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Abstract—We present a flexible finite element solver for test-
ing optimized Schwarz domain decomposition techniques for
the time-harmonic Maxwell equations. After a review of non-
overlapping Schwarz domain decomposition methods and asso-
ciated transmission conditions, we discuss the implementation,
based on the open source software GetDP and Gmsh. The solver,
along with ready-to-use examples, is available online for further
testing.

I. INTRODUCTION

In terms of computational methods, solving three-
dimensional time-harmonic electromagnetic wave problems
is known to be a challenging topic, especially in the high
frequency regime. Among the various approaches that can
be used to solve such problems, the finite element method
(FEM) with an Absorbing Boundary Condition (ABC) or a
Perfectly Matched Layer (PML) is widely used for its ability
to handle complex geometrical configurations and materials
with non-homonegeous electromagnetic properties [1]. How-
ever, the brute-force application of the FEM in the high-
frequency regime leads to the solution of very large, complex
and possibly indefinite linear systems. Direct sparse solvers
do not scale well for such problems, and Krylov subspace
iterative solvers can exhibit slow convergence, or even diverge
[2]. Domain decomposition methods provide an alternative,
iterating between subproblems of smaller sizes, amenable to
sparse direct solvers.

Improving the convergence properties of the iterative pro-
cess constitutes the key in designing an effective algorithm,
in particular in the high frequency regime. The optimal con-
vergence is obtained by using as transmission condition on
each interface between subdomains the so-called Magnetic-to-
Electric (MtE) map [3] linking the magnetic and the electric
surface currents on the interface. This however leads to a very
expensive procedure in practice, as the MtE operator is non-
local. A great variety of techniques based on local transmission
conditions have therefore been proposed to build practical

algorithms [4], [5], [6], [7], [8], [9], [10], [11], [12]. The aim
of this paper is to review the most common ones and to present
a flexible finite element framework to test and compare them,
based on the open source software GetDP [13], [14], [15] and
Gmsh [16], [17].

II. PROBLEM SETTING

For simplicity let us consider the problem of the scattering
of electromagnetic waves by a bounded, perfectly conducting
obstacle K in R3 with boundary Γ. In order to solve this
problem with a volume discretization method, we truncate the
exterior domain of propagation by using a fictitious boundary
Γ∞, on which we use a Silver-Müller radiation condition.
(All what follows holds in a more general setting, e.g., with
non-homogeneous materials or different boundary conditions.)
This leads to the following scattering problem in the bounded
domain Ω, with boundaries Γ and Γ∞:

curl curl E− k2E = 0, in Ω,

γT (E) = −γT (Einc), on Γ,

γT (E)− ı

k
γt(curl E) = 0, on Γ∞,

(1)

where E and Einc respectively denote the scattered and the
incident electric field, k := 2π/λ denotes the wavenumber
(λ is the wavelength), ı =

√
−1 denotes the unit imaginary

number, and γt and γT are the tangential trace and tangential
component trace operators given by

γt : v 7→ n× v and γT : v 7→ n× (v × n), (2)

with n the unit outwardly directed normal to Ω.

III. NON-OVERLAPPING OPTIMIZED SCHWARZ DOMAIN

DECOMPOSITION METHODS

Let us now focus on the construction of optimized non-
overlapping Schwarz domain decomposition methods for the
boundary-value problem (1). The first step of the method [4],



[18] consists in splitting Ω into several subdomains Ωi, i =
1, . . . , Ndom, in such a way that
• Ω =

⋃Ndom
i=1 Ωi (i = 1, . . . , Ndom),

• Ωi ∩ Ωj = ∅, if i 6= j, (i, j = 1, . . . , Ndom),
• ∂Ωi ∩ ∂Ωj = Σij = Σji (i, j = 1, . . . , Ndom) is the

fictitious interface separating Ωi and Ωj as long as its
interior Σij is not empty.

In a second step, we solve smaller size problems on each
subdomain Ωi by an iterative process (indexed by p) and using
transmission boundary conditions defined by an operator S: we
compute Ep+1

i , 1 ≤ i ≤ Ndom, from Ep
j , 1 ≤ j 6= i ≤ Ndom,

by

curl curl Ep+1
i − k2 Ep+1

i = 0, in Ωi,
γT (Ep+1

i ) = −γT (Einc
i ), on Γi,

γT (Ep+1
i )− ı

k
γt(curl Ep+1

i ) = 0, on Γ∞i ,

S(γT (Ep+1
i ))− ı

k
γt(curl Ep+1

i ) =

S(γT (Ep
j )) +

ı

k
γt(curl Ep

j ) := gpij , on Σij ,

(3)

and then form the quantities gpij through

gp+1
ij = S(γT (Ep+1

j )) +
ı

k
γt(curl Ep+1

j )

= −gpji + 2S(γT (Ep+1
j )), on Σij , (4)

where Ei = E|Ωi
, ni (resp. nj) is the outward unit normal

to Ωi (resp. Ωj) , i, j = 1, . . . , Ndom, Γi = ∂Ωi ∩ Γ and
Γ∞i = ∂Ωi ∩ Γ∞.

