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Abstract

We consider online optimization in the 1-lookahead setting, where the objective does not decompose additively
over the rounds of the online game. The resulting formulation enables us to deal with non-stationary and/or long-
term constraints, which arise, for example, in online display advertising problems. We propose an online primal-
dual algorithm for which we obtain dynamic cumulative regret guarantees. They depend on the convexity and the
smoothness of the non-additive penalty, as well as terms capturing the smoothness with which the residuals of the
non-stationary and long-term constraints vary over the rounds. We conduct experiments on synthetic data to illustrate
the benefits of the non-additive penalty and show vanishing regret convergence on live traffic data collected by a
display advertising platform in production.

1 Introduction
Online optimization can be viewed as a sequential game where in each round t ∈ {1, · · · , T}, we are required to play
an action, represented by a vector xt, which takes values in a set of actions {Xt : Xt ⊆ Rd}Tt=1. We then observe a
reward ft(xt) as a function of the action we chose in round t. The goal is to generate a sequence of actions such that
some measure of performance is for instance maximized over the course of T rounds.

The performance metric typically adopted in the online learning framework is the cumulative regret Cesa-Bianchi
and Lugosi (2006). Moreover, online learning traditionally assumes that the objective function has an additive structure
that nicely decomposes as a sum of regrets over the rounds of the optimization. This means that there is no coupling
of xt’s across successive rounds when the sets Xt are decoupled across time. Hence, the challenge in online learning
rather lies in the fact that xt must be estimated before having access to the reward function ft, which corresponds to the
so-called 0-lookahead setting Buchbinder et al. (2012); Andrew et al. (2013). In the particular case of dynamic regret
with additive objective functions Zinkevich (2003); Cesa-Bianchi et al. (2012); Hall and Willett (2013); Jadbabaie
et al. (2015), one seeks to analyze how, under various assumptions on ft and Xt, the sequence of rewards ft(x̂t)
collected in an online fashion compares with the best sequence of rewards ft(x?t ) collected in hindsight. The dynamic
regret over T rounds is defined as follows:

1

T

T∑

t=1

ft(x
?
t )−

1

T

T∑

t=1

ft(x̂t), (1)
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with 1
T

∑T
t=1 ft(x

?
t )=maxx1∈X1,...,xT∈XT

1
T

∑T
t=1 ft(xt). Unlike static regret analysis Zinkevich (2003), where we

compare against a single best action x? in retrospect over all rounds played, the best dynamic comparator, as its name
indicates, need not be identical for all t ∈ {1, · · · , T}.

In this work, we consider a setting similar to online learning with dynamic regret, but we do not assume that
successive actions xt are decoupled. We provide novel regret bounds for the case where rewards are additive and the
regrets are non-additive as the total cost over T rounds is non-decomposable. There is a small body of recent work that
study non-additive regrets. For example, Rakhlin et al. (2010) consider a wide class of non-additively decomposable
objective functions in a 0-lookahead setting, covering for instance the problems of Blackwell’s approachability, the
calibration of forecasters and the global cost online learning game from Even-Dar et al. (2009). More recently, Kar
et al. (2014) handle some specific form of non-decomposability in relation with the online optimization of metrics such
as the precision at k. Closer in spirit to our work is the one by Agrawal and Devanur (2015), who provide expected
regret bounds in the case where non-additive costs depend only on the empirical mean of the actions.

Metrical task systems (MTS) Borodin et al. (1992) provide an alternative analysis framework for online opti-
mization. They consider movement costs that penalize variations of xt’s across time and rely on competitive anal-
ysis Borodin and El-Yaniv (2005). Similar to online learning with dynamic regret, the performance of the online
optimization algorithm is compared to the best sequence of actions. However, instead of measuring cumulative regret,
competitive analysis adopts a multiplicative metric, known as the competitive ratio. We refer the interested reader to
Buchbinder et al. (2012); Andrew et al. (2013) for a detailed discussion. Moreover, the online game in MTS differs
from the online learning setup in that it follows the 1-lookahead setting where the player has access to the reward
function ft before estimating xt. The typical instantiation of the movement cost in MTS is a total variation penalty∑T−1
t=1 ‖xt − xt+1‖2, that can also be defined with non-Euclidean norms Bera et al. (2013). While the movement

cost introduces dependencies across actions xt in successive rounds, we note that, to the best of our knowledge, pre-
vious work only considered movement costs with an additive structure. We depart from this approach by considering
non-additive penalties.

The aforementioned frameworks have been successfully applied to derive and analyze online optimization al-
gorithms in for example online routing Awerbuch and Kleinberg (2008), process migration of servers Borodin and
El-Yaniv (2005) and portfolio allocation Helmbold et al. (1996). However, the assumption that regrets or movement
costs have an additive structure is restrictive in practice. In particular, we consider the problem of online ad allocation,
which is at the core of modern display advertising systems. The online ad allocation Chen et al. (2011) problem con-
sists of sequentially allocating ad impressions (encoded by xt) to a large number of competing ad slots across a large
number of websites and mobile apps, subject to a variety of advertiser objectives and constraints. Advertisers will
typically expect that in solving the ad allocation problem, we maximize a measure of ad performance (or advertiser
welfare), subject to constraints on user targeting and constraints on ad delivery (e.g., spend as close to 100% of an ad’s
budget as possible over T rounds). The online ad allocation problem is characterized by non-stationarity in constraints
(e.g., for a budget-constrained allocation, the amount of budget consumed per round varies dynamically). Moreover,
in such an application, constraints are measured by the advertiser only in a long-term sense (e.g., budget consumed by
the end of an advertising campaign), which requires the use of non-additive constraints.

Hence, the online ad allocation problem can be viewed as a hybrid between online learning with dynamic regret and
MTS. It falls into the 1-lookahead setting and requires non-additive constraints, but there is no practically-justifiable
concept of movement cost on x̂t that can be applied to account for non-additive constraints. Moreover, the movement
cost is not a sensible penalty to capture the fact that one would like to show different ads in successive rounds. Finally,
online ad allocation is concerned with satisfying long-term constraints, which means that the cumulative constraint
violations resulting from the sequence of vectors {xt}Tt=1 should not exceed a certain amount by the final round T .
The previous approaches proposed in the online learning literature Mahdavi et al. (2012); Agrawal and Devanur (2015)
are not suitable for our use-case since they handle stationary long-term constraints with static regret guarantees in the
0-lookahead setting. And again, this type of constraints is difficult to encode as movement costs.

Contributions. Within the 1-lookahead setting, we study an online optimization problem with dynamic regret de-
fined in terms of a sum of concave rewards and a penalty that does not decompose additively over the rounds of the
online game. Non-additive penalties are suitable for modeling non-stationary and/or long-term constraints, which are
of practical importance in display advertising. The resulting formulation is, to the best of our knowledge, novel and
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extends the work of Mahdavi et al. (2012) and Agrawal and Devanur (2015). We further provide dynamic cumulative
regret guarantees, showing that vanishing regret is driven by the convexity and the smoothness of the non-additive
penalty, along with the smoothness with which the residuals vary over the rounds. Hence, the structure of our bound
echoes results derived in previous work within the context of 0-lookahead dynamic regret analysis Zinkevich (2003).
Finally, we illustrate our methodological contribution by conducting experiments on synthetic data to validate the
benefits of non-additive penalties and study the convergence of the cumulative regret on live traffic data collected by a
display advertising platform in production.

