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Abstract. The aim of this paper is to describe a Matlab toolbox, called µ-diff, which is designed for spectrally solving two-
dimensional complex multiple scattering by a large collection of circular cylinders. The formulation is based on the Fourier
series expansions of the four basic integral operators arising in scattering problems. Based on these expressions, a spectrally
accurate finite-dimensional solution of multiple scattering problems can be simply obtained for complex media even when
many scatterers are considered as well as large frequencies. The efficient solution of the final linear system to solve makes use
of preconditioned Krylov subspace solvers for block Toeplitz matrices.
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INTRODUCTION

Let us consider M regular, bounded and disjoint scatterers Ω−p , p= 1, ...,M, distributed in R2, with boundary Γp :=Ω−p .
The scatterer Ω− is defined as the collection of the M separated obstacles, i.e. Ω− = ∪M

p=1Ω−p , with boundary
Γ = ∪M

p=1Γp. The homogeneous and isotropic exterior domain of propagation is Ω+ = R2 \Ω−. For the sake of
conciseness, we assume in the presentation that the scatterers are sound-soft (Dirichlet boundary condition), but other
situations can be handled by µ-diff (e.g. sound-hard scatterers, impedance boundary conditions, penetrable scatterers).
We now consider a time-harmonic incident plane wave uinc(x) = eikΘ·x (with x = (x1,x2) ∈ R2) illuminating Ω−, with
an incidence direction Θ = (cos(θ),sin(θ)) and a time dependence e−iωt , where ω is the wave pulsation and k is the
wavenumber. The multiple scattering problem of uinc by Ω− consists in computing the scattered wavefield u as the
solution to the boundary-value problem [1]

(∆+ k2)u = 0, in Ω+,
u =−uinc, on Γ,

lim
|x|→+∞

|x|1/2
(

∇u · x
|x|
− iku

)
= 0.

(1)

The operator ∆ = ∂ 2
x1
+∂ 2

x2
is the Laplace operator and (∆+ k2) is the Helmholtz operator. The gradient operator is ∇

and |x|=
√

x ·x, where x ·y is the scalar product of two vectors x and y of R2. The last equation of (1) is the well-known
Sommerfeld’s radiation condition at infinity that ensures the uniqueness of u.

The toolbox µ-diff uses the powerful integral equation formulation methods for solving scattering problems. Being
able to use integral operators allows us to formulate the solution to a given scattering problem by using traces theorems
and variational approaches. When the boundary Γ is general, then boundary element discretization techniques are
required. Even if these methods are very useful for general shapes, they also have some disadvantages. First, they
lead to large full linear systems to solve, most particularly when investigating small wavelength problems (λ � 1)
and large scatterers or collections of many scatterers (M� 1). These systems need a lot of memory storage and their
solution is highly time consuming. The solution can be accelerated by using Krylov subspace solvers [2] in conjunction
with fast matrix-vector products algorithms (for example Multilevel Fast Multipole Methods [3]) but at the price of
a loss of accuracy/stability. Second, even if boundary element methods provide an accurate solution, the precision is
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limited since linear finite element spaces are used as well as low-order surface descriptions. Going to higher order basis
functions is very complicate and time consuming, most particularly when one wants to integrate with high accuracy
(hyper)singular potentials that are involved in an integral formulation.

When the geometry is more trivial, then further simplifications can be realized in the integral equation methods.
Indeed, for example, analytical expressions of the integral operators can be obtained, and spectrally accurate and fast
solutions can be derived. This is the case when considering a disk. The Matlab toolbox µ-diff considers the case
of a collection of M homogeneous circular cylinders where Fourier basis expansions can be used. Even if disks can
be considered as simple geometries, they are involved in many physics problems which need a reliable and highly
accurate solution most particularly when k and M are large. This is for example the case for photonics and phononics
modeling [4] or plasmonic resonance from metallic nanoparticules [5].

FORMULATION AND NUMERICAL SOLUTION USED IN µ-DIFF FOR MULTIPLE
SCATTERING PROBLEMS BY DISKS

To simplify the presentation, let us consider that we wish to solve the sound-soft scattering problem by using a single-
layer representation formula of (1) in L2(Γ) written in a variational way: find ρ ∈ L2(Γ) such that

∀Φ ∈ L2(Γ), 〈Lρ,Φ〉L2(Γ) =
〈
−uinc,Φ

〉
L2(Γ)

, (2)

where L is the single-layer operator

∀x ∈ Γ, Lρ(x) =
∫

Γ

i
4

H(1)
0 (k|x−y|)ρ(y)dΓ(y).

