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Abstract
We consider online optimization in the 1-
lookahead setting, where the objective does not
decompose additively over the rounds of the on-
line game. The resulting formulation enables us
to deal with non-stationary and/or long-term con-
straints, which arise, for example, in online dis-
play advertising problems. We propose an on-
line primal-dual algorithm for which we obtain
dynamic cumulative regret guarantees. They de-
pend on the convexity and the smoothness of
the non-additive penalty, as well as terms cap-
turing the smoothness with which the residuals
of the non-stationary and long-term constraints
vary over the rounds. We conduct experiments
on synthetic data to illustrate the benefits of the
non-additive penalty and show vanishing regret
convergence on live traffic data collected by a
display advertising platform in production.

1. Introduction
Online optimization can be viewed as a sequential game
where in each round t ∈ {1, · · · , T}, we are required to
play an action, represented by a vector xt, which takes val-
ues in a set of actions {Xt : Xt ⊆ Rd}Tt=1. We then ob-
serve a reward ft(xt) as a function of the action we chose in
round t. The goal is to generate a sequence of actions such
that some measure of performance is for instance maxi-
mized over the course of T rounds.

The performance metric typically adopted in the online

learning framework is the cumulative regret (Cesa-Bianchi
and Lugosi, 2006). Moreover, online learning traditionally
assumes that the objective function has an additive struc-
ture that nicely decomposes as a sum of regrets over the
rounds of the optimization. This means that there is no
coupling of xt’s across successive rounds when the sets Xt
are decoupled across time. Hence, the challenge in online
learning rather lies in the fact that xt must be estimated
before having access to the reward function ft, which cor-
responds to the so-called 0-lookahead setting (Buchbinder
et al., 2012; Andrew et al., 2013). In the particular case
of dynamic regret with additive objective functions (Zinke-
vich, 2003; Cesa-Bianchi et al., 2012; Hall and Willett,
2013; Jadbabaie et al., 2015), one seeks to analyze how, un-
der various assumptions on ft and Xt, the sequence of re-
wards ft(x̂t) collected in an online fashion compares with
the best sequence of rewards ft(x?t ) collected in hindsight.
The dynamic regret over T rounds is defined as follows:

1

T

T∑

t=1

ft(x
?
t )−

1

T

T∑

t=1

ft(x̂t), (1)

with 1
T

∑T
t=1 ft(x

?
t )=maxx1∈X1,...,xT∈XT

1
T

∑T
t=1 ft(xt).

Unlike static regret analysis (Zinkevich, 2003), where we
compare against a single best action x? in retrospect over
all rounds played, the best dynamic comparator, as its name
indicates, need not be identical for all t ∈ {1, · · · , T}.
In this work, we consider a setting similar to online learn-
ing with dynamic regret, but we do not assume that suc-
cessive actions xt are decoupled. We provide novel regret
bounds for the case where rewards are additive and the re-
grets are non-additive as the total cost over T rounds is
non-decomposable. There is a small body of recent work
that study non-additive regrets. For example, Rakhlin et al.
(2010) consider a wide class of non-additively decompos-
able objective functions in a 0-lookahead setting, cover-
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ing for instance the problems of Blackwell’s approachabil-
ity, the calibration of forecasters and the global cost on-
line learning game from Even-Dar et al. (2009). More re-
cently, Kar et al. (2014) handle some specific form of non-
decomposability in relation with the online optimization of
metrics such as the precision at k. Closer in spirit to our
work is the one by Agrawal and Devanur (2015), who pro-
vide expected regret bounds in the case where non-additive
costs depend only on the empirical mean of the actions.

Metrical task systems (MTS) (Borodin et al., 1992) pro-
vide an alternative analysis framework for online optimiza-
tion. They consider movement costs that penalize varia-
tions of xt’s across time and rely on competitive analy-
sis (Borodin and El-Yaniv, 2005). Similar to online learn-
ing with dynamic regret, the performance of the online op-
timization algorithm is compared to the best sequence of
actions. However, instead of measuring cumulative regret,
competitive analysis adopts a multiplicative metric, known
as the competitive ratio. We refer the interested reader to
(Buchbinder et al., 2012; Andrew et al., 2013) for a de-
tailed discussion. Moreover, the online game in MTS dif-
fers from the online learning setup in that it follows the 1-
lookahead setting where the player has access to the reward
function ft before estimating xt. The typical instantiation
of the movement cost in MTS is a total variation penalty∑T−1
t=1 ‖xt − xt+1‖2, that can also be defined with non-

Euclidean norms (Bera et al., 2013). While the movement
cost introduces dependencies across actions xt in succes-
sive rounds, we note that, to the best of our knowledge,
previous work only considered movement costs with an ad-
ditive structure. We depart from this approach by consider-
ing non-additive penalties.

The aforementioned frameworks have been successfully
applied to derive and analyze online optimization algo-
rithms in for example online routing (Awerbuch and Klein-
berg, 2008), process migration of servers (Borodin and
El-Yaniv, 2005) and portfolio allocation (Helmbold et al.,
1996). However, the assumption that regrets or movement
costs have an additive structure is restrictive in practice. In
particular, we consider the problem of online ad allocation,
which is at the core of modern display advertising systems.
The online ad allocation (Chen et al., 2011) problem con-
sists of sequentially allocating ad impressions (encoded by
xt) to a large number of competing ad slots across a large
number of websites and mobile apps, subject to a variety
of advertiser objectives and constraints. Advertisers will
typically expect that in solving the ad allocation problem,
we maximize a measure of ad performance (or advertiser
welfare), subject to constraints on user targeting and con-
straints on ad delivery (e.g., spend as close to 100% of an
ad’s budget as possible over T rounds).

Hence, the online ad allocation problem can be viewed as

a hybrid between online learning with dynamic regret and
MTS. It falls into the 1-lookahead setting and requires non-
additive constraints, but there is no practically-justifiable
concept of movement cost on x̂t that can be applied to ac-
count for non-additive constraints. Moreover, the move-
ment cost is not a sensible penalty to capture the fact that
one would like to show different ads in successive rounds.
Finally, online ad allocation is concerned with satisfying
long-term constraints, which means that the cumulative
constraint violations resulting from the sequence of vec-
tors {xt}Tt=1 should not exceed a certain amount by the
final round T . The previous approaches proposed in the
online learning literature (Mahdavi et al., 2012; Agrawal
and Devanur, 2015) are not suitable for our use-case since
they handle stationary long-term constraints with static re-
gret guarantees in the 0-lookahead setting. And again, this
type of constraints is difficult to encode as movement costs.