2 Problem statement
Motivated by the practical realities of the online ad allocation problem, we focus on a class of online optimization
problems in which the actions played over time must not only maximize some rewards but also minimize long-
term constraints that are penalized by some non-additive error term through the function E . Formally, for any
(x1, . . . ,xT ) ∈ X1 × · · · × XT , we study the online maximization of objective functions of the form

P(x1, . . . ,xT ),
1

T

T∑

t=1

ft(xt)− E
(

1

T

T∑

t=1

Atxt − bt

)
, (2)

where the matrices At ∈ A ⊆ Rm×d and vectors bt ∈ Rm encode the non-stationary, long-term constraints. Although
the sets Xt’s depend on t, they are assumed to be fully available at each round t and do not take part in the online
game.

Our goal is to derive an online algorithm and prove that the sequence (x̂1, . . . , x̂T ) ∈ X1 × · · · × XT it generates
is guaranteed to satisfy a regret bound of the form

P? − P(x̂1, . . . , x̂T ) ≤ RT + Se + SA, (3)

where we have defined the optimal (primal) objective

P? , max
x1∈X1,...,xT∈XT

P(x1, . . . ,xT )=P(x?1, . . . ,x
?
T ). (4)

The regret bound in (3) is comprised of three terms, each capturing different aspects of the problem.
The first term RT quantifies the contribution due to the application of an online projected subgradient method in

the dual problem for (2), as described in Section 3.1.
The second term Se quantifies the impact of the smoothness with which the sequences of m-dimensional error

vectors {e?t }Tt=1 evolve over time, where e?t , Atx
?
t − bt. In this respect, the term Se will be reminiscent of the

guarantees traditionally obtained with dynamic regret analysis Cesa-Bianchi et al. (2012), with the key exception that
the smoothness is not based on the variables x?t themselves, but rather on the error vectors e?t . This term also has a
natural interpretation and relevance in the online advertising setting, as discussed in Section 4.2. The derivation for Se
will be the topic of Section 3.2.

The third and last term SA models the impact of having to estimate constraint matrices At via Ât, as in practice
At is not known at the time when the action xt is played. This aspect is also motivated by practical aspects of the
online ad allocation problem. As it will be made clear in Section 3.3, SA will depend on how smoothly the constraint
matrices At’s evolve over time. Given the above, our methodological contributions can thus be viewed as both a regret
analysis with dynamic comparators for non-additive objective functions, and a competitive analysis evaluated through
a regret criterion – or more precisely, a competitive difference criterion, as defined in Andrew et al. (2013) – where
the service cost is ft and our movement cost E is convex and non-additive. We will interchangeably refer to both
competitive difference and dynamic regret in the sequel.

3 Analysis
We describe in this section the main components of our analysis, starting with the saddle point formulation. The proofs
of the results are relegated to the Appendix.
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3.1 Linearization and Lagrangian formulation
Since the main challenge of our analysis lies in the fact that E breaks the additive structure of (1), a natural strategy
is therefore to linearize E via Fenchel conjugacy, similar to Agrawal and Devanur (2015). We define the Fenchel
conjugate of E as E?(λ) , supz∈dom(E){λ>z−E(z)} Boyd and Vandenberghe (2004), and from now on, we assume
that

(A1) The function E is convex.1

(A2) The Fenchel conjugate E? of E has its domain

Λ , dom(E?) = {λ ∈ Rm : E?(λ) < +∞}

that is compact so that there exists Rλ,max
λ∈Λ
‖λ‖2 < +∞.

(A3) For any t ∈ {1, · · · , T}, the function ft is concave, and the setXt is compact and convex withXt ⊆ dom(ft),
so there exists Rx,maxt∈{1,··· ,T},xt∈Xt‖xt‖2<+∞.

Equipped with those assumptions, we introduce for any xt ∈ Xt, λ ∈ Λ the Lagrangian function for round t:

Lt(xt,λ) , ft(xt)− λ>(Atxt − bt) + E?(λ). (5)

It can be observed that minλ∈Λ
1
T

∑T
t=1 Lt(xt,λ) = P(x1, . . . ,xT ).

In the sequel, we shall refer to λ ∈ Rm as dual variables. Following previous work on online saddle point opti-
mization Mahdavi et al. (2012); Koppel et al. (2014), our procedure will alternate between maximizing the Lagrangian
with respect to the primal variable xt and minimizing with respect to the dual variable λ. On the primal side, we
note that we are interested in the 1-lookahead setting, where we have access to Lt before computing our estimate x̂t,
whereas on the dual side, our sequence of λ̂t’s will be generated according to the 0-lookahead setting. This follows
the sequencing of events in practice for display advertising, where the dual variables can only be updated after we
observe At, which is only observed after we play x̂t. Before summarizing the procedure in Algorithm 1, we specify a
key computational assumption with respect to the primal variables:

(A4) For any λ ∈ Λ, we can efficiently compute argmaxxt∈Xt Lt(xt,λ).

In this paper, we will be primarily interested in problems where the above assumption (A4) holds (e.g., online ad
allocation problems consisting of maximizing linear functions over simplices), so that the complexity and tractabil-
ity of our proposed algorithm will mostly depend on structural properties of ft and Xt. Having laid out assump-
tions, we present our online algorithm in Algorithm 1, which makes use of an online projected subgradient method
(OPSM) Zinkevich (2003); Hazan et al. (2007) with respect to the dual variables. The notation ΠQ refers to the Eu-
clidean projection onto the set Q. Interestingly, while the analysis of the primal objective (2) requires a comparison
to T different optimal primal variables (i.e., measuring performance via dynamic regret), the online optimization with
respect to the dual variables reduces to a static regret analysis that compares with an unique optimal dual variable
λ?. A related observation was exploited by Shalev-Shwartz and Singer (2006); Shalev-Shwartz and Kakade (2009),
but following an opposite route, i.e., analyzing the primal objective using static regret, while leveraging the dynamic
regret structure of the dual optimization problem. Given Algorithm 1, we now study the impact of applying OPSM for
our problem in Lemma 1, subject to an additional assumption about the boundedness of the subgradients of Lt(xt, ·):

(A5) There exists G > 0, max
t∈{1,··· ,T},
xt∈Xt,λ∈Λ

‖∇λLt(xt,λ)‖2 ≤ G.