The brackets 〈 · , · 〉 denotes the usual hermitian scalar product on L2(Γ). If (Ψm)m∈ is an orthonormal basis of L2(Γ),
the weak formulation can be written equivalently as: find ρ ∈ L2(Γ) such that

∀m ∈, 〈Lρ,Ψm〉L2(Γ) =
〈
−uinc|Γ,Ψm

〉
L2(Γ)

. (3)

Since we are considering circular boundaries Γp, a suitable choice of orthonormal basis is the Fourier basis. More
precisely, the spectral approximation that is used in µ-diff is built by using M Fourier basis (one per scatterer) to get a
global orthonormal basis of L2(Γ1)× . . .×L2(ΓM). Each scatterer Ω−p , p = 1, . . . ,M, is a circular cylinder with center
Op and radius ap. A point x ∈ R2 is given by its local polar coordinates associated with the scatterer rp(x) = Opx,
rp(x) = |rp(x)|, θp(x) = Angle(Ox1,rp(x)). For each scatterer Ω−p , p = 1, . . . ,M, we introduce the Fourier basis
functions

(
ϕ

p
m
)

m∈Z

∀m ∈ Z, ∀x ∈ Γp, ϕ
p
m(x) =

eimθp(x)√
2πap

.

This family provides an orthonormal basis of L2(Γp). We can gather these M families by introducing (Φp
m)m∈Z,p=1,...,M

defined by: ∀p,q ∈ {1, . . . ,M} ,∀m ∈ Z,Φp
m|Γq = ϕ

p
m, if p = q, and 0 otherwise. Finally, B =

(
Φ

p
m
)

m∈,p=1,...,M
is an orthonormal basis of L2(Γ) that we call Fourier basis. To express (3) in B, the density ρ is decomposed
as: ρ = ∑

M
p=1 ∑m∈Z ρ

p
mΦ

p
m. The weak formulation is then: find the Fourier coefficients (ρq

n )q=1,...,M,n∈Z such that
∀p∈ {1, . . . ,M},∀m∈ Z, ∑

M
q=1 ∑n∈Z Lp,q

m,nρ
q
n = f p

m. The coefficients f p
m of the incident wave can be obtained analytically

through a short calculation [6, 7]. Concerning the coefficients Lp,q
m,n, for the case of the diagonal blocks (p = q), we

can prove [6, 7] that for p = 1, . . . ,M, and m,n ∈ Z, we have Lp,p
m,n = δmn

iπap
2 Jm(kap)H

(1)
m (kap), where δmn denotes

the Krönecker symbol and the functions Jm and H(1)
m are respectively the Bessel and first-kind Hankel functions of

order m. For the off-diagonal terms, we can prove that: for all 1 ≤ p 6= q ≤ M, and for all m,n in Z, we have:
Lp,q

m,n =
iπ√apaq

2 Jm(kap)Jn(kaq)H
(1)
n−m(kbpq)ei(n−m)αpq , with bpq = |OqOp|, 1≤ p 6= q≤M and αpq = Angle(Ox1,bpq).

We can rewrite the infinite system as: L̃ρ̃ = f̃, with the following block structure L̃1,1 . . . L̃1,M

...
...

. . .
...

L̃M,1 . . . L̃M,M


 ρ̃1

...
ρ̃M

=

 f̃1

...
f̃M

 , (4)



where L̃p,q = (Lp,q
m,n)m,n∈Z , for 1 ≤ p,q ≤ M. A rapid analysis shows that each block can be written as a product

of diagonal and Toeplitz matrices involving special functions. The unknown infinite vector ρ̃ p = (ρ p
m)m∈Z , for p =

1, . . . ,M, contains the coefficients of the unknown ρ in the Fourier basis of L2(Γp). The right-hand side infinite vector
f̃p = ( f p

m)m∈, for p = 1, . . . ,M, is the vector of Fourier coefficients of the trace of −uinc on Γp. Other source terms
could be considered.

The infinite linear system (4) is next truncated in the Fourier space thanks to an adaptive process that involves
the wavenumber k and the radii ap leading to a spectrally accurate solution. The finite-dimensional linear system is
accurately solved in µ-diff by using a direct solver or a preconditioned Krylov subspace linear solver that uses fast
matrix-vector products based on FFTs, the solution depending on the configuration with respect to kap and M. Low
memory is also considered when kap is large enough since the storage of the Toeplitz matrices can be optimized.
Because µ-diff includes all the integral operators that are needed in scattering (traces and normal derivative traces of
the single- and double-layer potentials), a large class of scattering problems can be solved. Concerning the geometrical
configurations, any deterministic or random distribution of disks is possible. Finally, µ-diff includes post-processing
facilities like e.g.: surface and far-fields computations, total and scattered exterior (near-field) visualization...

An example of computation with µ-diff is given on Figure 1. We report the real part of the total acoustic near-field
and the far-field pattern when illuminating 100 randomly distributed circular cylinders (with ap ≈ 0.1) by a point
source located at (−5,0) with k = 2π . The obstacles are penetrable with a random index varying between 1.2 and 1.7.
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FIGURE 1. Real part of the total acoustic field (left) and far-field pattern (right).
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