Solving at each step all the local transmission problems
through (3)-(4) may be rewritten as one application of the it-
eration operator A : ×Ndom

i,j=1 (L2(Σij))
3 7→ ×Ndom

i,j=1(L2(Σij))
3

defined by
gp+1 = Agp + b, (5)

where gp is the set of boundary data (gpij)1≤i,j≤Ndom
, and b

is given by the incident wave field boundary data. Therefore,
(3)-(4) can be interpreted as an iteration step of the Jacobi
fixed point iteration method applied to the linear system

(IN2
dom
−A)g = b, (6)

where IN2
dom

is the identity matrix of size N2
dom × N2

dom.
A consequence is that any Krylov subspace iterative solver
could be used for solving this equation. This can significantly
improve the convergence rate of the method most particularly
if S is well-chosen.

IV. TRANSMISSION BOUNDARY CONDITIONS

The convergence of the domain decomposition algorithm
is fundamentally related to the choice of the operator S. The
first converging iterative algorithm proposed by Després in [4]
used a simple impedance boundary operator:

S0 = I. (7)

We will refer to the corresponding zeroth-order impedance
boundary condition as IBC(0). A convergence analysis of the

DDM with IBC(0) and for two half-spaces of R3 has been de-
veloped in [6], [7]. The approach, based on Fourier transforms,
shows that the algorithm converges only for the propagating
modes. For the evanescent modes, the corresponding radius of
convergence is equal to 1, which makes the method stagnate
or diverge. To improve the convergence factor for these special
modes, Alonso et al. [5] derived an optimized impedance
boundary condition by using a Fourier frequency decompo-
sition. They adapted the technique developed by Gander in
[19] for the Helmholz equation to get a zero order optimized
“generalized” impedance boundary condition, hereafter called
GIBC(α):

Sα = α(I− 1

k2
curlΣij

curlΣij
), (8)

where α is judiciously chosen thanks to an optimization
process. The same condition is proposed in [6] for the first-
order system of Maxwell’s equations. In [8], Peng et al.
show that the DDM converges for a well-chosen complex-
valued number α and a decomposition into two half-spaces
but by considering both the TE (Transverse Electric) and TM
(Transverse Magnetic) modes. The improvement of the rate
of convergence for the evanescent modes is obtained at the
price of the deterioration of the rate of convergence for the
propagative modes. To improve this last transmission boundary
condition for the two families of modes, Rawat and Lee
[10] introduce the following optimized transmission boundary
condition by using two second-order operators

Sα,β = (I +
α

k2
∇Σij

divΣij
)−1(I− β

k2
curlΣij

curlΣij
), (9)

where α and β are chosen so that an optimal convergence
rate is obtained for the (TE) and (TM) modes. We denote this
boundary condition by GIBC(α, β). Similar boundary condi-
tions are derived in [6] for the first-order Maxwell’s equations.
Recently, in [11], the authors proved that the convergence rates
and the optimization processes for the first- and second-order
formulations are the same.

When developing optimized DDMs in [20], the authors used
highly accurate square-root/Padé-type On-Surface Radiation
Conditions (OSRCs) [21], [22], [23], [24], [12] as transmission
boundary conditions, which are also GIBCs. While being easy-
to-use and direct to implement in a finite element environment,
these GIBCs lead to the construction of fast converging non-
overlapping DDMs, most particularly when computing the so-
lution to high-frequency three-dimensional acoustics scattering
problems. In [12], the extension of this high-order OSRC has
been developed for the three-dimensional first-order system
of Maxwell’s equations. When coming back to the second-
order formulation, the corresponding square-root GIBC (that
we denote by GIBC(sq, ε)) for the DDM can be written as

Ssq,ε = Λ−1
1,εΛ2,ε, (10)



with

Λ1,ε = (I +∇Σij

1

k2
ε

divΣij
− curlΣij

1

k2
ε

curlΣij
)1/2,

Λ2,ε = I− curlΣij

1

k2
ε

curlΣij
,

where the complex wavenumber kε is defined by: kε = k+ ıε,
with the optimal parameter ε = 0.39k1/3H2/3. In the previous
expression, H is the local mean curvature at the surface.
Finally, A1/2 stands for the square-root of the operator A,
where the square-root of a complex-valued number z is taken
with branch-cut along the negative real axis. The convergence
analysis of (10) is presented in [25]. An equivalent form of
this condition, more adapted for finite element discretization
is given by

Λ2,ε(γT (Ep+1
i ))− ı

k
Λ1,εγt(curl Ep+1

i ) =

Λ2,ε(γT (Ep
j )) +

ı

k
Λ1,εγt(curl Ep

j ), on Γ = Σij . (11)

The IBC (7) and the GIBCs (8)-(9) are defined by local
surface operators. In contrast, the GIBC given by (10)-(11) is
nonlocal because of the presence of the square-root operator.
However, exactly as proposed in [20] for the Helmholtz
equation, it can be efficiently and accurately localized thanks
to a complex Padé approximation.