Lemma 1. Let assumptions (A1)-(A3) and (A5) hold. Let κ ≥ 0 be the strong convexity parameter of Lt(x̂t, ·) with
respect to the `2 norm. It holds for any λ ∈ Λ, and sequences {x̂t, λ̂t}Tt=1 generated by Algorithm 1 that

1

T

T∑

t=1

Lt(x̂t, λ̂t)− Lt(x̂t,λ) ≤ RT ,

1When we refer to convex/concave functions, we implicitly assume closed proper convex/concave functions Boyd and Vandenberghe (2004).
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Algorithm 1 Online saddle point optimization

Input: Initial dual variable λ̂1, step sizes ηt
for t = 1 to T do

Receive Lt //1-lookahead setting
Compute x̂t ∈ argmaxxt∈Xt Lt(xt, λ̂t)
Update λ̂t+1 = ΠΛ[λ̂t − ηt∇λLt(x̂t, λ̂t)]

end for

where if Lt(x̂t, ·) is strongly convex (κ> 0), we take the step size ηt = 1
κt and we have RT = G2

2κT log(eT ), while if
Lt(x̂t, ·) is convex (κ = 0), we can choose the step size ηt = 2Rλ

G
√
T

leading toRT = 2RλG√
T

.

The two claims can be found respectively in (Zinkevich, 2003; Hazan et al., 2007), a short proof is given in the
Appendix for self-containedness. For the convex case, the step size ηt depends on the time horizon T , and we can use
the doubling trick (e.g., see Section 2.3.1 in Shalev-Shwartz (2011) to remove this dependency.

Having presented the component of the regret bound that comes from the use of OPSM, we next examine why the
contribution ofRT is not sufficient by itself to control the regret bound (3).

3.2 Controlling the worst sequence of dual variables
Given Assumptions (A1)-(A3), there do exist some optimal primal variables {x?t }Tt=1 as defined in (4). Let us denote
an optimal dual variable given the primal variables {x?t }Tt=1 as

λ? ∈ argmin
λ∈Λ

1

T

T∑

t=1

Lt(x?t ,λ),

and define λ̂ equivalently for the sequence {x̂t}Tt=1 where the existence of both λ? and λ̂ are guaranteed by Assump-
tions (A1)-(A2).

From the perspective of deriving an upper bound on P?−P(x̂1, . . . , x̂T ), we observe that Lt(x?t ,λ?)−Lt(x̂t, λ̂)
can be rewritten as

(Lt(x?t ,λ?)− Lt(x?t , λ̂t)) + (Lt(x?t , λ̂t)− Lt(x̂t, λ̂)),

which in turn, using (A4), is upper-bounded by

(Lt(x?t ,λ?)−Lt(x?t , λ̂t))︸ ︷︷ ︸
,Gt(λ̂t)

+(Lt(x̂t, λ̂t)−Lt(x̂t, λ̂))︸ ︷︷ ︸
C

, (6)

where the second term above is readily obtained by the definition of x̂t ∈ argmaxxt∈Xt Lt(x, λ̂t). This obser-
vation is useful in several respects: while the term C can be directly bounded as a result of Lemma 1, the term
Gt(λ̂t), which refers to the gap we incur as a result of the sequentially-generated (λ̂1, . . . , λ̂T ), is not accounted
for by Lemma 1, and so it needs to be controlled differently. Notably, λ̂t 7→ Gt(λ̂t) is concave over Λ, and so
is (λ̂1, . . . , λ̂T ) 7→ 1

T

∑T
t=1 Gt(λ̂t) over ΛT : this implies that we can cast the problem of controlling the worst

sequence of dual variables (λ̂1, . . . , λ̂T ) as a concave maximization problem.
In order to obtain a meaningful upper bound on Gt(λ̂t) and 1

T

∑T
t=1 Gt(λ̂t), we leverage the fact that we are not

dealing with any general sequence (λ̂1, . . . , λ̂T )∈ΛT , but sequences possibly output by Algorithm 1. More precisely,
we make this characterization by noting that OPSM generates successive λ̂t and λ̂t+1 estimates whose differences
‖λ̂t − λ̂t+1‖2 are controlled as a function of the step size ηt Andrew et al. (2013). Following Zinkevich (2003), we
therefore introduce the convex set

ΛT,ε,

{
(λ1, . . . ,λT ) ∈ ΛT :

T−1∑

t=1

‖λt − λt+1‖2≤ε
}
, (7)
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which will be useful shortly in deriving an upper bound for Se. In particular, assuming (A5) holds and setting ε =
G
∑T
t=1 ηt, for any sequence (λ̂1, . . . , λ̂T )∈ΛT generated by Algorithm 1, we have (λ̂1, . . . , λ̂T )∈ΛT,ε and

1

T

T∑

t=1

Gt(λ̂t) ≤ Se , max
(λ1,...,λT )∈ΛT,ε

1

T

T∑

t=1

Gt(λt). (8)

We next turn to some lemmas that make the expression of Se more explicit by leveraging duality arguments. To this
end, we introduce some additional notation: first, we rewrite the total-variation constraint from (7) as

T−1∑

t=1

‖λt − λt+1‖2 = Ω1/2((∆⊗ I)λ)

where λ ∈ RT ·m stands for the vector formed by stacking the m-dimensional λt’s, ⊗ is the Kronecker product,
∆ ∈ R(T−1)×T is the discrete 1-dimensional gradient matrix,2 while Ω1/2 is the `1/`2 norm with dual norm Ω∞/2,
such that

Ω1/2(u) ,
T−1∑

t=1

‖ut‖2 and Ω∞/2(v) , max
t∈{1,··· ,T−1}

‖vt‖2,

for any vectors u = [u1, . . . ,uT−1] and v = [v1, . . . ,vT−1] in R(T−1)·m. We now show that Se can conveniently be
expressed as a minimization problem.

Lemma 2. Let e?t = Atx
?
t − bt. It holds that

Se = min
α∈R(T−1)·m

Se(α)

where we have introduced the convex function α 7→ Se(α)

1

T

T∑

t=1

E
(
e?t −

[
(∆⊗ I)>α

]
t

)
− E

( 1

T

T∑

t=1

e?t

)
+
ε

T
Ω∞/2(α).

The proof is given in the Appendix and relies on duality arguments. We note at this juncture that our analysis can
similarly handle other penalties related to the total-variation chosen in (7), for instance ‖(∆ ⊗ I)λ‖2F (we omit the
details owing to space limitations).

The expression for Se provided by Lemma 2 (the result of a minimization problem), makes it possible to obtain an
upper bound for any candidate vector α ∈ R(T−1)·m. We propose below one such instantiation that highlights how
Se depends on the smoothness with which the sequence {e?t }Tt=1 varies over time:

Lemma 3. Let e?t = Atx
?
t − bt be stacked in the vector e? ∈ RTm. The term Se is upper-bounded by

Se ≤
ε

T
max

t∈{1,...,T−1}
Ψt(e

?) where Ψt(e
?) ,

∥∥∥∥
t∑

j=1

T − t
T

e?j −
T∑

j=t+1

t

T
e?j

∥∥∥∥
2

.