Contributions. Within the 1-lookahead setting, we study
an online optimization problem with dynamic regret de-
fined in terms of a sum of concave rewards and a penalty
that does not decompose additively over the rounds of the
online game. Non-additive penalties are suitable for model-
ing non-stationary and/or long-term constraints, which are
of practical importance in display advertising. The result-
ing formulation is, to the best of our knowledge, novel and
extends the work of Mahdavi et al. (2012) and Agrawal and
Devanur (2015). We further provide dynamic cumulative
regret guarantees, showing that vanishing regret is driven
by the convexity and the smoothness of the non-additive
penalty, along with the smoothness with which the residu-
als vary over the rounds. Hence, the structure of our bound
echoes results derived in previous work within the context
of 0-lookahead dynamic regret analysis (Zinkevich, 2003).
Finally, we illustrate our methodological contribution by
conducting experiments on synthetic data to validate the
benefits of non-additive penalties and study the conver-
gence of the cumulative regret on live traffic data collected
by a display advertising platform in production.

2. Problem statement
Motivated by the practical realities of the online ad alloca-
tion problem, we focus on a class of online optimization
problems in which the actions played over time must not
only maximize some rewards but also minimize long-term
constraints as penalized by some non-additive error term E .
Formally, for any (x1, . . . ,xT ) ∈ X1×· · ·×XT , we study
the online maximization of objective functions of the form

P(x1, . . . ,xT ),
1

T

T∑

t=1

ft(xt)−E
(

1

T

T∑

t=1

Atxt−bt

)
, (2)
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where the matrices At ∈ A ⊆ Rm×d and vectors bt ∈ Rm
encode the non-stationary, long-term constraints. Although
the setsXt’s depend on t, they are assumed to be fully avail-
able at each round t and do not take part in the online game.

Our goal is to derive an online algorithm and prove that the
sequence (x̂1, . . . , x̂T ) ∈ X1 × · · · × XT it generates is
guaranteed to satisfy a regret bound of the form

P? − P(x̂1, . . . , x̂T ) ≤ RT + Se + SA, (3)

where we have defined the optimal (primal) objective

P? , max
x1∈X1,...,xT∈XT

P(x1, . . . ,xT )=P(x?1, . . . ,x
?
T ). (4)

The regret bound in (3) is comprised of three terms, each
capturing different aspects of the problem.

The first termRT quantifies the contribution due to the ap-
plication of an online projected subgradient method in the
dual problem for (2), as described in Section 3.1.

The second term Se quantifies the impact of the smooth-
ness with which the sequences ofm-dimensional error vec-
tors {e?t }Tt=1 evolve over time, where e?t , Atx

?
t − bt. In

this respect, the term Se will be reminiscent of the guar-
antees traditionally obtained with dynamic regret analysis
(Cesa-Bianchi et al., 2012), with the key exception that the
smoothness is not based on the variables x?t themselves,
but rather on the error vectors e?t . This term also has a nat-
ural interpretation and relevance in the online advertising
setting, as discussed in Section 4.2. The derivation for Se
will be the topic of Section 3.2.

The third and last term SA models the impact of having to
estimates constraint matrices At via Ât, as in practice At

is not known at the time when the action xt is played. This
aspect is also motivated by practical aspects of the online ad
allocation problem. As it will be made clear in Section 3.3,
SA will depend on how smoothly the constraint matrices
At’s evolve over time. Given the above, our methodologi-
cal contributions can thus be viewed as both a regret anal-
ysis with dynamic comparators for non-additive objective
functions, and a competitive analysis evaluated through a
regret criterion – or more precisely, a competitive differ-
ence criterion, as defined in Andrew et al. (2013) – where
the service cost is ft and our movement cost E is convex
and non-additive. We will interchangeably refer to both
competitive difference and dynamic regret in the sequel.

3. Analysis
We describe in this section the main components of our
analysis, starting with the saddle point formulation. The
proofs of the results are relegated to the appendix.

3.1. Linearization and Lagrangian formulation

Since the main challenge of our analysis lies in the fact
that E breaks the additive structure of (1), a natural strat-
egy is therefore to linearize E via Fenchel conjugacy,
similar to (Agrawal and Devanur, 2015). We define the
Fenchel conjugate of E as E?(λ) , supz∈dom(E){λ>z −
E(z)} (Boyd and Vandenberghe, 2004), and from now on,
we assume that

(A1) The function E is convex.1

(A2) The Fenchel conjugate E? of E has its domain

Λ , dom(E?) = {λ ∈ Rm : E?(λ) < +∞}

that is compact so that there existsRλ,max
λ∈Λ
‖λ‖2 < +∞.

(A3) For any t ∈ {1, · · · , T}, the function ft is concave,
and the set Xt is compact and convex with Xt ⊆ dom(ft),
so there exists Rx,maxt∈{1,··· ,T},xt∈Xt‖xt‖2<+∞.

Equipped with those assumptions, we introduce for any
xt ∈ Xt, λ ∈ Λ the Lagrangian function for round t:

Lt(xt,λ) , ft(xt)− λ>(Atxt − bt) + E?(λ). (5)

It can be observed that minλ∈Λ
1
T

∑T
t=1 Lt(xt,λ) =

P(x1, . . . ,xT ).

In the sequel, we shall refer to λ ∈ Rm as dual variables.
Following previous work on online saddle point optimiza-
tion (Mahdavi et al., 2012; Koppel et al., 2014), our pro-
cedure will alternate between maximizing the Lagrangian
with respect to the primal variable xt and minimizing with
respect to the dual variable λ. On the primal side, we note
that we are interested in the 1-lookahead setting, where
we have access to Lt before computing our estimate x̂t,
whereas on the dual side, our sequence of λ̂t’s will be gen-
erated according to the 0-lookahead setting. This follows
the sequencing of events in practice for display advertising,
where the dual variables can only be updated after we ob-
serve At, which is only observed after we play x̂t. Before
summarizing the procedure in Algorithm 1, we specify a
key computational assumption with respect to the primal
variables:

(A4) For any λ ∈ Λ, we can efficiently compute
argmaxxt∈Xt Lt(xt,λ).

