = 1}E {U(t?s̃) | X(tk) = 1} /2
− E {U(t?s) | X(tk) = −1}E {U(t?s̃) | X(tk) = −1} /2.

Besides, we have

E {U(t?s)} =
1

2
E {U(t?s) | X(tk) = 1}+

1

2
E {U(t?s) | X(tk) = −1}

E {U(t?s̃)} =
1

2
E {U(t?s̃) | X(tk) = 1}+

1

2
E {U(t?s̃) | X(tk) = −1} .

It is easy to check that U(t?s) and U(t?s̃) take value +1 and −1 with equal
probability (cf. formula 3). Then,

E {U(t?s) | X(tk) = 1} = −E {U(t?s) | X(tk) = −1}
E {U(t?s̃) | X(tk) = 1} = −E {U(t?s̃) | X(tk) = −1} .

As a result,

E {U(t?s)U(t?s̃)X(tk)} = 0 .

This gives the result.

4. Reverse con�guration of selective genotyping

In this section, we will come back to Haldane modeling (i.e. without interfer-
ence) and we propose to takle the reverse con�guration of selective genotyping.
Indeed, sometimes, for some biological reasons, we are only able to genotype
the non extreme individuals (i.e. the individuals for which Y ∈ [S−, S+]). In
this context, we present the following lemma.

Lemma 2. Under the reverse con�guration, that is to say if

X(tk) = X(tk) 1Y ∈[S− , S+], then we have the same results as in Theorem 4 and

Theorem 5 provided that we replace the quantity A by the quantity B de�ned in

the following way

B = σ2
{

1− γ − zγ+ ϕ(zγ+) + z1−γ− ϕ(z1−γ−)
}

.
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The proof is largely inspired from the proof of Theorem 4 and 5 of the manuscript,
and also from Rabier (2014b) where this con�guration is studied under the local
alternative of one QTL at t? on [0, T ].
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