The proof of this lemma can be found in the Appendix. We can see from Lemma 3 that Se captures both (a) the
cumulative variations of {e?t }Tt=1 through Ψt(e

?), modulated by the average of the step sizes ε/T = G
∑T
t=1 ηt/T ,

and (b) the worst of the constraint violations that surfaces via G (see the definition of Assumption (A5)).
To intuitively understand the effect of Ψt, we can first observe that if the residual vectors {e?t }Tt=1 are constant

over time, that is e? = c · 1 for some scalar c, then the terms Ψt(e
?) vanish for all t ∈ {1, . . . , T}, so that Se does not

contribute to the regret guarantees in this case. To get a better sense of the impact of Ψt beyond the case where the
residual vectors are perfectly constant, we now assume that {e?t }Tt=1 are independent random (sub-Gaussian) vectors.
It is important to stress the fact that our analysis and our main theorem (see Theorem 1) hold in absence of any
stochastic assumptions, but we only momentarily consider random residuals in order to gain insight into how the term
Se can scale in more realistic scenarios beyond the case of constant residual vectors:

2The matrix ∆ ∈ R(T−1)×T contains two non-zero entries per row, with ∆t,t = 1 and ∆t,t+1 = −1 for t ∈ {1, · · · , T − 1}.
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Lemma 4. Let e? ∈ RTm be a random vector, such that for some µ ∈ RmT and σ ≥ 0

E[exp(α>(x− µ))] ≤ exp(‖α‖2σ2/2) (9)

holds for every α ∈ RmT . Let Zt ∈ R+ and ωµ ∈ R+ be defined by

Zt , Ψt(e
?) and ωµ , max

t∈{1,...,T−1}
[Ψt(µ)]2. (10)

Then we have

E
[

max
t∈{1,...,T−1}

Zt

]
≤
√
σ2mT + ωµ +

√
σ2mT log(T ).

The proof of this lemma is given in the Appendix. Some comments are in order. Lemma 4 shows that when
e? ∈ RTm is a random (sub-Gaussian) vector—which notably covers the cases where the entries of e? are independent
bounded, or Gaussian, random variables—then, the term Se scales (in expectation) as

O
( ε
T

[√
σ2mT + ωµ +

√
σ2mT log(T )

])
.

Assuming that ωµ = O(σ2mT log(T )), we can see that it is sufficient to have ε = o(
√
T/(σ2m log(T ))) in order

to guarantee that Se vanishes. This condition is for instance satisfied in the setting where E has Lipschitz continuous
gradients with parameter L > 0, for which we can take ηt = L/t and ε = O(G log(T )). Interestingly, the constant
term µ appears only through ωµ, and hence Ψt(µ), so that, as discussed previously, a constant (even non-zero) vector
µ leads to ωµ = 0. We therefore see that ωµ penalizes by how much we deviate from a constant mean vector.

Having derived the terms RT and Se in the cumulative regret bound, we now turn to the description of the last
term SA of our regret guarantee (3).

3.3 Estimating the matrices {At}Tt=1

So far we have assumed that we have access to At at each round, when in practice we only get to observe At after
we take an action x̂t. For example, in the online ad allocation problem, the amount of money to be charged to the
advertiser for a single ad impression is revealed only after we have made a decision on which ad to allocate for the
impression, i.e., once we have computed x̂t. We now address the cost incurred in having to estimate the constraint
matrices At before playing x̂t. To this end, we assume that in addition to the dual variables being bounded with radius
Rλ, we have

(A6) The set A is convex and bounded; in particular, there exists RA , maxA∈A ‖A‖F < +∞.

Since the choice of x̂t now depends on the estimate Ât, we introduce the estimated Lagrangian

L̂t(xt,λ) , ft(xt)− λ>(Âtxt − bt) + E?(λ), (11)

with the direct relationship (for any xt ∈ Xt,λ ∈ Λ):

L̂t(xt,λ) = Lt(xt,λ)− λ>(Ât −At)xt. (12)

Combining the above expression (12) along with the decomposition detailed in (6), it can be shown (see Lemma A in
the Appendix) that the residual term due to the estimation of At is given by

SA ,
1

T

T∑

t=1

λ̂
>
t (Ât −At)(x

?
t − x̂t). (13)

As a result of having to estimate At, we present Algorithm 2, where we also apply an OPSM to estimate the constraint
matrices At’s.

Lemma 5 then quantifies the cumulative regret incurred as a result of having to use estimated constraint matrices
Ât to produce x̂t, where the result stems from the analysis of Hall and Willett (2013).
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Algorithm 2 Online saddle point optimization with estimated constraint matrices Ât

Input: Initial Â1 and dual variable λ̂1, step sizes ηt, νt
for t = 1 to T do

Receive L̂t //1-lookahead and Ât

Compute x̂t ∈ argmaxxt∈Xt L̂t(xt, λ̂t)
Receive At

Update λ̂t+1 = ΠΛ[λ̂t − ηt∇λLt(x̂t, λ̂t)]
//Gt a subgradient of ‖At −A‖F
Update Ât+1 = ΠA[Ât − νtGt]

end for

Lemma 5. Consider Algorithm 2. For OPSM on matrices Ât with step size νt = RA/
√
t, we have

1

T

T∑

t=1

‖Ât −At‖F ≤
3√
T

[
RA +

T∑

t=1

‖At −At+1‖F
]
,

and the term SA from the general regret bound (3), as defined in (13), is upper-bounded by:

SA ≤
6RλRx√

T

[
RA +

T∑

t=1

‖At −At+1‖F
]
.

Having introduced the main three components of our regret bound, we next formally present our main results.

3.4 Main results and discussion
We start by stating our core theorem:

Theorem 1. Assume (A1)-(A6) hold, and let x?1, . . . ,x
?
T be a sequence of optimal primal solutions for (2). Define

the optimal error vectors e?t , Atx
?
t − bt stacked into the vector e? ∈ RTm. Let Me , maxt∈{1,··· ,T−1}Ψt(e

?).
Algorithm 2 generates a sequence (x̂1, . . . , x̂T ) ∈∏T

t=1 Xt satisfying

P? − P(x̂1, . . . , x̂T ) ≤ RT + Se + SA

whereRT = 2RλG√
T
, Se = Me

2Rλ√
T

and SA = 6RλRx√
T

[RA +
∑T
t=1 ‖At −At+1‖F]. If we additionally assume that

(A7) E has Lipschitz continuous gradients over its domain with parameter L > 0,

we can take insteadRT = LG2

2T log(eT ) and the term Me
2Rλ√
T

can be replaced by Me
LG log(eT )

T .

The proof of the results can be found in the Appendix. The statement of Theorem 1 calls for some comments.
Omitting the contribution of terms depending on {Rλ, Rx, RA, G}, Theorem 1 guarantees that when At is assumed to
be known, the regret P? −P(x̂1, . . . , x̂T ) is upper-bounded by terms scaling with O(Me/

√
T ), or O(Me log(T )/T )

respectively for the convex or strongly convex cases. As a result, the upper bound is mainly driven by how smooth the
sequence {e?t }Tt=1 varies over time, as measured by Me. In the more challenging setting where the constraint matrices
At’s are also estimated, we pay an additional cost O

(
1√
T

[1 +
∑T
t=1 ‖At − At+1‖F]

)
, so that the potential strong

convexity of E∗ (or equivalently, the gradient Lipschitz continuity of E) plays only a secondary role compared to the
leading term depending on the smoothness of the At’s.