In this paper, we will be primarily interested in prob-
lems where the above assumption (A4) holds (e.g., on-
line ad allocation problems consisting of maximizing lin-
ear functions over simplices), so that the complexity and
tractability of our proposed algorithm will mostly depend

1When we refer to convex/concave functions, we implicitly
assume closed proper convex/concave functions (Boyd and Van-
denberghe, 2004).
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Algorithm 1 Online saddle point optimization

Input: Initial dual variable λ̂1, step sizes ηt
for t = 1 to T do

Receive Lt //1-lookahead setting
Compute x̂t ∈ argmaxxt∈Xt Lt(xt, λ̂t)
Update λ̂t+1 = ΠΛ[λ̂t − ηt∇λLt(x̂t, λ̂t)]

end for

on structural properties of ft and Xt. Having laid out
assumptions, we present our online algorithm in Algo-
rithm 1, which makes use of an online projected subgradi-
ent method (OPSM) (Zinkevich, 2003; Hazan et al., 2007)
with respect to the dual variables. Interestingly, while the
analysis of the primal objective (2) requires a comparison
to T different optimal primal variables (i.e., measuring per-
formance via dynamic regret), the online optimization with
respect to the dual variables reduces to a static regret analy-
sis that compares with an unique optimal dual variable λ?.
A related observation was exploited by (Shalev-Shwartz
and Singer, 2006; Shalev-Shwartz and Kakade, 2009), but
following an opposite route, i.e., analyzing the primal ob-
jective using static regret, while leveraging the dynamic re-
gret structure of the dual optimization problem. Given Al-
gorithm 1, we now study the impact of applying OPSM for
our problem in Lemma 1, subject to an additional assump-
tion about the boundedness of the subgradients ofLt(xt, ·):

(A5) There exists G > 0, max
t∈{1,··· ,T},
xt∈Xt,λ∈Λ

‖∇λLt(xt,λ)‖2 ≤ G.

Lemma 1. Let assumptions (A1)-(A3) and (A5) hold. Let
σ ≥ 0 be the strong convexity parameter of Lt(x̂t, ·) with
respect to the `2 norm. It holds for any λ ∈ Λ, and se-
quences {x̂t, λ̂t}Tt=1 generated by Algorithm 1 that

1

T

T∑

t=1

Lt(x̂t, λ̂t)− Lt(x̂t,λ) ≤ RT ,

where if Lt(x̂t, ·) is strongly convex (σ > 0), we take the
step size ηt = 1

σt and we have RT = G2

2σT log(eT ), while
if Lt(x̂t, ·) is convex (σ = 0), we can choose the step size
ηt = 2Rλ

G
√
T

leading toRT = 2RλG√
T

.

The two claims can be found respectively in (Zinkevich,
2003; Hazan et al., 2007), a short proof is given in the ap-
pendix for self-containedness. For the convex case, the step
size ηt depends on the time horizon T , and we can use the
doubling trick (e.g., see Section 2.3.1 in (Shalev-Shwartz,
2011) to remove this dependency.

Having presented the component of the regret bound that
comes from the use of OPSM, we next examine why the
contribution of RT is not sufficient by itself to control the
regret bound (3).

3.2. Controlling the worst sequence of dual variables

Given Assumptions (A1)-(A3), there do exist some optimal
primal variables {x?t }Tt=1 as defined in (4). Let us denote an
optimal dual variable given the primal variables {x?t }Tt=1 as

λ? ∈ argmin
λ∈Λ

1

T

T∑

t=1

Lt(x?t ,λ),

and define λ̂ equivalently for the sequence {x̂t}Tt=1 where
the existence of both λ? and λ̂ are guaranteed by Assump-
tions (A1)-(A2).

From the perspective of deriving an upper bound on P? −
P(x̂1, . . . , x̂T ), we observe that Lt(x?t ,λ?) − Lt(x̂t, λ̂)
can be rewritten as

(Lt(x?t ,λ?)− Lt(x?t , λ̂t)) + (Lt(x?t , λ̂t)− Lt(x̂t, λ̂)),

which in turn, using (A4), is upper-bounded by

(Lt(x?t ,λ?)−Lt(x?t , λ̂t))︸ ︷︷ ︸
,Gt(λ̂t)

+(Lt(x̂t, λ̂t)−Lt(x̂t, λ̂))︸ ︷︷ ︸
C

, (6)

where the second term above is readily obtained by the
definition of x̂t ∈ argmaxxt∈Xt Lt(x, λ̂t). This obser-
vation is useful in several respects: while the term C can
be directly bounded as a result of Lemma 1, the term
Gt(λ̂t), which refers to the gap we incur as a result of
the sequentially-generated (λ̂1, . . . , λ̂T ), is not accounted
for by Lemma 1, and so it needs to be controlled differ-
ently. Notably, λ̂t 7→ Gt(λ̂t) is concave over Λ, and so
is (λ̂1, . . . , λ̂T ) 7→ 1

T

∑T
t=1 Gt(λ̂t) over ΛT : this im-

plies that we can cast the problem of controlling the worst
sequence of dual variables (λ̂1, . . . , λ̂T ) as a concave max-
imization problem.

In order to obtain a meaningful upper bound on Gt(λ̂t) and
1
T

∑T
t=1 Gt(λ̂t), we leverage the fact that we are not deal-

ing with any general sequence (λ̂1, . . . , λ̂T )∈ΛT , but se-
quences possibly output by Algorithm 1. More precisely,
we make this characterization by noting that OPSM gen-
erates successive λ̂t and λ̂t+1 estimates whose differences
‖λ̂t − λ̂t+1‖2 are controlled as a function of the step size
ηt (Andrew et al., 2013). Following (Zinkevich, 2003), we
therefore introduce the convex set

ΛT,ε,

{
(λ1, . . . ,λT ) ∈ ΛT :

T−1∑

t=1

‖λt − λt+1‖2≤ε
}
, (7)

which will be useful shortly in deriving an upper bound
for Se. In particular, assuming (A5) holds and setting ε =
G
∑T
t=1 ηt, for any sequence (λ̂1, . . . , λ̂T )∈ΛT generated

by Algorithm 1, we have (λ̂1, . . . , λ̂T )∈ΛT,ε and

1

T

T∑

t=1

Gt(λ̂t) ≤ Se , max
(λ1,...,λT )∈ΛT,ε

1

T

T∑

t=1

Gt(λt). (8)
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We next turn to some lemmas that make the expression
of Se more explicit by leveraging duality arguments. To
this end, we introduce some additional notation: first, we
rewrite the total-variation constraint from (7) as

T−1∑

t=1

‖λt − λt+1‖2 = Ω1/2((∆⊗ I)λ)

where λ ∈ RT ·m stands for the vector formed by stacking
the m-dimensional λt’s, ⊗ is the Kronecker product, ∆ ∈
R(T−1)×T is the discrete 1-dimensional gradient matrix,2

while Ω1/2 is the `1/`2 norm with dual norm Ω∞/2, such
that

Ω1/2(u) ,
T−1∑

t=1

‖ut‖2 and Ω∞/2(v) , max
t∈{1,··· ,T−1}

‖vt‖2,

for any vectors u=[u1, . . . ,uT−1] and v=[v1, . . . ,vT−1]
in R(T−1)·m. We now show that Se can conveniently be
expressed as a minimization problem.
Lemma 2. Let e?t = Atx

?
t − bt. It holds that

Se = min
α∈R(T−1)·m

Se(α)

where we have introduced the convex function α 7→ Se(α)

1

T

T∑

t=1

E
(
e?t−

[
(∆⊗I)>α

]
t

)
−E
( 1

T

T∑

t=1

e?t

)
+
ε

T
Ω∞/2(α).