V. FINITE ELEMENT IMPLEMENTATION

The finite element implementation of the DDM with trans-
mission conditions (7), (8)-(9) and (10)-(11) is carried out with
the open source finite element solver GetDP [13], [14], [15].
GetDP uses mixed finite elements to discretize de Rham-type
complexes in one, two and three dimensions. Its main feature
is the closeness between the input data defining discrete prob-
lems (written by the user in ASCII data files) and the symbolic
mathematical expressions of these problems. This allows us
to write weak forms of (3) together with either (7), (8)-(9) or
(10)-(11) directly in the input data file, and use the natural
mixed finite element spaces suitable for discretization [26],
[12].

For example, the relevant terms of the finite element for-
mulation in the DDM using IBC(0) as transmission condition
are directly written as follows in the input data file:
Galerkin { [ Dof{Curl E˜{i}}, {Curl E˜{i}} ];

In Omega˜{i}; Integration I; Jacobian V; }
Galerkin { [ -k[]ˆ2 * Dof{E˜{i}}, {E˜{i}} ];

In Omega˜{i}; Integration I; Jacobian V; }
Galerkin { [ I[] * k[] * N[] /\ (N[] /\ Dof{E˜{i}}), {E˜{i}} ];

In GammaInf˜{i}; Integration I; Jacobian S; }
Galerkin { [ g˜{i}[], {E˜{i}} ];

In Sigma˜{i}; Integration I; Jacobian S; }
Galerkin { [ I[] * k[] * N[] /\ (N[] /\ Dof{E˜{i}}), {E˜{i}} ];

In Sigma˜{i}; Integration I; Jacobian S; }

where [.,.] denotes an inner product. Other transmission
conditions are implemented in a similar way, as is the up-
date relation (4). The complete implementation is available
online on the web site of the ONELAB project [27], [28]:
http://onelab.info/wiki/DDM_for_Waves.

The parallel implementation of the iterative algorithm uses
the built-in GetDP function IterativeLinearSolver, which
takes as argument the GetDP operations that implement the
matrix-vector product required by Krylov subspace solvers,
and is based on PETSc [29] and MUMPS [30] for the parallel
(MPI-based) implementation of the linear algebra routines:
IterativeLinearSolver["I-A", "gmres", tol, maxit, (...) ]
{

// Enter sequential mode
SetCommSelf;
// Get subproblem(s) owned by the current CPU
For k In {0: #ListOfSubdomains()-1}

i = ListOfSubdomains(k);
// Generate new RHS and solve linear system of subdomain i
GenerateRHSGroup[Maxwell˜{i}, Sigma˜{i}];
SolveAgain[Maxwell˜{i}];
// Compute boundary data
GenerateRHSGroup[ComputeG˜{i}, Sigma˜{i}];
SolveAgain[ComputeG˜{idom}˜{iSide}];

EndFor
(...)
// Go back to parallel mode for outside GMRES iteration
SetCommWorld;

}

As a byproduct all classical iterative schemes are readily
available: GMRES, Deflated GMRES, BiCGSTAB, etc. This
general implementation allows the solving of a wide variety
of problems, with classical or mixed formulations, and scalar,
vector or tensor unknowns. For wave propagation problems
in particular, this means that acoustic, electromagnetic and
elastodynamic problems can be solved with the same software,
simply by changing the input data files. Moreover, the software
is designed to work both on small scale problems (on a laptop,
a tablet or even a mobile phone) and on large scale problems
on clusters without changing the input files. For example,
the exact same 3D waveguide model available online at
http://onelab.info/wiki/DDM_for_Waves was tested with
a few thousands unknowns on an iPhone, and with half
a billion degrees of freedom, with 3,500 subdomains on a
3,500 cores Tier-1 supercomputer. A typical comparison of
the convergence of the DDM using different transmission
conditions is presented in Figure 1. In all cases, the mesh
was generated with the open source mesh generator Gmsh
[16], [17], which also allows to generate the meshes for all
subdomains in parallel using MPI.

VI. CONCLUSION

We have briefly presented a flexible domain decomposi-
tion solver for time-harmonic electromagnetic wave problems,
which can be used to test various transmission conditions in
the framework of optimized Schwarz methods. The solver is
available online as open source software, and can be used to
solve a large range of problems, from small scale academic
examples to large-scale industrial cases on distributed memory
computer clusters.
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