Possible instantiations of E: We now present possible valid instantiations of the error function E . A first example
for which the set of assumptions (A1)-(A2) can be satisfied considers E(z) = r · Ω(z) where Ω refers to any norm on
Rm. Indeed, it is well known (e.g., see Example 3.26 in Boyd and Vandenberghe (2004)) that E? corresponds in this
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E(z) E?(λ) Λ

HRλ,L(‖z‖2) IBRλ (λ) + 1
2L‖λ‖22 BRλ

HRλ,L(‖[z]+‖2) IBRλ∩Rm+ (λ) + 1
2L‖λ‖22 BRλ ∩ Rm+

Rλ · ‖z‖2 IBRλ (λ) BRλ
Rλ · ‖[z]+‖2 IBRλ∩Rm+ (λ) BRλ ∩ Rm+

Table 1: Examples of non-additive penalty functions. For simplicity, we display only expressions based on the `2
norm, but similar formula can be obtained for `q, q ∈ {1,∞}. We recall that Λ , dom(E?) = {λ : E?(λ) < +∞}.
We define Br as the Euclidean ball in Rm with radius r, while IC is the indicator function of the convex set C. The
function Hr,s is defined as Hr,s(t) , 1

2 min{st2, r2s } + r[|t| − r
s ]+. The expressions are derived in Lemma B in the

Appendix.

case to the indicator function of the ball for the dual norm Ω∗ with radius r. In particular, if Ω is the `2 norm, we can
take Rλ = r.

Tighter regret bounds can be obtained if the function E is taken to be gradient Lipschitz continuous (see Theorem 1
and Assumption (A7)), while preserving the boundedness of the domain Λ of its Fenchel conjugate. A possible choice
in this case is an instance of a Huber function (e.g., see Section 10.6 in Hastie et al. (2009)), as detailed in Table 1.

In the setting of the online ad allocation problem, it is sometimes required to impose an asymmetric error function
(e.g., to penalize under- and over-delivery differently). We show in Table 1 corresponding valid instantiations of E that
depend only on their arguments via their positive parts.

Complexity of computing x̂t: Assumption (A4), about the exact computational oracle for x̂t, hides, and concen-
trates, the difficulties related to the optimization with respect to the primal variables xt. We can observe, in the light
of the decomposition (6), that an approximate maximization—for instance leveraging the concavity of ft—would lead
to residual terms that would be hard to control in our online setting. Although it may appear at first sight that an exact
maximization is an overly strong requirement, wide classes of problems fall within the scope of this assumption; we
can for instance cite the exactly-solved subproblems that are commonly encountered in the context of proximal meth-
ods Parikh and Boyd (2013) or conditional-gradient algorithms (Jaggi, 2013, see Table 1). We conjecture that, thanks
to Assumption (A4), we may weaken Assumption (A3) by, for instance, trying to drop the concavity assumption of
the ft’s and the convexity of the Xt’s.

Lower bounds: Based on Assumptions (A1)-(A2)-(A3), we know that the minimax equality for our saddle point
problem holds Sion et al. (1957). In particular, defining the (convex) dual function

D(λ) ,
1

T

T∑

t=1

Dt(λ) ,
1

T

T∑

t=1

max
xt∈Xt

Lt(xt,λ),

we have the equality
P? − P(x̂1, . . . , x̂T ) = min

λ∈Λ
D(λ)− P(x̂1, . . . , x̂T ).

This new relationship makes it possible to derive complementary guarantees for our problem. For instance, when we
need not estimate the constraint matrices At’s,3 it can be shown that we can lower bound P? − P(x̂1, . . . , x̂T ) by

[
1

T

T∑

t=1

Dt(λ̂t)− P(x̂1, . . . , x̂T )−RT
]

+

,

which sets a lower limit on the best performance we could get with the sequences {x̂t, λ̂t}Tt=1. Interestingly, this lower
bound can not only be practically computed, but it also gives an indication about the inherent difficulty of the problem
at hand (e.g., if it is large, the online strategy cannot compete efficiently with its offline counterpart).

3When At’s are also estimated, the lower bound is more involved, and requires the introduction of an estimated dual function D̂t along the lines
of (11).
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4 Experiments
In this section, we conduct two sets of experiments. First, we consider a synthetic data and demonstrate the benefit of
handling truly non-additive penalties over a heuristic based on an additive relaxation. Second, we report results on an
online advertising data set consisting of a sample of 3.3 million bid requests gathered from a large ad serving system
used in production at Amazon. Hence, these data account for external advertiser constraints encountered in practice,
such as user behavioral targeting. We show that the rate at which regret vanishes matches our theory.

4.1 Additive versus non-additive modeling
We first investigate if the use of a non-additive penalty on average constraint violations yields improvements in reward
and/or constraint violations compared to the additive error formulation adopted in standard online learning. The
additive long-term penalty is defined as follows:

1

T

T∑

t=1

[
ft(xt)− E(Atxt − bt)

]
. (14)

In the experiments, we consider a linear reward function ft(x) = u>t xt, with the simplicial constraint xt ∈
Xt , {xt ∈ Rd+ : 1>xt ≤ 1}. These choices of ft and Xt are reminiscent of the online ad allocation setting we
explore at greater length in Section 4.2. We simulated data with m = 25, d = 10, T = 200 and where {At,bt,ut}
were generated to be standard random Gaussian matrices and vectors normalized to unit norms. We ran our online
algorithm with primal-dual updates dictated by the non-additive problem formulation in (2) and compared it to a
baseline algorithm with primal-only updates following a standard online learning formulation with additive penalties
on constraint violations as in (14). Since the exact maximization maxxt∈Xt [ft(xt) − E(Atxt − bt)] may not be
obtained in closed-form in this case, we used the solver CVXPY Diamond et al. (2014). We shall refer to the two
approaches as respectively Non-additive and Additive.

So as to cover different types of geometries and convexity assumptions, we consider several choices of penalty
functions, namely E(z) = Rλ · ‖z‖q for q ∈ {1, 2,∞}, along with E(z) = Rλ · H1,1(‖z‖2) where H1,1 is the Huber
function defined in Table 1. For each E , and for, both, Non-additive and Additive, we compute the reward
over T rounds given by 1

T

∑
t u
>
t x̂t and the (normalized) non-additive penalty E( 1

T

∑
t Atx̂t−bt)/Rλ for the primal

variables x̂t generated online by the two algorithms.
Figure 1 shows the resulting reward versus constraint violation for varying values of Rλ, averaged over 10 genera-

tions of {At,bt,ut}. As can be seen from the curves, in applications where constraint violation are to be measured as
a non-additive penalty, the additive relaxation (14) leads to significant deterioration of the performance compared to
the non-additive penalty. In particular, the domain of the achievable constraint violation is very narrow when applying
the additive heuristic, meaning that there is little room for making trading-offs. As expected, we also observe that
points of Non-additive and Additive superimpose in the regime where Rλ � 1, i.e., when the two formula-
tions focus on the optimization of the reward. Finally, we remark that since the quality of the additive relaxation (14)
essentially hinges on the gap in the Jensen’s inequality E( 1

T

∑T
t=1 Atxt − bt) ≤ 1

T

∑T
t=1 E(Atxt − bt), and there-

fore on the distribution of the residuals {Atxt − bt}Tt=1, we provide in the Appendix additional simulations where
{At,bt,ut} are generated according to different distributions, viz, Cauchy, uniform and gamma. In a nutshell, the
same conclusions hold, even for the distributions that appear to make the relaxation (14) tighter.