The proof is given in the appendix and relies on duality ar-
guments. We note at this juncture that our analysis can sim-
ilarly handle other penalties related to the total-variation
chosen in (7), for instance ‖(∆ ⊗ I)λ‖2F (we omit the de-
tails owing to space limitations).

The expression for Se provided by Lemma 2 (the result of a
minimization problem), makes it possible to obtain an up-
per bound for any candidate vector α ∈ R(T−1)·m. We
propose below one such instantiation that highlights how
Se depends on the smoothness with which the sequence
{e?t }Tt=1 varies over time, subject to the following assump-
tions on E :

(A7) E is sub-additive: there exists c ≥ 1 such that for any
two vectors u,v ∈ dom(E), E(u + v) ≤ c[E(u) + E(v)],

(A8) E is symmetric around 0: For any u ∈ dom(E), it
holds that −u ∈ dom(E) and E(u) = E(−u).
Lemma 3. Let Assumptions (A7), (A8) hold and let e?t =
Atx

?
t − bt. The term Se is upper-bounded by

2c

T

T−1∑

t=1

E(e?t−e?t+1)−E
( 1

T

T∑

t=1

e?t

)
+
ε

T
Ω∞/2((∆⊗I)e?),

where e? ∈ RT ·m stands for the vector with stacked e?t ’s.

2The matrix ∆ ∈ R(T−1)×T contains two non-zero entries
per row, with ∆t,t = 1 and ∆t,t+1 = −1 for t ∈ {1, · · · , T−1}.

The proof of this lemma can be found in the appendix. It
is worth mentioning that Assumptions (A7)-(A8) are not
strictly necessary to obtain upper-bounds on Se, but are
invoked in the above lemma in order to simplify the re-
sulting expression. We can see from Lemma 3 that Se
captures both the cumulative variations of {e?t }Tt=1 through∑T−1
t=1 E(e?t − e?t+1) and the worst of those variations via

Ω∞/2((∆⊗I)e?) = maxt∈{1,··· ,T−1} ‖e?t−e?t+1‖2 modu-
lated by the average of the step sizes ε/T = G

∑T
t=1 ηt/T .

The structure of this upper-bound is analogous to that de-
veloped in (Zinkevich, 2003) in the context of additive re-
gret objectives and dynamic comparators.

Having derived terms RT and Se in the cumulative regret
bound, we now turn to the description of the last term SA
of our regret guarantee (3).

3.3. Estimating the matrices {At}Tt=1

So far we have assumed that we have access to At at each
round, when in practice we only get to observe At after
we take an action x̂t. For example, in the online ad allo-
cation problem, the amount of money to be charged to the
advertiser for a single ad impression is revealed only after
we have made a decision on which ad to allocate for the
impression, i.e., once we have computed x̂t. We now ad-
dress the cost incurred in having to estimate the constraint
matrices At before playing x̂t. To this end, we assume that
in addition to the dual variables being bounded with radius
Rλ, we have

(A9) The set A is convex and bounded; in particular, there
exists RA , maxA∈A ‖A‖F < +∞.

Since the choice of x̂t now depends on the estimate Ât, we
introduce the estimated Lagrangian

L̂t(xt,λ) , ft(xt)− λ>(Âtxt − bt) + E?(λ), (9)

with the direct relationship (for any xt ∈ Xt,λ ∈ Λ):

L̂t(xt,λ) = Lt(xt,λ)− λ>(Ât −At)xt. (10)

Combining the above expression (10) along with the de-
composition detailed in (6), it can be shown (see Lemma A
in the appendix) that the residual term due to the estimation
of At is given by

SA ,
1

T

T∑

t=1

λ̂
>
t (Ât −At)(x

?
t − x̂t). (11)

As a result of having to estimate At, we present Algorithm
2, where we also apply an OPSM to estimate the constraint
matrices At’s.

Lemma 4 then quantifies the cumulative regret incurred as
a result of having to use estimated constraint matrices Ât
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Algorithm 2 Online saddle point optimization with esti-
mated constraint matrices Ât

Input: Initial Â1 and dual variable λ̂1, step sizes ηt, νt
for t = 1 to T do

Receive L̂t //1-lookahead and Ât

Compute x̂t ∈ argmaxxt∈Xt L̂t(xt, λ̂t)
Receive At

Update λ̂t+1 = ΠΛ[λ̂t − ηt∇λLt(x̂t, λ̂t)]
//Gt a subgradient of ‖At −A‖F
Update Ât+1 = ΠA[Ât − νtGt]

end for

to produce x̂t, where the result stems from the analysis
of (Hall and Willett, 2013).
Lemma 4. Consider Algorithm 2. For OPSM on matrices
Ât with step size νt = RA/

√
t, we have

1

T

T∑

t=1

‖Ât −At‖F ≤
3√
T

[
RA +

T∑

t=1

‖At −At+1‖F
]
,

and the term SA from the general regret bound (3), as de-
fined in (11), is upper-bounded by:

SA ≤
6RλRx√

T

[
RA +

T∑

t=1

‖At −At+1‖F
]
.

Having introduced the main three components of our regret
bound, we next formally present our main results.

3.4. Main results and discussion

We start by stating our core theorem:
Theorem 1. Let Assumptions (A1)-(A9) hold, and let
x?1, . . . ,x

?
T be a sequence of optimal primal solutions for

(2). Define the optimal error vectors e?t , Atx
?
t − bt and

Me , maxt∈{1,··· ,T−1} ‖e?t − e?t+1‖2. Algorithm 2 gener-
ates a sequence (x̂1, . . . , x̂T ) ∈∏T

t=1 Xt satisfying

P? − P(x̂1, . . . , x̂T ) ≤ RT + Se + SA
where SA = 6RλRx√

T
[RA +

∑T
t=1 ‖At − At+1‖F] along

withRT = 2RλG√
T

and

Se =
2c

T

T−1∑

t=1

E(e?t − e?t+1)− E
( 1

T

T∑

t=1

e?t

)
+Me

2Rλ√
T
.

If we additionally assume that

(A10) E has Lipschitz continuous gradients over its domain
with parameter L > 0,

we can take insteadRT = LG2

2T log(eT ) and the term

Me
2Rλ√
T

can be replaced by Me
LG log(eT )

T
.

The proof of the results can be found in the ap-
pendix. The statement of Theorem 1 calls for some com-
ments. Omitting the contribution of terms depending on
{Rλ, Rx, RA, G,Me}, Theorem 1 guarantees that when
At is assumed to be known, the regret P?−P(x̂1, . . . , x̂T )

is upper-bounded by O
(

1
T

∑T−1
t=1 E(e?t − e?t+1)

)
and terms

scaling with O(1/
√
T ), or O(log(T )/T ) (for convex or

strongly convex cases respectively). As a result, the up-
per bound is mainly driven by how smooth the sequence
{e?t }Tt=1 varies over time, as measured by E . In the more
challenging setting where the constraint matrices At’s are
also estimated, we pay an additional cost O

(
1√
T

[1 +
∑T
t=1 ‖At−At+1‖F]

)
, so that the potential strong convex-

ity of E∗ (or equivalently, the gradient Lipschitz continuity
of E) plays only a second-order role in the above theorem.

Possible instantiations of E: We now present possible
valid instantiations of the error function E . A first example
for which the set of assumptions (A1)-(A2) can be satis-
fied considers E(z) = r · Ω(z) where Ω refers to any norm
on Rm. Indeed, it is well known (e.g., see Example 3.26
in (Boyd and Vandenberghe, 2004)) that E? corresponds in
this case to the indicator function of the ball for the dual
norm Ω∗ with radius r. In particular, if Ω is the `2 norm,
we can take Rλ = r.

Tighter regret bounds can be obtained if the function E is
taken to be gradient Lipschitz continuous (see Theorem 1
and Assumption (A10)), while preserving the boundedness
of the domain Λ of its Fenchel conjugate. A possible choice
in this case is an instance of a Huber function (e.g., see
Section 10.6 in (Hastie et al., 2009)), as detailed in Table 1.

In the setting of the online ad allocation problem, it is
sometimes required to impose an asymmetric error function
(e.g., to penalize under- and over-delivery differently). We
show in Table 1 corresponding valid instantiations of E that
depend only on their arguments via their positive parts.3

Complexity of computing x̂t: Assumption (A4), about the
exact computational oracle for x̂t, hides, and concentrates,
the difficulties related to the optimization with respect to
the primal variables xt. We can observe, in the light of the
decomposition (6), that an approximate maximization—
for instance leveraging the concavity of ft—would lead
to residual terms that would be hard to control in our on-
line setting. Although it may appear at first sight that
an exact maximization is an overly strong requirement,
wide classes of problems fall within the scope of this as-
sumption; we can for instance cite the exactly-solved sub-
problems that are commonly encountered in the context of

3Note that the symmetry assumption (A8) does not hold any-
more, but it can be shown that we can still obtain an upper bound
of Se along the lines of Lemma 3, though with a less compact
expression.
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E(z) E?(λ) Λ c

HRλ,L(‖z‖2) IBRλ (λ) + 1
2L
‖λ‖22 BRλ 2

HRλ,L(‖[z]+‖2) IBRλ∩Rm+ (λ) + 1
2L
‖λ‖22 BRλ ∩ Rm+ 2

Rλ · ‖z‖2 IBRλ (λ) BRλ 1
Rλ · ‖[z]+‖2 IBRλ∩Rm+ (λ) BRλ ∩ Rm+ 1

Table 1. Examples of non-additive penalty functions. For simplic-
ity, we display only expressions based on the `2 norm, but sim-
ilar formula can be obtained for `q, q ∈ {1,∞}. We recall that
Λ , dom(E?) = {λ : E?(λ) < +∞} and c ≥ 1 stands for the
constant of sub-additivity for E (see Assumption (A7)). We define
Br as the Euclidean ball in Rm with radius r, while IC is the in-
dicator function of the convex set C. The functionHr,s is defined
asHr,s(t) , 1

2
min{st2, r

2

s
}+ r[|t| − r

s
]+. The expressions are

derived in Lemmas B-C in the appendix.

proximal methods (Parikh and Boyd, 2013) or conditional-
gradient algorithms (Jaggi, 2013, see Table 1). We con-
jecture that, thanks to Assumption (A4), we may weaken
Assumption (A3) by, for instance, trying to drop the con-
cavity assumption of the ft’s and the convexity of the Xt’s.

Lower bounds: Based on Assumptions (A1)-(A2)-(A3),
we know that the minimax equality for our saddle point
problem holds (Sion et al., 1957). In particular, defining
the (convex) dual function

D(λ) ,
1

T

T∑

t=1

Dt(λ) ,
1

T

T∑

t=1

max
xt∈Xt

Lt(xt,λ),

we have the equality

P? − P(x̂1, . . . , x̂T ) = min
λ∈Λ
D(λ)− P(x̂1, . . . , x̂T ).

This new relationship makes it possible to derive comple-
mentary guarantees for our problem. For instance, when
we need not estimate the constraint matrices At’s,4 it can
be shown that we can lower bound P?−P(x̂1, . . . , x̂T ) by

[
1

T

T∑

t=1

Dt(λ̂t)− P(x̂1, . . . , x̂T )−RT
]

+

,

which sets a lower limit on the best performance we could
get with the sequences {x̂t, λ̂t}Tt=1. Interestingly, this
lower bound can not only be practically computed, but it
also gives an indication about the inherent difficulty of the
problem at hand (e.g., if it is large, the online strategy can-
not compete efficiently with its offline counterpart).

4. Experiments
In this section, we conduct two sets of experiments. First,
we consider a synthetic data and demonstrate the benefit

4When At’s are also estimated, the lower bound is more in-
volved, and requires the introduction of an estimated dual func-
tion D̂t along the lines of (9).

of handling truly non-additive penalties over a heuristic
based on an additive relaxation. Second, we report results
on an online advertising data set consisting of a sample of
3.3 million bid requests gathered from a large ad serving
system used in production at Amazon. Hence, these data
account for external advertiser constraints encountered in
practice, such as user behavioral targeting. We show that
the rate at which regret vanishes matches our theory.