4.2 Regret convergence on real online advertising data
In the second experiment, we focus on the online ad allocation problem in display advertising subject to long-term
constraints on budget consumed per ad. More formally, in the display advertising setting, each user visit to a website
or app triggers a bid request i, where each bid request has some subset of the m possible ads that can be served.
Indexing ads by j ∈ {1, · · · ,m}, the welfare of serving an impression for ad j (i.e., the value of showing the ad once
to a user) for bid request i is given by uij ≥ 0. For bid request i, let primal variable xij = 1 correspond to our decision
to allocate ad j an impression, with xij = 0 otherwise.
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Figure 1: Reward 1
T

∑
t u
>
t x̂t as a function of non-additive penalty E( 1

T

∑
t Atx̂t − bt)/Rλ for Rλ = 2γ with γ ∈

{−8,−7.5, . . . , 10}. Red crosses correspond to our proposed online algorithm, while blue circles stand for a baseline
algorithm with additive penalties. Each subplot displays a different instantiation of E , namely E(z) = Rλ · ‖z‖q for
q ∈ {1, 2,∞} and E(z) = Rλ · H1,1(‖z‖2) whereH1,1 is defined in Table 1 (best seen in color).

To map this problem to our formulation, we will further partition the time dimension into disjoint intervals t ∈
{1, · · · , T} where the number of bid requests in each interval is equal to N . We let It be the set of bid requests in
round t with |It| = N . Thus, for a given t, the primal variable xt will denote the flattened matrix xij for i ∈ It
and for all ads j ∈ {1, · · · ,m}, so that xt ∈ [0, 1]d with d = N · m. Since we can show at most one ad per bid
request, we additionally have the simplicial constraints

∑m
j=1 xij ≤ 1 for each bid request i, and we therefore define

the set Xt ⊆ [0, 1]d as the Cartesian product of those simplices for each i ∈ It. We define the welfare vector ut ∈ Rd
following the same flattening operation, so that ft(xt) = u>t xt. Matrix At ∈ Rm×d is such that the j-th entry [Atxt]j
represents the amount of budget consumed for ad j as a result of the allocation vector xt under a cost per impression
model. Finally, the non-additive long-term constraints are modeled as 1

T

∑
t Atxt − bt. Vector bt is equal to the

constant vector b of ad budgets. Hence, the penalty on 1
T

∑
t Atxt − bt penalizes deviations from spending 100% of

each ad’s budget. We stress the fact that, although b is a constant vector, we are in a non-stationary regime since At

is not equal to some constant matrix A independent of t.
The goal of the experiment is to compare the regret behavior of our proposed online algorithm for different choices

of non-additive E on the online advertising data set from live traffic. For each bid request in our data set, each eligible
ad candidate comes with a pre-defined welfare and cost to the advertiser, which determine ut and At respectively. We
partitioned the 3.3 million impressions into batches of equal size, for a total of T = 10000 rounds. We computed the
average cumulative regret P?−P(x̂1, · · · , x̂T ) as a function of T for (symmetric) E chosen to be i) E(z) = Rλ · ‖z‖1
referred to as Convex and ii) E(z) = HRλ,1(‖z‖2) referred to as Strongly convex. For all problem instantia-
tions, we set Rλ = 50000. We computed the term P(x̂1, · · · , x̂T ) by running our online primal-dual algorithm over
20 permutations of bid requests. The term P? was obtained using an offline primal-dual method where the dual vari-
able updates correspond to an offline subgradient (resp. gradient) method for the convex (resp. strongly convex) E∗.
Figure 2 shows the resulting cumulative regret as a function of T , averaged over the 20 runs (with error bars that are
negligible). We observe that the cumulative regrets incurred for, both, Convex and Strongly convex decrease
as T increases, with the latter decreasing at faster rate than the former as predicted by the theory.
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Figure 2: Cumulative regret, averaged over 20 runs, measured on the data collected by a real ad serving system as a
function of the number of rounds T for E(z) = Rλ‖z‖1 (red) and E(z) = HRλ,1(‖z‖2) (blue). Figure best seen in
color.

5 Appendix: Proofs

5.1 Proof of Lemma 1
Proof. The two claims of the lemma can be found respectively in Zinkevich (2003); Hazan et al. (2007) and fol-
lows from (possibly, strong) convexity of Lt(x̂t,λ) with respect to λ. For completeness, we briefly repeat the core
arguments from Zinkevich (2003); Hazan et al. (2007). The conclusions come from the fact that the term

T∑

t=1

Lt(x̂t, λ̂t)− Lt(x̂t,λ)

is shown to be upper bounded by, with at , ‖λ− λ̂t‖22,

1

2

T∑

t=1

[
1

ηt

(
at − at+1

)
− κat + ηtG

2

]

in turn upper bounded by
a1

2

[
1

η1
− κ
]

+
G2

2

T∑

t=1

ηt +
1

2

T∑

t=2

at

[
1

ηt
− 1

ηt−1
− κ
]
.

The choices of the step sizes lead to the advertised instantiations ofRT .

5.2 Proof of Lemma 2
Proof. The result stems from an application of strong duality for the above convex program. First, notice that

1

T

T∑

t=1

Gt(λt) =
1

T

T∑

t=1

λ>t e?t − E∗(λt)− E
(1

T

T∑

t=1

e?t

)
.

Introduce the equality constraint a = (∆⊗ I)λ—we remind that λ ∈ RT ·m stands for the vector formed by stacking
the m-dimensional λt’s—and write the corresponding Lagrangian (we momentarily omit the constant terms indepen-
dent of λt that have no effects on the maximization), that is, for any λt ∈ Λ,a ∈ R(T−1)·m,α ∈ R(T−1)·m and
β ≥ 0:

L(λ,a,α, β) =
1

T

T∑

t=1

λ>t e?t − E∗(λt)

+ α>(a− (∆⊗ I)λ) + β(ε− Ω1/2(a)).
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Using the fact that E∗ is the Fenchel conjugate of E and that the conjugate of the `1/`2 norm Ω1/2 is the indicator
function of the unit ball for its dual `∞/`2 norm (Example 3.26 in Boyd and Vandenberghe (2004)), we can maximize
out the primal variables:

max
λ,a

L(λ,a,α, β) =
1

T

T∑

t=1

E
(
e?t −

[
T (∆⊗ I)>α

]
t

)
+βε

under the constraint maxt=1...T−1 ‖αt‖2 ≤ β. Minimizing out β, and making the change of variable α ← T · α
leads to the claimed dual minimization problem. Finally, the initial claim holds with equality, since Slater’s constraint
qualification applies here to guarantee strong duality (Section 5.2.3 in Boyd and Vandenberghe (2004)).