4.1. Additive versus non-additive modeling

We first investigate if the use of a non-additive penalty on
average constraint violations yields improvements in re-
ward and/or constraint violations compared to the additive
error formulation adopted in standard online learning. The
additive long-term penalty is defined as follows:

1

T

T∑

t=1

[
ft(xt)− E(Atxt − bt)

]
. (12)

In the experiments, we consider a linear reward function
ft(x) = u>t xt, with the simplicial constraint xt ∈ Xt ,
{xt ∈ Rd+ : 1>xt ≤ 1}. These choices of ft and Xt are
reminiscent of the online ad allocation setting we explore
at greater length in Section 4.2. We simulated data with
m = 25, d = 10, T = 200 and where {At,bt,ut} were
generated to be standard random Gaussian matrices and
vectors normalized to unit norms. We ran our online algo-
rithm with primal-dual updates dictated by the non-additive
problem formulation in (2) and compared it to a baseline
algorithm with primal-only updates following a standard
online learning formulation with additive penalties on con-
straint violations as in (12). Since the exact maximization
maxxt∈Xt [ft(xt)−E(Atxt−bt)] may not be obtained in
closed-form in this case, we used the solver CVXPY (Dia-
mond et al., 2014). We shall refer to the two approaches as
respectively Non-additive and Additive.

So as to cover different types of geometries and convexity
assumptions, we consider several choices of penalty func-
tions, namely E(z) = Rλ · ‖z‖q for q ∈ {1, 2,∞}, along
with E(z) = Rλ · H1,1(‖z‖2) where H1,1 is the Huber
function defined in Table 1. For each E , and for, both,
Non-additive and Additive, we compute the reward
over T rounds given by 1

T

∑
t u
>
t x̂t and the (normalized)

non-additive penalty E( 1
T

∑
t Atx̂t − bt)/Rλ for the pri-

mal variables x̂t generated online by the two algorithms.

Figure 1 shows the resulting reward versus constraint vi-
olation for varying values of Rλ, averaged over 10 gener-
ations of {At,bt,ut}. As can be seen from the curves,
in applications where constraint violation are to be mea-
sured as a non-additive penalty, the additive relaxation (12)
leads to significant deterioration of the performance com-
pared to the non-additive penalty. In particular, the domain
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Figure 1. Reward 1
T

∑
t u
>
t x̂t as a function of non-additive

penalty E( 1
T

∑
t Atx̂t − bt)/Rλ for Rλ = 2γ with γ ∈

{−8,−7.5, . . . , 10}. Red crosses correspond to our proposed on-
line algorithm, while blue circles stand for a baseline algorithm
with additive penalties. Each subplot displays a different instan-
tiation of E , namely E(z) = Rλ · ‖z‖q for q ∈ {1, 2,∞} and
E(z) = Rλ · H1,1(‖z‖2) where H1,1 is defined in Table 1 (best
seen in color).

of the achievable constraint violation is very narrow when
applying the additive heuristic, meaning that there is little
room for making trading-offs. As expected, we also ob-
serve that points of Non-additive and Additive su-
perimpose in the regime where Rλ � 1, i.e., when the two
formulations focus on the optimization of the reward. Fi-
nally, we remark that since the quality of the additive relax-
ation (12) essentially hinges on the gap in the Jensen’s in-
equality E( 1

T

∑T
t=1 Atxt−bt) ≤ 1

T

∑T
t=1 E(Atxt−bt),

and therefore on the distribution of the residuals {Atxt −
bt}Tt=1, we provide in the appendix additional simulations
where {At,bt,ut} are generated according to different
distributions, viz, Cauchy, uniform and gamma. In a nut-
shell, the same conclusions hold, even for the distributions
that appear to make the relaxation (12) tighter.

4.2. Regret convergence on real online advertising data

In the second experiment, we focus on the online ad allo-
cation problem in display advertising subject to long-term
constraints on budget consumed per ad. More formally, in
the display advertising setting, each user visit to a website
or app triggers a bid request i, where each bid request has
some subset of the m possible ads that can be served. In-
dexing ads by j ∈ {1, · · · ,m}, the welfare of serving an
impression for ad j (i.e., the value of showing the ad once to

a user) for bid request i is given by uij ≥ 0. For bid request
i, let primal variable xij = 1 correspond to our decision to
allocate ad j an impression, with xij = 0 otherwise.

To map this problem to our formulation, we will further
partition the time dimension into disjoint intervals t ∈
{1, · · · , T} where the number of bid requests in each in-
terval is equal to N . We let It be the set of bid requests
in round t with |It| = N . Thus, for a given t, the pri-
mal variable xt will denote the flattened matrix xij for
i ∈ It and for all ads j ∈ {1, · · · ,m}, so that xt ∈ [0, 1]d

with d = N · m. Since we can show at most one ad per
bid request, we additionally have the simplicial constraints∑m
j=1 xij ≤ 1 for each bid request i, and we therefore de-

fine the set Xt ⊆ [0, 1]d as the Cartesian product of those
simplices for each i ∈ It. We define the welfare vector
ut ∈ Rd following the same flattening operation, so that
ft(xt) = u>t xt. Matrix At ∈ Rm×d is such that the j-th
entry [Atxt]j represents the amount of budget consumed
for ad j as a result of the allocation vector xt under a cost
per impression model. Finally, the non-additive long-term
constraints are modeled as 1

T

∑
t Atxt − bt. Vector bt

is equal to the constant vector b of ad budgets. Hence,
the penalty on 1

T

∑
t Atxt − bt penalizes deviations from

spending 100% of each ad’s budget.

The goal of the experiment is to compare the regret behav-
ior of our proposed online algorithm for different choices
of non-additive E on the online advertising data set from
live traffic. For each bid request in our data set, each eligi-
ble ad candidate comes with a pre-defined welfare and cost
to the advertiser, which determine ut and At respectively.
We partitioned the 3.3 million impressions into batches of
equal size, for a total of T = 10000 rounds. We computed
the average cumulative regret P? − P(x̂1, · · · , x̂T ) as a
function of T for (symmetric) E chosen to be i) E(z) = Rλ·
‖z‖1 referred to as Convex and ii) E(z) = HRλ,1(‖z‖2)
referred to as Strongly convex. For all problem in-
stantiations, we set Rλ = 50000. We computed the term
P(x̂1, · · · , x̂T ) by running our online primal-dual algo-
rithm over 20 permutations of bid requests. The term P?
was obtained using an offline primal-dual method where
the dual variable updates correspond to an offline subgradi-
ent (resp. gradient) method for the convex (resp. strongly
convex) E∗. Figure 2 shows the resulting cumulative re-
gret as a function of T , averaged over the 20 runs (with
error bars that are negligible). We observe that the cumu-
lative regrets incurred for, both, Convex and Strongly
convex decrease as T increases, with the latter decreasing
at faster rate than the former as predicted by the theory.
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Figure 2. Cumulative regret, averaged over 20 runs, measured on
the data collected by a real ad serving system as a function of
the number of rounds T for E(z) = Rλ‖z‖1 (red) and E(z) =
HRλ,1(‖z‖2) (blue). Figure best seen in color.