5.3 Proof of Lemma 3
Proof. The equality in Lemma 2 has a minimization over α on its right-hand-side. Therefore, we have that for every
α ∈ R(T−1)·m we have Se upper bounded by Se(α). Specifically, let α′ , [((∆∆>)−1∆)⊗ I]e∗ and we have that
Se ≤ Se(α′). First, we compute the term inside the first sum of Se(α′) for a fixed t ∈ {1, . . . , T}

e∗t −
[
(∆⊗ I)>[((∆∆>)−1∆)⊗ I]e∗

]
t

=
[
e∗ − (∆⊗ I)>[((∆∆>)−1∆)⊗ I]e∗

]
t

=
[
e∗ − ([(∆>(∆∆>)−1∆)⊗ I]e∗

]
t

=
[
[(I−∆>(∆∆>)−1∆)⊗ I]e∗

]
t

The matrix ∆ ∈ R(T−1)×T is defined by

∆ij =





1 i = j,

−1 i = j − 1,

0 otherwise.

By direct computation one can show, that ∆∆> ∈ R(T−1)×(T−1) is the tridiagonal matrix

(∆∆>)ij =





2 i = j,

−1 |i− j| = 1,

0 otherwise.

There exists a close form solution for the inversion of an arbitrary tridiagonal matrix Usmani (1994). Using this we
get that the matrix (∆∆>)−1 ∈ R(T−1)×(T−1) is defined by

[(∆∆>)−1]ij =

{
i(T−j)
T i < j,

(T−i)j
T i ≥ j.

No,w we can again proceed with a direct calculation to compute (∆∆>)−1∆ ∈ R(T−1)×T and get

[(∆∆>)−1∆]ij =

{
− i
T i < j,

T−i
T i ≥ j.

Finally, computing the full product ∆>(∆∆>)−1∆ ∈ RT×T we get

[∆>(∆∆)t−1∆]ij =

{
T−1
T i = j,

− 1
T i 6= j.
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Observe, that the matrix I−∆(∆∆>)−1∆ ∈ RT×T is a matrix full of values 1/T . It follows that

e∗t −
[
(∆⊗ I)>[((∆∆>)−1∆)⊗ I]e∗

]
t

=
1

T

T∑

i=1

e∗i , ∀t ∈ {1, . . . , T}

Also, observe that the first two terms in Se(α′) cancel out and we have

Se(α′) =
ε

T
Ω∞/2(α′) =

ε

T
Ω∞/2

(
[((∆∆>)−1∆)⊗ I]e∗

)

Plugging in the matrix (∆∆)−1∆ computed earlier in the above expression we get the final result.

5.4 Proof of Lemma 4
Let Wt ∈ Rm×mT be a block matrix defined by

Wt ,




(
T − t
T

)
I

∣∣∣∣ . . .
∣∣∣∣
(
T − t
T

)
I

︸ ︷︷ ︸
t

∣∣∣∣
(
− t

T

)
I

∣∣∣∣ . . .
∣∣∣∣
(
− t

T

)
I

︸ ︷︷ ︸
(T−t)


 (15)

Observe that Zt = ‖Wte
∗‖2. From now on t will be assumed to belong to {1, . . . , T − 1} in all derivations. Let

s > 0. Then using the convexity and monotonicity of the exponential together with Jensen’s inequality, the fact that
sum of elements is more than the maximal element, linearity of expectation, and the fact that the sum can be bounded
by the number of terms times the maximal element, we get the following sequence of inequalitites

esE[maxt Z
2
t ] ≤ E

[
esmaxt Z

2
t

]
= E

[
max
t
esZ

2
t

]
≤ E

[∑
te
sZ2
t

]
=
∑
tE
[
esZ

2
t

]
≤ T max

t
E
[
esZ

2
t

]
(16)

Assume 0 ≤ s < 1/(2σ2‖W>
t Wt‖2). Then according to Remark 2.3 in Hsu et al. (2012) one has the bound

E[exp(s‖Wte
∗‖2)] ≤ exp

(
σ2Tr

(
W>

t Wt

)
s+

σ4Tr
(
(W>

t Wt)
2
)
s2 + ‖Wtµ‖2s

1− 2σ2‖W>
t Wt‖2s

)
(17)

Observe that the right-hand-side of (17) is increasing in the arguments Tr(W>
t t), Tr((W>

t Wt)
2), ‖Wtµ‖2, and

‖W>
t Wt‖2. From the definition of Wt in (15) and a maximization in t we have

‖Wt‖2F
(15)
=

mt(T − t)
T

≤ mT

4

which can be further used to bound

Tr(W>
t Wt) = ‖Wt‖2F ≤

mT

4

Tr((W>
t Wt)

2) = ‖W>
t Wt‖2F ≤ ‖Wt‖4F ≤

m2T 2

16

‖W>
t Wt‖2 ≤ ‖W>

t Wt‖F ≤ ‖Wt‖2F ≤
mT

4

using standard arguments. Also, from definition (10) we have ‖Wtµ‖2 ≤ ωµ. Combining these bounds with (17) and
setting s , s∗ defined by

0 <


s∗ , 4

√
log(T )

√
σ2mT

(√
σ2mT + 8ωµ + 2

√
σ2mT log(T )

)


 < 2

σ2mT
≤ 1

2σ2‖W>
t Wt‖2

(18)
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we get

E[exp(s∗‖Wte
∗‖2)] ≤ exp

(
s∗

4

(
σ2mT +

σ4m2T 2s∗ + 16ωµ

4− 2σ2mTs∗

))

(18)
= exp

(
s∗

4

(
σ2mT + 4ωµ +

√
σ2mT + 8ωµ

√
σ2mT log(T )

))
. (19)

We finally have all the ingredients. Using the definition of Zt in (10), using the non-negativity of Zt, the concavity of
the square root together with Jensen’s inequality, the definition of the exponential, the inequality (16), the inequality
(19) with the observation that the right-hand-side does not depend on t, the definition of s∗ in (18), the bound

√
s ≤

1
2 (s+ 1), the fact that all the entries are positive, and a+ b =

√
a2 + 2ab+ b2 we get

E
[
max
t
Zt

]
= E

[√
max
t
Z2
t

]

≤
√
E[max

t
Z2
t ]

=
√

log
(
es

∗E[maxt Z2
t ]
)
/s∗

(16)
≤
√

log
(
T max

t
E
[
es

∗Z2
t

])
/s∗

(19)
≤
√

log(T )

s∗
+

1

4

(
σ2mT + 4ωµ +

√
σ2mT + 8ωµ

√
σ2mT log(T )

)

(18)
=

1

2

√
σ2mT + 4ωµ + 2

√
σ2mT + 8ωµ

√
σ2mT log(T ) + 2σ2mT

√
log(T )

≤ 1

2

√
2σ2mT + 4ωµ + 2

√
σ2mT + 8ωµ

√
σ2mT log(T ) + σ2mT log(T )

≤
√
σ2mT + ωµ + 2

√
σ2mT + ωµ

√
σ2mT log(T ) + σ2mT log(T )

≤
√
σ2mT + ωµ +

√
σ2mT log(T )

which concludes the proof.