5. Appendix: Proofs
5.1. Proofs of Lemma 1

Proof. The two claims of the lemma can be found respec-
tively in (Zinkevich, 2003; Hazan et al., 2007) and follows
from (possibly, strong) convexity of Lt(x̂t,λ) with respect
to λ. For completeness, we briefly repeat the core argu-
ments from (Zinkevich, 2003; Hazan et al., 2007). The
conclusions come from the fact that the term

T∑

t=1

Lt(x̂t, λ̂t)− Lt(x̂t,λ)

is shown to be upper bounded by, with at , ‖λ− λ̂t‖22,

1

2

T∑

t=1

[
1

ηt

(
at − at+1

)
− σat + ηtG

2

]

in turn upper bounded by

a1

2

[
1

η1
− σ

]
+
G2

2

T∑

t=1

ηt +
1

2

T∑

t=2

at

[
1

ηt
− 1

ηt−1
− σ

]
.

The choices of the step sizes lead to the advertised instan-
tiations ofRT .

5.2. Proofs of Lemma 2

Proof. The result stems from an application of strong du-
ality for the above convex program. First, notice that

1

T

T∑

t=1

Gt(λt) =
1

T

T∑

t=1

λ>t e?t − E∗(λt)− E
(1

T

T∑

t=1

e?t

)
.

Introduce the equality constraint a = (∆⊗ I)λ, and write
the corresponding Lagrangian (we momentarily omit the

constant terms independent of λt that have no effects on the
maximization), that is, for any λt ∈ Λ,a ∈ R(T−1)·m,α ∈
R(T−1)·m and β ≥ 0:

L(λ,a,α, β) =
1

T

T∑

t=1

λ>t e?t − E∗(λt)

+ α>(a− (∆⊗ I)λ) + β(ε− Ω1/2(a)).

Using the fact that E∗ is the Fenchel conjugate of E and
that the conjugate of the `1/`2 norm Ω1/2 is the indicator
function of the unit ball for its dual `∞/`2 norm (Example
3.26 in (Boyd and Vandenberghe, 2004)), we can maximize
out the primal variables:

max
λ,a

L(λ,a,α, β) =
1

T

T∑

t=1

E
(
e?t −

[
T (∆⊗I)>α

]
t

)
+βε

under the constraint maxt=1...T−1 ‖αt‖2 ≤ β. Minimiz-
ing out β, and making the change of variable α ← T · α
leads to the claimed dual minimization problem. Finally,
the initial claim holds with equality, since Slater’s con-
straint qualification applies here to guarantee strong duality
(Section 5.2.3 in (Boyd and Vandenberghe, 2004)).

5.3. Proofs of Lemma 3

Proof. We evaluate the minimization problem
minα∈R(T−1)·m Se(α) at α = −(∆ ⊗ I)e? where
e? ∈ RT ·d is the vector of stacked e?t ’s. First notice that

e?t −
[
(∆⊗ I)>α

]
t

= e?t +
[
(∆>∆⊗ I)e?

]
t

=
[
((I + ∆>∆)⊗ I)e?

]
t
,

and define w , ((I + ∆>∆) ⊗ I)e?. We then get, by
definition of Se,

Se ≤
1

T

T∑

t=1

E(wt)−E
( 1

T

T∑

t=1

e?t

)
+
ε

T
Ω∞/2((∆⊗I)e?).

We can notice that the matrix I + ∆>∆ ∈ RT×T is tridi-
agonal and for any t = 2, · · · , T − 1 we have:

wt = (e?t − e?t−1) + (e?t − e?t+1),

while w1 = e?1−e?2 and wT = e?T−e?T−1. When applying
E and using sub-additivity, we therefore have for any t =
2, · · · , T − 1:

E(wt) ≤ c(E(e?t−1 − e?t ) + E(e?t − e?t+1))

with E(w1) ≤ cE(e?1 − e?2) and E(wT ) ≤ cE(e?T−1 − e?T )
where we used c ≥ 1. Observing that if E is symmetric
around zero (E(z) = E(−z)), the sum over E(wt) brings
into play each term e?t − e?t−1 twice, we end up with

1

T

T∑

t=1

E(wt) ≤ 2c
1

T

T−1∑

t=1

E(e?t − e?t+1).
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5.4. Proofs of Lemma 4

Proof. We first apply the Cauchy-Schwartz inequality to
get

|λ̂>t (Ât −At)(xt − x̂t)| ≤ ‖λ̂t‖2‖xt − x̂t‖2|||Ât −At|||2
≤ 2RλRx‖Ât −At‖F

where we have used that the operator norm is smaller
than the Frobenius norm. We then leverage Theorem 4
from (Hall and Willett, 2013): in their notation, we have
G` ≤ 1 (since the sub-gradients of A 7→ ‖At −A‖F are
bounded by 1), σ = 1, M ≤ RA/2 and Dmax ≤ 2R2

A

along with Φ = I and the learning rate ηt = RA/
√
t. This

leads to
T∑

t=1

‖Ât −At‖F − min
Ã1,...,ÃT∈A

T∑

t=1

‖Ãt −At‖F

≤ 2R2
A

ηT+1
+

2RA
ηT

V +
1

2

T∑

t=1

ηt

≤ 2RA
ηT

(RA + V ) +RA
√
T

≤ 3
√
T (V +RA),

where V stands for
∑T
t=1 ‖At −At+1‖F.

5.5. Proofs of Theorem 1

Proof. The proof consists in putting together the compo-
nents introduced in the Section 3 of the core paper. We
start from

P? − P(x̂1, . . . , x̂T ) =
1

T

T∑

t=1

Lt(x?t ,λ?)− Lt(x̂t, λ̂)

which, using the decomposition (6), is equal to

1

T

T∑

t=1

(Lt(x?t ,λ?)−Lt(x?t , λ̂t))+(Lt(x?t , λ̂t)−Lt(x̂t, λ̂)).

Moreover, Lemma A (see below) gives

Lt(x?t , λ̂t)− Lt(x̂t, λ̂) ≤ Lt(x̂t, λ̂t)− Lt(x̂t, λ̂)

+ λ̂
>
t (Ât −At)(x

?
t − x̂t).

Recalling the definitions of RT , Gt and SA respectively in
Lemma 1, (6) and (11), we obtain

P? − P(x̂1, . . . , x̂T ) ≤ 1

T

T∑

t=1

Gt(λ̂t) +RT + SA.

Noticing that with the choice ε/T , G
∑T
t=1 ηt/T , the

relationship (8) holds, we finally obtain

P? − P(x̂1, . . . , x̂T ) ≤ Re +RT + SA.

The rest of the proof follows by instantiating RT , Se and
SA. The value ofRT is given in Lemma 1, while the upper
bound for Se is described in Lemma 3.

Moreover, ε/T is equal to 2RλG/
√
T and GL log(eT )/T

in the convex and strongly convex cases respectively (given
the ηt from Lemma 1). Finally, the upper bound on SA is
given by Lemma 4.

6. Appendix: Technical lemmas
Lemma A. For any λ ∈ Λ and xt ∈ Xt, we have

Lt(xt, λ̂t)− Lt(x̂t,λ) ≤ Lt(x̂t, λ̂t)− Lt(x̂t,λ)

+ λ̂
>
t (Ât −At)(xt − x̂t).

Proof. For any λ ∈ Λ and xt ∈ Xt, Lt(xt, λ̂t)−Lt(x̂t,λ)
is equal to

= L̂t(xt, λ̂t) + λ̂
>
t (Ât −At)xt − Lt(x̂t,λ)

≤ L̂t(x̂t, λ̂t) + λ̂
>
t (Ât −At)xt − Lt(x̂t,λ)

= Lt(x̂t, λ̂t)− Lt(x̂t,λ) + λ̂
>
t (Ât −At)(xt − x̂t),

where we have used twice the relationship L̂t(xt,λ) =

Lt(xt,λ) − λ>(Ât − At)xt, and the fact that x̂t is de-
fined as argmaxxt∈Xt Lt(xt, λ̂t).

We next provide the details of the computations related to
relationship between E and E∗ presented in Table ??. We
focus on one of the displayed instantiations, since the argu-
ments in those other cases follow along the same lines.

Lemma B. For any u ∈ Rm,

max
w∈Rm

{
u>w−IBr∩Rm+ (w)− 1

2s
‖w‖22

}
= Hr,s(‖[u]+‖2),

whereHr,s(t) , 1
2 min{st2, r2s }+ r[|t| − r

s ]+.

Proof. We start by deriving the Lagrangian associated with

maxw∈Rm
{

u>w − IBr∩Rm+ (w)− 1
2s‖w‖22

}

= maxw∈Br∩Rm+

{
u>w − 1

2s‖w‖22
}

that is given by, for any α ≥ 0,β ∈ Rm+ ,

L(w, α,β) = u>w +
α

2

(
r2−‖w‖22

)
− 1

2s
‖w‖22 +β>w.

Maximizing out w, and recognizing the conjugate of the
squared `2 norm (Example 3.27 in (Boyd and Vanden-
berghe, 2004)), we obtain the dual function

max
w∈Rm

L(w, α,β) =
1

2(α+ 1/s)
‖u + β‖22 +

α

2
r2.
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In turn, we minimize with respect to the dual variables

min
α≥0,β∈Rm+

max
w∈Rm

L(w, α,β) =

min
α≥0

{ 1

2(α+ 1/s)
‖[u]+‖22 +

α

2
r2
}
.

The optimal α can then be easily computed and is equal to

[‖[u]+‖2
r

− 1

s

]
+
.

Plugging back this value into the dual function leads to the
expression Hr,s(‖[u]+‖2). The equality holds by invoking
strong duality, which applies based on Slater’s constraint
qualification (Section 5.2.3 in (Boyd and Vandenberghe,
2004)).

Lemma C. For any u,v ∈ Rm, it holds that

Hr,s(‖u + v‖2) ≤ 2
[
Hr,s(‖u‖2) +Hr,s(‖v‖2)

]

and

Hr,s(‖[u + v]+‖2) ≤ 2
[
Hr,s(‖[u]+‖2) +Hr,s(‖[v]+‖2)

]

whereHr,s(t) , 1
2 min{st2, r2s }+ r[|t| − r

s ]+.

Proof. Since Hr,s is non-decreasing and the triangle in-
equality holds for both ‖.‖2 and ‖[.]+‖2, we concentrate
on proving that for all t1, t2 ∈ R+,

Hr,s(t1 + t2) ≤ 2[Hr,s(t1) +Hr,s(t2)].

We analyze the 3 possible scenarios, namely (1) t1+t2 ≤ r
s

along with t1 ≤ r
s and t2 ≤ r

s , (2) t1 + t2 >
r
s along with

t1 ≤ r
s and t2 > r

s , and (3) t1 + t2 >
r
s along with t1 > r

s
and t2 > r

s .

Case (1) is handled by the fact that (t1 + t2)2 ≤ 2(t21 + t22).
As for case (2), we note thatHr,s(t1 + t2) ≤ 2[Hr,s(t1) +
Hr,s(t2)] is equivalent to

r(t1 + t2)− r2

2s
≤ st21 + 2rt2 −

r2

s

which can rearranged as r2

2s ≤ st21−rt1 +rt2. The smallest
possible value of the right-hand side is attained for t1 = r

2s

and t2 = r
s , thus leading to r2

2s ≤ 3r2

4s . Case (3) follows
along the same line.

7. Appendix: Additional experiments for
Section 4.1

We show below additional results when {At,bt,ut} are
generated according to different distributions, namely,

Cauchy, uniform and gamma. As described in the proto-
col of Section 4.1, we continue to normalize {At,bt,ut}
to unit norms. The same conclusions as those explained in
Section 4.1 of the paper hold. We observe that some instan-
tiations of E and distribution, e.g., `1 with gamma in Fig-
ure 5, lead to settings where the additive relaxation (12)
appears as tighter, although our non-additive approach still
offers better reward versus constraint violation tradeoffs.
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Figure 3. Reward 1
T

∑
t u
>
t x̂t as a function of non-additive

penalty E( 1
T

∑
t Atx̂t − bt)/Rλ for Rλ = 2γ with γ ∈

{−8,−7.5, . . . , 10}. The problem instances are generated with
a standard Cauchy distribution. Red crosses correspond to our
proposed online algorithm, while blue circles stand for a baseline
algorithm with additive penalties. Each subplot displays a differ-
ent instantiation of E , namely E(z) = Rλ·‖z‖q for q ∈ {1, 2,∞}
and E(z) = Rλ · H1,1(‖z‖2) whereH1,1 is defined in Table 1.
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