5.5 Proof of Lemma 5
Proof. We first apply the Cauchy-Schwartz inequality to get

|λ̂>t (Ât −At)(xt − x̂t)| ≤ ‖λ̂t‖2‖xt − x̂t‖2|||Ât −At|||2
≤ 2RλRx‖Ât −At‖F

where we have used that the operator norm is smaller than the Frobenius norm. We then leverage Theorem 4 from Hall
and Willett (2013): in their notation, we have G` ≤ 1 (since the sub-gradients of A 7→ ‖At −A‖F are bounded by
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1), σ = 1, M ≤ RA/2 and Dmax ≤ 2R2
A along with Φ = I and the learning rate ηt = RA/

√
t. This leads to

T∑

t=1

‖Ât −At‖F − min
Ã1,...,ÃT∈A

T∑

t=1

‖Ãt −At‖F

≤ 2R2
A

ηT+1
+

2RA
ηT

V +
1

2

T∑

t=1

ηt

≤ 2RA
ηT

(RA + V ) +RA
√
T

≤ 3
√
T (V +RA),

where V stands for
∑T
t=1 ‖At −At+1‖F.

5.6 Proof of Theorem 1
Proof. The proof consists in putting together the components introduced in the Section 3 of the core paper. We start
from

P? − P(x̂1, . . . , x̂T ) =
1

T

T∑

t=1

Lt(x?t ,λ?)− Lt(x̂t, λ̂)

which, using the decomposition (6), is equal to

1

T

T∑

t=1

(Lt(x?t ,λ?)− Lt(x?t , λ̂t)) + (Lt(x?t , λ̂t)− Lt(x̂t, λ̂)).

Moreover, Lemma A (see below) gives

Lt(x?t , λ̂t)− Lt(x̂t, λ̂) ≤ Lt(x̂t, λ̂t)− Lt(x̂t, λ̂)

+ λ̂
>
t (Ât −At)(x

?
t − x̂t).

Recalling the definitions ofRT , Gt and SA respectively in Lemma 1, (6) and (13), we obtain

P? − P(x̂1, . . . , x̂T ) ≤ 1

T

T∑

t=1

Gt(λ̂t) +RT + SA.

Noticing that with the choice ε/T , G
∑T
t=1 ηt/T , the relationship (8) holds, we finally obtain

P? − P(x̂1, . . . , x̂T ) ≤ RT + Se + SA.

The rest of the proof follows by instantiating RT , Se and SA. The value of RT is given in Lemma 1, while the
upper bound for Se is described in Lemma 3.

Moreover, ε/T is equal to 2Rλ/
√
T and GL log(eT )/T in the convex and strongly convex cases respectively

(given the ηt from Lemma 1). Finally, the upper bound on SA is given by Lemma 4.

6 Appendix: Technical lemmas
Lemma A. For any λ ∈ Λ and xt ∈ Xt, we have

Lt(xt, λ̂t)− Lt(x̂t,λ) ≤ Lt(x̂t, λ̂t)− Lt(x̂t,λ)

+ λ̂
>
t (Ât −At)(xt − x̂t).
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Proof. For any λ ∈ Λ and xt ∈ Xt, Lt(xt, λ̂t)− Lt(x̂t,λ) is equal to

= L̂t(xt, λ̂t) + λ̂
>
t (Ât −At)xt − Lt(x̂t,λ)

≤ L̂t(x̂t, λ̂t) + λ̂
>
t (Ât −At)xt − Lt(x̂t,λ)

= Lt(x̂t, λ̂t)− Lt(x̂t,λ) + λ̂
>
t (Ât −At)(xt − x̂t),

where we have used twice the relationship L̂t(xt,λ) = Lt(xt,λ) − λ>(Ât −At)xt, and the fact that x̂t is defined
as argmaxxt∈Xt Lt(xt, λ̂t).

We next provide the details of the computations related to relationship between E and E∗ presented in Table 1. We
focus on one of the displayed instantiations, since the arguments in those other cases follow along the same lines.

Lemma B. For any u ∈ Rm,

max
w∈Rm

{
u>w − IBr∩Rm+ (w)− 1

2s
‖w‖22

}
= Hr,s(‖[u]+‖2),

whereHr,s(t) , 1
2 min{st2, r2s }+ r[|t| − r

s ]+.

Proof. We start by deriving the Lagrangian associated with

maxw∈Rm
{

u>w − IBr∩Rm+ (w)− 1
2s‖w‖22

}

= maxw∈Br∩Rm+

{
u>w − 1

2s‖w‖22
}

that is given by, for any α ≥ 0,β ∈ Rm+ ,

L(w, α,β) = u>w +
α

2

(
r2 − ‖w‖22

)
− 1

2s
‖w‖22 + β>w.

Maximizing out w, and recognizing the conjugate of the squared `2 norm (Example 3.27 in Boyd and Vandenberghe
(2004)), we obtain the dual function

max
w∈Rm

L(w, α,β) =
1

2(α+ 1/s)
‖u + β‖22 +

α

2
r2.

In turn, we minimize with respect to the dual variables

min
α≥0,β∈Rm+

max
w∈Rm

L(w, α,β) =

min
α≥0

{ 1

2(α+ 1/s)
‖[u]+‖22 +

α

2
r2
}
.

The optimal α can then be easily computed and is equal to
[‖[u]+‖2

r
− 1

s

]
+
.

Plugging back this value into the dual function leads to the expressionHr,s(‖[u]+‖2). The equality holds by invoking
strong duality, which applies based on Slater’s constraint qualification (Section 5.2.3 in Boyd and Vandenberghe
(2004)).

7 Appendix: Additional experiments for Section 4.1
We show below additional results when {At,bt,ut} are generated according to different distributions, namely,
Cauchy, uniform and gamma. As described in the protocol of Section 4.1, we continue to normalize {At,bt,ut}
to unit norms. The same conclusions as those explained in Section 4.1 of the paper hold. We observe that some
instantiations of E and distribution, e.g., `1 with gamma in Figure 5, lead to settings where the additive relaxation (12)
appears as tighter, although our non-additive approach still offers better reward versus constraint violation tradeoffs.
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Figure 3: Reward 1
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∑
t u
>
t x̂t as a function of non-additive penalty E( 1

T

∑
t Atx̂t − bt)/Rλ for Rλ = 2γ with

γ ∈ {−8,−7.5, . . . , 10}. The problem instances are generated with a standard Cauchy distribution. Red crosses
correspond to our proposed online algorithm, while blue circles stand for a baseline algorithm with additive penalties.
Each subplot displays a different instantiation of E , namely E(z) = Rλ · ‖z‖q for q ∈ {1, 2,∞} and E(z) = Rλ ·
H1,1(‖z‖2) whereH1,1 is defined in Table 1.
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